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Abstract

Past research in message logging has focused on study-
ing the relative overhead imposed by pessimistic, optimistic,
and causal protocols during failure-free executions. In
this paper, we give the first experimental evaluation of the
performance of these protocols during recovery. We dis-
cover that, if a single failure is to be tolerated, pessimistic
and causal protocols perform best, because they avoid roll-
backs of correct processes. For multiple failures, however,
the dominant factor in determining performance becomes
wherethe recovery information is logged (i.e. at the sender,
at the receiver, or replicated at a subset of the processes in
the system) rather thanwhenthis information is logged (i.e.
if logging is synchronous or asynchronous).

1 Introduction

Message-logging protocols (for example, [2, 3, 4, 6, 9,
10, 14, 15]) are popular techniques for building systems that
can tolerate process crash failures. These protocols are built
on the assumption that the state of a process is determined
by its initial state and by the sequence of messages it de-
livers. In principle, a crashed process can be recovered by
(1) restoring the process to its initial state and (2) rolling
it forward by re-playing to it messages in the same order
they were delivered before the crash. In practice, message
logging protocols limit the extent of roll-forward by hav-
ing each process periodically save its local state in a check-
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tuple, called the message’sdeterminant, which the deliver-
ing process logs on stable storage. If the determinants of all
the messages delivered by a crashed process are available
during recovery, then the process can be restored to a state
consistentwith the state of all operational processes. Two
statessp andsq of processesp andq are consistent if all
messages fromq that p has delivered during its execution
up to statesp were sent byq during its execution up to statesq, and vice versa. Anorphanprocess is an operational pro-
cess whose state is inconsistent with the recovered state of a
crashed process. All message-logging protocols guarantee
that upon recovery no process is an orphan, but differ in the
way they enforce this consistency condition:� Pessimistic protocols [3, 9] require that a process, be-

fore sending a message, synchronously log on stable
storage the determinants and the content of all mes-
sages delivered so far. Thus, pessimistic protocols
never create orphan processes.� Optimistic protocols [4, 10, 14] allow processes to
communicate even if the determinants they depend
upon are not yet logged on stable storage. These proto-
cols only require that determinants reach stable storage
eventually. However, if any of the determinants are lost
when a process crashes, then orphans may be created.
To reach a consistent global state, these processes must
be identified and rolled back.� Causal protocols [2, 6] combine some of the positive
aspects of pessimistic and optimistic protocols: They
never create orphans, yet they do not write determi-
nants to stable storage synchronously. In causal proto-
cols, determinants are logged in volatile memory. To
prevent orphans, processes piggyback their volatile log
of determinants on every message they send1. This

1If there exists an upper boundf on the number of concurrent crashes
and processes fail independently, then a determinant logged byf + 1 pro-
cesses does not need to be piggybacked further.



guarantees that if the state of an operational processp causally depends [11] on the delivery of a messagem, thenp has a copy ofm’s determinant in its volatile
memory. This property is sufficient to restore a crashed
process in a state consistent with the state of all opera-
tional processes.

Although several studies have measured the overhead
imposed by each of these approaches during failure-free ex-
ecutions [7, 8], their merits during recovery have been so far
argued mostly qualitatively. For instance, there is consen-
sus that pessimistic protocols are well-suited for supporting
fast recovery, since they guarantee that all determinants can
be readily retrieved from stable storage. The opinions about
optimistic protocols are less unanimous. On the one hand,
these protocols seem unlikely candidates for fast recovery
because, to restore the system to a consistent state, they re-
quire to identify, roll back, and then roll forward all orphan
processes. On the other hand, recent optimistic protocols
employ techniques for quickly identifying orphans and can
roll forward orphans concurrently, thereby reducing recov-
ery time.

Although the literature contains careful analyses of the
cost of recovery for different optimistic protocols in terms
of the number of messages and the rounds of communica-
tion needed to identify and roll back orphan processes (for
example, [4, 8, 14]), in general no experimental evaluations
of their performance during recovery are offered.

The performance of causal protocols during recovery
has also been debated. Proponents of these protocols have
observed that causal protocols, like pessimistic protocols,
never create orphans and therefore never roll back correct
processes. However, with causal protocols a process can
start its recovery only after collecting the necessary deter-
minants from the volatile logs of the operational processes.
It has been qualitatively argued [4] that optimistic proto-
cols that start recovery without waiting for data from other
processes may have a shorter recovery time than causal pro-
tocols.

Finally, little is known about the effect of changes inf ,
the number of concurrent process failures, on the recovery
costs of pessimistic, optimistic, and causal protocols.

In the past, the absence of a careful experimental study
of the performance of these protocols during recovery could
be justified by arguing that, after all, it was not needed.
Distributed applications requiring both fault-tolerance and
high availability were few and highly sophisticated, and its
users could typically afford to invest the resources necessary
to mask failures through explicit replication in space [13]
instead of recovering from failures through replication in
time. As distributed computing becomes commonplace and
many more applications are faced with the current costs of
high availability, there is a fresh need for recovery-based
techniques that combine high performance during failure-

free executions with fast recovery.
In this paper, we take an initial step towards the devel-

opment of these new protocols by presenting the first exper-
imental study of the recovery performance of pessimistic,
optimistic, and causal protocols. Contrary to our initial in-
tuition, our results indicate that pessimistic and causal pro-
tocols outperform optimistic protocols only whenf = 1.
For f > 1, the dominant factor in determining recovery
time becomeswherethe recovery information is logged (i.e.
at the sender, at the receiver, or replicated at a subset of the
processes in the system) rather thanwhenthis information
is logged (i.e. if logging is synchronous or asynchronous).
Hence, optimistic protocols, although they incur rollbacks,
can often outperform implementations of pessimistic and
causal protocols that are less efficient in supporting fast re-
trieval of messages and determinants used during recovery.
From our results, we distill a few lessons that can guide the
design of future message-logging protocols.

The rest of the paper is organized as follows. In Sec-
tion 2, we describe our implementation of message logging
protocols and checkpointing. We briefly describe the ap-
plication programs used in this study in Section 3. The ex-
perimental analysis of the recovery costs for the pessimistic,
optimistic, and causal logging protocols is presented in Sec-
tion 4. Section 5 discusses a few principles that can be used
to design message-logging protocols for fast crash recovery.
Finally, Section 6 offers some concluding remarks.

2 Implementation

To measure the cost of recovery in message logging pro-
tocols, we have implemented a fault-tolerance layer con-
sisting of a communication substrate, a checkpoint man-
ager, and a message-logging protocol suite. For tolerating
hardware failures, processes are named using a name server
which provides location-independent names.� Communication substrate: The communication sub-

strate provides interfaces to create and destroy point-
to-point FIFO communication channels among coop-
erating processes, as well as to send and deliver mes-
sages. Communication channels are implemented as
tcp connections.� Checkpoint manager: The checkpoint manager peri-
odically saves on stable storage the state of each pro-
cess, which includes heap, stack, and data segments,
plus the mapping of implicit variables such as program
counters and machine registers to their specific values.
Stable storage for checkpoints is provided by a highly
available network file server.� Message-logging Protocol Suite: This suite contains
representative protocols for each of the three styles of
message logging:



Pessimistic logging: We have implemented two pes-
simistic protocols. The first protocol isreceiver-based:
a process, before sending a message, logs to sta-
ble storage both the determinants and the contents of
the messages delivered so far. The second protocol
is insteadsender-based[9]: the receiver logs syn-
chronously to stable storage only the determinant of
every message it delivers, while the contents of the
message are stored in a volatile log kept by the mes-
sage’s sender2. This protocol is similar to the one de-
scribed in [15].

In both of these protocols, the first step of recovering
a processp consists in restoring it to its latest check-
point. Then, in the receiver-based protocol, the mes-
sages logged on stable storage are replayed top in
the appropriate order. In the sender-based protocol,
instead,p broadcasts a message asking all senders to
retransmit the messages that were originally sent top.
These messages are matched bypwith the correspond-
ing determinants logged on stable storage and then re-
played in the appropriate order.

Optimistic logging: Among the numerous optimistic
protocols that have been proposed in the the liter-
ature, we have implemented the protocol described
in [4]. This protocol, in addition to tolerating an ar-
bitrary number of failures and preventing the uncon-
trolled cascading of rollbacks known as thedomino ef-
fect[14], implements a singularly efficient method for
detecting orphans processes. In this protocol, causal
dependencies are tracked using vector clocks [12]. On
a message send, the sender piggybacks its vector clock
on the message; on a message deliver, the receiver up-
dates its vector clock by computing a component-wise
maximum with the piggybacked vector clock. The de-
terminants and the content of the messages delivered
are kept in volatile memory logs at the receiver and
periodically flushed to stable storage. Since in a crash
these logs in volatile memory are lost, orphans may be
created. To detect orphans, a recovering process sim-
ply sends a failure announcement message containing
the vector clock of the latest state to which the process
can recover. On receiving this message, each opera-
tional process compares its vector clock with the one
contained in the message to determine whether or not
it has become an orphan. An orphan process first syn-
chronously flushes its logs to stable storage. Then, it
rolls back to a checkpoint consistent with the recov-
ered state of the failed process and uses its logs to roll-
forward to the latest possible consistent state.

2Some sender-based pessimistic protocols keep both determinants and
message contents at the senders [9, 10]. We have not implemented these
protocols because they can only tolerate at most two concurrent failures.

In our implementation, we have modified the pseudo-
code presented in [4] so that the recovering process
sends the failure announcements before replaying any
message from the log, rather than after all messages in
the log have been replayed. This optimization allows
the roll-forward of recovering processes to proceed in
parallel with the identification, roll-back and eventual
roll-forward of orphan processes. This optimization
dramatically improves the performance of the protocol
during recovery (see Section 4).

Causal logging: We have implemented the�det
family-based message-logging protocol [1]. This pro-
tocol is based on the following observation: in a sys-
tem where processes fail independently and no more
thanf processes fail concurrently, one can ensure the
availability of determinants during recovery by repli-
cating them in the volatile memory off +1 processes.
In our implementation, this is accomplished by piggy-
backing determinants on existing application messages
until they are logged by at leastf +1 processes [2, 6].
Recovery of a failed process proceeds in two phases.
In the first phase, the process obtains from the logs of
the remaining processes (1) its determinants and (2)
content of messages it delivered before crashing. This
is because in causal protocols, message contents are
logged only in the volatile memory of the sender. In
the second phase, the collected data is replayed, restor-
ing the process to its pre-crash state. To handle mul-
tiple concurrent failures, we implemented a protocol
that recovers crashed processes without blocking oper-
ational processes [5]. In this protocol, the recovering
processes elect a leader, that collects determinants and
messages on behalf of all recovering processes. The
leader then forwards the pertinent data to each recov-
ering process.

3 Applications

For our experiments, we have chosen the following five
long-running, compute-intensive applications.� grid performs successive over-relaxation (SOR) for a

Laplace partial differential equation on a grid of200�200 points. In each iteration, the value of each point
is computed as a function of its value in the previous
iteration and of the values of its neighbors. The rows
of the grid are partitioned using a 1-D decomposition
such that the load on all processes is balanced. At the
end of each iteration, each process exchanges with its
2 neighbors the new values on the edges of its grid.� nbody performs ann-body simulation for 625 parti-
cles. In the simulation, the motion of a particle de-
pends on the interactive forces between that particle



and the remaining particles. Particles are evenly dis-
tributed amongst all the processes. During each itera-
tion, each process exchanges the positions of its parti-
cles with the other processes in the system.� gauss performs Gaussian elimination with partial piv-
oting on a1024�1024matrix that represents a system
of linear equations of the formAx = B. Each process
is initially assigned a subset of the rows of matrixA
such that the load on each process is balanced. In each
iteration, a process receives a row of the matrix from
its predecessor, performs some local computation and
sends the row it computed to its successor.� life is the game of life played on a500 � 500 grid of
points. In each iteration, the value of a grid point is
computed as the sum of the values of its 8 neighbors.
The rows of the grid are partitioned such that the load
on all processes is balanced. At the end of each itera-
tion, each process exchanges with its 2 neighbors the
new values on the edges of its grid.� p2fox performs a predator-prey simulation over a pop-
ulation of rabbits and foxes on a250 � 250 grid of
points. For the simulation, the grid is evenly divided
amongst processes. At the end of each iteration, a pro-
cess updates the population according to some rules
and then exchanges with its 4 neighbors the new val-
ues on the edges of its grid.

These applications exhibit different communication pat-
terns. In thegrid andlife applications, a process communi-
cates mostly with its two neighbors, and inp2fox a process
communicates mostly with four of its neighbors. The size of
messages exchanged are approximately 2KB. Periodically,
however, each process sends 100Byte messages to all the
processes in the system. Innbody, each process commu-
nicates with all other processes, and the size of these mes-
sages is approximately 1KB. Ingauss, each process com-
municates with two of its neighbors, and the size of each
message is approximately 15KB.

4 Experimental Evaluation

4.1 Experimental Methodology

We conducted our experiments on a collection of
Pentium-based workstations connected by a lightly-loaded
100Mb/s ethernet. Each workstation has 64 megabytes of
memory and runs Solaris 2.5. In our experiments, there is
one process of the distributed application per machine. Sta-
ble storage is provided by an NFS file server that stores files
on a RAID-5 disk array consisting of 6 disks.

For each protocol, we compute our results by averaging
the recovery time measured over twenty runs of each of the

five applications. For a given application, we guarantee that,
independent of the protocol used, failures occur at the same
point in the execution of the application: taking advantage
of the iterative nature of the applications, we induce process
failures after the completion of a pre-determined number of
iterations. This ensures that the amount of lost computation
that has to be recovered in all three protocols is the same.

4.2 Metrics

For pessimistic and causal protocols, the recovery time
(denoted byTrec) for a process comprises of: (1)Tchk, the
time to restore the state of the failed process from its latest
checkpoint stored on the file server, (2)Tacq, the time to
retrieve determinants and messages logged during failure-
free execution, and (3)Trollfwd, the time to roll-forward
the execution of the process to its pre-crashed state. For
optimistic protocols, on the other hand, in addition toTchk
andTacq, the recovery timeTrec consists of: (1)Treplay,
the time to replay messages to the recovering process from
the acquired logs, and (2)Trollbck, the time required to roll
back orphans. Note thatTacq is protocol dependent: for
pessimistic and optimistic protocols, it is the time to read
logs from the file server, while for causal protocols, it is the
time to collect messages and determinants from the logs of
the remaining processes. In the case of multiple failures,
the values ofTchk, Tacq, Trollfwd, Treplay, andTrollbck are
averaged over the set of concurrently recovering processes.

4.3 Measurements

For all protocols,Trec depends on three parameters.

1. The timet, within the execution interval defined by
two successive checkpoints, at which a failure is in-
duced. For all protocols, this parameter affects the
amount of lost computation that has to be recovered
and the size of the logs that have to be acquired by the
recovering process.

2. The number of processes,n. For causal protocols,n may affectTacq because it may change the set of
processes from which a recovering process collects its
logs. For optimistic protocols,n may affectTrollbck
because it may change the number of orphans.

3. The number of concurrent failures,f . For optimistic
protocols, multiple failures may cause a process to
rollback multiple times. For sender-based pessimistic
and causal protocols, multiple failures may complicate
the task of retrieving messages and determinants from
other processes.



For optimistic protocols,Trec depends also on the fre-
quency with which volatile logs are flushed to stable stor-
age. In all our experiments, volatile logs are flushed to sta-
ble storage every minute. For all protocols, checkpoints are
taken six minutes apart.

General Observations Before we proceed to analyze in
Figure 1 and Table 2 the effects onTrec of changing the
values oft, n, andf , we present a few observations about
the behavior of logging protocols that are independent of
the specific values of these parameters. We illustrate these
observations with the help of Table 1, which shows the re-
sult of our experiments whenn = 4, f = 1, andt is chosen
half-way between successive checkpoints.� Messages and determinants that are available in the

logs during recovery are processed at a rate higher than
during normal execution. This is because, during nor-
mal execution a process may have to block waiting for
messages, while during recovery these messages can
be immediately retrieved from the logs.

Note that sinceTrollfwd for pessimistic and causal
protocols and(Treplay + Trollbck) for optimistic pro-
tocols dominate the total value ofTrec, the reduc-
tion in recovery time yielded by processing mes-
sages and determinants from logs can be significant.
Table 1 illustrates that this reduction is very sig-
nificant, although it is application-dependent. For
communication-intensive applications—such asgrid,
nbody, life, and p2fox—Trollfwd and (Treplay +Trollbck) are significantly smaller than 3 minutes, the
value oft for this experiment. However, for compute-
intensive applications—such asgauss—reading de-
terminants and messages from the logs does not result
in any significant speedup.

Note also that in optimistic protocols, any speedup ap-
plies only to the portion of the log retrieved from stable
storage, which in general contains only a prefix of the
sequence of the messages and determinants delivered
prior to failure. As a result,(Treplay+Trollbck) for op-
timistic protocols is typically larger thanTrollfwd for
receiver-based pessimistic protocols3.� Sender-based pessimistic and causal protocols take
longer to collect recovery information than receiver-
based pessimistic and optimistic protocols. Sender-
based pessimistic and causal protocols collect mes-
sage contents and determinants from operational pro-
cesses. Although this information is sent concurrently
by the operational processes, the recovering process

3Although for f = 1, (Treplay + Trollbck) is always larger thanTrollfwd for all pessimistic and causal protocols, this does not holdforf > 1 (see Table 2).

incurs an overhead in merging the received data to
create a sequential log used during roll-forward. For
both receiver-based pessimistic and optimistic proto-
cols, logs are already organized sequentially on stable
storage. Furthermore, read-ahead, supported by con-
ventional file systems, speeds up sequential retrieval
of the logs.

Table 1 illustrates thatTacq for sender-based pes-
simistic and causal protocols can be at times six times
higher (e.g., inp2fox) than that for receiver-based pes-
simistic and optimistic protocols. However, sinceTacq
contributes a relatively small fraction ofTrec, the im-
pact of this effect on the overall recovery performance
of the protocols is minor.� In optimistic protocols, overlapping the roll-forward of
recovering processes with the identification, rollback
and roll-forward of orphans significantly reduces the
cost of recovery. For instance, Table 1 shows that in
the case ofnbody the value ofTrec for the optimized
protocol is98:72 seconds, compared with the value
of 154:1 seconds we obtained by running the proto-
col without the optimization. Similar results hold for
the other applications.� Since the size of the process state saved in checkpoints
is independent of the message-logging protocols, as
expected,Tchk is almost the same for all protocols.

Changing the Time of Failure Figure 1(a) shows the ef-
fect of varyingt on Trec for nbody. We make two obser-
vations. First, ast increases, so do bothTacq and more
significantlyTrollfwd and(Treplay + Trollbck). This is not
surprising because for higher values oft, more messages
and determinants need to be acquired and processed. Sec-
ond, sinceTrollbck depends only on the frequency at which
the logs are flushed to stable storage, its values does not
change witht. Consequently, the contribution ofTrollbck toTrec is proportionally reduced.

Changing the Number of Processes We assess the effect
on Trec of varying n for nbody, an application in which
each process communicates with every other process. We
expected to observe that increasingn would increaseTacq
for causal and sender-based pessimistic protocols, as well
asTrollbck for optimistic protocols. Figure 1(b) indicates
that these effects, although present, are insignificant.

Changing the Number of Concurrent Failures Table 2
shows the effect onTrec of varyingf . We make the follow-
ing observations.



Receiver-based Pessimistic Sender-based Pessimistic
Application Tchk Tacq Trollfwd Trec Tchk Tacq Trollfwd Trec

(sec.) (sec.) (sec.) (sec.) (sec.) (sec.) (sec.) (sec.)

grid 0.31 1.4 30.28 31.99 0.3 3.1 30.5 33.6
nbody 0.29 3.5 78.01 81.8 0.31 4.2 77.5 82.01
gauss 2.61 11.15 207.13 220.89 2.75 14.6 211.01 228.36
life 0.31 0.95 41.1 42.36 0.33 2.1 41.5 43.93

p2fox 1.85 0.8 22.29 24.94 1.8 5.4 22.6 29.8

Optimistic Causal
Application Tchk Tacq Treplay Trollbck Trec Tchk Tacq Trollfwd Trec

(sec.) (sec.) (sec.) (sec.) (sec.) (sec.) (sec.) (sec.) (sec.)

grid 0.31 1.2 16.8 33.1 51.41 0.36 3.67 30.74 34.77
nbody 0.31 2.91 58.1 37.4 98.72 0.35 4.42 78.1 82.87
gauss 2.64 9.83 197.2 27.6 237.27 2.56 15.7 210.7 228.96
life 0.31 0.8 25.78 40.8 67.69 0.36 2.55 38.97 41.88

p2fox 1.88 0.7 14.7 30.8 48.08 1.87 5.91 21.39 29.17

Table 1 . The cost of recovery for f = 1, n = 4, and t � 3min.
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Receiver-based Pessimistic Sender-based Pessimistic
Application f Tchk Tacq Trollfwd Trec Tchk Tacq Trollfwd Trec

(sec.) (sec.) (sec.) (sec.) (sec.) (sec.) (sec.) (sec.)

1 0.31 1.4 30.28 31.99 0.3 3.1 30.5 33.9
grid 2 0.34 1.43 32.1 33.87 0.34 2.42 80.22 82.98

3 0.39 1.5 32.29 34.18 0.42 2.1 128.26 130.72
1 0.29 3.5 78.01 81.8 0.31 4.2 77.5 82.01

nbody 2 0.41 3.7 78.19 82.3 0.35 3.8 110.8 114.95
3 0.42 4.1 78.3 82.82 0.38 3.1 127.3 130.78
1 2.61 11.15 207.13 220.89 2.75 14.6 211.01 228.36

gauss 2 3.1 13.15 208.7 224.95 3.2 14.3 226.58 244.08
3 3.7 14.7 209.4 227.8 3.68 8.1 232.7 250.48
1 0.31 0.95 41.1 42.36 0.33 2.1 41.5 43.93

life 2 0.41 1.3 43.36 45.07 0.42 1.38 107.3 109.1
3 0.46 1.5 43.8 45.76 0.45 1.17 147.2 148.82
1 1.85 0.8 22.29 24.94 1.8 5.4 22.6 29.8

p2fox 2 2.1 1.23 22.7 26.03 2.2 4.1 68.5 74.8
3 2.7 1.64 22.78 27.12 2.73 3.6 120.8 127.13

Optimistic Causal
Application f Tchk Tacq Treplay Trollbck Trec Tchk Tacq Trollfwd Trec

(sec.) (sec.) (sec.) (sec.) (sec.) (sec.) (sec.) (sec.) (sec.)

1 0.31 1.2 16.8 33.1 51.41 0.36 3.67 30.74 34.77
grid 2 0.39 1.27 17.45 33.4 52.51 0.41 7.52 80.69 88.62

3 0.41 1.3 17.5 33.46 52.67 0.43 6.1 127.63 134.16
1 0.31 2.91 58.1 37.4 98.72 0.35 4.42 78.1 82.87

nbody 2 0.4 3.1 59.2 38.24 100.94 0.47 10.64 112.89 124.0
3 0.42 3.3 60.3 38.35 102.37 0.49 7.25 129.71 137.45
1 2.64 9.83 197.2 27.6 237.27 2.56 15.7 210.7 228.96

gauss 2 3.2 10.5 198.3 28.73 240.73 3.22 25.3 229.88 258.4
3 3.75 11.3 198.5 29.1 242.65 3.78 21.7 235.3 260.78
1 0.31 0.8 25.78 40.8 67.69 0.36 2.55 38.97 41.88

life 2 0.37 0.95 26.1 41.1 68.52 0.45 6.1 108.84 115.39
3 0.43 1.1 26.3 42.2 70.03 0.5 4.25 151.09 155.84
1 1.88 0.7 14.7 30.8 48.08 1.87 5.91 21.39 29.17

p2fox 2 2.16 0.75 16.1 31.12 50.13 2.2 10.39 67.92 80.51
3 2.73 0.86 17.2 31.34 52.13 2.65 8.43 122.24 133.32

Table 2 . Trec as a function of f , where 1 � f < 4, n = 4, and t � 3min.� For f > 1, the optimistic protocol performs signifi-
cantly worse than the receiver-based pessimistic pro-
tocol, but better than both the sender-based pessimistic
and the causal protocols (see Figure 2). This result sur-
prised us: we had expected that pessimistic and causal
protocols, which never force rollbacks, would always
recover faster than optimistic protocols. Our results in-
stead indicate that the factor that dominatesTrec is the
time necessary to regenerate the sequence of messages
to be delivered during recovery:

– In receiver-based pessimistic protocols, the
whole sequence is available on stable storage and
can be quickly processed to roll forward recover-
ing processes. Since a process’ ability to retrieve
all the information needed to complete its recov-
ery is not affected by the concurrent failure of

other processes,Trollfwd is independent off .

– In optimistic protocols, only a prefix of this se-
quence can be retrieved from stable storage: the
messages that at the time of failure were logged
in volatile memory need to be regenerated by
rolling back orphan processes and then rolling
them forward again. However, the messages
available on stable storage can be processed
quickly, while in parallel orphans are rolled first
back and then forward.

– In both sender-based pessimistic and causal pro-
tocols, it is guaranteed that the determinants of
all the messages in the sequence are available at
the beginning of the roll-forward phase. How-
ever, this guarantee does not apply to the con-
tents of these messages. In particular, all mes-
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(O), and causal (C).

sages originally sent by any of the concurrently
failed processes are temporarily lost. A recover-
ing process will stop rolling forward whenever it
encounters one of these missing messages, wait-
ing for the sender to recover to the point at which
the message is regenerated and resent. We call
this effectstop-and-go. Whenever stop-and-go
occurs, the roll-forward phase slows down to the
speed of normal execution. Figure 2 shows that,
asf increases and more messages are temporar-
ily lost, stop-and-go has an increasingly adverse
effect onTrec for nbody. A similar effect holds
for the other applications (see Table 2).� In causal protocols,Tacq increases significantly when

there are multiple concurrent failures, as the overhead
of the algorithm used for acquiring messages and de-
terminants becomes higher whenf > 1. There are two
factors that contribute to this increase. First, the recov-
ering processes elect a recovery leader. Second, the
recovery information is not collected directly by each
process, but instead is first gathered by the recovery
leader, which then forwards it to each process.

The dependence ofTacq on f is complex. On the one
hand, asf increases, there are more recovering pro-
cesses for which the recovery leader has to collect data,
causingTacq to increase. On the other hand, since the

number of operational processes decreases withf , the
amount of data that the recovery leader has to collect
and distribute decreases, potentially lowering the value
of Tacq. Further experiments are needed to fully under-
stand the interplay of these factors.

5 Discussion

Based on the results of Section 4, we identify a few prin-
ciples that can guide the design of message logging proto-
cols for fast recovery.

First, it is a bad idea to rely on other processes to pro-
vide the messages that have to be re-delivered during recov-
ery. Protocols that do not operate according to this princi-
ple, such as sender-based pessimistic and causal protocols,
suffer from the stop-and-go effect wheneverf > 1, to the
point that, asf increases, their roll-forward phase effec-
tively slows down to the speed of normal execution. Inter-
estingly, this principle is in stark contrast with recent trends
in the design of message logging protocols, which, in or-
der to improve performance during failure free executions,
have messages logged by the senders [2, 6, 9, 15]. Indeed,
a conclusion of our experiments is that there exists a trade-
off between performance during failure-free executions and
recovery.

Second, it is a good idea to avoid rollbacks. For instance,
whenf = 1, Trec for the optimistic protocol is about twice
as large as the value ofTrec for the other protocols. This
principle is not a surprise, and it is behind the development
of approaches such as causal logging, which try to avoid
rollbacks without introducing the failure-free overhead of
receiver-based pessimistic protocols. Whatis surprising is
that stop-and-go can dwarf the adverse effects of rollbacks,
as shown in Figure 2.

Finally, it is a good idea to design optimistic protocols
so that orphan processes can be identified, rolled back, and
rolled forward in parallel with the roll-forward of the re-
covering processes. This principle is again not surprising.
However, it is largely ignored by current optimistic proto-
cols, which instead concentrate on minimizing performance
metrics that can be quantified analytically, such as the num-
ber of rounds needed to detect orphans. Although these
metrics are interesting, they focus on aspects of the recovery
protocol that affectTrec only marginally.

6 Concluding Remarks

As distributed computing becomes commonplace and
many more applications are faced with the current costs of
high availability, there is a fresh need for recovery-based
techniques that combine high performance during failure-
free executions with fast recovery. Message logging pro-
tocols have been proposed as a promising technique for



achieving fault-tolerance with little overhead. The relative
overhead that these protocols impose during failure-free ex-
ecutions is well understood. This is not the case, however,
for their performance during recovery, which has so far been
argued mostly qualitatively.

In this paper, we presented the first experimental evalu-
ation of the performance of message logging protocols dur-
ing recovery. We discovered that, if a single failure is to
be tolerated, pessimistic and causal protocols perform best,
because they avoid rollbacks of correct processes. For mul-
tiple failures, however, the dominant factor in determin-
ing performance becomeswherethe recovery information
is logged (i.e. at the sender, at the receiver, or replicated
at a subset of the processes in the system) rather thanwhen
this information is logged (i.e. if logging is synchronous or
asynchronous). Our results showed that fast crash recovery
is achieved by protocols, such as receiver-based pessimistic
logging, in which a recovering process (1) does not depend
on other processes being functional and (2) does not force
rollbacks. Such receiver-based logging protocols, however,
are known to impose a high overhead on application perfor-
mance during failure-free runs [7]. We are currently devel-
oping new protocols to overcome this tradeoff and simulta-
neously provide both low-overhead during failure-free exe-
cutions and fast crash recovery.
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