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SUMMARY Extensive studies have been made of the public key cryp-
tosystems based on multivariate polynomials over F2. However most of the
proposed public key cryptosystems based on multivariate polynomials, are
proved not secure. In this paper, we propose several types of new construc-
tions of public key cryptosystems based on randomly generated singular
simultaneous equations. One of the features of the proposed cryptosystems
is that the sets of random singular simultaneous equations significantly en-
larges the size of the transformation.
key words: public-key cryptosystem, singular simultaneous equations,
multivariate polynomials

1. Introduction

Extensive studies have been made of the Public Key Cryp-
tosystem(PKC). The security of most PKCs depends on
the difficulty of discrete logarithm problem or factorization
problem. Thus it is desired to investigate another classes of
PKC that do not rely on the difficulty of these two problems.

In this paper, we shall present a new class of PKC
whose security seems to depend on the difficulty of the prob-
lem of solving singular simultaneous equations of degree 2
[1]. Hereinafter Singular Simultaneous Equations of degree
d will be denoted as SSE(d). We shall also refer to the con-
ventional PKC, constructed based on Simultaneous Equa-
tions(SE) of degree d will be referred to as SE(d)PKC.

The simultaneous equations used in the proposed PKC
are generated in a random manner, in a sharp contrast with
the conventional methods whose security also seems to be
related to the difficulty of solving SE(d) [2], [3]. As our pro-
posed PKCs are constructed, based on the Random Singular
Simultaneous Equations(RSSE) of degree d, we shall refer
to the proposed scheme as RSSE(d)PKC, for short.

To our knowledge, no elegant method has been known
to provide the sets of the solutions for the given RSSE(d)
[4]. Thus the proposed PKC based on SSE(d) appar-
ently seems more secure compared with the conventional
SE(d)PKC.

Let us briefly survey a short history of investigations
on a class of public key cryptosystems whose security relies

Manuscript received March 18, 2004.
Manuscript revised July 8, 2004.
Final manuscript received August 30, 2004.
†The author is with Faculty of Informatics, Osaka Gakuin Uni-

versity, Suita-shi, 564-8511 Japan.
††The author is with Department of Lightwave Sciences,

Osaka Electro-Communication University, Neyagawa-shi, 572-
8530 Japan.

a) E-mail: kasahara@utc.osaka-gu.ac.jp
b) E-mail: sakai@isc.osakac.ac.jp

upon the difficulty of solving SE(2)PKC over F2.
The first and important SE(2)PKC was proposed by

Matsumoto and Imai [2]. In this paper the Matsumoto and
Imai’s scheme will be referred to as MI-SE(2)PKC. Unfor-
tunately this interesting scheme was shown to be insecure by
Patarin [3], [5]. Patarin then proposed a series of improved
versions of the MI-SE(2)PKC such as the Oil and Vinegar
Algorithm [5] and the Little Dragon and the Big Dragon
schemes [3], [6], [7]. However the Oil and Vinegar scheme
was broken by Kipnis and Shamir [8]. The Little Dragon
scheme was also broken by Coppersimith and Patarin [3],
[6]. In this paper the Little Dragon scheme will be referred
to as LD-SE(2)PKC.

For obtaining SE(2), simultaneous equations of degree
2, the MI-SE(2)PKC over F2 basically exploits the following
transformation referred to as ΦMI:

ΦMI : y �−→ y2θ+1, (1)

where θ is a positive integer and y is the n dimensional
vector that belongs to a secret extension field F2n generated
modulo a secret polynomial G(X) of degree n.

The various schemes whose securities rely on the diffi-
culty of solving SE(2) use the variants of the original trans-
formation ΦMI.

For example, the Little Dragon scheme uses the follow-
ing transformation [3]:

ΦLD : y �−→ y2θ1+2θ2−1, (2)

where θ1 and θ2 are certain positive integers.
Another class of SE(2)PKC known as TPM(T Plus-

Minus) has been also extensively studied [9]. In this
scheme, the so-called triangular construction, usually de-
noted by T, is exploited. Recently Moh proposed a sub-case
of TPM scheme, TTM cryptosystem. However, shortly after
the proposal of TTM, the TPM/TTM schemes were broken
by Goubin and Courtois [10].

Recently, the methods of using random transformation
for obtaining simultaneous equations have been proposed
[11]–[15]. Hereinafter we shall refer to PKC based on ran-
dom Non-Singular SE(d) as RNSSE(d)-PKC. In these meth-
ods, the transformations are random in a sense that all the
coefficients of the products of d or less variables for con-
structing a polynomial are chosen at random, under the con-
dition that the transformation is non-singular.

In this paper we present a new class of PKC constructed
based on random simultaneous equations that can be singu-
lar. We show that the random transformation that are not

Copyright c© 2005 The Institute of Electronics, Information and Communication Engineers



KASAHARA and SAKAI: A CONSTRUCTION OF PUBLIC-KEY CRYPTOSYSTEM BASED ON SINGULAR SIMULTANEOUS EQUATIONS
75

necessarily non-singular significantly enlarges the size of
transformation. The introduction of the random construc-
tions of SE(2)s based on singular simultaneous equations,
evidently seems to improve the security of the SE(2)PKC or
RNSSE(2)PKC because the using of RNSSE significantly
enlarges the effective size of transformations. In this paper,
we present RSSE(d) over F2 only for d = 2. The reason is
that the size of the public key takes on an extremely large
value, for d ≥ 3. In addition F2 is extensively used in the
various application fields of the cryptography†.

2. RSSE(d)PKC

2.1 Construction of RSSE(d)PKC

Letting a message vector over F2 be denoted by X =

(X1, X2, · · · , Xk) and the hashed value of X, by (H1,
H2, · · · ,Hg), Hi ∈ F2, the redundant message vector, Xρ can
be written as:

Xρ = (X1, X2, · · · , Xk,H1,H2, · · · ,Hg). (3)

In this paper, the symbols X, x, Y, y etc with no tilde denote
the indeterminate and the corresponding symbols with tildes
X̃, x̃, Ỹ, ỹ, the determinate. The following relation implies
that the message vector X takes on a certain value X̃ :

X = X̃ = (X̃1, X̃2, · · · , X̃k), (4)

where we assume that the variant Xi takes on a certain value
X̃i that belongs to F2.

In the followings, x̃i, ỹi and so forth will be used in an
exactly similar manner as X̃i.

In the following, for simplifying the notation, we re-
place Xρ by x as follows :

Xρ = x = (x1, x2, · · · , xn), (5)

The RSSE(2)PKC over F2 can be constructed accord-
ing to the following algorithm.

[Algorithm I]

Step 1 : The redundant message vector Xρ is transformed
to vector y as follows :

XρA = y = (y1, y2, · · · , yn), (6)

where yi ∈ F2 and A is an n × n non-singular secret
matrix over F2.

Step 2 : The components of the vector y are partitioned into
N sub-vectors, yielding the following vector :

y = (Y1,Y2, · · · ,YN), (7)

where Y j is given by

Y j = (y j1, y j2, · · · , y jt). (8)

Definition 1: The following transformation :

Φ(u) = u, (9)

is referred to as “non-singular,” if and only if the transfor-
mation has the following inverse transformation :

Φ−1(u) = u, (10)

for any given u in a unique manner. On the other hand if
the inverse-transformed value u does not exist in a unique
manner, for a given u, the transformation is referred to as
“singular.” �

Step 3 : Given Y j, ( j = 1, 2, · · · ,N), the following trans-
formation, Φ j(Y j) = Z j is performed on the basis of
randomness:

z j1 = Φ
(2)
j1 (y j1, y j2, · · · , y jt)

...

z ji = Φ
(2)
ji (y j1, y j2, · · · , y jt)

...

z jt = Φ
(2)
jt (y j1, y j2, · · · , y jt)


, (11)

where Z j = (z j1, z j2, · · · , z jt), and z ji = Φ
(2)
ji (y j1, y j2,

· · · , y jt) is a quadratic equation in t variables
y j1, y j2, · · · , y jt. We assume that the coefficients of the
equations are chosen in a random manner.

Remark 1: In general, SE(2) given by Eq.(11) becomes
singular. On this matter, we shall show a numerical example
for t = 4 in Table 1 in 2.3.

Step 4 : Letting Z = (Z1, Z2, · · · , ZN) where Z j =

(z j1, z j2, · · · , z jt), the following final transformation is
performed:

ZB = (K1,K2, · · · ,Kn), (12)

yielding the set of public-keys, K = (K1,K2, · · · ,Kn)
where B is an n × n non-singular matrix over F2. The
public keys can be denoted as

†Thus in this paper, we present RSSE(d) over F2, only for d =
2. On this matter, we were notified the following very interesting
fact from the anonymous reviewer. We would like to introduce this
very interesting fact :
If Fp is used in place of F2, where p is an odd prime number, the
proposed scheme is not secure. The reason is that any quadratic
forms on Fp are diagonalized in polynomial time. It should be
noted that the Hessian matrix shall vanish on F2.

It is known that, when the characteristic number of the base
field is not equal to the degree of the algebraic equations, one can-
not necessarily expect that the derivations of the equations always
vanish.
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Table 1 Distribution of width W .

W 1 ∼ 5 6 7 8 9 10 11 12 13 14 15 16

#
{
Φ

(W)
I4

}
0 736 37680 494560 2440125 5036725 5098044 2811650 679200 175680 0 2816

S (W)
I4 (bits) − 9.52 15.2 18.9 21.2 22.3 22.3 21.4 19.4 17.42 − 11.46

K1 = k(2)
1 (X1, X2, · · · , Xk,H1,H2, · · · ,Hg)

K2 = k(2)
2 (X1, X2, · · · , Xk,H1,H2, · · · ,Hg)

...

Kj = k(2)
j (X1, X2, · · · , Xk,H1,H2, · · · ,Hg)

...

Kn = k(2)
n (X1, X2, · · · , Xk,H1,H2, · · · ,Hg)



, (13)

where Kj = k(2)
j (X1, X2, · · · , Xk,H1,H2, · · · ,Hg) is a

quadratic polynomial obtained through the above men-
tioned Steps 1 to 4.

Remark 2: The set of public keys given by Eq.(13) con-
stitutes singular simultaneous equations. No systematic
method is known to solve these equations.

2.2 Singular Transformation and Its Property

The number of different t-dimensional vectors {Y} over F2

is evidently given by 2t. Because most of the transformation
Φ given by Eq.(11) is singular, the vectors are transformed
W(≤ 2t) different values of Z̃

(1)
, Z̃

(2)
, · · · , Z̃(W)

. That is,
the different values, Ỹ

(i)
1 , Ỹ

(i)
2 , · · · , Ỹ(i)

νi
, may take on the same

value of Z̃
(i)

, where νi is an integer larger than or equal to 1.
Evidently t and W satisfy the following relation :

ν1 + ν2 + · · · + νW = 2t. (14)

In the followings we shall refer to W as width of trans-
formation.

Let us denote an SE(2) by {z1, z2, · · · , zn}. The follow-
ing SE(2), {u1, u2, · · · , un}, will be referred to as equivalent
SE(2) to the SE(2), {z1, z2, · · · , zn}, if it is given by the fol-
lowing relation:

(z1, z2, · · · , zn)Ln = (u1, u2, · · · , un), (15)

where Ln is a non-singular n × n matrix.
As an example, we assume that the transformation Φ is

given by the following equations:

z1 = y1 + f (2)
1 (y1, y2, y3, y4)

z2 = y2 + f (2)
2 (y1, y2, y3, y4)

z3 = y3 + f (2)
3 (y1, y2, y3, y4)

z4 = y4 + f (2)
4 (y1, y2, y3, y4)


, (16)

where we assume that f (2)
i (y1, y2, y3, y4) consists of only

quadratic terms. Evidently, any pair of different simulta-
neous equation given by Eq.(16) which are generated in a
random manner is not equivalent each other [15].

Let us denote the transformation given by Eq.(16) by

ΦI4, where the subscript I4 stands for the following identity
matrix that appears in Eq.(16):

I4 =


y1 0y2

y30 y4

 . (17)

In the followings the transformation Φ that yields the
width W will be denoted by Φ(W). The distribution of the
number of the possible transformations {Φ(W)

I4 } for the given
width W, is shown in Table 1. In Table 1, we denote the to-
tal number of different transformations {Φ(W)

I4 } by #
{
Φ

(W)
I4

}
.

From Table 1, we see that the maximum number of transfor-
mations is given by the width W = 11. It should be noted
that the transformation ΦI4with W = 16 implies the non-
singular transformation.

Definition 2: The size, S (W), of the set of transformations
{Φ(W)} is defined as :

S (W) = log2 #
{
Φ(W)

}
(in bits). (18)

�

In Table 1, we show the size S (W) for the given W

Definition 3: The information rate, r, is defined as

r =
log2 W

t
. (19)

From Table 1, we see that the total number of different non-
singular transformations {Φ(16)

I4 } is given by 2816. In this
case the information rate r is given by 1.0. On the other
hand, for Φ(14)

I4 , the information rate r is given by r = 0.952.
However it should be noted that the number of different
transformations with W = 14 is improved by factors of 62
compared with the number of transformation with W = 16.
We see that the number of different transformation can be
significantly enlarged by introducing a small amount of re-
dundancy.

2.3 Encryption and Decryption

2.3.1 Encryption

Throughout this paper, we assume that the message vector
X̃ = (X̃1, X̃2, · · · , X̃k) is uniformly distributed in k tuples
over F2.

The message vector X̃ is encrypted as follows :

[Algorithm II]
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Step 1 : Hashed vector H̃ = (H̃1, H̃2, · · · , H̃g) is computed
by h(X̃) based on the message X̃ = (X̃1, X̃2, · · · , X̃k).
The redundant message vector x̃ is constructed as

x̃ = (X̃1, X̃2, · · · , X̃k, H̃1, H̃2, · · · , H̃g), (20)

where h( ) is a hash function.

Step 2 : The ciphertext is then computed by substituting x̃
in Eq.(13), yielding the ciphertext C = (C1,C2, · · · ,Cn)
over F2, where C j = K̃ j.

Thus, we see that the encryption can be performed simply by
substituting X̃i and H̃ j for Xi and Hj in Eq.(13) respectively
where 1 ≤ i ≤ k and 1 ≤ j ≤ g, yielding the ciphertext
C = (C1,C2, · · · ,Cn) over F2.

2.3.2 Decryption

Decryption can be performed through the following Steps.

[Algorithm III]

Step 1 : Ciphertext C is inverse-transformed to Z̃ as fol-
lows:

CB−1 = Z̃. (21)

The Z̃ is partitioned into N sub-vectors each of which
has the dimension t as follows :

Z̃ = (Z̃1, Z̃2, · · · , Z̃N). (22)

Step 2 : The Z̃ j is inverse transformed to Ỹ j through the
inverse transformation of Φ−1

j (Z̃ j) by a table look-up
method. As the transformation Φ j is singular, it is re-
quired that Ỹ j be estimated in at most 2t−Wj+1 differ-
ent ways, where Wj is the width of the transformation

Φ j. We shall denote this estimated value of Ỹ j by ˆ̃Y j.

Step 3 : Estimated value of ˆ̃y = ( ˆ̃Y1,
ˆ̃Y2, · · · , ˆ̃YN) is then

inverse-transformed to ˆ̃x as follows:

ˆ̃yA−1 = ˆ̃x = ( ˆ̃X1,
ˆ̃X2, · · · , ˆ̃Xk,

ˆ̃H1,
ˆ̃H2, · · · , ˆ̃Hg).

(23)

Step 4 : Assuming that the Ỹ j is estimated in G j different

ways for the given Z̃ j, the x̃ is estimated in
N∏

j=1

G j dif-

ferent ways. Each of the estimated ˆ̃x is checked if the
estimated messages ˆ̃X1,

ˆ̃X2, · · · , ˆ̃Xk are coincident with
those of the hashed values ˆ̃H1,

ˆ̃H2, · · · , ˆ̃Hg. When one

of the estimated messages ˆ̃X1,
ˆ̃X2, · · · , ˆ̃Xk are coinci-

dent with ˆ̃H1,
ˆ̃H2, · · · , ˆ̃Hg, the messages (X̃1, X̃2, · · · X̃k)

are decoded as the values ( ˆ̃X1,
ˆ̃X2, · · · ˆ̃Xk). If the es-

timated messages are not coincident with the hashed
values, another estimated value of ˆ̃y is checked.

Table 2 Total size of transformation, NS (14)
I4 .

n N NS (14)
I4 (bits)

96 24 418
128 32 558
160 40 697

Theorem 1: The probability of decoding messages X̃1, X̃2,
· · · , X̃k incorrectly, P[ε], can be given by

P[ε] =


N∏

j=1

G j − 1

 2−g, (24)

where we assume that the messages, hashed values and si-
multaneous equations are sufficiently random. �

Example 1:
Transformation used : Φ

(14)
I4 in Table 1.

The size of sub-vectors, t : 4

The size of the transformation, S (14)
I4 , is given by

S (14)
I4 = log2 175680 = 17.42 (in bits). (25)

The total size of the transformation, NS (14)
I4 is shown in Ta-

ble 2 for the different values of n.
�

Theorem 2: The total number of the possible transforma-
tion ΦMI of Eq.(1) is given by

|ΦMI| = 1
n
ϕ(2n − 1)(n − 1), (26)

where ϕ(x) is the Euler’s function of x. �

For example, when n = t = 128, log2 |ΦMI| is

log2 |ΦMI| = log2

{
1

128
ϕ(2128 − 1) × 127

}

� 127 (in bits). (27)

It should be noted that, in MI-SE(2)PKC, t = 128 is
allowed because the transformation ΦMI is algebraic. Al-
though the details of doing so are omitted, we can show that
the size of the transformation defined by Eq.(2) used in LD-
SE(2)PKC for n = t = 128 is given by 140(in bits). It should
be reminded here that the choosing of t = 128 is allowed in
LD-SE(2)PKC as the transformation ΦLD is also algebraic.

We see that the total size of the transformation of the
proposed RSSE(2)PKC takes on significantly large values
that introduce that much randomness to our scheme, com-
pared with the conventional schemes such as MI-SE(2)PKC
or LD-SE(2)PKC.

In case Z̃i has more than one candidates, ˆ̃Yi’s, when es-
timating Ỹi, we shall denote the number of candidates by νZ̃i

.
In any transformation Φ(14)

I4 , whenever Z̃i has more than one
candidates, the νZ̃i

takes on the same value of 2. Thus the
average number of times, NES T , for estimating the correct
( ˆ̃Y1,

ˆ̃Y2, · · · , ˆ̃YN) is given by

NES T =

N∑
i=0

NCi

(
4

16

)i (12
16

)N−i 1 + 2i

2
. (28)
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3. A Method for Reducing the Average Number of Es-
timations

3.1 Example of Original Method

First we shall show an example, assuming that we use the
transformations Φ(14)

I4 .

Example 2: n = 128, k = 88, g = 40, t = 4.
The average number of estimation, NES T , is given by

NES T =

32∑
i=0

32Ci

(
4

16

)i (12
16

)32−i 1 + 2i

2

� 632. (29)

The probability Pe,D that the erroneous decoding oc-
curs is given by

Pe,D =
32∑
i=0

32Ci

(
1
4

)i (3
4

)32−i 1 + 2i

2
2−g

� 5.74 × 10−10 (30)

We see that the probability Pe,D assumes sufficiently small
value. Evidently, the Pe,D can be made sufficiently small by
choosing a large value of g.

�

In the following sub-sections, we shall present a
method for reducing the average number of estimations.

3.2 A Hybrid-Type Construction for Reducing the Aver-
age Number of Estimations

One of the most simple method for reducing the aver-
age number of estimations is to use both types of SE’s,
i.e. singular SE’s and non-singular SE’s when constructing
RSSE(2)PKC.

We shall present an example of the construction in the
following.

Example 3: n = 128, k = 88, g = 40, t = 4.
For constructing RSSE(2), we assume that the trans-

formations of both Φ(14)
I4 and Φ(16)

I4 (non-singular transfor-
mations) are used.

For obtaining Z j through the transformation, Φ j(Y j) =
Z j, where j = 1, 2, · · · ,N, we assume, without loss of gener-
ality, that the transformation Φ(14)

I4 is used for j = 1, · · · ,N/2
and Φ(16)

I4 for j = N/2 + 1, · · · ,N.

Size of the transformation, S (14,16)
I4,N , in this example is

given by

S (14,16)
I4,N =

N
2

S (14)
I4 +

N
2

S (16)
I4 = 462.08.(in bits) (31)

We see that the S (14,16)
I4,N is still significantly large com-

pared with the conventional transformation used in such as
LD-SE(2)PKC.

�

Table 3 Average number of estimations and decoding errors for hybrid-
type RSSE(2)PKC.

n(Φ(14)
I4 ) 4 8 12 16

Size of transformation 390.56 414.4 438.24 462.08
Average number of

1.72 3.480 7.78 18.26estimation N(h)
ES T

Decoding error
1.56 3.17 7.07 16.6Pe,D × 10−12

Letting the total number of the using of Φ(14)
I4 for con-

structing RSSE(2)PKC be denoted as n(Φ(14)
I4 ), the average

number of estimations, N(h)
ES T , is given by

N(h)
ES T =

n(Φ(14)
I4 )∑

i=0
n(Φ(14)

I4 )Ci

(
4
16

)i (12
14

)n(Φ(14)
I4 )−i 1 + 2i

2
. (32)

We show the average number of the estimations, the size
of transformations, and the decoding errors in Table 3. We
see that the average number of estimation for hybrid-type
RSSE(2)PKC is made small compared with the original
scheme.

4. Security of RSSE(2)PKC

(I) Patarin’s Attack
Patarin presented a method for breaking the MI-

SE(2)PKC. The original transformation, ΦMI, proposed by
Matsumoto and Imai can be rewritten as:

ΦMI : x �−→ xh, (33)

where x ∈ F2n and h = 2θ + 1.
Letting y = x2θ+1, Patarin succeeded to derive the fol-

lowing simple relation:

y · x2θ = y22θ · x, (34)

for breaking the MI-SE(2)PKC.
The point of the success of the Patarin’s Attack is due to

the fact that all the components of the vectors x2θ and y22θ
are

linear functions of the components {xi} and {yi} respectively,
because the xi and yi are the elements of F2.

In most of the conventional SE(2)PKCs the simple al-
gebraic transformation given by Eq.(33) and the variants are
used. For reasons of this, the simple relation such as Eq.(34)
holds. However the proposed RSSE(2)PKC uses random
transformations with no algebraic structure for obtaining the
simultaneous equations. It apparently seems difficult to ob-
tain a simple relation such as Eq.(34) which plays a central
role in the Patarin’s Attack.

Thus we can conclude that the proposed RSSE(2) PKC
is invulnerable to the Patarin’s Attack.

(II) Goubin-Courtois Attack
In the TPM scheme, so-called n triangular quadratic

equations are constructed along with the u “added”
quadratic equations and then the beginning r equations are
removed. However this scheme was broken by Goubin and
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Courtois. Goubin and Courtois pointed out that such con-
struction can be broken by Gröbner bases when m = n+u−r
takes on the larger value than n, i.e., when the scheme has
some redundancy.

Our proposed scheme RSSE(2)PKC constructed by Al-
gorithm I seems secure from the following standpoints:
RSSE(2)PKC does not use the weak form of the triangular
construction.

(III) Attack using Gröbner bases
We see that the random version of SE(2) is more secure

against the attack based on Gröbner bases compared with
the conventional SE(2) [2], [5], [6] as is described on page
10 in the Ref. [4]. The RSSE(2) proposed here is able to
yield more randomness when constructing SE(2) as shown
in Tables 2 and 3 in this paper. Besides, although the de-
tails of doing so are omitted, the addition of another class of
SE(referred to as the 2nd class of SE’s in Ref. [1]) is able to
make our RSSE(2) schemes, further random. Accordingly,
our proposed scheme would be more secure, compared with
the HFE on page 10 of Ref. [4].

5. Concluding Remarks

We have presented a new class of public key cryptosystem
referred to as RSSE(2)PKC. The proposed method of using
the random singular simultaneous equations has success-
fully realized the increasing of the size of the transformation
used for obtaining the SE, compared with the conventional
methods.

The set of public keys given by Eq. (13) constitutes sin-
gular simultaneous equations. No systematic method has
been known to solve these equations, partly because the in-
vestigations of singular simultaneous equations are of no
importance as they seem to have no practical use. Thus we
believe that the random generation of singular simultane-
ous equations and applying them for constructing PKC pre-
sented in this paper open up a brand-new area of solving
singular simultaneous equations in an elegant manner.

When constructing the conventional RNSE(2)PKC, it
is required to use non-singular simultaneous equations. It
should be noted that, from a practical limitation of computa-
tion times, the findings of non-singular simultaneous equa-
tions becomes difficult for t ≥ 6.

However when using singular simultaneous equations,
the limitation only depends on the size of the table which
is used when solving singular simultaneous equations at the
receiving end. The size of the table is, obviously, given by
t · 2t (in bits). For example, for t = 20, the size of the table
takes on the value of approximately 2.62MB which is not
too large. Thus the using of the RSSE(2)PKC with t ≤ 20
seems practical.

The constructing a RSSE(2)PKC where t assumes
16 ∼ 20 seems very interesting, as it is conjectured that
the number of estimation can be reduced compared with
RSSE(2)PKC with small t. The investigations for construct-
ing RSSE(2) with a large value of t is left for a future study.

In this paper, we have discussed primarily on RSSE(2)
PKC over F2, although the proposed RSSE(2)PKC can be
generalized in various ways. Various interesting studies
have been left for the future.
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