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composition of the 2010 versus 2011 DNA extracts by metagenomic 
analyses also indicated that Burkholderia was more abundant in 
the sample extracted before storage at 4°C than after storage at 4°C 

(79% and 5.6% Burkholderia sequences, respectively). Slightly higher 
Pseudomonas sequences were detected in the DNA extracted from 
the sample stored at 4°C than the DNA extracted before storage 

A 

B 

Bacillaceae

Paenibacil laceae

Staphylococcaceae

Lactobacil laceae

Streptococcaceae

Clostridiaceae

EubacteriaceaeGemmat imonadaceae

Planctom
ycetaceae

Bradyrhizobiaceae

H
yphom

icrobiaceae

M
ethylocystaceae

R
hizobiaceae

R
h

o
d

o
b

ia
ce

a
e

A
c

e
to

b
a

c
te

ra
c

e
a

e

R
h

o
d

o
sp

iri l la
ce

a
e

E
ry

th
ro

b
a

c
te

ra
c

e
a

e

Alicyclobacillaceae
Chroococcales

BacteroidaceaeBacte
ria

Pse
udonoca

rd
ia

ce
ae

P
ro

pi
on

ib
ac

te
ria

ce
ae

M
ic

ro
ba

ct
er

ia
ce

ae

F
ra

n
ki

a
ce

a
e

C
o

ry
n

e
b

a
ct

e
r i

a
ce

a
e

A
c

id
o

b
a

c
te

r i
a

A
ci

d
o

b
a

ct
e

ri
a

ce
a

e

u
n

a
ssig

n
e

d

P
o

a
ce

a
e

P
hyllachorales

S
ynergistaceae

Xanthom
onadaceae

PseudomonadaceaeMoraxellaceaeEnterobacter iaceaeEctothiorthodospiraceae

Chromatiaceae

Shewanellaceae

Alteromonadaceae

Aeromonadaceae

Cystobacteraceae

Neisseria
ceae

M
eth

ylo
phila

ceae

Hyd
ro

genophila
ce

ae

O
xa

lo
ba

ct
er

ac
ea

e
C

om
am

on
ad

ac
ea

e
B

u
rk

h
o

ld
e

r i
a

le
s

B
u

rk
h

o
ld

e
r i

a
ce

a
e

A
lc

a
li

g
e

n
a

ce
a

e

S
p

h
in

g
o

m
o

n
a

d
a

c
e

a
e

Rhodocydaceae
Desul fohalobiaceae

Bacil lales

Bacil laceae

Chroococcales
ParachlamydiaceaeFlavobacter iaceae

Cytophagaceae
Porphyromonadaceae

Bacte
r iaSt re

p to
m

yceta
ceae

Pseudonocard
ia

ceae

Pro
pio

nib
act

er ia
ce

ae

N
oc

ar
di

oi
da

ce
ae

N
oc

ar
di

ac
ea

e

M
yc

ob
ac

te
r i

ac
ea

e

M
ic

ro
co

cc
a

ce
a

e

G
o

rd
o

n
ia

ce
a

e

G
e

o
d

e
rm

a
to

p
h

i l
a

c
e

a
e

C
o

ry
n

e
b

a
c

te
r i

a
c

e
a

e

B
e

u
te

n
b

e
rg

ia
c

e
a

e

A
c

t i
n

o
m

y
c

e
ta

le
s

u
n

c
la

s
s

i f le
d

 s
e

q
u

e
n

c
e

s

u
n

a
ssig

n
e

d

o
th

e
r se

q
u

e
n

ce
s

S
iphovir idae

M
yovir idaeC

ionidaepipidae

Sordar iaceae

Sclerot ln iaceae
ThermotogaceaeProteobacter iaXanthomonadaceae

Vibr ionaceae
Pseudomonadaceae

Moraxel laceae

Oceanosplr i l la les

Ha lomonadaceae

Cox ie l laceae

Gammapro teobacter ia

Enterobac ter iaceae

Chromat ia
ceae

Shewanel la
ceae

Id
io

mar in
aceae

Aero
m

onadaceae

Acid
i th

io
baci l l

aceae

H
el ic

obact
era

ce
ae

C
am

py
lo

ba
ct

er
ac

ea
e

S
yn

t r
op

ho
ba

ct
er

ac
ea

e
P

ol
ya

ng
la

ce
ae

R
h

o
d

o
cy

cl
a

ce
a

e
N

it
ro

so
m

o
n

a
d

a
ce

a
e

N
e

is
se

r i
a

ce
a

e
M

e
th

yl
o

p
h

i l
a

ce
a

e
H

y
d

ro
g

e
n

o
p

h
l l

a
c

e
a

e

O
x

a
lo

b
a

c
te

ra
c

e
a

e C
o

m
a

m
o

n
a

d
a

c
e

a
e

B
u

rk
t io

ld
e

r ia
le

s

B
u

rk
h

o
ld

e
r la

c
e

a
e

A
lca

lig
e

n
a

ce
a

e
S

p
h

in
g

o
m

o
n

a
d

a
c

e
a

e
R

icke
t ts ia

le
s

R
h

o
d

o
sp

ir i l la
ce

a
e

A
cetobacteraceae

R
hodobacteraceae

X
anthobacteraceae

R
hizobiaceae

Phyl lobacter iaceae

Hyphomicrobiaceae

Brucel laceae

Bradyrthizoblaceae

Bartonel laceae

Vei l lonel laceae

Erysipelotr ichaceae

Clostr id iaceae

Streptococcaceae

Paenibacil laceae

Listeriaceae

A

B

Figure 5: Phylogenetic classification of bacteria to the genus level in lysimeter 2 by tag encoded pyrosequencing of 16S rRNA amplicons (A) and metagenomic shotgun 
sequencing (B). Phylogenetic classification was performed using MG-RAST. For the 16S rRNA amplicon sequences, the parameters used were based on the Ribo-
somal Database (RDP release 10) with a maximum e-value of e-10, a minimum identity of 50% similarity, and a minimum alignment length of 50. For the metagenome 
shotgun sequences, data were compared to the M5NR database in MG-RAST using a maximum e-value of 1e-10, a minimum identity of 80%, and a minimum alignment 
length of 50. The green bars represent the sample DNA extracted in 2010 and the red bars represent the sample DNA extracted in 2011 after 4°C storage.
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at 4°C at a similar concentration (3.8% and 2.1%, respectively). The 
α-diversity, which is a measure of microbial species diversity, was 51.7 
species for the sample stored at 4°C and 7.4 species for the un-stored 
sample. This indicates that the sample stored at 4°C had ~10-fold more 
species diversity than the sample initially collected. The lower species 
complexity in the initial sample likely reflects the dominance of the 
Burkholderia species that was subsequently reduced under storage at 
4°C. Five sequences were annotated in MG-RAST as P. fluorescens, four 
from the samples stored at 4°C and one from the sample before storage. 
One sequence was 99% similar to HK44 as determined by blasting the 
sequences to HK44 sequences stored in RAST [15]. This one sequence 
represented approximately 0.05% of the sequence population.

Metagenomic DNA libraries were made from the same samples 
used to generate pyrosequencing amplicon libraries and annotated and 
analyzed in MG-RAST. Again, the calculated α-diversity of the sample 
stored at 4°C (564.9 species) was much larger than the original, un-
stored samples (42.9 species). Several searching methods were used to 
identify potential HK44 sequences based on phylogenetic classification 
of the sequences. In the first method, 55 sequences identified as P. 
fluorescens Pf0-1 using GenBank in MG-RAST in the sample stored 
at 4°C were downloaded and blasted against the HK44 sequence in 
RAST. The highest sequence match was 96% for a ribosomal protein 
but this sequence was not considered diagnostic of HK44. Similarly, 73 
sequences were identified as P. fluorescens Pf0-1 using GenBank in MG-
RAST in the sample before storage at 4°C. None of these samples had 
matches greater than 95% with HK44 sequences. Three sequences were 
identified as belonging to the P. fluorescens PC20 plasmid pNAH20 
(nahH, nahO, and nahN). However, when they were compared to 

HK44 sequences they had a less than 95% sequence match suggesting 
that they were not likely to be identifiable with the pUTK21 plasmid. 
Sequences for naphthalene and biphenyl degradation genes were 
identified in MG-RAST using functional annotation analyses (Table 5). 
In addition to the three lower pathway genes described above (nahH, 
nahO, and nahN), three upper pathway naphthalene dioxygenase genes 
were identified. These three genes were not related to those found in 
strain HK44 but rather were similar to naphthalene dioxygenases found 
in Rhodococcus, Burkholderia, and Mycobacterium species. Multiple 
biphenyl degrading genes were also found. The genes identified were 
almost exclusively found in Burkholderia, which is consistent with the 
dominance of Burkholderia sequences found in the shotgun library 
metagenome and amplicon sequences. The identification of these genes 
for naphthalene and biphenyl degradation was also of interest because 
the original soil used to fill these lysimeters was uncontaminated soil, 
suggesting that these genes may be widely distributed in soils [16-18].

Conclusion	
The introduction of genetically engineered bacterial strains into 

previously characterized microbial communities allows us to decipher 
fundamental questions regarding the interactions among microbes 
that enhance or diminish their persistence and their potential risk. At 
the time of the field release, now over 15 years ago, it was generally 
assumed that engineered microorganisms would be unable to 
effectively compete with the indigenous microbial consortia because 
they had a reduced level of fitness due to the extra energy demands 
mandated by the presence of the introduced genes and by the fact that 
they were extensively nurtured under optimal laboratory conditions, 

Gene name MG-RAST annotation GenBank organism (e value, % sequence similarity)

nahH gene for catechol 2,3-dioxygenase gb|AAW81680.2| catechol 2,3-dioxygenase [Pseudo-
monas fluorescens]

dbj|AB266142.2| Uncultured bacterium DNA, fosmid 
clone, clone: 09B01 (1e-142, 88%)
emb|AM406670.1| Azoarcus sp. BH72, complete 
genome (5e-52, 72%)

nahO (acetaldehyde dehydrogenase) gb|AAA89106.1| acetaldehyde dehydrogenase (acylat-
ing) [Pseudomonas putida]

gb|CP000152.1| Burkholderia sp. 383, complete 
sequence (0.0, 98%)
gb|AF491307.2| Pseudomonas putida NCIB 9816-4 
plasmid pDTG1, complete sequence (7e-109, 78%)

nahN (2-hydroxymuconic semialdehyde hydrolase) gb|ACQ63519.1 4|-hydroxy-2-ketovalerate aldolase 
[Pseudomonas fluorescens]

gb|AY887963.3| Pseudomonas fluorescens strain 
PC20 plasmid pNAH20, complete sequence (1e-98, 
78%)

Naphthalene dioxygenase gb|AAD13057.1| naphthalene dioxygenase [uncultured 
bacterium U2a]

gb|CP002329.1|Mycobacterium sp. JDM601 (5e-22, 
84%)

Naphthalene 1,2-dioxygenase system ferredoxin 
component

gb|ABC35912.1| naphthalene 1,2-dioxygenase system 
ferredoxin component [Burkholderia thailandensis 
E264]

gb|CP000459.1| Burkholderia cenocepacia HI2424 
chromosome 2 (0.0, 100%)

1,2-dihydroxynaphthalene dioxygenase gb|ACL31223.1| 1,2-dihydroxynaphthalene dioxygen-
ase [Rhodococcus sp. TFB]

gb|AJ937590.1| Uncultured bacterium partial bphC 
gene for extradiol dioxygenase, clone B04 (9e-177, 
92%)
gb|CP000676.1| Novosphingobium aromaticivorans 
DSM 12444 plasmid pNL1, complete sequence (2e-57, 
75%)

Biphenyl dioxygenase large subunit gb|ACV31375.1| biphenyl dioxygenase large subunit 
[Sphingomonas sp. DN1]

dbj|AP010947.1| Azospirillum sp. B510 plasmid 
pAB510a DNA (2e-22, 67%)

2,3-dihydroxybiphenyl-1,2-dioxygenase gb|AAF04139.1| 2,3-dihydroxybiphenyl-1,2-dioxygen-
ase [Pseudomonas sp. SY5]

gb |AM747721.1| Burkholderia cenocepacia J2315 
chromosome 2, complete genome (0.0, 95%)

Biphenyl-2,3-diol 1,2-dioxygenase (23ohbp oxygenase) 
(2,3-dihydroxybiphenyl dioxygenase) (dhbd)

gb|EEE08827.1| biphenyl-2,3-diol 1,2-dioxygenase 
(23ohbp oxygenase) (2,3-dihydroxybiphenyl dioxygen-
ase) (dhbd) [Burkholderia multivorans CGD2]

gb|CP000699.1| Sphingomonas wittichii RW1, com-
plete genome (5e-21, 67%)

cis-2,3-dihydrobiphenyl-2,3-diol dehydrogenase (bphB) gb|ABE37054.1| Cis-2,3-dihydrobiphenyl-2,3-diol dehy-
drogenase (BphB) [Burkholderia xenovorans LB400]

gb|AF061751| Burkholderia sp. strain RP007 PAH-
catabolic gene cluster (3e-24, 76%)

Oxido-reductase/dehydratase gb|AAO64287.1| putative oxidoreductase [Pseudomo-
nas putida]

gb|CP002599.1| Burkholderia gladioli BSR3 chromo-
some 1, complete sequence (1e-41, 70%)

Table 5: Biodegradative sequences for naphthalene and biphenyl genes identified in MG-RAST functionally annotated by GenBank (e-10, 50%similarity, 50% minimum 
sequence alignment).
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thus making them physiologically less fit and less prone to survive. 
Additionally, recombinant microbes designed to survive under 
certain selective pressures were expected to die off as those selective 
pressures were removed from their environment. Models at the time, 
in fact, predicted that engineered microorganisms would generally 
survive for three years in their introduced environment [19]. The 
lysimeter study clearly provides evidence to the contrary, and provides 
a one-of-a-kind risk assessment paradigm for understanding the 
molecular mechanisms involved in the environmental dissemination 
of recombinant genes. The HK44 microbial population could be 
revived from the lysimeter soils four years after its release, even though 
the selective pressure of the hydrocarbon contaminants of which 
it degrades was depleted at least two years prior [1]. Importantly, 
the inability to culture microorganisms does not mean that they 
have disappeared from the microbial community, as demonstrated 
here where signature genetic elements related to strain HK44 were 
identified 14 years after their initial soil introduction. Given that 
soil microbial communities have thousands of individual species 
representing population levels estimated at ~5 × 1030 cells, it is quite 
possible that soil microbes comprising <1% of the total community, 
the approximate limit of detection by culturable methods, can still 
remain important and influential members of a community [20]. Our 
results suggest that our ability to predict survivability of particular 
microorganisms based on a limited number of genetic markers is poor, 
and more studies are needed to understand inter- and intra-species 
competition at the genomic, metabolic, and functional levels, especially 
from a risk assessment perspective. Based on ecological theories, it is 
intuitive that competition must exist between microbes, particularly 
when nutritional substrates are limiting. Even with recent advances 
in omics, our ability to differentiate between species is limited due to 
the predominant complexity of soil microbial systems. Thus, studying 
a uniquely introduced microorganism like P. fluorescens HK44 offers a 
unique opportunity to examine the metagenomic impact and potential 
environmental risk profile of a recombinant microbe over a markedly 
long term residency.
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