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Abstract

The visualisation of relational information has man y applications in div erse domains

suc h as soft w are engineering and cartograph y . Relational information is t ypically mo d-

elled b y an abstract graph, where v ertices are en tities and edges represen t relationships

b et w een en tities. The aim of graph dra wing is to automatically pro duce dra wings of

graphs whic h clearly reect the inheren t relational information.

Numerous graph dra wing st yles ha v e b een prop osed in the literature. Orthogonal

graph dra wings ha v e b een widely studied due to their appropriateness in a v ariet y of

visualisation applications and in the design of VLSI circuitry . Most of the researc h

conducted in graph dra wing, including orthogonal dra wings, has dealt with dra wings

in the plane. With the widespread a v ailabilit y of graphics w orkstations and the de-

v elopmen t of soft w are systems for three-dimensional graphics, there has b een recen t

in terest in the design and analysis of algorithms for three-dimensional graph dra wing.

This thesis is primarily concerned with problems related to the automatic generation

of three-dimensional orthogonal graph dra wings. Our metho ds also ha v e application to

t w o-dimensional orthogonal graph dra wing and generalise to higher dimensional space.

In particular, w e dev elop a n um b er of mo dels for three-dimensional orthogonal graph

dra wing, and within eac h mo del, algorithms are presen ted whic h explore trade-o�s b e-

t w een the established aesthetic criteria. The main ac hiev emen ts include (1) an algo-

rithm for pro ducing three-dimensional orthogonal b o x-dra wings with optimal v olume

for regular graphs, (2) an algorithm for pro ducing degree-restricted three-dimensional

orthogonal cub e-dra wings with optimal v olume, (3) an algorithm whic h establishes the

b est kno wn upp er b ound for the total n um b er of b ends in three-dimensional orthogonal

p oin t-dra wings, and (4) an algorithm whic h establishes the b est kno wn upp er b ound

for the v olume of 3-D orthogonal p oin t-dra wings with three b ends p er edge route.

As a b y-pro duct of this in v estigation, w e dev elop metho ds for a n um b er of com-

binatorial problems of indep enden t in terest, including the balanced v ertex ordering

problem, equitable edge-colouring of m ultigraphs, and the maxim um clique problem.
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Chapter 1

In tro duction

In this chapter we pr ovide a br o ad overview of gr aph dr awing applic ations

and c onventions, surveying the the or etic al b ackgr ound to the development of

algorithms for dr awing gr aphs. This pr ovides the setting and motivation for

the r esults pr esente d in the r emainder of the thesis.

1.1 Graph Dra wing

Graph dra wing is concerned with the automatic generation of geometric represen tations

of relational information, often for visualisation purp oses. The t ypical data structure

for mo delling relational information is a graph whose v ertices represen t en tities and

whose edges corresp ond to relationships b et w een en tities. Most applications of graph

dra wing call for t w o-dimensional dra wings, although with the widespread a v ailabilit y of

graphics w orkstations, there has b een considerable recen t in terest in three-dimensional

graph dra wing. As can b e seen in the three-dimensional represen tation of net w ork tra�c

in Figure 1.1, dra wing graphs in three dimensions allo ws for more exible dra wings than

if w e restrict the dra wing to the plane.

Soft w are engineering has pro vided considerable motiv ation for the dev elopmen t of

graph dra wing algorithms. The metho d for la ying out data-o w diagrams due to Kn uth

[128 ] w as one of the �rst graph dra wing algorithms for visualisation purp oses. More

recen tly , metho ds for dra wing in three-dimensional space ha v e b een dev elop ed for vi-

sualising ob ject-orien ted class structures b y Rob ertson et al. [180 ], Koik e [131 ], W are

2
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Figure 1.1: A 3-D dra wing represen ting NSFNET tra�c, courtesy of the NCSA.

( http://www.ncsa.uiuc.edu )

et al. [214 ] and Reiss [179 ]. Batini et al. [15 ] presen t an algorithm for the displa y of

en tit y-relationship diagrams in database systems. Munzner and Burc hard [158 ] ha v e

explored the use of graph dra wing tec hniques for visualising the w orld wide w eb in

three dimensions, In Figure 1.2 w e presen t a three-dimensional represen tation of the

organisation of an in ternet site.

An imp ortan t area for the application of graph dra wing tec hniques is the automatic

la y out of VLSI circuit sc hematics. In t w o dimensions suc h algorithms ha v e b een de-

v elop ed b y Quinn Jr. and Breuer [177 ], Leiserson [141 ], Bhatt and Leigh ton [22 ] and

Sc hlag et al. [191 ] (see also Lengauer [143 ]). Three-dimensional VLSI la y outs ha v e

b een in v estigated b y Preparata [173 ], Rosen b erg [185 , 186 ], Leigh ton and Rosen b erg

[140 ] and Ab o elaze and W ah [1]. Three-dimensional �eld-programmable gate arra ys

(FPGAs) ha v e b een designed b y V eretennico� et al. [210 ], and in the Rothk o pro ject

at Northeastern Univ ersit y , Leeser et al. [138 , 139 ] and Meleis et al. [153 ] construct

three-dimensional FPGAs with in terconnections b et w een la y ers of activ e devices.
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Figure 1.2: A 3-D dra wing represen ting the organisation of part of the

w eb site for the journal Nature Neuroscience, courtesy of Dynamic Diagrams

( http://www.dynamicdiagram s.co m ).

Other scien ti�c applications for graph dra wing include biology (ev olutionary trees),

c hemistry (molecular dra wings), arc hitecture (o or plan maps) and cartograph y (map

sc hematics). The dra wing of graphs whic h arise in mathematics, suc h as comm utativit y

diagrams, is an often o v erlo ok ed application domain for graph dra wing.

1.2 Algorithmic Graph Theory

Algorithms for dra wing graphs are t ypically based on some graph-theoretic decom-

p osition or insigh t in to the structure of the graph. W e no w surv ey the dev elopmen t

of algorithmic graph theory , highligh ting the algorithmic approac hes emplo y ed in this

thesis.

F or man y y ears in the shado w of top ology , abstract graph theory is no w a w ell-

dev elop ed theory with imp ortan t connections to n um b er theory , logic, algebra, knot

theory and probabilit y (see Beinek e and Wilson [18 ]). Recen t deep structural results,
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most notably the minor the or em of Rob ertson and Seymour [182 ] (see Diestel [76 ] for a

comprehensiv e o v erview), ha v e placed graph theory at the forefron t of com binatorics.

F urthermore, graph theory is no w pro viding new insigh ts in to top ology including the

simple graph-theoretic pro of due to Thomassen [207 ] of the notoriously di�cult Jordon-

Sc h• onies Curv e Theorem. Recen t highligh ts in top ological graph theory include a

new pro of of the four-colour theorem b y Rob ertson et al. [181 ], and the disco v ery of

forbidden minor c haracterisations of graphs admitting certain top ological em b eddings,

as discussed b elo w.

Graph theory is often used to mo del real w orld algorithmic problems, suc h as

sc heduling and transp ortation. F urthermore man y imp ortan t issues in computational

complexit y theory are illustrated with graph-theoretic problems. F or example, three of

the six basic NP-complete problems in Garey and Johnson [105 ] deal with graphs. The

theory of computational complexit y dates from the study of the fundamen tal capabil-

ities and limitations of computation b y logicians suc h as G• odel, Ch urc h and T uring.

Our understanding of computational complexit y made great adv ances with the dev el-

opmen t of the theory of NP-completeness (see Garey and Johnson [105 ]) in the 1970s.

The explosion of in terest in the theory of algorithms in the past three decades has

motiv ated m uc h researc h in the �eld of graph theory . The gro wth of graph dra wing as

a discipline of Computer Science is a natural b ypro duct of this dev elopmen t.

As w e shall see man y graph dra wing problems are NP-complete. Exact solutions to

NP-complete problems, using in teger programming form ulations or branc h and b ound

tec hniques, ha v e exp onen tial time complexit y . An example of this approac h is giv en in

App endix C, where w e pro vide a branc h and b ound algorithm for the maxim um clique

problem, whic h com bined with e�cien t heuristics to pro vide lo w er and upp er b ounds,

solv es relativ ely small instance of the maxim um clique problem in a realistic amoun t

of time.

Unless P=NP , exact p olynomial time algorithms cannot b e obtained for NP-complete

problems. Muc h recen t researc h has fo cused on classifying the appro ximabilit y of prob-

lems, and the dev elopmen t of appro ximation algorithms whic h guaran tee near-optimal

solutions or at least ha v e tigh t w orst case p erformance b ounds. F or man y of the graph

dra wing problems in v estigated in this thesis, w e presen t appro ximation algorithms and
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heuristics with tigh t w orst case b ounds. Graph algorithms, suc h as top ological order-

ing, matc hing and v ertex- and edge-colouring form the basis of the man y of the metho ds

presen ted in this thesis.

1.3 Graph Em b eddings and Represen tations

Man y approac hes to graph dra wing, for example the top ology-shap e-metrics approac h

discussed in Section 3.2.2, and the algorithms presen ted in Sections 9.1 and 5.5, are

based on graph em b eddings. A graph em b edding describ es the essen tial top ological

features of a graph dra wing. W e no w pro vide a review of the principal results from the

theory of graph em b eddings, concen trating on three-dimensional graph em b eddings.

Planar Em b eddings

One of the most famous result in graph theory is Kurato wski's c haracterisation of planar

graphs. Kurato wski [137 ] sho w ed that a graph is is planar if and only if it con tains

neither K

5

nor K

3 ; 3

as a top ological minor. The result w as extended to general minors

b y W agner [212 ]. Since these early results, the theory of planar graphs has b een widely

studied. Notable are the linear time algorithms for recognising planar graphs, for

example that of Hop croft and T arjan [119 ].

Recen tly , relationships b et w een graph em b eddings and an algebraic graph in v arian t

� in tro duced b y Colin de V erdi � ere [61 , 62] ha v e b een disco v ered. Colin de V erdi � ere

sho ws that � ( K

n

) = n � 1 and c haracterises those graphs G with � ( G ) � k for eac h

k � 3. In particular, � ( G ) � 1 if and only if G is a disjoin t union of paths; � ( G ) � 2

if and only if G is outerplanar; and � ( G ) � 3 if and only if G is a planar. F or eac h

�xed k , the class of graphs with � � k is closed under taking minors, so b y the minor

theorem there is a �nite forbidden minor c haracterisation of suc h graphs. Note that

Colin de V erdi � ere conjectures that � ( G ) � � ( G ) � 1, a result whic h implies the 4-colour

theorem.
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Surface Em b eddings

Em b eddings of graphs in surfaces pro vide a natural generalisation of plane graphs.

Informally , the genus of a graph G is the minim um k suc h that there is a em b edding

of G in the surface constructed from the sphere with k `handles'. The sphere with

one handle, called the torus , can b e though t of as a rectangle whose sides ha v e b een

iden ti�ed. The dra wing in Figure 1.3 of K

7

em b edded in the torus is an elegan t example

of a surface em b edding.

Figure 1.3: A straigh t-line dra wing of K

7

on the `square' torus.

A signi�can t corollary of the minor theorem is that for ev ery surface S there is a

�nite forbidden minor c haracterisation of those graphs em b eddable in S [183 ]. Apart

from the plane, the only surface where the complete list of forbidden minors is kno wn is

the pro jectiv e plane, where the 35 minor-minimal graphs w ere disco v ered b y Arc hdea-

con [6 ]. Mohar [155 ] presen ts a linear time algorithm, whic h for a �xed surface S ,

�nds an em b edding of a giv en graph in S or iden ti�es a subgraph homeomorphic to a

forbidden minor for S .

Linkless Em b eddings

A sp atial emb e dding of a graph is an em b edding in R

3

. A spatial em b edding is linkless

if there is no pair of disjoin t link ed cycles. A graph with a linkless em b edding is said to

b e linkless , otherwise it is self-linke d . Con w a y and Gordon [63 ] and Sac hs [188 ] sho w ed

that K

6

is self-link ed (see Figure 1.4).

A � Y -exchange in a graph replaces a triangle b y a 3-star, while a Y � -exchange
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Figure 1.4: Link ed spatial em b edding of K

6

.

replaces a 3-star b y a triangle. Sac hs [188 ] establishes that the six graphs obtained from

K

6

b y a sequence of � Y -exc hanges and Y �-exc hanges, called the Petersen F amily (as

the P etersen graph is a mem b er), are also self-link ed. Rob ertson et al. [184 ] sho w

that these graphs comprise a forbidden minor c haracterisation of the class of linkless

graphs

1

. F urthermore they sho w that a linkless graph has � � 4. Their conjecture that

the con v erse is also true w as established b y Lo v� asz and Sc hrijv er [149 ].

Knotless Em b eddings

A spatial em b edding of a graph is said to knotte d if there is a cycle whic h forms a

non-trivial knot. W e call a graph knotless if it has a spatial em b edding whic h is not

knotted, and self-knotte d otherwise. Con w a y and Gordon [63 ] and Shimabara [196 ]

resp ectiv ely sho w ed that K

7

and K

5 ; 5

are self-knotted.

Up un til the pro of of the minor theorem it w as unkno wn if there is an algorithm

for deciding the knotlessness of a giv en graph. The class of knotless graphs is closed

under taking minors, so b y the minor theorem, remark ably there is an O ( n

3

) algorithm

to decide if a giv en graph is knotless, although no one kno ws what the algorithm is. It

is a tan talising op en problem to determine whether the knotless graphs are precisely

those graphs with � � 5.

1

The pro of of this result announced b y Mot w ani et al. [157 ] w as refuted b y Kohara and Suzuki [130 ].
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Bo ok Em b eddings

A b o ok consists of a line in 3-space, called the spine , and some n um b er of p ages (eac h

a half-plane with the spine as b oundary). A b o ok emb e dding of a graph is a spatial

em b edding consisting of an ordering of the v ertices, called the spine or dering , along the

spine of a b o ok and an assignmen t of edges to pages so that edges assigned to the same

page can b e dra wn on that page without crossings; i.e., for an y t w o edges v w and xy ,

if v < x < w < y in the spine ordering then v w and xy are assigned di�eren t pages.

The minim um n um b er of pages in whic h a graph can b e em b edded is its p agenumb er .

Figure 1.5: A 3-page b o ok em b edding of a graph

Y annak akis [226 ] sho w ed that the maxim um pagen um b er of a planar graph is four.

By the four-colour theorem [4 , 5 , 181 ], the maxim um pagen um b er and maxim um c hro-

matic n um b er are equal for planar graphs. Similarly , Endo [88 ] sho w ed that the pa-

gen um b er of a toroidal graph is at most sev en. Since eac h toroidal graph is v ertex

7-colourable [116 ], the maxim um pagen um b er is no more than the maxim um c hromatic

n um b er. It is a fascinating op en problem (see [88 ]) to determine if the maxim um

pagen um b er and maxim um c hromatic n um b er are equal for all surfaces.

Heath and Istrail [115 ] pro v ed that the pagen um b er of a gen us g graph is O ( g ),

and conjectured the correct b ound is O (

p

g ). This conjecture w as con�rmed b y Malitz

[150 ]. As a corollary of this result, and pro v ed indep enden tly b y Malitz [151 ], the

pagen um b er of a graph with m edges is O (

p

m ) . These results are non-deterministic

in nature, and Las V egas algorithms are presen ted to compute b o ok em b eddings with

O

�

p

g

�

pages. Bo ok em b eddings, and in particular these results of Malitz, form the

basis of our algorithms presen ted in Sections 5.5 and 9.1.



CHAPTER 1. INTR ODUCTION 10

Graph Represen tations

A r epr esentation of a graph, lo osely sp eaking, describ es the v ertices b y some set of

geometric ob jects and the edges b y some relationship b et w een the ob jects. Examples

include the visibilit y represen tations describ ed in Section 3.2.1 and touc hing circle and

sphere represen tations of graphs. Ko eb e [129 ] �rst pro v ed that the v ertices of a pla-

nar graph can b e represen ted b y non-o v erlapping circles in the plane, so that v ertices

are adjacen t if and only if the corresp onding circles are tangen t. Kotlo v et al. [134 ]

ha v e recen tly disco v ered relationships b et w een the in v arian t � and the touc hing sphere

represen tations of graphs in R

3

.

1.4 Graph Dra wing Con v en tions

W e no w describ e the common con v en tions, or st yles, of graph dra wings for whic h algo-

rithms ha v e b een dev elop ed. W e concen trate on those con v en tions that ha v e b een used

for three-dimensional graph dra wing. F or a complete summary see Di Battista, Eades,

T amassia, and T ollis [71 ]. While the criteria for deciding the qualit y of a giv en graph

dra wing is somewhat dep enden t on the application domain, for eac h graph dra wing

con v en tion there is a commonly accepted set of aesthetic criteria b y whic h the qualit y

of a dra wing is judged. F or an y graph and an y st yle there is (t ypically) an in�nite n um-

b er of p ossible dra wings. The goal of graph dra wing algorithms is to pro duce dra wings

whic h satisfy the aesthetic criteria. More often than not w e need to mak e a trade-o�

b et w een the v arious aesthetic criteria. The study of trade-o�s b et w een v arious aesthetic

criteria is at the heart of the study of graph dra wing algorithms.

1.4.1 Grid Dra wings

So that the area (or v olume in three dimensions) of a graph dra wing can b e measured

in a consisten t fashion, w e often require v ertices to ha v e in teger co ordinates. W e sa y

the v ertices are placed at grid-p oints and suc h a dra wing is called a grid dr awing .

The smallest rectangle (or b o x in three-dimensions) whic h surrounds a grid dra wing

is called the b ounding b ox . The area (or v olume) of the b ounding b o x is p erhaps the

most commonly used quan tit y to measure the aesthetic qualit y of grid dra wings. F or
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example, dra wings with small area can b e dra wn with greater resolution on a �xed-size

page. In some three-dimensional applications, for example when visualising the dra wing

on a computer screen, it ma y b e more imp ortan t to minimise the `depth' of the dra wing.

W e therefore ha v e the follo wing p ossible aesthetic criteria for grid dra wings.

� Minimise the b ounding b o x v olume.

� Minimise the minim um b ounding b o x side length.

� Minimise the maxim um b ounding b o x side length.

An alternativ e to grid dra wings is to stipulate that v ertices are at least unit distance

apart.

1.4.2 Straigh t Line Dra wings

It is natural to dra w eac h edge of a graph as a straigh t line b et w een its end-v ertices.

So-called str aight-line graph dra wings are one of the earliest graph dra wing con v en tions

to b e in v estigated. In Figure 1.6 w e presen t examples of straigh t-line graph dra wings.

(a) (b)

Figure 1.6: Straigh t-line dra wings of the o ctahedron graph: (a) plane dra wing, (b) 3-D

dra wing.

Aesthetic criteria for straigh t-line graph dra wings include the follo wing.

� Minimise edge crossings (in 2-D non-planar dra wings).

� Maximise the angular r esolution ; i.e., the angle b et w een edges inciden t at a com-

mon v ertex.
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� Minimise the e dge sep ar ation ; i.e., the distance b et w een edges not inciden t to a

common v ertex.

� Minimise the total length of edge routes.

� Minimise the maxim um length of an edge route.

� Preserv e the symmetry of the graph.

Note that Purc hase et al. [176 ] and Purc hase [175 ] concluded from their exp erimen-

tal study of the h uman p erception of 2-D graph dra wings that minimising the n um b er

of edge crossings and minimising the n um b er of b ends w ere b oth signi�can t aesthetic

criteria for increasing the understandabilit y of dra wings of graphs.

That ev ery planar graph has a straigh t-line plane dra wing w as pro v ed indep en-

den tly b y W agner [211 ], F� ary [94 ] and Stein [198 ]. In a recen t extension of this result,

Brigh t w ell and Sc heinerman [45 ] sho w that a planar graph and its dual can b e sim ul-

taneously represen ted in the plane with straigh t-line edge routes suc h that the edges of

the graph cross the dual edges at righ t angles. These authors w ere only really in terested

in pro ving the existence of straigh t-line em b eddings and not with pro ducing algorithms

for graph dra wing. In particular, if w e stipulate minim um unit distance b et w een v er-

tices then exp onen tial area ma y b e required b y these metho ds. de F ra ysseix et al. [66 ]

and Sc hn yder [192 ] indep enden tly dev elop ed algorithms for planar straigh t-line grid

dra wing with O ( n

2

) area.

Ev ery simple graph has a straigh t-line 3-D grid dra wing with no crossings, and

for this reason w e only consider crossing-free 3-D graph dra wings. T o construct suc h

a dra wing of a graph with v ertex set f v

1

; v

2

; : : : ; v

n

g , v ertices are p ositioned along a

moment curve ; i.e., v

i

is at ( i; i

2

; i

3

) 2 Z

3

. It is easily seen that no t w o straigh t lines

b et w een v ertices can in tersect. This dra wing has O ( n

6

) b ounding b o x v olume. Cohen

et al. [60 ] sho w ed that b y placing v ertex v

i

at ( i mo d p; i

2

mo d p; i

3

mo d p ) 2 Z

3

for

some prime p , n < p < 2 n , no t w o edge routes cross and w e obtain a grid dra wing

with O ( n

3

) b ounding b o x v olume. This result has b een strengthened b y P ac h et al.

[161 ] who sho w that ev ery k -colourable graph, for some �xed k , has a 3-D straigh t-line

grid dra wing with O ( n

2

) v olume. Instead of requiring v ertices to b e at grid-p oin ts,

Garg et al. [108 ] stipulate that distinct v ertices are at least unit distance apart in a
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3-D straigh t-line graph dra wing. Their algorithm establishes b ounds on the b ounding

b o x v olume, asp ect ratio and edge separation of suc h dra wings. Sim ulated annealing

tec hniques for generating 3-D straigh t-line graph dra wings ha v e b een dev elop ed b y Cruz

and Tw arog [65 ] and Monien et al. [156 ].

One of the earliest graph dra wing metho ds, namely the b aryc entr e metho d , w as

dev elop ed b y T utte [208 , 209 ]. Here a �xed set of v ertices are placed on a strictly

con v ex p olygon, and the remaining v ertices, said to b e fr e e , are rep eatedly placed at

the barycen tre of their neigh b ours un til the co ordinates of the free v ertices con v erges.

If the input graph is triconnected and planar, then the dra wing pro duced is planar and

eac h face is a con v ex p olygon. The barycen tre metho d has b een extended to pro duce

3-D straigh t-line graph dra wings b y Chilak amarri et al. [55 ].

The barycen tre metho d is an example of the for c e-dir e cte d approac h for graph

dra wing. Here the graph is view ed as a ph ysical system with forces acting b et w een

the constituen t b o dies. F or example, edges can b e mo delled as springs and v ertices as

c harged particles whic h rep el eac h other (see Di Battista et al. [71 ] for details and ref-

erences). F orce directed metho ds for pro ducing 3-D graph dra wings ha v e b een studied

b y Ostry [160 ] and Bru� and F ric k [48 ]. As noted b y Eades and Lin [83 ], an adv an tage

of force directed algorithms is that symmetries of the graph are often preserv ed in the

dra wing.

A relationship b et w een the force-directed approac h to graph la y out and graph con-

nectivit y w as disco v ered b y Linial et al. [144 ], later extended to the case of digraphs

b y Cheriy an and Reif [54 ]. They pro v e that a (di)graph G is k -connected ( k � 2) if

and only if for an y X � V ( G ) with j X j = k there is a c onvex- X emb e dding of G ; i.e.,

the v ertices of G can b e represen ted b y p oin ts in general p osition in R

k � 1

(i.e., no k

v ertices are on a common h yp erplane), so that eac h v ertex, except for the k sp eci�ed

v ertices in X , is in the con v ex h ull of its (out)neigh b ours. This result generalises the

notion of st -orderings (used extensiv ely in graph dra wing; see Sections 3.2.3 and 4.2) to

arbitrary dimensions. The pro of is based on a ph ysical mo del where the edges are ideal

springs and the v ertices settle in to equilibrium. Although the authors do not note this,

for k � 4, edges dra wn as straigh t lines cannot cross since the v ertices are in general

p osition.
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An in teresting graph in v arian t related to m ulti-dimensional straigh t-line graph dra w-

ing is that of the dimension of a graph. Erd} os, Harary , and T utte [89 ] de�ne the dimen-

sion of a graph to b e the minim um n um b er of dimensions in whic h it can b e em b edded

with eac h edge a unit length straigh t-line (p ossibly with crossings). They sho w ed that

the dimension of the complete graph K

n

is n � 1, and the dimension of the complete

bipartite graph K

a;b

is four, among other results.

1.4.3 Orthogonal Dra wings

In a p olyline graph dra wing eac h edge consists of a sequence of con tiguous line segmen ts.

Di Battista et al. [71 ] describ e algorithms for constructing planar p olyline dra wings. In

a p olyline grid dra wing, the b ends on edge routes as w ell as the v ertices are required to

b e at grid p oin ts. If eac h segmen t of an edge in a p olyline grid dra wing is parallel to some

axis then the dra wing is called ortho gonal . (Precise de�nitions are giv en in Chapter 2.)

A feature of the orthogonal dra wing st yle is its v ery go o d angular resolution. F or this

reason, it is commonly used for man y applications including data-o w diagrams, and

in VLSI circuit design where electrical wires m ust b e axis-parallel. Examples of `real-

w orld' orthogonal graph dra wings in t w o and three dimensions are sho wn in Figures 1.7

and 1.2, resp ectiv ely .

W e sa y an orthogonal graph dra wing is orientation-dep endent if, lo osely sp eaking,

the dra wing is signi�can tly di�eren t when view ed with resp ect to one particular di-

mension; otherwise w e sa y it is orientation indep endent . F or example, the follo wing

prop erties are indicativ e of orien tation-indep enden t dra wings.

� The b ounding b o x is a cub e.

� The b o x surrounding the v ertices is a cub e.

� It is equally lik ely that an edge inciden t with a particular v ertex, is routed using

an y p ort on that v ertex.

Whether or not orien tation-dep endence is a desirable qualit y in orthogonal dra w-

ings is often an application-sp eci�c question. W e shall tak e the view that orien tation-

in dep enden t orthogonal dra wings are more aesthetically pleasing than orien tation-

dep enden t orthogonal dra wings. Orien tation dep endence is a particularly appropriate
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Figure 1.7: An orthogonal dra wing of a computer net w ork, courtesy of T om Sa wy er

Soft w are ( http://www.tomsawyer.com )

consideration for 3-D orthogonal dra wings. Biedl [27 ] describ es orien tation indep enden t

3-D orthogonal dra wings as b eing `truly three-dimensional'.
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Orthogonal graph dra wings with man y b ends app ear cluttered and are di�cult

to visualise. Existing algorithms for t w o-dimensional orthogonal graph dra wing ha v e

b ounds on the maxim um n um b er of b ends p er edge route as w ell as the total n um b er of

b ends. Up un til no w, algorithms for 3-D orthogonal graph dra wing ha v e concen trated

only on the maxim um n um b er of b ends p er edge route. The algorithms for orthogonal

graph dra wing presen ted in Chapter 5 initiate the study of the total n um b er of b ends

in 3-D orthogonal dra wings. As w ell as the aesthetic criteria already discussed in the

previous section, orthogonal graph dra wings should exhibit the follo wing prop erties.

� Minimise the maxim um n um b er of b ends p er edge route.

� Minimise the total n um b er of b ends.

� Dra wings should b e orien tation-indep enden t.

F or orthogonal graph dra wings a n um b er of tradeo�s b et w een aesthetic criteria,

most notably b et w een the maxim um n um b er of b ends p er edge route and the b ounding

b o x v olume, ha v e b een observ ed in existing algorithms [87 ]. In this thesis w e shall also

observ e a tradeo� b et w een orien tation-indep endence and b ounding b o x v olume, and

b et w een orien tation-indep endence and the maxim um n um b er of b ends p er edge route.

In Figure 1.8 w e presen t orthogonal dra wings of the o ctahedron whic h demonstrate

some of the aesthetic criteria for suc h dra wings.

If w e represen t eac h v ertex b y a p oin t, as in the ab o v e examples, for a graph to

admit a t w o-dimensional orthogonal dra wing eac h v ertex m ust ha v e degree at most

four. In three dimensions eac h v ertex m ust ha v e degree at most six. Ov ercoming this

restriction has motiv ated the consideration of orthogonal b o x-dra wing where v ertices

are represen ted b y rectangles in t w o dimensions and b y b o xes in three dimensions.

Bo x-dra wings also ha v e the adv an tage that a lab el can b e attac hed to eac h v ertex.

F or orthogonal b o x-dra wings the size and shap e of the b o xes represen ting the v er-

tices is also considered an imp ortan t measure of aesthetic qualit y . F or the purp oses of

visualisation, the ideal shap e for a b o x is a small cub e, as this most closely resem bles

a p oin t. Ho w closely a v ertex resem bles a p oin t can b e measured b y its asp e ct r atio

whic h is de�ned to b e the ratio of the length of the longest side to that of the shortest.
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(a) (b)

(c) (d)

Figure 1.8: Orthogonal dra wings of the o ctahedron graph: (a) 3-b end plane, (b) 2-b end

planar with crossings, (c) 3-D with few b ends and small v olume, (d) 3-D orien tation-

indep enden t.

While other applications, suc h as 3-D VLSI, ma y mak e di�eren t demands on the size

and shap e of v ertices, w e shall tak e the view that the follo wing criteria are desirable

features of orthogonal b o x-dra wings.

� V ertex surface area is prop ortional to v ertex degree.

� V ertices ha v e b ounded asp ect ratio.

This thesis is concerned with the dev elopmen t of algorithms for orthogonal graph

dra wing. In Chapter 3 w e surv ey existing algorithms and mo dels for pro ducing orthog-

onal graph dra wings.
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1.4.4 Other 3-D Graph Dra wing Con v en tions

Three-dimensional graph dra wings in the follo wing st yles ha v e also b een considered.

� Con v ex dra wings [56 , 80 ].

� Spline curv e dra wings [110 ].

� Multilev el dra wings of clustered graphs [79 , 97].

� Up w ard dra wings [160 ].

1.5 Con tributions and Outline of this Thesis

In this thesis w e presen t and analyse metho ds for the generation of orthogonal graph

dra wings, concen trating on algorithms for pro ducing 3-D dra wings. W e no w outline

the structure of this thesis and summarise the principal results obtained. Figure 1.9

illustrates this structure, highligh ting the relationships b et w een v arious parts of this

thesis.

P art I: Orthogonal Graph Dra wing

� Chapter 1 pro vides a broad o v erview of graph dra wing, pro viding the motiv ation

for the results presen ted in the remainder of this thesis.

� Chapter 2 in tro duces de�nitions and the notation used in this thesis.

� Chapter 3 surv eys the existing results for orthogonal graph dra wing, and compares

these results with those presen ted in this thesis.

P art I I: General P osition Orthogonal Graph Dra wing

� Chapter 4 presen ts heuristic and lo cal minim um metho ds for solving the so-called

balanced ordering problem. This one-dimensional problem is used as a basis for

a n um b er of 2-D and 3-D graph dra wing algorithms presen ted in subsequen t

c hapters.
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1

Graph Dra wing Mo dels

Metho ds in

this Thesis

`External'

Metho ds

Bo ok

Em b ed-

ding

Square

P ac king

V ertex

Colouring

� Greedy

� Bro ok's

Cycle

Co v er

Decomp-

osition

Maxim um

Clique

Equitable

k -Edge-

Colouring

Balanced

V ertex

Ordering

� Median

Placemen t

� Lo cal-

Minim um

6. 2-D General P os. Bo x-Dra wing

� . . . . 6.2.3. Balanced V ertex La y out . . . . �

� . . 6.2.1. La y out-Based Arc-Routing . . �

9. 3-D Coplanar Dra wing

� . . . . . . . . 9.1. 1-Bend Algorithm . . . . . . . . �

� . . . . . . . . . . 9.2. Line-Dra wing . . . . . . . . . . �

� . . . . . . . . . 9.3. Cub e-Dra wing . . . . . . . . . �

10. 3-D Non-Collinear Dra wing

� . . . . . . . . . 10.1. Cub e-Dra wing . . . . . . . . . �

� . . . . . . . . . 10.2. P oin t-Dra wing . . . . . . . . . �

5. 3-D Gen. P os. P oin t-Dra wing

� . . 5.5.3. Diagonal 3-Bend Algorithm . . �

� 5.2.1. Diagonal Bend-Min. Algorithm �

� 5.5.2. Arb. La y out 3-Bend Algorithm �

� . 5.2.2. Arb. La y out Bend-Min. Algor. . �

� . . . . 5.3. Routing-Based Algorithm . . . . �

� . . . . . . . . 5.4. D.L.M. Algorithm . . . . . . . . �

7. General P os. Bo x-Dra wing

� . . 7.2.1. La y out-Based Arc-Routing . . �

� . . . . 7.2.3. Balanced V ertex La y out . . . . �

� 7.3. 3-D Routing-Based V ertex La y out �

� . . . . . . 7.3.1. Acyclic Arc-Routing . . . . . . �

11. Min.-Dim. P oin t-Dra wing

� . . . . . . . 11.1. K

n

Constructions . . . . . . . �

� . . . . . . . 11.2. 6-Bend Algorithm . . . . . . . �

Figure 1.9: Dep endence b et w een sections of this thesis.

� Chapter 5 dev elops the general p osition la y out mo del for 3-D orthogonal p oin t-

dra wing. Ac hiev emen ts include an algorithm for minimising the total n um b er of

b ends in diagonal la y out 3-D orthogonal p oin t-dra wing (Section 5.2.1), establish-

ing the b est kno wn upp er b ound for the total n um b er of b ends in 3-D orthogonal

p oin t-dra wings (Section 5.4), and pro ving the b est kno wn upp er b ound for the

v olume of 3-b end 3-D orthogonal p oin t-dra wings (Section 5.5.3).
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� Chapter 6 dev elops an algorithm for 2-D orthogonal graph dra wing in the general

p osition mo del whic h establishes the b est kno wn upp er b ound for the degree-

restriction of v ertices. This algorithm is generalised to m ulti-dimensional orthog-

onal graph dra wing in Chapter 7.

� Chapter 7 dev elops the general p osition mo del for m ulti-dimensional orthogonal

b o x-dra wing, establishing the b est kno wn b ound for the degree-restriction of 3-D

orthogonal b o x-dra wings.

P art I I I: Other Orthogonal Graph Dra wing Mo dels

� Chapter 8 pro vides an algorithm for equitable edge-colouring of m ultigraphs. This

algorithm is used in the graph dra wing algorithms presen ted in Section 9.1 and

Chapter 10.

� Chapter 9 dev elops the coplanar v ertex la y out mo del for 3-D orthogonal dra w-

ing, pro viding algorithms for pro ducing 3-D orthogonal b o x-dra wings with one

b end p er edge route (Section 9.1), 3-D orthogonal b o x-dra wings with optimal

v olume for regular graphs (Section 9.2), and degree-restricted 3-D orthogonal

cub e-dra wings with optimal v olume (Section 9.2).

� Chapter 10 in tro duces the non-collinear v ertex la y out mo del for pro ducing

orien tation-indep enden t 3-D orthogonal p oin t-dra wings with optimal v olume, and

3-D orthogonal b o x-dra wings with optimal v olume for regular graphs.

� Chapter 11 presen ts an algorithm for m ulti-dimensional p oin t-dra wing with a

b ounded n um b er of b ends p er edge route.

P art IV: Conclusion

� Chapter 12 summarises the main ac hiev emen ts of this thesis, the op en problems in

3-D orthogonal graph dra wing whic h ha v e b een iden ti�ed, and discusses a v en ues

for future w ork in 3-D graph dra wing.
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P art V: App endices

� App endix A pro vides the only kno wn non-trivial lo w er b ounds for the total n um-

b er of b ends in 3-D orthogonal p oin t-dra wings.

� App endix B presen ts a n um b er of 3-D orthogonal p oin t-dra wings with t w o b ends

p er edge route. Some of these dra wings w ere found using the algorithm for �nding

maxim um cliques presen ted in App endix C.

� App endix C presen ts an algorithm for the maxim um clique problem and pro vides

an extensiv e exp erimen tal analysis of its p erformance. This algorithm whic h is

of indep enden t in terest, has b een applied to the searc h for 2-b end orthogonal

p oin t-dra wings (see Section 5.2.2).

1.6 Publications

Muc h of the material in this thesis has app eared or will app ear in the follo wing publi-

cations.

Journal Publications:

� An Algorithm for Finding a Maxim um Clique in a Graph, Op er. R es. L ett. , 21(5),

pages 211-217, 1997. [218 ]

� (with T. Biedl and T. Thiele) Three-Dimensional Orthogonal Graph Dra wing

with Optimal V olume, submitted. (see [34 ])

� (with T. Biedl and M. Kaufmann) Area-E�cien t Algorithms for Orthogonal

Graph Dra wing, in preparation. (see [30 , 222 ])

� (with T. Biedl) Three-Dimensional Orthogonal Graph Bo x-Dra wing with F ew

Bends, in preparation. (see [27 , 222 ])
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Chapter 2

Preliminaries

In this chapter we intr o duc e de�nitions and the notation use d in this thesis.

Unde�ne d terms fr om gr aph the ory c an b e found in Chartr and and L esniak

[53 ], and fr om gr aph dr awing in Di Battista et al. [71].

2.1 Graphs

Throughout this thesis G = ( V ; E ) is a graph with v ertex set V ( G ) = V and edge

set E ( G ) = E . W e assume G is undirected unless explicitly called a digraph. Graphs

and digraphs are simple; i.e., there are no parallel edges, although a digraph ma y ha v e

a 2-cycle. A m ultigraph allo ws parallel edges but no lo ops, while a pseudograph is a

m ultigraph p ossibly with lo ops. W e denote the n um b er of v ertices of a graph G b y

n = j V ( G ) j and the n um b er of edges of G b y m = j E ( G ) j . F or a (di)graph G , the

set of v ertices f w : v w 2 E ( G ) g adjacen t to a v ertex v 2 V ( G ) is denoted b y V

G

( v ),

and the set of (outgoing) edges f v w 2 E ( G ) g inciden t with v is denoted E

G

( v ). The

( out ) de gr e e j G ( v ) j of a v ertex v 2 V ( G ) is denoted (out)deg ( v ) . G has maxim um

(out)degree �( G ). The subgraph of G induced b y S � V ( G ) is denoted G [ S ].

Asso ciated with an y graph G is the digraph

 !

G with v ertex set V (

 !

G ) = V ( G ) and

arc set E (

 !

G ) = f ( v ; w ) ; ( w ; v ) : f v ; w g 2 E ( G ) g . W e denote E (

 !

G ) b y A ( G ). The arc

( v ; w ) 2 A ( G ) is called the r eversal of ( w ; v ). The set of outgoing arcs f ( v ; w ) 2 A ( G ) g

at a v ertex v 2 V ( G ) is denoted b y A

+

G

( v ) or simply A

G

( v ), and set of incoming

arcs f ( w ; v ) 2 A ( G ) g at v is denoted b y A

�

G

( v ). F or ease of notation, v w refers to

23
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the undirected edge f v ; w g , and

� !

v w ma y refer to the directed edge ( v ; w ) or the arc

( v ; w ) 2 A ( G ) (for some graph G ).

2.2 Cliques and Colourings

A clique of a graph is a set of pairwise adjacen t v ertices; i.e., a clique induces a complete

subgraph. In App endix C w e presen t an algorithm for �nding a clique of maxim um

size in a giv en graph.

A ( pr op er ) vertex-c olouring of a graph is an assignmen t of colours, usually repre-

sen ted b y p ositiv e in tegers, to the v ertices suc h that adjacen t v ertices receiv e di�eren t

colours. A v ertex-colouring with k colours is called a vertex k -c olouring .

A sequen tial greedy strategy for v ertex-colouring a graph is to assign to eac h v ertex,

in turn, the minim um colour not assigned to an adjacen t v ertex (see for example Biggs

[35 ]). This is equiv alen t to assigning the �rst colour to ev ery v ertex a v ailable; rep eating

for the second colour, and so on, un til all the v ertices are coloured. This algorithm,

whic h w e call Greed y Ver tex-Colour , applied to a graph G uses at most �( G ) + 1

colours.

An e dge-c olouring of a graph is an assignmen t of colours to the edges. If all edges

inciden t to a common v ertex receiv e di�eren t colours then the edge-colouring is pr op er .

Supp ose col : X ! C is a colouring of some class of ob jects X , e.g., v ertices, edges

or arcs. W e denote the colour class of ob jects receiving some colour c 2 C b y X [ c ]; i.e.,

X [ c ] = f x 2 X : col( x ) = c g . In particular, if A ( G ) is coloured, then

 !

G [ i ], for some

colour i , denotes the subgraph of

 !

G induced b y the arcs coloured i .

2.3 Orthogonal Grid

The D-dimensional ortho gonal grid ( D � 2) is the D -dimensional cubic lattice, con-

sisting of grid-p oints in Z

D

, together with the co ordinate-axis-parallel grid-lines deter-

mined b y these p oin ts. A p ositiv e in teger i , 1 � i � D , used to index the co ordinates

of a grid-p oin t in Z

D

, is called a dimension , and a non-zero in teger d , 1 � j d j � D , is

called a dir e ction , as illustrated in Figure 2.1. F or D = 2 and D = 3, w e also refer to the

dimensions as f X ; Y g and f X ; Y ; Z g , and directions as f X

�

; Y

�

g and f X

�

; Y

�

; Z

�

g ,
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resp ectiv ely .

2

1

3

Y

X

Z

(a) Dimensions

+2

+1

+3

� 2

� 1

� 3

Y

+

X

+

Z

+

Y

�

X

�

Z

�

(b) Directions

Figure 2.1: Dimensions and directions in the 3-D orthogonal grid.

The ( i = K )-h yp erplane, for some dimension i , 1 � i � D , and in teger K 2 Z ,

is called a grid-hyp erplane . F or D = 3 a grid h yp erplane is called a grid-plane . F or

eac h dimension i , 1 � i � D , a grid-line parallel to the i -axis is called an i -line , and a

grid-(h yp er)plane p erp endicular to the i -axis is called an i -( hyp er ) plane .

A grid-b ox B in the D -dimensional orthogonal grid is a region

�

( a

1

; a

2

; : : : ; a

D

) 2 R

D

: l

i

( B ) � a

i

� r

i

( B ) ; 1 � i � D

	

:

for some l

i

( B ) ; r

i

( B ) 2 Z , 1 � i � D . The grid-p oin ts ( l

1

( B ) ; l

2

( B ) ; : : : ; l

D

( B )) and

( r

1

( B ) ; r

2

( B ) ; : : : ; r

D

( B )) are referred to as the minimum c orner and maximum c orner

of B , resp ectiv ely . The size of B is �

1

( B ) � �

2

( B ) � � � � � �

D

( B ) where �

i

( B ) =

r

i

( B ) � l

i

( B ) + 1. Note that �

i

( B ) is the not the actual side length of B in dimension

i . This con v en tion enables us to consisten tly sp eak of the volume (and ar e a in t w o

dimensions) of a p ossibly degenerate grid-b o x as the n um b er of grid-p oin ts in the b o x;

i.e.

v olume ( B ) =

Y

1 � i � D

�

i

( B ) :

F or a t w o-dimensional �

X

� �

Y

b o x, the side lengths �

X

and �

Y

are called the

width and height of the b o x, resp ectiv ely . F or a three-dimensional �

X

� �

Y

� �

Z

b o x,

the side lengths �

X

, �

Y

and �

Z

are called the width , depth and height of the b o x,

resp ectiv ely .

F or eac h direction d , 1 � j d j � D , the set of grid-p oin ts in a grid-b o x B whic h are

extremal in direction d is called the d -fac e of B . A t eac h grid-p oin t on the d -face of a
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b o x w e sa y there is a p ort . A p ort is considered to extend out from the surface of the

b o x in dir e ction d , as illustrated in Figure 2.2.

(a) (b) (c) (d)

Figure 2.2: P orts on grid-b o xes:

(a) 1 � 1 2-D p oin t with v olume 1 and surface 4,

(b) 3 � 2 � 1 3-D rectangle with v olume 6 and surface 22,

(c) 3 � 2 � 2 3-D b o x with v olume 12 and surface 32,

(d) 2 � 2 � 2 � 2 4-D h yp erb o x with v olume 16 and surface 64.

A p ort in direction d , 1 � j d j � D , is called a d -p ort , and for an y dimension i ,

1 � i � D , a ( � i )-p ort is also called an i -p ort . The n um b er of p orts on the ( i

+

)-face of

B (whic h ob viously equals the n um b er of p orts on the ( i

�

)-face) is referred to as the

surface

i

( B ) ; i.e.,

surface

i

( B ) =

Y

1 � j � D

j 6= i

�

j

( B ) :

The total n um b er of p orts on B is the surface ( B ); i.e.,

surface ( B ) = 2

X

1 � i � D

surface

i

( B ) :

2.4 Orthogonal Graph Dra wing

A D-dimensional ortho gonal dr awing of a graph G , called an ortho gonal dr awing , rep-

resen ts eac h v ertex v 2 V ( G ) b y a grid b o x B

v

suc h that

8 v ; w 2 V ( G ) ; v 6= w ) B

v

\ B

w

= ; :

The graph-theoretic term `v ertex' will also refer to the corresp onding b o x. Allo wing

v ertices to degenerate to rectangles or lines is the approac h tak en in [27 , 32 , 33, 222 ,



CHAPTER 2. PRELIMINARIES 27

223 ], but not in [166 , 168 ]; enlarging v ertices to remo v e this degeneracy increases the

v olume b y a m ultiplicativ e constan t.

A grid-p olyline in the D -dimensional orthogonal grid is a p olyline consisting of

con tiguous segmen ts of grid-lines, p ossibly b en t at grid-p oin ts. An orthogonal dra wing

of G represen ts eac h edge v w 2 E ( G ) b y a grid-p olyline, called an e dge r oute , b et w een

grid-p oin ts on the b oundaries of B

v

and B

w

, not in tersecting an y v ertices except at

these b oundary p oin ts. The in terior of edge routes are pairwise non-o v erlapping, and

only for D = 2 are edge routes allo w ed to cross. A segmen t of an edge route parallel

to the i -axis, for some dimension i , is called an i -se gment .

Tw o-dimensional and three-dimensional orthogonal dra wings are called 2-D and 3-

D orthogonal dra wings, resp ectiv ely . A 2-D orthogonal dra wing without edge crossings

is a plane 2-D ortho gonal dr awing .

P ort Assignmen t and Routings

An orthogonal dra wing of a graph G assigns eac h arc

� !

v w 2 A ( G ) a unique p ort at v ,

referred to as the p ort (

� !

v w ). The set of p orts at a v ertex v is denoted b y p orts ( v ), and

w e de�ne p orts ( G ) to b e the set of p orts of a graph G ; i.e.,

p orts ( G ) =

[

v 2 V ( G )

p orts ( v ) :

If, in a D -dimensional orthogonal dra wing of a graph G , for some v ertices v ; w 2

V ( G ) and dimension i , 1 � i � D , the ( i

+

)-face of v has i -co ordinate less than the i -

co ordinate of the ( i

�

)-face of w then w e sa y w is in dir e ction i

+

fr om v , v is in dir e ction

i

�

fr om w , an ( i

+

)-p ort at v p oints towar d w , and an ( i

�

)-p ort at v p oints away fr om

w .

If for some arc

� !

v w 2 A ( G ) and dimension i , 1 � i � D , the p ort (

� !

v w ) is an i -p ort

then w e consider

� !

v w to b e c olour e d i . In this manner a D -dimensional orthogonal

dra wing of a G determines a D -colouring of A ( G ). W e call a D -colouring of A ( G ) a

( D-dimensional ) r outing of A ( G ). An orthogonal dra wing is r outing-pr eserving if the

dra wing determines a giv en routing.

F or p oin t-dra wings, at eac h v ertex v and direction d , there is exactly one p ort at

v in direction d . W e denote this p ort b y por t ( v ; d ). W e sa y por t ( v ; d ) is opp osite to
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por t ( v ; � d ), for eac h v ertex v and direction d . A D -dimensional orthogonal p oin t-

dra wing of G determines a routing with at most t w o outgoing arcs at eac h v ertex

receiving the same colour; i.e., j A

G

( v )[ i ] j � 2 for ev ery v ertex v and dimension i ,

1 � i � D . W e call a routing with this prop ert y a ( D-dimensional ) p oint-r outing of

A ( G ).

Note that a routing of a graph G do es not fully describ e the edge routes in an

orthogonal dra wing of G . It merely describ es the axes whic h the �rst and last segmen ts

of eac h edge route are parallel to. In the general p osition mo del (see Chapters 6, 5 and

7), w e sho w that a routing su�ces as a data structure for represen ting the edge routes.

Aesthetic Criteria

W e no w mak e precise de�nitions for the criteria b y whic h w e measure the aesthetic

qualit y of an orthogonal b o x-dra wing. The minim um-sized b o x enclosing an orthogo-

nal dra wing is called the b ounding b ox of the dra wing. W e refer to the v olume of the

b ounding b o x as the volume of the dra wing. An orthogonal dra wing with a maxim um

of b b ends p er edge route is called a b -b end ortho gonal dr awing . An orthogonal dra w-

ing with a particular \shap e" of grid-b o x represen ting ev ery v ertex, e.g., p oin t, line,

rectangle, square, cub e or h yp ercub e, is called an orthogonal shap e -dra wing for eac h

particular \shap e", as illustrated in Figure 2.3.

(a) (b) (c)

Figure 2.3: Orthogonal dra wings of K

5

: (a) 1-b end 2-D square-dra wing, (b) 2-b end

3-D p oin t-dra wing, (c) 0-b end 3-D line-dra wing.

A D -dimensional orthogonal dra wing of a graph G is said to b e strictly � -de gr e e-
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r estricte d if there exists a constan t � suc h that for ev ery v ertex v 2 V ( G ),

surface ( v ) � � � deg ( v ) :

Suc h a dra wing is said to b e strictly de gr e e-r estricte d .

F or some orthogonal graph dra wing algorithm, the minim um � suc h that the dra w-

ings pro duced b y the algorithm are strictly � -degree-restricted do es not necessarily

reect the asymptotic relationship b et w een the surface and the degree of the v ertices.

W e therefore sa y that in an orthogonal dra wing of a graph G , a v ertex v 2 V ( G ) is

� - de gr e e-r estricte d if

surface ( v ) � � � deg ( v ) + o ( deg ( v )) :

If for some constan t � , ev ery v ertex v 2 V ( G ) is � -degree-restricted, then the

dra wing is said to b e ( � )- de gr e e-r estricte d . This de�nition enables us to compare the

asymptotic b eha viour of � for v arious algorithms.

Clearly , if a dra wing is strictly degree-restricted then it is also degree-restricted.

Con v ersely , it is easily seen that all degree-restricted dra wings pro duced b y algorithms

presen ted in this thesis are also strictly degree-restricted. Hence for our purp oses the

t w o notions coincide, although one can con triv e examples where this is not the case.

It is necessary to distinguish the t w o terms as the lo w er b ound in Theorem 3.2 is for

strictly degree-restricted dra wings.

The asp e ct r atio of a v ertex v is:

asp ect ratio ( v ) =

�

max

1 � i � D

�

i

( v )

�

.

�

min

1 � i � D

�

i

( v )

�

:

A h yp ercub e has asp ect ratio one, while a k � 1 � 1 � � � � � 1 line has asp ect ratio

equal to k .

2.5 Cycle Co v er Decomp osition

A cycle c over of a digraph is a spanning subgraph consisting of directed cycles. W e

no w describ e an algorithm for the decomp osition of a graph in to cycle co v ers. This

algorithm will often form the prepro cessing step in the graph dra wing algorithms to

come. This step w as �rst used b y Eades et al. [86 ] in their 3-D orthogonal p oin t-dra wing
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algorithm for maxim um degree six graphs. The follo wing generalisation to arbitrary

degree graphs can b e found in [87 , 219 ]. The result can b e considered as rep eated

application of the classical result of P etersen that \ev ery regular graph of ev en degree

has a 2-factor" [172 ].

Theorem 2.1. If G is a multigr aph and d = d �( G ) = 2 e then ther e exists a dir e cte d

multigr aph G

0

such that:

1. G is a sub gr aph of the underlying undir e cte d multigr aph of G

0

.

2. Each vertex of G

0

has in-de gr e e d and out-de gr e e d .

3. The ar cs of G

0

c an b e p artitione d into d e dge-disjoint cycle c overs.

G

0

and the e dge-disjoint cycle c overs c an b e c ompute d in O (�

2

n ) time.

Pr o of. Initially let G

0

= G . The n um b er of v ertices of o dd degree in an y m ultigraph

m ust b e ev en. So that eac h v ertex of G

0

has ev en degree w e pair the o dd degree v ertices

and add an edge b et w een eac h pair. F or eac h v ertex v 2 V ( G

0

), add d � deg ( v ) = 2 self-

lo ops to v , to create a 2 d -regular pseudograph. Since eac h v ertex of G

0

has ev en degree

it is Eulerian. Direct the edges of G

0

b y follo wing an Eulerian tour through G

0

. Eac h

v ertex of G

0

no w has in-degree d and out-degree d .

F or eac h v ertex v 2 V ( G

0

), de�ne V

out

= f v

out

: v 2 V ( G

0

) g , V

in

= f v

in

: v 2 V ( G

0

) g ,

where v

out

= f w 2 V ( G

0

) :

� !

v w 2 E ( G

0

) g and v

in

= f u 2 V ( G

0

) :

� !

uv 2 E ( G

0

) g . No w

construct an undirected bipartite graph H with V ( H ) = V

out

[ V

in

, and E ( H ) =

ff u

out

; v

in

g : ( u; v ) 2 E ( G

0

) g .

Since H is d -regular and bipartite, b y Hall's Theorem [114 ], H con tains a p erfect

matc hing; colour its edges 1 and remo v e them. The remaining graph is ( d � 1)-regular

and bipartite, so it also con tains a p erfect matc hing; colour its edges 2 and remo v e them.

Con tin ue this pro cess, to create d edge-disjoin t p erfect matc hings in H . Colouring

eac h arc

� !

uv 2 E ( G

0

) the same colour giv en to f u

out

; v

in

g in H giv es eac h no de of G

0

exactly one incoming arc and one outgoing arc for eac h colour. Hence the arcs of G

0

are partitioned in to d distinct subgraphs C

1

; C

2

: : : ; C

d

, corresp onding to eac h colour

1 ; 2 ; : : : ; d , eac h of whic h is a cycle co v er for G

0

. This partition in to p erfect matc hings

is sometimes referred to as K• onig's The or em [133 ].



CHAPTER 2. PRELIMINARIES 31

Sc hrijv er [194 ] describ es an algorithm for determining all p erfect matc hing of a k -

regular n -v ertex bipartite graph in O ( k

2

n ) time. H is d -regular with 2 n v ertices, so the

calculation of the p erfect matc hings whic h form the partition of H , whic h is the most

time-consuming stage of the algorithm, tak es O (�

2

n ) time.



Chapter 3

Approac hes to Orthogonal Graph

Dra wing

In this chapter we survey existing r esults for ortho gonal gr aph dr awing,

describing the mo dels and algorithms employe d for the pr o duction of such

dr awings, and c omp ar e these r esults with those pr esente d in this thesis.

This c hapter is organised as follo ws. Section 3.1 reviews the kno wn NP-hardness

results for the optimisation of v arious aesthetic criteria in orthogonal graph dra wings.

2-D orthogonal graph dra wing is surv ey ed in Section 3.2, including an in tro duction

to the general p osition mo del for 2-D orthogonal graph dra wing whic h is the mo del

emplo y ed in Chapter 6. T able 3.1 summarises the kno wn b ounds, including those

presen ted in this thesis, for 2-D orthogonal dra wings p ossibly with crossings. W e then

consider orthogonal graph dra wing on surfaces (other than the plane) in Section 3.3.

Section 3.4 surv eys mo dels and algorithms for 3-D orthogonal graph dra wing, and

in tro duces the algorithms presen ted in this thesis. In Section 3.5 w e conclude with a

discussion of the kno wn b ounds and principal op en problems for 3-D orthogonal graph

dra wing. T ables 3.2 and 3.3 summarise the kno wn b ounds for aesthetic criteria of 3-D

orthogonal p oin t-dra wings and 3-D orthogonal b o x-dra wings, resp ectiv ely .

32
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3.1 Complexit y

It is NP-hard to optimise man y of the aesthetic criteria for orthogonal graph dra wings

discussed in Chapter 1. In particular, for a giv en maxim um degree four graph, minimis-

ing eac h of the follo wing aesthetic criteria is NP-hard for 2-D orthogonal p oin t-dra wing.

� T otal n um b er of b ends (Garg and T amassia [106 ]).

� Bounding b o x area

(Dolev et al. [78 ], Storer [199 ], Kramer and v an Leeu w en [135 ]).

� Maxim um edge length (Bhatt and Cosmadakis [21 ], Gregori [111 ]).

Garg and T amassia [106 ] establish that it is NP-hard to ev en appro ximate the

minim um n um b er of b ends in a planar graph with O

�

n

1 � �

�

error, for an y � > 0. Shermer

[195 ] sho ws that it is NP-complete to recognise w eak rectangle visibilit y graphs (see

Section 3.2.1), and hence it is NP-hard to minimise the n um b er of b ends in a 2-D

orthogonal b o x-dra wing of a giv en graph.

Using straigh tforw ard extensions of the corresp onding 2-D NP-hardness results,

Eades et al. [85 ] sho w that it is NP-hard to minimise eac h of the follo wing aesthetic

criteria in a 3-D orthogonal p oin t-dra wings.

� Bounding b o x v olume.

� T otal n um b er of b ends.

� T otal edge length.

These metho ds can b e applied with the NP-completeness result of Shermer [195 ]

discussed ab o v e to sho w that it is NP-hard to minimise the total n um b er of b ends in a

3-D orthogonal b o x-dra wing of a giv en graph.

3.2 2-D Orthogonal Dra wings

Algorithms for pro ducing 2-D orthogonal dra wings ha v e b een extensiv ely studied in

the literature. W e no w discuss the principal approac hes emplo y ed.
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3.2.1 Visibilit y Approac h

Plane Dra wings

Plane orthogonal dra wings with straigh t-line edge routes (with no b ends) are aestheti-

cally v ery pleasing since the relational information represen ted in the graph is clearly

expressed. A closely related idea to that of a straigh t-line orthogonal dra wing is that

of a visibilit y represen tation. A ( we ak ) visibility r epr esentation of a graph G represen ts

eac h v ertex v 2 V ( G ) b y a horizon tal segmen t in the plane, and represen ts eac h edge

v w 2 E ( G ) b y a v ertical segmen t b et w een the horizon tal segmen ts represen ting v and

w and not in tersecting an y other horizon tal segmen ts. A graph admitting a visibilit y

represen tation is clearly planar. T amassia and T ollis [202 ] and Rosenstiehl and T arjan

[187 ] indep enden tly sho w that ev ery planar graph has a visibilit y represen tation, and

hence a straigh t-line orthogonal dra wing, whic h can b e computed in linear time.

V arious t yp es of visibilit y represen tations can b e de�ned, dep ending on whether v er-

tices are segmen ts or in terv als and whether visible v ertices m ust b e adjacen t. T amassia

and T ollis [202 ] and Wismath [216 ] c haracterise those planar graphs whic h admit eac h

p ossible t yp e. The disadv an tage of the visibilit y represen tation metho d for pro ducing

plane orthogonal dra wings is that the v ertices are not necessarily degree-restricted and

ha v e high asp ect ratio.

Dra wings with Crossings

In a (we ak) r e ctangle visibility r epr esentation of a graph, v ertices are represen ted b y

rectangles, and adjacen t v ertices can `see' eac h other b y some axis-aligned `band of

visibilit y' not in tersecting an y other v ertex (see Dean and Hutc hinson [67 ] for precise

de�nitions). It follo ws that a graph has a straigh t-line 2-D orthogonal b o x-dra wing if

and only if it has a w eak rectangle visibilit y represen tation. The subgraphs induced b y

the horizon tal and v ertical edges of suc h a graph are planar, so the graph has thic kness

at most t w o. Bose et al. [37 ] establish that n umerous classes of graphs with thic kness

t w o admit straigh t-line 2-D orthogonal b o x-dra wings. Since K

9

has thic kness three (see

Beinek e [16 ]), the straigh t-line 2-D orthogonal dra wing of K

8

presen ted b y Dean and

Hutc hinson [67 ] is the largest complete graph admitting suc h a dra wing. K

5 ; 6

has a



CHAPTER 3. APPR O A CHES TO OR THOGONAL GRAPH DRA WING 35

straigh t-line 2-D orthogonal b o x-dra wing, as sho wn in Figure 3.1.

Figure 3.1: Straigh t-line 2-D orthogonal dra wing of K

5 ; 6

.

Ev en though K

5 ;n

(7 � n � 12) and K

6 ;n

(6 � n � 8) ha v e thic kness t w o [17 ],

it is unkno wn if these graphs admit 2-D straigh t-line orthogonal b o x-dra wings. W e

conjecture that K

5 ; 7

and K

6 ; 6

do not admit suc h dra wings. Bose et al. [37 ] sho w that

K

4 ;n

( n � 1) has a 2-D straigh t-line orthogonal b o x-dra wing.

3.2.2 T op ology-Shap e-Metrics Approac h

A n um b er of algorithms for 2-D orthogonal graph dra wing can b e group ed under the so

called top olo gy-shap e-metrics appr o ach approac h (see Di Battista et al. [71 , c hap. 5]).

These metho ds consist of the follo wing three main steps.

Planarisation: Determine a planar em b edding of the graph with few crossings, and

represen t eac h crossing b y a dumm y v ertex.

Orthogonalisation: Determine the shap e of the dra wing.

Compaction: Determine the co ordinates of the v ertices and b ends to minimise the

area.

The dev elopmen t of these algorithms can b e traced to the classical algorithm of

T amassia [200 ] for determining a b end-minim um orthogonal p oin t-dra wing whic h pre-
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serv es a giv en planar em b edding of a graph with maxim um degree four (see also Batini

et al. [14 ]). This algorithm mo dels the b end-minimisation problem using net w ork o w

tec hniques, and tak es O

�

n

2

log n

�

time (subsequen tly impro v ed to O

�

n

7 = 4

p

log n

�

b y

Garg and T amassia [107 ]). Biedl [26 ] has since obtained b ounds on the area and the

n um b er of b ends for this algorithm.

T amassia et al. [201 ] presen t the Giotto algorithm for orthogonal dra wing of non-

planar graphs of arbitrary degree, whic h is based on T amassia's algorithm for planar

graphs. T o cater for arbitrary degree v ertices, eac h v ertex v of degree d � 4 is replaced

b y a cycle of d v ertices where eac h v ertex of the cycle is inciden t to one of the edges

formally inciden t to v , as illustrated in Figure 3.2. Exp erimen tal results con�rming the

success of this approac h are rep orted in Di Battista et al. [72 ].

v

= ) = )

v

Figure 3.2: Replacing v b y a cycle.

The Kandinsky mo del for 2-D orthogonal dra wings, whic h has b een in v estigated

b y F• o�meier and Kaufmann [103 , 104 ] and F• o�meier et al. [102 ], consists of a 2-D

(sparse) grid with uniform distance � b et w een the grid lines. The v ertices ha v e side

length less than � , and the cen tres of the v ertices are placed at the in tersection of

the grid lines; this ensures that no v ertex is in tersected b y an y grid line except those

de�ning its p osition, and censequen tly no t w o v ertices in tersect. Edges are routed on

the underlying orthogonal grid. Under the assumption that v ertices are represen ted

b y uniformly small squares and that eac h face is a non-empt y region, the algorithm

in [103 ], giv en a planar graph em b edding, minimises the n um b er of b ends in a 2-D

orthogonal dra wing in the Kandinsky mo del. F• o�meier and Kaufmann [104 ] extend

the Kandinsky mo del to cater for non-planar graphs and to remo v e the requiremen t

in [103 ] that v ertices ha v e the same size.
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In recen t dev elopmen ts the algorithm of Di Battista et al. [70 ] determines an

em b edding-preserving 2-D orthogonal dra wing where the size of eac h v ertex is sp ec-

i�ed b y the user. The dra wings pro duced ha v e the minim um n um b er of b ends among

a wide class of dra wings.

Di Battista et al. [73 ] in tro duce the notion of spir ality of planar orthogonal p oin t-

dra wings and explore the connection b et w een spiralit y and the n um b er of b ends. In

particular, they presen t p olynomial time algorithms for determining b end-minim um

orthogonal p oin t-dra wings for series-parallel graphs and for planar graphs of maxim um

degree three. Bertolazzi et al. [20 ] and Didimo and Liotta [75 ] use adv anced data

structures to represen t all the planar em b eddings of a giv en graph in their algorithms

to determine b end-minim um 2-D orthogonal dra wing. Their algorithms run in time

exp onen tial in the n um b er of v ertices with degree greater than four.

3.2.3 Geometric Approac h

W e no w describ e algorithms for orthogonal graph dra wing whic h are purely geometric,

as opp osed to the algorithms describ ed ab o v e whic h are based on top ological em b ed-

dings. Bertolazzi et al. [20 ] calls this the dr aw-and-adjust approac h.

Plane P oin t-Dra wings

Numerous algorithms ha v e b een prop osed in the literature for dra wing planar orthog-

onal p oin t-dra wings. Algorithms for dra wing cubic graphs include those of P apak ostas

and T ollis [163 ], Rahman et al. [178 ], Calamoneri and P etresc hi [50 , 51 ] and Biedl [23 ].

F or maxim um degree four graphs, algorithms include those of T amassia and T ollis [203 ],

Liu et al. [146 ], Kan t [124 ], Biedl [24 ] and Biedl and Kan t [29 ]. W e no w outline t w o of

the approac hes used b y these algorithms.

The algorithm of T amassia and T ollis [203 ] for 2-D orthogonal p oin t-dra wing of

planar graphs, is based on a visibilit y represen tation of the giv en graph. The horizon tal

segmen ts represen ting v ertices in the visibilit y represen tation are replaced b y p oin ts and

b ends are added to the edge routes. The algorithm, whic h runs in linear time, pro duces

2-D orthogonal plane dra wings with O

�

n

2

�

area, at most four b ends p er edge route,

and a total of at most 12 n= 5 + 2 b ends.
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The algorithm of Biedl and Kan t [29 ], for a biconnected graph G of maxim um de-

gree four, determines in linear time an orthogonal p oin t-dra wing with at most 2 n + 2

b ends and n � n b ounding b o x. Ev ery edge has at most t w o b ends (unless G is

the o ctahedron graph whic h is sho wn b y Ev en and Granot [91 ] not to ha v e a 2-b end

plane orthogonal p oin t-dra wing; see Figure 1.8(a)). This algorithm is based on an

st -ordering of the v ertices (see Section 4.2). A mo di�ed algorithm determines an

orthogonal p oin t-dra wing of a connected graph G with at least one cut v ertex with

( n � 1) � ( n � 1) b ounding b o x, at most t w o b ends p er edge, and at most m b ends

in total. F or triconnected graphs the algorithm of Kan t [124 ], impro v ed b y Biedl [24 ],

establishes an upp er b ound on the n um b er of b ends of d 4 n= 3 e + 4.

P oin t-Dra wings with Crossings

Algorithms whic h do not guaran tee plane dra wings ev en for planar graphs ha v e b een

considered b y Sc h• a�ter [190 ] and P apak ostas and T ollis [165 ]. The latter algorithm

determines in linear time an orthogonal p oin t-dra wing of a giv en maxim um degree four

graph ha ving area at most 0 : 76 n

2

and at most 2 n + 2 b ends. Lo w er b ounds for 2-D

orthogonal p oin t-dra wing ha v e b een established b y T amassia et al. [205 ] and Biedl [25 ].

Plane Bo x-Dra wings

Motiv ated b y the desire to o v ercome the inheren t restriction on the maxim um degree

of graphs admitting orthogonal p oin t-dra wings, there has b een recen t in terest in the

dev elopmen t of algorithms for 2-D orthogonal b o x-dra wing.

Ev en and Granot [92 ] studied 2-D orthogonal b o x-dra wings where the size of eac h

v ertex and the p ort assignmen ts are giv en as part of the input. This approac h is

particularly applicable to VLSI la y out problems where the comp onen ts of the circuit

ha v e prede�ned sizes. They presen t t w o algorithms. The �rst, whic h is for planar

dra wings, is based on a visibilit y represen tation of the graph. The second algorithm

emplo ys a diagonal la y out of the v ertices. The dra wings pro duced ha v e at most four

b ends p er edge and ( W + m ) � ( H + m ) b ounding b o x, where W and H are resp ectiv ely

the total width and heigh t of the b o xes represen ting v ertices.

Using the `cycle of lo w degree v ertices' metho d illustrated in Figure 3.2, the al-
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gorithm of Biedl and Kan t [29 ] is extended to pro duce planar dra wings of arbitrary

degree planar graphs. The disadv an tage of this approac h is that the v ertices are not

necessarily degree-restricted. This algorithm can also cater for dra wings of non-planar

graphs.

Bo x-Dra wings with Crossings

W e no w discuss b o x-dra wing algorithms whic h are applicable to arbitrary graphs but

do not guaran tee a planar dra wing ev en for planar graphs. This is the approac h tak en

b y the 2-D orthogonal b o x-dra wing algorithm presen ted in Chapter 6. (In Chapter 7

this algorithm is generalised to a m ulti-dimensional setting.) T able 3.1 summarises the

kno wn upp er b ounds for this class of 2-D orthogonal graph dra wings.

T able 3.1: Upp er Bounds for 2-D Orthogonal Bo x-Dra wing

Bo x

Shap e

Area

Max.

Bends

Degree-

Restriction

Asp ect

Ratio

Reference

line ( m � 1) � (

m +1

2

) 1 2 � deg ( v ) = 2 [164 , 169 ]

line (

m + n

2

) � (

m + n

2

) 1 2 � deg ( v ) = 2 [30 ]

rectangle

�

3 m +2 n

4

�

�

�

3 m +2 n

4

�

1 2 2 [30 ]

rectangle

�

3 m +4 n +2

4

�

�

�

3 m +4 n +2

4

�

1

3

2

2 Theorem 6.3

square

�

3 m

4

+

5 n

8

�

�

�

3 m

4

+

5 n

8

�

1 2 1 Theorem 6.4

The algorithms of P apak ostas and T ollis [164 , 169 ] and Biedl and Kaufmann [30 ]

(whic h is an example of the uni�ed approac h to orthogonal graph dra wing called the

thr e e-phase metho d [31 ]) w ere the �rst to pro duce degree-restricted 2-D orthogonal

b o x-dra wings. Eac h v ertex v has asp ect ratio at most deg ( v ) = 2 and eac h edge route

has at most one b end. F or sparse graphs ( m < (1 +

p

2 ) n to b e precise), the algorithm

in [164 , 169 ] requires less area than that in [30 ]. A second algorithm in [30 ] pro duces

dra wings in whic h eac h v ertex has asp ect ratio at most t w o, at the exp ense of an

increase in area.
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The algorithm of Biedl and Kaufmann [30 ] pro duces dra wings suc h that no t w o

v ertices are in tersected b y a single grid-line. W e call suc h dra wings gener al p osition

2-D orthogonal dra wings. An in tro ductory v ersion of the algorithm of P apak ostas and

T ollis [164 , 169 ] also pro duces general p osition 2-D orthogonal dra wings; in a re�ned

v ersion certain pairs of v ertices share a ro w or column.

The algorithms presen ted in Chapter 6 also pro duce general p osition 2-D orthogonal

dra wings. In Section 3.4.4 w e in tro duce the general p osition mo del for D -dimensional

orthogonal graph dra wing and classify algorithms for pro ducing suc h dra wings as

layout- or r outing-b ase d . The algorithms in [30 ] and [164 , 169 ] can b e classi�ed as

routing-based.

Main taining the asp ect ratio b ound of t w o in [30 ], the la y out-based algorithm pre-

sen ted in Section 6.2.3 pro duces 3 = 2-degree-restricted 2-D orthogonal dra wings. Using

a diagonal la y out, our algorithm describ ed in Section 6.2.4 pro duces 2-degree-restricted

2-D orthogonal square-dra wings. Note that 2-D diagonal la y outs ha v e b een emplo y ed

b y Ev en and Granot [91 ] and Sc h• a�ter [190 ]. Our b ounding b o x area b ounds are sligh tly

ab o v e those in [30 ].

In teractiv e Dra wing

As w ell as considering the aesthetic criteria already discussed for static orthogonal

graph dra wing, in teractiv e graph dra wing algorithms should `preserv e the men tal map'

of the view er of the dra wing when v ertices and edges are inserted or deleted (see Misue

et al. [154 ], for example). In teractiv e orthogonal p oin t-dra wing has b een studied b y

P apak ostas et al. [162 ], F• o�meier [100 ], Bridgeman et al. [44 ], Brandes and W agner

[42 ] and P apak ostas and T ollis [167 ]. Biedl et al. [31 ] also describ e ho w the three-phase

metho d can b e extended to an in teractiv e setting.

3.3 Orthogonal Dra wings on Surfaces

A natural, y et little studied generalisation of plane orthogonal dra wings, is that of

orthogonal dra wings on surfaces. An em b edding of a graph in an orien table surface

other than the plane can b e dra wn in an ortho gonal surfac e , as illustrated in Figure 3.3
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(see Garrido and M� arquez [109 ]). Consider the follo wing op en problem.

Problem 3.1. SURF A CE POINT-DRA WING

Instanc e : An em b edding � of a graph G (with maxim um degree four) in the orien table

surface of gen us g , and a p ositiv e in teger B 2 Z

+

.

Question : Is there an orthogonal p oin t-dra wing of G in the orthogonal surface of gen us

g whic h preserv es � and with at most B b ends?

1 2

� � � g � 1

Figure 3.3: An orthogonal dra wing of a graph in the surface of gen us g .

Garrido and M� arquez [109 ] sk etc h pro ofs, that for an y �xed orien table surface S

(except the plane), it is NP-complete to test whether a giv en graph em b edding in S

has an essential ly e quivalent

1

straigh t-line orthogonal p oin t-dra wing in an orthogonal

surface corresp onding to S . Hence minimising the n um b er of b ends in an orthogonal

dra wing essen tially equiv alen t to a giv en em b edding is NP-hard.

3.4 Mo dels for 3-D Orthogonal Graph Dra wing

In this section w e surv ey mo dels and algorithms for the generation of 3-D orthogonal

graph dra wings, including those presen ted in this thesis. W e classify mo dels for v ertex

la y out b y the minim um in tegers a and b , 1 � a; b � 2 suc h that

� all v ertices are in tersected b y a single a -dimensional orthogonal grid, and

� no t w o v ertices are in tersected b y a single b -dimensional orthogonal grid.

1

The term essential ly e quivalent is not precisely de�ned.
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Here a 1-dimensional (resp ectiv ely , 2-dimensional) grid refers to a grid-line (grid-

plane) within the 3-dimensional orthogonal grid.

3.4.1 Visibilit y Represen tations

Visibilit y represen tations of graphs in the plane (see Section 3.2.1) naturally extend

to three dimensions. In the so-called ZPR ( Z - P arallel R epresen tation) mo del for

straigh t-line 3-D orthogonal graph dra wing, eac h v ertex is a rectangle parallel to the

X Y -plane, and edges are routed parallel to the Z -axis. Bose et al. [38 ] sho w ed that

there do es not exist a ZPR of K

n

for n > 56. The pro of is based on deep results

concerning unimaximal subsequences. They also found a ZPR of K

22

using sim ulated

annealing tec hniques. Represen ting v ertices b y squares of the same size, F ek ete et al.

[95 ] sho w ed that K

7

has a ZPR, but K

n

for n � 8 do es not. The ZPR mo del w as

extended to arbitrary dimensions b y Cob os et al. [59 ], establishing that ev ery graph

has a ZPR in some n um b er of dimensions.

In a straigh t-line D -dimensional orthogonal graph dra wing, the axis eac h edge is

parallel to de�nes a edge D -colouring of the graph. As p oin ted out b y Biedl et al.

[32 , 33 ] in the case of D = 3, eac h colour class induces a ZPR, so b y the ab o v e K

56

ZPR

non-existence result, it follo ws that there do es not exist a 3-D straigh t-line orthogonal

dra wing of K

n

for n greater than the Ramsey n um b er R (56 ; 56 ; : : : ; 56) (with D 56's).

In three dimensions this upp er b ound has b een signi�can tly impro v ed to K

184

b y F ek ete

and Meijer [96 ] (their pro of is still based on the non-existence of a ZPR of K

56

). Based

on the ZPR of K

22

men tioned ab o v e, F ek ete and Meijer also construct the largest kno wn

straigh t-line 3-D orthogonal dra wing of a complete graph, namely K

56

, and establish

a n um b er of b ounds on the size of complete graphs admitting suc h dra wings when the

shap e of the b o xes and the n um b er of di�eren t sized b o xes is restricted

2

.

This K

56

construction immediately generalises to m ultiple dimensions, pro viding a

straigh t-line D -dimensional orthogonal b o x-dra wing of K

22( D � 1)+12

. F or D � 2 and

n � 1, the bipartite graph K

2 D ;n

has a D -dimensional orthogonal dra wing without

2

The lo w er b ound of K

56

for 3-D straigh t-line orthogonal dra wings and the upp er b ound of K

56

for

ZPR's is a coincidence. Hitc hhik ers are disapp oin ted that the previous b est lo w er b ound of K

42

due to

Bose et al. [40 ] is not optimal.
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b ends. T o construct this dra wing, place the n v ertices along a D -dimensional diagonal,

and place the remaining v ertices on the sides of the D -dimensional b o x surrounding the

in terior v ertices. This construction is a generalisation of the case D = 2 due to Bose

et al. [37 ].

W e no w pro vide a simple su�cien t condition for the existence of a straigh t-line 3-D

orthogonal line-dra wing.

Theorem 3.1. Every vertex 3-c olour able gr aph has a str aight-line 3-D ortho gonal line-

dr awing.

Pr o of. W e will construct a straigh t-line 3-D orthogonal line-dra wing of the complete

tripartite graph K

n;n;n

. Consider the v ertices of K

n;n;n

to b e coloured with colours

f X ; Y ; Z g with corresp onding colour classes f u

1

; u

2

; : : : ; u

n

g , f v

1

; v

2

; : : : ; v

n

g and

f w

1

; w

2

; : : : ; w

n

g . As illustrated in Figure 3.4, a v ertex u

i

, v

j

or w

k

, 1 � i; j; k ; � n is

represen ted b y the follo wing line parallel to the X -, Y or Z -axis, resp ectiv ely .

� u

i

: (2 ; 2 i + 1 ; 2 i ) ! (2 n + 1 ; 2 i + 1 ; 2 i )

� v

j

: (2 j; 2 ; 2 j + 1) ! (2 j; 2 n + 1 ; 2 j + 1)

� w

k

: (2 k + 1 ; 2 k ; 2) ! (2 k + 1 ; 2 k ; 2 n + 1)

A v ertex u

i

has o dd/ev en Y / Z -co ordinates, a v ertex v

j

has ev en/o dd X / Z -co ordinates,

and a v ertex w

k

has o dd/ev en X / Y -co ordinates, so no t w o v ertices in tersect.

The edge routes for the edges u

i

v

j

, u

i

w

k

and v

j

w

k

, 1 � i; j; k ; � n , are resp ectiv ely

parallel to the Z -, Y - and X -axes as follo ws.

� u

i

: (2 j; 2 i + 1 ; 2 i ) ! (2 j; 2 i + 1 ; 2 j + 1) : v

j

� u

i

: (2 k + 1 ; 2 i; 2 i ) ! (2 k + 1 ; 2 k ; 2 i ) : w

k

� v

j

: (2 j; 2 k ; 2 j + 1) ! (2 k + 1 ; 2 k ; 2 j + 1) : w

k

An edge route u

i

v

j

has ev en/o dd X / Y -co ordinates, an edge route u

i

w

k

has o dd/ev en

X / Z -co ordinates, and an edge route v

j

w

k

has ev en/o dd Y / Z -co ordinates, so no t w o

edge routes in tersect.
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Figure 3.4: V ertex la y out for a straigh t-line 3-D orthogonal line-dra wing of a v ertex

3-colourable graph.

Supp ose an edge route u

i

v

j

in tersects some v ertex x . Then x has a co ordinate

(2 j; 2 i + 1 ; Z

x

), whic h implies that x = u

i

or x = v

j

, and similarly for edge routes u

i

w

k

and v

j

w

k

. Hence eac h edge route only in tersects its end-v ertices.

This result suggests the follo wing op en problem.

Op en Problem 3.1. What is the maxim um k 2 Z

+

suc h that ev ery k -colourable

graph has a straigh t-line 3-D orthogonal b o x-dra wing? By Theorem 3.1 and since K

184

do es not ha v e suc h a dra wing w e kno w 3 � k < 184.

3.4.2 Coplanar V ertex La y out Mo del

A 3-D orthogonal graph dra wing is in the c oplanar vertex layout mo del , called a c oplanar

3-D orthogonal graph dra wing, if there exists a single grid-plane in tersecting ev ery

v ertex. Of course, suc h dra wings are inheren tly orien tation-dep enden t.
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Coplanar Grid V ertex La y out

One strategy for pro ducing 3-D orthogonal graph dra wings in the coplanar v ertex la y out

mo del, is to p osition the v ertices in a plane grid. This mo del w as �rst emplo y ed b y

Hagihara et al. [113 ] for pro ducing degree-restricted 3-D orthogonal cub e-dra wings,

although it is understo o d that all subsequen t researc h in 3-D orthogonal graph dra wing,

including that presen ted in this thesis, w as completed without kno wledge of this pap er.

The Comp a ct algorithm of Eades et al. [86 , 87 ] in tro duced this mo del for 3-D

orthogonal p oin t-dra wing, and pro duced dra wings with optimal v olume. V ertices are

p ositioned in the ( Z = 0)-plane in a O (

p

n ) � O (

p

n ) grid, and edges are routed either

within, ab o v e or b elo w the ( Z = 0)-plane. A sequence of re�ned algorithms in [87 ]

explore the tradeo� b et w een b ounding b o x v olume and the maxim um n um b er of b ends

p er edge route.

In Chapter 9 w e presen t t w o algorithms for pro ducing coplanar 3-D orthogonal

dra wings of arbitrary degree graphs. The �rst represen ts v ertices b y Z -lines in an

O (

p

n ) � O (

p

n ) grid, and pro duces dra wings with optimal v olume for regular graphs.

The second algorithm p ositions v ertices in the ( Z = 0)-plane in a O (

p

m ) � O (

p

m )

grid, and pro duces degree-restricted cub e-dra wings with optimal v olume.

Non-Collinear Coplanar V ertex La y out

A second approac h to pro ducing coplanar 3-D orthogonal dra wings is to p osition the

v ertices suc h that no t w o v ertices lie in the same grid-line. A commonly used strategy

for pro ducing suc h dra wings is to p osition the v ertices along a 2-D diagonal.

Biedl et al. [32 , 33 ] construct coplanar 3-D orthogonal line-dra wings of K

n

(and

hence for an y simple graph), using a 2-D diagonal la y out with O

�

n

3

�

v olume and

one b end p er edge route

3

. Biedl [27 ] calls this the Lifting-Edges algorithm. This

construction represen ts the v ertices as Z -lines of length n p ositioned in a 2-D diagonal

la y out, and routes eac h edge with one b end in some Z -plane. In Chapter 9 w e presen t

an algorithm for pro ducing 1-b end 3-D orthogonal dra wings using a similar strategy

3

Biedl et al. [32 , 33 ] also describ e 3-D orthogonal dra wings of K

n

with O

�

n

3

�

v olume and t w o b ends

p er edge route. Since all the v ertices in this construction are in tersected b y a single grid-line, w e sa y

this dra wing is in the c ol line ar vertex layout mo del .
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based on b o ok em b eddings.

Biedl [27 ] in tro duced an algorithm called Lifting-Half-Edges , whic h impro v es on

the Lifting-Edges algorithm, for pro ducing degree-restricted line-dra wings with t w o

b ends p er edge route. This algorithm starts with a 1-b end 2-D general p osition p oin t-

dra wing p ossibly with o v erlapping edges (see Section 3.2.3), and extends the v ertices to

form Z -lines. X -segmen ts are routed ab o v e the ( Z = 0)-plane, Y -segmen ts are routed

b elo w the ( Z = 0)-plane, and Z -segmen ts are added to the edges in suc h a w a y to a v oid

edge route crossings. A mo di�ed algorithm pro duces degree-restricted cub e-dra wings.

Closson et al. [58 ] presen t an algorithm for pro ducing coplanar 3-D orthogonal

p oin t-dra wings with a 2-D diagonal v ertex la y out, whic h supp orts the on-line insertion

and deletion of v ertices and edges. In Chapter 11 w e presen t an algorithm for m ulti-

dimensional orthogonal p oin t-dra wing with a b ounded n um b er of b ends p er edge whic h

also p ositions the v ertices in a 2-D diagonal.

3.4.3 Non-Collinear Mo del

A 3-D orthogonal graph dra wing is in the non-c ol line ar vertex layout mo del , called a

non-c ol line ar 3-D orthogonal dra wing, if no t w o v ertices lie in the same grid-line. The

spiral la y out algorithm of Closson et al. [58 ] for 3-D orthogonal p oin t-dra wing w as the

�rst for pro ducing dra wings in this mo del. This algorithm starts with the v ertices in a

O (

p

n ) � O (

p

n ) grid, and then assigns eac h v ertex a unique heigh t in a spiral manner.

The b ounding b o x has v olume O (

p

n ) � O (

p

n ) � O ( n ), so the dra wings are somewhat

orien tation-dep enden t.

In Chapter 10 w e presen t algorithms for generating orien tation-indep enden t non-

collinear orthogonal b o x- and p oin t-dra wings. Our v ertex la y out algorithm p ositions the

v ertices suc h that eac h grid-plane in tersects at most d

p

n e v ertices. The p oin t-dra wings

pro duced ha v e optimal v olume, and for regular graphs, the b o x-dra wings pro duced also

ha v e optimal v olume. These are the only kno wn algorithms for pro ducing orien tation-

indep enden t dra wings with optimal v olume. F or p oin t-dra wings with optimal v olume,

w e observ e a tradeo� b et w een orien tation-indep endence and the maxim um n um b er of

b ends p er edge.
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3.4.4 General P osition Mo del

A D -dimensional orthogonal graph dra wing ( D � 2) is in the gener al p osition mo del ,

called a gener al p osition orthogonal dra wing, if no t w o v ertices are in tersected b y a

single ( D � 1)-dimensional grid-h yp erplane

4

. In a general p osition 2-D orthogonal

dra wing, no t w o v ertices are in tersected b y a single grid-line (see Section 3.2.3), and in

a general p osition 3-D orthogonal dra wing, no t w o v ertices are in tersected b y a single

grid-plane

5

. A simple general p osition v ertex la y out is constructed b y p ositioning the

v ertices along the main diagonal of a h yp ercub e, called a diagonal gener al p osition

vertex layout .

General p osition dra wings t ypically ha v e few b ends p er edge route (but relativ ely

man y b ends in total) and are degree-restricted. Man y algorithms for general p osition

orthogonal graph dra wing pro duce orien tation-indep enden t dra wings. The disadv an-

tage of this mo del is that the dra wings necessarily ha v e large v olume compared to the

other mo dels.

Chapters 5, 6 and 7 describ e algorithms for pro ducing general p osition 3-D p oin t-

dra wings, general p osition 2-D b o x-dra wings and general p osition D -dimensional ( D �

3) b o x-dra wings, resp ectiv ely . Our algorithms for pro ducing general p osition orthogonal

dra wings ha v e the follo wing three ma jor steps, whic h lo osely corresp ond to those in the

thr e e-phase metho d [31 ].

V ertex La y out: Determine the relativ e p ositions of the v ertices.

Arc Routing: Determine the `shap e' of eac h edge route.

P ort Assignmen t: Construct v ertex b o xes, assign p orts for eac h edge route, and

remo v e edge crossings.

W e classify algorithms for generating general p osition orthogonal graph dra wings

as b eing layout- or r outing-b ase d . In a la y out-based algorithm, the v ertex la y out stage

4

In computational geometry a set of p oin ts in R

D

are in gener al p osition if no D + 1 p oin ts are in a

common ( D � 1)-dimensional h yp erplane. Strictly sp eaking w e should therefore sa y a general p osition

orthogonal dra wing is in gener al grid p osition .

5

This is called the Unique Co or dinates Mo del in [221 ].
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is completed initially follo w ed b y the arc routing step. In a routing-based algorithm,

the v ertex la y out is determined with resp ect to a pre-determined arc-routing. The p ort

assignmen t stage is alw a ys completed last.

P oin t-Dra wings

A 3-D diagonal v ertex la y out is used b y the 3-Bends algorithm of Eades et al. [86 , 87 ]

for orthogonal p oin t-dra wing. W e presen t a la y out-based algorithm for 3-D orthogonal

p oin t-dra wing in Section 5.2.1, whic h giv en a �xed diagonal la y out, minimises the total

n um b er of b ends. A mo di�cation of the 3-bends algorithm of Eades et al. [86 , 87 ]

describ ed in Section 5.5.3, pro duces 3-b end p oin t-dra wings with the b est kno wn v olume

upp er b ound.

A routing-based algorithm for 3-D orthogonal p oin t-dra wing is presen ted in Sec-

tion 5.3. The Dia gonal La yout and Mo vement ( Dlm in T able 3.2) algorithm

presen ted in Section 5.4 com bines the la y out- and routing-based approac hes, and es-

tablishes the b est kno wn upp er b ound for the total n um b er of b ends in 3-D orthogonal

p oin t-dra wings.

Bo x-Dra wings

Algorithms for pro ducing general p osition 3-D orthogonal b o x-dra wings with t w o b ends

p er edge route ha v e b een dev elop ed b y P apak ostas and T ollis [166 , 168 ] and Biedl [27 ].

The incremen tal algorithm in [166 , 168 ] inserts eac h new v ertex as a cub e, and as new

neigh b ours are inserted a v ertex ma y gro w in di�eren t directions, pro ducing dra wings

whic h one w ould exp ect in practice to b e orien tation-indep enden t. No b ound on the

asp ect ratio of a v ertex is established. W e refer to this algorithm as Increment al .

Our la y out-based algorithm for m ulti-dimensional orthogonal b o x-dra wing, pre-

sen ted in Section 7.2, in the case of three dimensions, establishes impro v ed b ounds

on the degree-restriction of v ertices compared to the algorithms in [27 , 166 , 168 ]. A

routing-based algorithm for general p osition 3-D orthogonal b o x-dra wing is presen ted

in Section 7.3.
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3.4.5 Ad-ho c Metho ds for 3-D P oin t-Dra wing

Other approac hes for 3-D orthogonal p oin t-dra wing include that of P apak ostas and

T ollis [166 , 168 ]. Their algorithm, whic h allo ws for the on-line insertion of v ertices in

constan t time, pro duces 3-D orthogonal p oin t-dra wings with at most three b ends p er

edge route. The split and push approac h to 3-D orthogonal p oin t-dra wing, dev elop ed

b y Di Battista et al. [74 ], starts with a degenerate dra wing with all v ertices on one

p oin t and rep eatedly inserts planes splitting the dra wing apart un til all crossings are

remo v ed. Exp erimen tal tests in [74 , 168 , 221 ] sho w this metho d w orks w ell only on

relativ ely small graphs, and no b ounds on the n um b er of b ends or v olume are presen ted.

3.5 Bounds for 3-D Orthogonal Graph Dra wing

W e no w summarise the kno wn b ounds for the n um b er of b ends and the v olume of 3-D

orthogonal dra wings, initially for p oin t-dra wings and then for b o x-dra wings.

3.5.1 P oin t-Dra wings

T able 3.2 sho ws the tradeo� b et w een the b ounding b o x v olume and the maxim um

n um b er of b ends p er edge apparen t in algorithms for 3-D orthogonal p oin t-dra wing of

graphs of maxim um degree � � 6.

Bounds on the v olume

An early result in 3-D orthogonal p oin t-dra wing due to Kolmogoro v and Barzdin [132 ]

6

established a lo w er b ound of 
( n

3 = 2

) for the b ounding b o x v olume. Rosen b erg [186 ]

indep enden tly pro v ed the same result.

The Comp a ct algorithm of Eades et al. [86 , 87 ] determines orthogonal p oin t-

dra wings in the coplanar v ertex la y out mo del with O

�

n

3 = 2

�

b ounding b o x v olume and

at most sev en b ends p er edge route. As discussed ab o v e, this v olume b ound is asymp-

totically b est p ossible. The same b ound is ac hiev ed b y the orien tation-indep enden t

Non-Collinear algorithm presen ted in Chapter 10, at the exp ense of needing eigh t

6

This pap er has b een rep eatedly cited incorrectly in the literature, with the w ord `set' replacing

`net' in the title.
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T able 3.2: Upp er Bounds for 3-D Orthogonal P oin t-Dra wing

Algorithm

Max.

(Avg.)

Bends

V olume

Orien tation

Indep enden t

Reference

Non-Collinear 8 �( n

3 = 2

) y es Theorem 10.2

Comp a ct 7 �( n

3 = 2

) no [86 , 87 ]

Comp a ct1 6 O

�

n

2

�

no [87 ]

D ynamic 5 O

�

n

2

�

no [58 ]

Comp a ct2 5 O

�

n

5 = 2

�

no [87 ]

Comp a ct3 4 O

�

n

3

�

no [87 ]

Dlm 4 (7/3) 2 : 37 n

3

y es Theorem 5.4

3-Bends 3 8 n

3

y es [86 , 87 ]

Increment al 3 4 : 63 n

3

y es [166 , 168 ]

Modified 3-Bends 3 n

3

+ o

�

n

3

�

y es Theorem 5.6

Dlm (� � 5) 2 n

3

y es Theorem 5.4

Comp a ct (� � 4) 3 O

�

n

2

�

no [86 ]

b ends for some edge routes. Impro ving the b ound on the maxim um n um b er of b ends

p er edge route in an O

�

n

3 = 2

�

v olume 3-D orthogonal p oin t-dra wing is an in teresting

op en problem.

Op en Problem 3.2. Do es ev ery maxim um degree six graph ha v e a 6-b end 3-D or-

thogonal p oin t-dra wing with O

�

n

3 = 2

�

b ounding b o x v olume?

In a series of re�nemen ts of the Comp a ct algorithm, referred to as Comp a ct1 ,

Comp a ct2 and Comp a ct3 , the tradeo� b et w een the b ounding b o x v olume and the

maxim um n um b er of b ends p er edge route is explored. F or O

�

n

2

�

v olume 3-D p oin t-

dra wings, the D ynamic algorithm of Closson et al. [58 ] impro v es the upp er b ound for

the maxim um n um b er of b ends p er edge route from six [87 ] to �v e.
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Bounds on the maxim um n um b er of b ends p er edge

The 3- Bends algorithm of Eades et al. [86 , 87 ] and the Increment al algorithm of

P apak ostas and T ollis [166 , 168 ] established an upp er b ound of three for the maxim um

n um b er of b ends p er edge route. Both algorithms tak e O ( n ) time

7

. Note that the

authors of the 3-Bends algorithm w ere not in terested in impro ving the constan t in the

27 n

3

b ounding b o x v olume b ound | b y deleting eac h grid plane not con taining a v ertex

or a b end, it can easily b e sho wn that the v olume is at most 8 n

3

. A mo di�cation of the

3-Bends algorithm presen ted in Section 5.5.3 impro v es this b ound to n

3

+ o

�

n

3

�

. This

is the b est kno wn upp er b ound for the v olume of 3-b end orthogonal p oin t-dra wings.

There are few non-trivial lo w er b ounds for the n um b er of b ends in 3-D orthogonal

p oin t-dra wings. Ob viously an y orthogonal p oin t-dra wing of K

3

has at least one b end.

Less ob vious is the result, pro v ed in Theorem 11.1, that in an y 3-D orthogonal p oin t-

dra wing of K

5

there is an edge route with at least t w o b ends. In App endix A w e giv e

a formal pro of of the w ell-kno wn result that a 3-D orthogonal p oin t-dra wing of the

m ultigraph consisting of t w o v ertices and six edges requires an edge route with at least

three b ends.

The di�erence b et w een the lo w er b ound of t w o and the upp er b ound of three for

the maxim um n um b er of b ends p er edge route in 3-D orthogonal p oin t-dra wings of

maxim um degree six graphs motiv ates the follo wing 2-Bends Pr oblem .

Op en Problem 3.3. [86 , 87 ] Do es ev ery maxim um degree six graph admit a 2-b end

3-D orthogonal p oin t-dra wing?

The Dia gonal La yout and Mo vement algorithm ( Dlm in T able 3.2) presen ted

in Section 5.4 solv es the 2-Bends Problem in the a�rmativ e for graphs of maxim um

degree �v e. This result establishes the only kno wn class of graphs for whic h 2-b end

3-D orthogonal p oin t-dra wings exist.

A natural candidate for a simple graph requiring an edge route with at least three

b ends in ev ery 3-D orthogonal p oin t-dra wing is K

7

, as conjectured b y Eades et al. [86 ].

A coun terexample to this conjecture, namely a 3-D orthogonal p oin t-dra wing of K

7

7

In Eades et al. [86 ] an O ( n

3 = 2

) time b ound is stated. In Eades et al. [87 ] this is reduced to O ( n ) using

the algorithm of Sc hrijv er [194 ] in the calculation of the cycle co v er decomp osition (see Section 2.5).
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with at most t w o b ends p er edge route, w as �rst exhibited b y W o o d [219 ]. A more

symmetric 3-D orthogonal p oin t-dra wing

8

of K

7

with at most t w o b ends p er edge route

is sho wn in Figures 3.5 and 3.6 (see also App endix B). This dra wing has the in teresting

feature of rotational symmetry ab out the line X = Y = Z .

X

Y

Z

Figure 3.5: Comp onen ts of a 2-b end 3-D orthogonal p oin t-dra wing of K

7

.

8

A ph ysical mo del of this dra wing is on displa y at the Sc ho ol of Computer Science and Soft w are

Engineering, Monash Univ ersit y , Cla yton.
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X

Y

Z

Figure 3.6: A 2-b end 3-D orthogonal p oin t-dra wing of K

7

.

One ma y consider the other 6-regular complete m ulti-partite graphs K

6 ; 6

, K

3 ; 3 ; 3

and K

2 ; 2 ; 2 ; 2

to b e p oten tial examples of simple graphs requiring an edge route with at

least three b ends. In App endix B w e presen t 2-b end 3-D orthogonal p oin t-dra wings of

these graphs.

Bounds on the total n um b er of b ends

In certain applications it ma y b e more imp ortan t to minimise the total n um b er of

b ends in 3-D orthogonal p oin t-dra wings rather than to minimise the maxim um n um b er

of b ends on an y edge route. The Dia gonal La yout and Mo vement algorithm

presen ted in Section 5.4, whic h solv es the 2-Bends Problem for graphs of maxim um

degree �v e, uses a total of at most 7 m= 3 b ends for dra wings of m -edge simple graphs
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with maxim um degree six. A related algorithm presen ted in Section 5.2.1 minimises the

total n um b er of b ends in a 3-D orthogonal p oin t-dra wing for a �xed diagonal la y out.

Impro ving the upp er b ound for the total n um b er of b ends in a 3-D orthogonal p oin t-

dra wing is an in teresting op en problem.

Op en Problem 3.4. Do es ev ery maxim um degree six graph with m edges ha v e a 3-D

orthogonal p oin t-dra wing with few er than 7 m= 3 b ends?

In App endix A w e establish the �rst non-trivial lo w er b ounds for the total n um b er of

b ends in 3-D orthogonal p oin t-dra wings. In particular, w e pro v e that a 3-D orthogonal

p oin t-dra wing of K

5

has at least sev en b ends. (A dra wing of K

5

with sev en b ends is

sho wn in Figure 2.3(b) on page 28.) W e also sho w that a 3-D orthogonal p oin t-dra wing

of the m ultigraph consisting of t w o v ertices and six edges has at least t w elv e b ends.

(Suc h a dra wing is sho wn in Figure A.7 on page 228.)

Op en Problem 3.5. Are there b etter lo w er b ounds than 7 m= 10 (for simple graphs)

and 2 m (for m ultigraphs) on the total n um b er of b ends in a 3-D orthogonal p oin t-

dra wing of an m -edge graph with maxim um degree six.

In Figure 3.7 w e sho w a 3-D orthogonal p oin t-dra wing of K

7

with a total of 24

b ends (compared with the total of 42 b ends for the dra wing sho wn in Figures 3.5 and

3.6). Most edge routes are straigh t-lines or ha v e one b end, and three edge routes ha v e

four b ends. W e conjecture that there is no 3-D orthogonal p oin t-dra wing of K

7

with

few er than 24 b ends.

3.5.2 Bo x-Dra wings

Lo w er Bounds

The �rst lo w er b ounds for 3-D orthogonal b o x-dra wings w ere due to Hagihara et al.

[113 ]. They sho w that the v olume of a degree-restricted 3-D orthogonal cub e-dra wing

of a simple graph is




�

max

n

�

2

n; (� n= log n )

3 = 2

o �

:

F or an arbitrary graph G , let v ol( G; r ; � ) denote the minim um b ounding b o x v olume

of the 3-D orthogonal dra wings of G whic h are strictly � -degree-restricted and ev ery
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X

Y

Z

Figure 3.7: A 4-b end 3-D orthogonal p oin t-dra wing of K

7

with 24 b ends.

v ertex has asp ect ratio at most r . Let v ol( n; m; r ; � ) b e the maxim um of v ol( G; r ; � )

where G is a graph with n v ertices and m edges. Th us, v ol( n; m; r ; � ) describ es a

v olume b ound within whic h all graphs with n v ertices and m edges can b e dra wn suc h

that eac h v ertex v has asp ect ratio at most r and surface at most � � deg ( v ). Biedl,

Thiele, and W o o d [34 ] establish the follo wing results.

Theorem 3.2.

� v ol ( n; m; 1 ; 1 ) = 
 ( m

p

n )

� v ol ( n; m; r ; 1 ) = 


�

m

3 = 2

=

p

r

�

� v ol ( n; m; 1 ; � ) = 


�

m

3 = 2

=�

�

Hence the v olume of arbitrary 3-D orthogonal b o x-dra wings is 
( m

p

n ), and for

degree-restricted dra wings or dra wings with eac h v ertex ha ving b ounded asp ect ratio,

the v olume is 
( m

3 = 2

). This result includes the lo w er b ound of 
( n

5 = 2

) for the v olume

of 3-D orthogonal dra wings of K

n

due to Biedl et al. [32 , 33 ]. In fact, the pro of is based
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on tec hniques dev elop ed in that pap er generalised for sparse graphs. Biedl et al. [32 , 33 ]

also establish the lo w er b ound of 
( n

2

) for the n um b er of b ends in a 3-D orthogonal

dra wings of K

n

. F or general p osition 3-D orthogonal dra wings, Biedl [27 ] establishes

a lo w er b ound of 


�

max

�

n

3

; m

2

	�

for the b ounding b o x v olume, and conjectures the

lo w er b ound of 
( n

2

m ).

Upp er Bounds

The algorithm presen ted in Section 9.1, whic h generalises the Lifting-Edges algo-

rithm of Biedl et al. [32 , 33] for simple graphs, establishes that ev ery m ultigraph

has a 1-b end 3-D orthogonal b o x-dra wing. As discussed in Section 3.4.1, there exist

graphs with no straigh t-line 3-D orthogonal b o x-dra wing, so these results are optimal

for the maxim um n um b er of b ends p er edge route. Since the dra wings pro duced are

orien tation-dep enden t and are not degree-restricted, the follo wing op en problem is of

in terest.

Op en Problem 3.6. Do es ev ery graph ha v e an orien tation-indep enden t or degree-

restricted 3-D orthogonal b o x-dra wing with at most one b end p er edge route?

The algorithm of [34 ] pro duces 3-D orthogonal b o x-dra wings with O ( m

p

n ) v olume

and at most four b ends p er edge route. By Theorem 3.2 this b ound is optimal. A

simpli�ed v ersion of this algorithm, presen ted in Section 9.2, pro duces dra wings with

O

�

� n

3 = 2

�

v olume, whic h for regular graphs is the same as O ( m

p

n ). Reducing the

n um b er of b ends in optimal v olume b o x-dra wings is an imp ortan t op en problem.

Op en Problem 3.7. Do es ev ery graph ha v e a 3-D orthogonal b o x-dra wing with

O ( m

p

n ) v olume and at most three b ends p er edge route? (Note that K

n

do es ha v e a

3-b end b o x-dra wing with O

�

n

5 = 2

�

= O ( m

p

n ) v olume [32 , 33 ].)

W e no w consider upp er b ounds for the v olume of degree-restricted 3-D orthogo-

nal b o x-dra wings. The Increment al algorithm of P apak ostas and T ollis [166 , 168 ]

�rst established that ev ery graph has a 2-b end degree-restricted 3-D orthogonal b o x-

dra wing. Their upp er b ound of O

�

m

3

�

for the b ounding b o x v olume has subsequen tly

b een impro v ed b y the Lifting Half-Edges algorithm of Biedl [27 ] to O

�

n

2

�

�

.
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The algorithm presen ted in Section 9.3 pro duces degree-restricted cub e-dra wings

with O

�

( m + n )

3 = 2

�

v olume. By Theorem 3.2 this upp er b ound is optimal for degree-

restricted dra wings or dra wings with eac h v ertex ha ving b ounded asp ect ratio (assuming

m = 
( n ), whic h is true for most graphs). This algorithm uses at most six b ends p er

edge route. The follo wing problem is therefore of in terest.

Op en Problem 3.8. Do es ev ery graph ha v e a 5-b end degree-restricted 3-D orthogo-

nal b o x-dra wing with O

�

( m + n )

3 = 2

�

b ounding b o x v olume and b ounded asp ect ratio

v ertices?

T able 3.3 summarises the kno wn b ounds for 3-D orthogonal b o x-dra wings (of n -

v ertex m -edge graphs with maxim um degree � and gen us g ( � m )). W e consider

four groupings of algorithms, dep ending on whic h aesthetic criteria (out of orien tation-

indep enden t, b ounded asp ect ratio and degree-restricted) are satis�ed b y the dra wings

pro duced. Within eac h grouping a tradeo� b et w een the b ounding b o x v olume and the

maxim um n um b er of b ends p er edge route is observ ed.



CHAPTER 3. APPR O A CHES TO OR THOGONAL GRAPH DRA WING 58

T able 3.3: Bounds for 3-D Orthogonal Bo x-Dra wings.

V olume

Bends Mo del Graphs Time Reference

orien tation-indep enden t / b ounded asp ect ratio / degree-restricted

O

�

( nm )

3 = 2

�

2 general p osition simple O ( m ) [27 ] (Thms. 7.5,7.6)

O

�

( n �)

3 = 2

�

6 non-collinear m ultigraphs O ( m ) Theorem 10.1

orien tation-dep enden t / b ounded asp ect ratio / degree-restricted

O

�

nm

p

�

�

2 lifting

1

2

-edges m ultigraphs O ( m ) [27 ]

O ( m ( m + n ))

5 coplanar m ultigraphs O ( m ) Theorem 9.5

O

�

( n �)

3 = 2

�

10 coplanar simple ? [113 ]

�(( m + n )

3 = 2

)

6 coplanar m ultigraphs O

�

m

p

m + n

�

Theorem 9.4

orien tation-dep enden t / no b ounds on asp ect ratio / degree-restricted

O

�

n

2

�

�

2 lifting

1

2

-edges simple O ( m ) [27 ]

�(( m + n )

3 = 2

)

6 coplanar m ultigraphs O

�

m

p

m + n

�

Theorem 9.4

orien tation-dep enden t / no b ounds on asp ect ratio / not degree-restricted

O

�

n

3

�

1 lifting edges simple O ( m ) [32 , 33 ]

O

�

nm

p

g

�

1 diagonal coplanar m ultigraphs - Theorem 9.1

O

�

n

5 = 2

�

3 lifting edges simple O ( m ) [32 , 33 ]

O ( nm )

3 coplanar m ultigraphs O ( m ) Theorem 9.3

�( m

p

n )

4 coplanar m ultigraphs O

�

m

2

=

p

n

�

[34 ] (see Thm. 9.2)
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T ables 3.4, 3.5 and 3.6 pro vide precise b ounds on the aesthetic criteria for eac h the

�rst three groups discussed ab o v e.

T able 3.4: Orien tation-indep enden t, Degree-restricted 3-D Orthogonal Dra wing with

Bounded Asp ect Ratio.

Bends V olume Degree-

Restriction

Asp ect

Ratio

Mo del Reference

2 O

�

( nm )

3 = 2

�

6 1 general p osition [27 ]

2 O

�

( nm )

3 = 2

�

5 = 3 2 general p osition Theorem 7.5

2 O

�

( nm )

3 = 2

�

4 1 general p osition diagonal Theorem 7.6

6 O

�

( n �)

3 = 2

�

8 1 non-collinear

9

Theorem 10.1

T able 3.5: Degree-restricted 3-D Orthogonal Cub e-Dra wing Algorithms.

Bends V olume Degree

Restriction

Asp ect

Ratio

Mo del Reference

2 O

�

n

2

m

�

6 1 lifting

1

2

-edges [27 ]

5 O ( m ( m + n )) 12 1 coplanar la y out Theorem 9.5

6 O

�

( m + n )

3 = 2

�

12 1 coplanar la y out Theorem 9.4

T able 3.6: Degree-restricted 3-D Orthogonal Dra wing with Un b ounded Asp ect Ratio.

Bends V olume Degree-

Restriction

Asp ect

Ratio

Mo del Reference

2 O

�

m

3

�

6 - incremen tal [166 , 168 ]

2 O

�

n

2

�

�

2 deg ( v ) = 2 lifting

1

2

-edges [27 ]

2 O

�

n

2

m

�

2 deg ( v ) = 2 general p osition [27 ]

2 O

�

n

2

m

�

2 deg ( v ) = 2 general p osition diagonal Theorem 7.7

2 O

�

� ( nm )

3 = 2

�

2 deg ( v ) = 4 general p osition Theorem 7.8

9

4-degree-restricted for simple graphs.
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Chapter 4

Balanced V ertex Ordering

In this chapter we describ e and analyse metho ds for determining `b alanc e d'

or derings of the vertic es of a gr aph. Her e b alanc e d me ans that the neigh-

b ours of e ach vertex v ar e evenly distribute d to the left and right of v in the

or dering. This pr oblem is of the or etic inter est in its own right, and forms

an imp ortant p art of the gr aph dr awing algorithms to b e pr esente d in Chap-

ters 5, 6 and 7. In p articular, we de�ne the c ost of a vertex or dering as

a me asur e of its imb alanc e, and pr esent a line ar time heuristic with tight

worst c ase b ounds for the c ost of the vertex or derings pr o duc e d. F urthermor e

we establish useful pr op erties of vertex or derings which lo c al ly minimise the

c ost.

4.1 In tro duction

A n um b er of the algorithms for pro ducing general p osition orthogonal graph dra wings

in v olv e the manipulation of an ordering of the v ertices of a graph. Giv en a (di)graph

G , a total ordering < on V ( G ) induces a n um b ering ( v

1

; v

2

; : : : ; v

n

) of V ( G ) and vice

v ersa. W e shall refer to b oth < and ( v

1

; v

2

; : : : ; v

n

) as a vertex or dering of G .

Consider a v ertex ordering < of a graph G . F or eac h edge v w 2 E ( G ) with v < w ,

w e sa y the arc

� !

v w 2 A ( G ) is a suc c essor ar c of v and w is a suc c essor of v ; similarly

the arc

� !

w v is a pr e de c essor ar c of w and v is a pr e de c essor of w . No w consider a v ertex

ordering < of a digraph G . F or eac h edge v w 2 E ( G ), if v < w w e sa y

� !

v w is a suc c essor

61
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ar c of v and w is a suc c essor of v , and if w < v w e sa y

� !

v w is a pr e de c essor ar c of v and

w is a pr e de c essor of v .

F or eac h v ertex v 2 V ( G ), the n um b er of successor and predecessor arcs of v are

denoted s

<

( v ) and p

<

( v ), resp ectiv ely . Where the v ertex ordering < is clear from the

con text w e use s ( v ) and p ( v ) instead of s

<

( v ) and p

<

( v ), resp ectiv ely . Note that, for

digraphs, w e only coun t the outgoing edges at a v ertex v in p ( v ) and s ( v ).

W e sa y a v ertex v in a giv en v ertex ordering is p ositive if s ( v ) > p ( v ), ne gative

if p ( v ) > s ( v ) and b alanc e d if s ( v ) = p ( v ). F or p ositiv e and balanced v ertices v and

for k > 0 (resp ectiv ely , k < 0), v

k

denotes the k

th

successor (predecessor) of v to the

righ t (left) of v in the ordering. F or negativ e v and for k > 0 (resp ectiv ely , k < 0), v

k

denotes the k

th

predecessor (successor) of v to the left (righ t) of v in the ordering. Tw o

adjacen t v ertices v ; w with v < w are opp osite if v is p ositiv e and w is negativ e.

As illustrated in Figure 4.1, w e shall sa y a v ertex v is eac h of the follo wing t yp es.

� p ( v )- s ( v ) v ertex

� ( min f p ( v ) ; s ( v ) g ; max f p ( v ) ; s ( v ) g )-v ertex

� max f p ( v ) ; s ( v ) g -v ertex.

v

v

� 1

v

� 2

v

1

v

2

v

3

v

4

Figure 4.1: In a v ertex ordering, v is a 4-2 v ertex, a (2 ; 4)-v ertex, and a 4-v ertex.

In a v ertex ordering of a (di)graph G , w e measure the im balance of a v ertex b y

de�ning the c ost of v to b e c ( v ) = j s ( v ) � p ( v ) j . Note that a v ertex has ev en cost if and

only if it has ev en (out)degree, and the cost of an o dd (out)degree v ertex is at least

one. W e �rstly note that,

2 � min f s ( v ) ; p ( v ) g + c ( v ) = (out)deg ( v ) = 2 � max f s ( v ) ; p ( v ) g � c ( v ) (4.1)

The total c ost of a v ertex ordering is the sum of the costs of the v ertices. In a v ertex

ordering of an undirected graph G , the total cost is equal to the total cost of the same
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v ertex ordering of the digraph

 !

G . Hence w e mo del a v ertex ordering of an undirected

graph G b y a v ertex ordering of the digraph

 !

G . W e are in terested in the follo wing

problem.

Problem 4.1. BALANCED VER TEX ORDERING

Instanc e : A (di)graph G , in teger K � 0.

Question : Do es G ha v e a v ertex ordering with total cost

X

v 2 V ( G )

c ( v ) � K ?

W e conjecture that the BALANCED VER TEX ORDERING problem is NP-

complete. T o establish b ounds for this problem w e emplo y a heuristic approac h in

Section 4.3, and a lo cal minim um approac h in Section 4.4. Ob viously an y v ertex order-

ing of the complete graph has the same total cost, th us pro viding an imp ortan t lo w er

b ound for the balanced ordering problem.

Lemma 4.1. In any vertex or dering of the c omplete gr aph K

n

, the total c ost

X

v

c ( v ) =

�

n

2

2

�

= m +

j

n

2

k

:

Pr o of. In a v ertex ordering ( v

1

; v

2

; : : : ; v

n

) the total cost is

X

1 � i � n

j s ( v

i

) � p ( v

i

) j = 2

X

1 � i �b n= 2 c

( n � 2 i + 1)

= 2

0

@

b n= 2 c ( n + 1) � 2

X

1 � i �b n= 2 c

i

1

A

= 2

�

b n= 2 c ( n + 1) � b n= 2 c ( b n= 2 c + 1)

�

=

�

n

2

= 2

�

= m + b n= 2 c :

4.2 st -Orderings

A v ertex ordering ( v

1

; v

2

; : : : ; v

n

) of a (di)graph G is an st -ordering if v

1

= s , v

n

= t ,

and for ev ery other v ertex v

i

, 1 < i < n , with (out)deg ( v

i

) � 2, w e ha v e p ( v

i

) � 1 and

s ( v

i

) � 1. Lemp el et al. [142 ] sho w that for an y biconnected undirected graph G and

for an y s; t 2 V ( G ), there exists an st -ordering of G . Recen tly Cheriy an and Reif [54 ]

extended this result to digraphs.
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Ev en and T arjan [93 ] dev elop a linear time algorithm to compute an st -ordering of an

undirected biconnected graph. It is an op en problem to dev elop a linear time algorithm

for �nding an st -ordering of a biconnected digraph. T o determine a v ertex ordering

of a connected graph based on st -orderings of its biconnected comp onen ts (blo c ks),

n um b er the blo c ks B

1

; B

2

; : : : ; B

k

according to a depth-�rst-searc h of the blo c k-tree,

and concatenate s

i

t

i

-orderings of eac h B

i

, where s

i

(resp ectiv ely , t

i

) is c hosen wherev er

p ossible to b e a cut-v ertex with some blo c k B

j

, j < i ( j > i ). W e obtain the follo wing

easy result.

Lemma 4.2. Every gr aph G has a vertex or dering, which c an b e c ompute d in O ( n + m )

time, with at most c + k vertic es v having p ( v ) = 0 or s ( v ) = 0 , wher e c is the numb er of

c onne cte d c omp onents of G , and k is the numb er of end-blo cks in the blo ck de c omp osition

of G . (A n end-blo ck c orr esp onds to a le af of the blo ck-for est. Note that an isolate d e dge

c ontributes one c onne cte d c omp onent and one end-blo ck.)

4.3 Median Placemen t Ordering

W e no w describ e a heuristic for the balanced v ertex ordering problem whic h pro vides

a tigh t upp er b ound for the total cost of the v ertex orderings pro duced, and forms

a critical part of man y of the graph dra wing algorithms presen ted in this thesis. The

algorithm inserts eac h v ertex, in turn, mid-w a y b et w een its already inserted neigh b ours.

A t an y stage of the algorithm w e refer to the ordering under construction as the curr ent

or dering . Similar metho ds w ere in tro duced b y Biedl and Kaufmann [30 ] and Biedl et al.

[31 ].

Algorithm 4.1. Median Pla cement Ordering

Input : � (di)graph G .

� v ertex ordering ( u

1

; u

2

; : : : ; u

n

) of G (called the insertion or dering ).

Output : v ertex ordering of G .

for i = 1 ; 2 ; : : : ; n do

Supp ose the predecessors of u

i

in the insertion ordering
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are ordered w

1

; w

2

; : : : ; w

k

in the curren t ordering.

if k = 0 then Insert u

i

arbitrarily in to the curren t ordering.

else if k is ev en then Insert u

i

arbitrarily b et w een w

k = 2

and w

k = 2+1

.

else ( k is o dd) Insert u

i

immediately b efore or after w

( k +1) = 2

.

end-for

Output the curren t ordering.

It is easily seen that for undirected graphs the Median Pla cement Ordering

algorithm, at eac h iteration, inserts the v ertex u

i

to minimise the total cost of the

curren t ordering. F or digraphs this is not the case, as the example in Figure 4.2

illustrates.

u v

1-1

w x

2-0

y

2-0

=

)

(a) median placemen t insertion

u w x

1-1

y

1-1

v

2-0

=

)

(b) minim um cost insertion

Figure 4.2: Inserting v ertex v in to a v ertex ordering of a digraph.

Lemma 4.3. The algorithm Median Pla cement Ordering determines a vertex

or dering of a (di)gr aph G , in O ( m + n ) time, with total c ost

X

v 2 V ( G )

c ( v ) � k +

X

1 � i � n

s ( u

i

) , and

X

v 2 V ( G )

max f s ( v ) ; p ( v ) g � m +

1

2

0

@

k +

X

1 � i � n

s ( u

i

)

1

A

:

wher e, in the insertion or dering, s ( u

i

) is the numb er of suc c essors of u

i

and k is the

numb er of vertic es u

i

2 V ( G ) with o dd p ( u

i

) .

Pr o of. When a v ertex u

i

is inserted in to the curren t ordering it has cost c ( u

i

) = 0 if

p ( u

i

) is ev en and c ( u

i

) = 1 if p ( u

i

) is o dd. So, ev en if all the successors of u

i

(in the

insertion ordering) are inserted on the one side of u

i

, in the �nal ordering, the cost
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c ( u

i

) � s ( u

i

) if p ( u

i

) is ev en, and c ( u

i

) � s ( u

i

) + 1 if p ( u

i

) is o dd. So the total cost is

at most k +

P

i

s ( u

i

). By (4.1) w e ha v e

X

v

max f s ( v ) ; p ( v ) g �

X

v

deg ( v ) + c ( v )

2

= m +

1

2

 

k +

X

i

s ( u

i

)

!

Using the median-�nding algorithm of Blum et al. [36 ], and the algorithm of Dietz

and Sleator [77 ] to main tain the v ertex ordering and orderings of the adjacency lists of

G , the algorithm can b e implemen ted in O ( m + n ) time.

F or an imp ortan t class of graphs, if the insertion ordering is c hosen carefully , the

Median Pla cement Ordering algorithm is optimal.

Theorem 4.1. A minimum-c ost vertex or dering of an acyclic (di)gr aph c an b e deter-

mine d in O ( m + n ) time.

Pr o of. Using a rev erse top ological ordering as the insertion ordering in the Median

Pla cement Ordering algorithm, eac h v ertex v has s ( v ) = 0 in the insertion ordering,

so no neigh b ours of v are inserted in to the curren t ordering after v . Hence c ( v ) = 1 if

p ( v ) is o dd, and c ( v ) = 0 if p ( v ) is ev en. Since p ( v ) = (out)deg ( v ) the ordering has

minim um cost. A top ological ordering can b e determined in O ( m + n ) time [64 ], as can

the algorithm Median Pla cement Ordering (see Lemma 4.3).

F or undirected graphs,

P

i

s ( u

i

) = m in an y ordering, and since k � n , w e obtain

the follo wing immediate corollary .

Corollary 4.1. The Median Pla cement Ordering algorithm, with any insertion

or dering, determines a vertex or dering of an undir e cte d gr aph G with total c ost

X

v 2 V ( G )

c ( v ) � m + n , and

X

v 2 V ( G )

max f s ( v ) ; p ( v ) g �

3 m + n

2

:

If w e c ho ose a particular insertion ordering w e can obtain impro v ed upp er b ounds on

the total cost of the v ertex orderings pro duced b y the Median Pla cement Ordering

algorithm. As indicated b y Lemma 4.3, there are t w o approac hes for determining a

`go o d' insertion ordering.

1. Determine an insertion ordering with a small n um b er of v ertices with an o dd

n um b er of predecessors. W e presen t an algorithm for doing so in Section 4.3.1.
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2. Determine an insertion ordering with small

P

i

s ( u

i

). F or undirected graphs,

P

i

s ( u

i

) = m in an y ordering, so this approac h is only applicable for digraphs.

W e describ e metho ds for determining an insertion ordering with small

P

i

s ( u

i

)

in Section 4.3.2.

4.3.1 V ertices with an Odd Num b er of Predecessors

W e no w describ e an algorithm for determining a v ertex ordering with few v ertices

ha ving an o dd n um b er of predecessors. The ordering is constructed from righ t to left;

i.e., from v

n

to v

1

.

Algorithm 4.2. Inser tion Ordering

Input : (di)graph G .

Output : v ertex ordering of G .

Set i  j V ( G ) j .

while E ( G ) 6= ; do

Cho ose an edge v w 2 E ( G ).

if (out)deg ( v ) is ev en then Set u

i

 v ; u

i � 1

 w ; else Set u

i

 w ; u

i � 1

 v .

Remo v e v and w (and their inciden t edges) from G .

Set i  i � 2.

end-while

while V ( G ) 6= ; do

Cho ose v 2 V ( G ).

Set u

i

 v .

Remo v e v from G .

Set i  i � 1.

end-while

Output ( u

1

; u

2

; : : : ; u

n

).

Lemma 4.4. The algorithm Inser tion Ordering determines a vertex or dering

( u

1

; u

2

; : : : ; u

n

) of G with at most b n= 2 c vertic es u

i

having o dd p ( u

i

) .
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Pr o of. Consider an iteration of the �rst while-lo op in the algorithm. If (out)deg ( v ) is

ev en then p ( v ) = (out)deg ( v ), otherwise if (out)deg ( v ) is o dd then p ( v ) = (out)deg ( v ) �

1. In either case, the v ertex v will ha v e an ev en n um b er of predecessors in ( u

1

; u

2

; : : : ; u

n

).

So at least half of the v ertices added to the ordering in the �rst stage of the algorithm

ha v e an ev en n um b er of predecessors. During the second while-lo op ev ery v ertex v has

p ( v ) = 0 and th us has an ev en n um b er of predecessors in ( u

1

; u

2

; : : : ; u

n

). The result

follo ws.

Com bining Lemma 4.3 and Lemma 4.4 w e obtain the follo wing result.

Theorem 4.2. Every undir e cte d gr aph G has a vertex or dering, which c an b e c ompute d

in O ( n + m ) time, with total c ost

X

v 2 V ( G )

c ( v ) � m +

j

n

2

k

, and

X

v 2 V ( G )

max f s ( v ) ; p ( v ) g �

3 m

2

+

n

4

:

By Lemma 4.1, the v ertex ordering of the undirected complete graph K

n

has total

cost m + b n= 2 c , so for K

n

w e ha v e a tigh t b ound on the total cost.

4.3.2 F eedbac k Arc Set Problem

W e no w describ e the second metho d for impro ving the b ound on the total cost of

v ertex orderings pro duced b y the Median Pla cement Ordering algorithm. This

metho d is only applicable for digraphs. W e wish to determine an insertion ordering

( u

1

; u

2

; : : : ; u

n

) with small

P

i

s ( u

i

).

A fe e db ack ar c set of a digraph G is a set of arcs of G whose remo v al mak es the

graph acyclic. A v ertex ordering < of a digraph determines a feedbac k arc set consisting

of the edges f v w 2 E ( G ) : v < w g . Con v ersely , giv en a feedbac k arc set F � E ( G ), a

top ological ordering < of G [ F ] has j f v w 2 E ( G ) : v < w g j = j F j . So determining an

insertion ordering with minim um

P

i

s ( u

i

) is equiv alen t to the problem of determining

a feedbac k arc set of minim um size. This problem, called the FEEDBA CK AR C SET

problem, is NP-hard [125 ]. F or an y v ertex ordering of a digraph,

min

(

X

v

s ( v ) ;

X

v

p ( v )

)

� m= 2 :
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So trivially ev ery digraph has a v ertex ordering with

P

i

s ( u

i

) � m= 2.

Berger and Shor [19 ] establish an asymptotically tigh t b ound for the FEEDBA CK

AR C SET problem

1

. They sho w that, for digraphs of maxim um degree � and without

2-cycles, the minim um of

P

i

s ( u

i

) (tak en o v er all v ertex orderings) is m= 2 � �( m=

p

� ),

and a v ertex ordering with

P

i

s ( u

i

) = m= 2 � �( m=

p

� ) can b e determined in O ( mn )

time. Using suc h an ordering as the insertion ordering in algorithm Median Pla ce-

ment Ordering , b y Lemma 4.3 with k � n , w e obtain the follo wing result.

Theorem 4.3. Every digr aph without 2-cycles has a vertex or dering, which c an b e

c ompute d in O ( mn ) time, with total c ost

X

v

c ( v ) � n +

m

2

� �

�

m

p

�

�

:

Only for small v alues of � is the constan t in the �( m=

p

�) term ev aluated. The

linear time greedy heuristic for the FEEDBA CK AR C SET problem due to Eades et al.

[84 ] pro vides an exact b ound on

P

i

s ( u

i

), whic h in a n um b er of instances, pro vides a

tigh ter upp er b ound than that in [19 ]. They sho w that ev ery digraph without 2-cycles

has a v ertex ordering ( u

1

; u

2

; : : : ; u

n

) with

P

i

s ( u

i

) � m= 2 � n= 6. Using this ordering

as the insertion ordering in algorithm Median Pla cement Ordering , b y Lemma 4.3

with k � n , w e obtain the follo wing result.

Theorem 4.4. Every digr aph without 2-cycles has a vertex or dering, which c an b e

c ompute d in O ( m + n ) time, with total c ost

X

v

c ( v ) �

m

2

+

5 n

6

:

In the case of cubic graphs, the (more) greedy heuristic of Eades and Lin [82 ] de-

termines, in O ( mn ) time, a v ertex ordering with

P

i

s ( u

i

) � m= 4. Using this ordering

as the insertion ordering in the Median Pla cement Ordering algorithm pro duces

a v ertex ordering with total cost at most n + m= 4.

1

Berger and Shor actually consider the corresp onding maximisation problem called the MAXIMUM

A CYCLIC SUBGRAPH problem.
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4.4 Lo cal Minim um Approac h

W e no w describ e a metho d for the balanced ordering problem whic h �nds a lo cal

minim um of the total cost. A v ertex ordering ( v

1

; v

2

: : : ; v

n

) of a graph G is k-b alanc e d

if mo ving an y k v ertices do es not reduce the total cost of the ordering.

4.4.1 Undirected Graphs

Consider the follo wing rule for mo ving a v ertex in a v ertex ordering.

M1 ( v , w ): If w = v

k

is opp osite to v for some k , 1 � k � d c ( v ) = 2 e (except if c ( v ) is

o dd, k = d c ( v ) = 2 e and c ( w ) = 1), then mo v e v to immediately past w , as in Figure 4.3.

: : : : : : : : :

u

v

u

w = v

i

= )

: : : : : : : : :

u

w

u

v

Figure 4.3: The mo v e M1 for a 1-5 v ertex v and a 4-2 v ertex w = v

2

.

Lemma 4.5. A vertex or dering is 1-b alanc e d if and only if M1 c annot b e applie d.

Pr o of. Supp ose a v ertex v in a giv en v ertex ordering, with  ( v ) = s ( v ) � p ( v ), gains �

successors and loses � predecessors in the ordering. Then c ( v ) b ecomes j ( s ( v ) + � ) �

( p ( v ) � � ) j = j  ( v ) + 2 � ) j , so the c hange in c ( v ), denoted c

�

( v ), is j  ( v ) + 2 � j � j  ( v ) j .

The follo wing cases summarise the p ossible v alues of c

�

( v ).

1.  ( v ) + 2 � � 0

(a)  ( v ) � 0: c

�

( v ) =  ( v ) + 2 � +  ( v ) = 2(  ( v ) + � )

(b)  ( v ) < 0: c

�

( v ) =  ( v ) + 2 � �  ( v ) = 2 �

2.  ( v ) + 2 a < 0

(a)  ( v ) � 0: c

�

( v ) = �  ( v ) � 2 � +  ( v ) = � 2 �
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(b)  ( v ) < 0: c

�

( v ) = �  ( v ) � 2 � �  ( v ) = � 2(  ( v ) + � )

Applying M1 reduces c ( v ) b y at least 2 k and for eac h i , 1 � i � k � 1, c ( v

i

) is

increased b y at most t w o. The cost of all other v ertices remains unc hanged. Th us the

total cost decreases b y at least t w o. So if M1 is applicable then the v ertex ordering is

not 1-balanced.

No w, supp ose a giv en v ertex ordering is not 1-balanced. Then there exists a v ertex

v and a neigh b our w = v

k

of v suc h that mo ving v past w reduces the total cost. Eac h

neigh b ouring v ertex v

i

, 1 � j i j � j k j ( i the same sign as k ), that v mo v es past will gain

one successor and lose one predecessor if v mo v es to the righ t, or lose one successor and

gain one predecessor if v mo v es to the left. In these resp ectiv e cases the cost c hange at

eac h v

i

is

c

1

( v

i

) =

8

>

>

>

>

>

<

>

>

>

>

>

:

� 2 ; if  ( v

i

) � � 2;

0 ; if  ( v

i

) = � 1;

2 ; if  ( v

i

) � 0.

c

� 1

( v

i

) =

8

>

>

>

>

>

<

>

>

>

>

>

:

2 ; if  ( v

i

) � � 2;

0 ; if  ( v

i

) = 1;

� 2 ; if  ( v

i

) � 0.

Supp ose that v is balanced. Then the new cost of v will b e 2 j k j . The cost of eac h

v ertex v

i

will decrease b y at most 2, so the total cost cannot decrease. Hence v cannot

b e balanced.

Supp ose k < 0. Mo ving v past w will increase the cost of v b y 2 j k j , while the

decrease in cost for eac h v ertex v

i

, k � i < 0, is at most 2. Th us the increase in cost of

v cannot b e o�set b y the decrease in the cost of the neigh b ours of v . Hence k > 0.

W e select the minim um k � 1 suc h that mo ving v past w = v

k

reduces the total

cost; i.e., mo ving v past an y u = v

i

, 1 � i < k , do es not reduce the total cost. Since

M1 do es reduce the total cost, eac h of the neigh b ours v

i

, 1 � i � d c ( v ) = 2 e , m ust b e

not opp osite to v (unless c ( v

i

) = 1 and i = d c ( v ) = 2 e ).

Supp ose k > d c ( v ) = 2 e . Then mo ving v past w increases the cost of eac h v ertex v

i

,

1 � i � d c ( v ) = 2 e , b y 2. The new cost c ( v ) b ecomes 2 k � c ( v ), so the c hange in c ( v ) is

2( k � c ( v )). The cost of v

i

, d c ( v ) = 2 e � i � k , can decrease b y at most 2. Adding up

the cost c hanges, it follo ws that the total cost cannot decrease. So k � d c ( v ) = 2 e .

Supp ose w is not opp osite to v . Then the cost increase at w is 2 (unless c ( w ) = 1),

so while c ( v ) decreases b y 2 k , the cost increase at v

i

, 1 � i � k , is 2. Hence the total
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cost c hange is 0. So w is opp osite to v and 1 � k � d c ( v ) = 2 e (except if c ( v ) is o dd,

k = d c ( v ) = 2 e and c ( w ) = 1), and the result follo ws.

W e ha v e the follo wing immediate corollary .

Corollary 4.2. F or every vertex v in a 1-b alanc e d vertex or dering, e ach of the vertic es

v

1

; v

2

; : : : ; v

b c ( v ) = 2 c

is not opp osite to v .

W e no w presen t an algorithm for determining a 1-balanced v ertex ordering. Let

M1 (

� !

v w ) b e a function whic h, for a giv en arc

� !

v w 2 A ( G ), returns true if and only if v

is mo v ed past w b y rule M1 .

Algorithm 4.3. 1-Balanced Ver tex Ordering

Input : undirected graph G .

Output : v ertex ordering of G .

Determine an arbitrary v ertex ordering of G .

Set A  A ( G ).

while A 6= ; do

Cho ose an arc

� !

v w 2 A .

if M1 (

� !

v w ) then

for x 2 V

G

( v ) do Set A  A [ A

+

G

( x ) [ A

�

G

( x ).

else

Set A  A n f

� !

v w g .

end-if

end-while

Output the curren t ordering.

Lemma 4.6. The algorithm 1-Balanced Ver tex Ordering determines a 1-b alanc e d

vertex or dering of G in O

�

�

2

m

�

time.

Pr o of. W e shall pro v e that at all times the set A con tains all arcs in A ( G ) for whic h

M1 is p ossibly applicable. A t the start of the algorithm this is true, since A = A ( G ).
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Consider an adjacency list represen tation of G where eac h adjacency list is ordered

according to the curren t v ertex ordering.

Supp ose the arc

� !

v w is c hosen from A . If M1 (

� !

v w ) is not applied then, of course,

E n f

� !

v w g con tains all arcs in A ( G ) for whic h M1 is p ossibly applicable.

Supp ose M1 (

� !

v w ) is applied, and v mo v es past w in the curren t v ertex ordering. The

only v ertices whose cost ma y c hange are v and its neigh b ours, and only the adjacency

lists of v and its neigh b ours are c hanged. F or an arc

� !

pq 2 A ( G ) where p and q are

b oth not adjacen t to v or one of the neigh b ours of v , the adjacency lists of p and q do

not c hange, and the cost of ev ery v ertex adjacen t to p or q do es not c hange. Hence if

M1 (

� !

pq ) is not applicable b efore mo ving v past w then M1 (

� !

pq ) will not b e applicable

after mo ving v past w .

Therefore, b y adding to A the sets of arcs A

+

G

( x ) and A

�

G

( x ) for eac h neigh b our x of

v , w e main tain the condition that A con tains all arcs in A ( G ) for whic h M1 is p ossibly

applicable. The algorithm con tin ues un til A = ; , at whic h p oin t there are no arcs for

whic h M1 is applicable. By Lemma 4.5, the �nal v ertex ordering is 1-balanced.

The total cost of a v ertex ordering is at most 2 m . M1 reduces the total cost b y at

least t w o, so M1 is applied at most m times. Whenev er M1 is applied, O

�

�

2

�

arcs

are added to A . Hence the algorithm inserts O

�

�

2

m

�

arcs in to A , so M1 is c hec k ed

O

�

�

2

m

�

times.

Using the order main tenance algorithm of Dietz and Sleator [77 ], the v ertex order-

ing and adjacency lists of eac h v ertex can b e main tained in constan t time under the

mo v e op eration. Hence M1 can b e c hec k ed in constan t time, so the algorithm runs in

O

�

�

2

m

�

time.

W e no w presen t rules for mo ving t w o v ertices in a v ertex ordering.

M2 : If v is opp osite to w and v < w

j

< v

i

< w for some i; j (1 � i � d c ( v ) = 2 e ,

1 � j � d c ( w ) = 2 e , 2 i + 2 j < c ( v ) + c ( w ) + 2), then mo v e v up to v

i

and mo v e w up to

w

j

, as in Figure 4.4.
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: : : : : : : : : : : : : : :

t

v

t

w

1

t

v

2

t

w

= )

: : : : : : : : : : : : : : :

t

w

1

t

w

t

v

t

v

2

Figure 4.4: The mo v e M2 for a 1-5 v ertex v and a 4-2 v ertex w .

M3 : If v is opp osite to w and v < v

i

= w

j

< w for some i; j (1 � i � b c ( v ) = 2 c ,

1 � j � b c ( w ) = 2 c , 2 i + 2 j < c ( v ) + c ( w )) then mo v e v to immediately past v

i

and mo v e

w to immediately past w

j

, as in Figure 4.5.

: : :: : :: : :: : :

t

v

t

v

2

= w

1

t

w

= )

: : : : : : : : : : : :

t

w

t

v

t

v

2

= w

1

Figure 4.5: The mo v e M3 for a 0-5 v ertex v and a 5-1 v ertex w .

Applying M2 or M3 reduces c ( v ) b y at least 2 i and for eac h k , 1 � k � i � 1, c ( v

k

)

is increased b y at most t w o, c ( w ) is reduced b y at least 2 j and for eac h k , 1 � k � j � 1,

c ( w

k

) is increased b y at most t w o. The cost of all other v ertices remains unc hanged.

Th us the total cost decreases b y at least four.

Note that there are other rules for mo ving t w o v ertices in a v ertex ordering to

reduce the total cost, th us M1 , M2 and M3 alone cannot guaran tee a 2-balanced

v ertex ordering. F or our purp oses, ho w ev er, these rules su�ce (see Algorithm 5.8

Dia gonal La yout and Mo vement ). Let M2 ( v w ) and M3 ( v w ) b e functions that,

giv en an edge v w 2 E ( G ), return true if and only if v and w mo v e under rule M2 and

M3 , resp ectiv ely . The follo wing algorithm determines a v ertex ordering in whic h M1 ,

M2 and M3 are not applicable.
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Algorithm 4.4. Almost 2-Balanced Ver tex Ordering

Input : undirected graph G .

Output : v ertex ordering of G .

Determine an arbitrary v ertex ordering of G .

Set E  E ( G ).

while E 6= ; do

Cho ose an edge v w 2 E .

if M1 (

� !

v w ) or M1 (

� !

w v ) or M2 ( v w ) or M3 ( v w ) then

for x 2 V

G

( v ) [ V

G

( w ) do Set E  E [ E

G

( x ).

else Set E  E n f v w g .

end-while

Output the curren t ordering.

Lemma 4.7. The algorithm Almost 2-Balanced Ver tex Ordering determines

a vertex or dering of G in O

�

�

3

m

�

time in which M1 , M2 and M3 ar e not applic able.

Pr o of. The pro of is essen tially the same as that for Lemma 4.6 except that M2 and

M3 tak e O (�) time.

4.4.2 Directed Graphs

F or a digraph without 2-cycles and of maxim um outdegree t w o, a lo cal minim um ap-

proac h establishes the follo wing b ound for the total cost. W e shall apply this result in

Section 5.3.

Theorem 4.5. A 2-b alanc e d vertex or dering of a maximum outde gr e e two digr aph G

has total c ost

X

v 2 V ( G )

c ( v ) � n :
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Pr o of. In a v ertex ordering of a maxim um outdegree t w o digraph, eac h v ertex is either

a (0,2)-v ertex, a (1,1)-v ertex or a (0,1)-v ertex. Consider a (0,2)-v ertex v in a 1-balanced

v ertex ordering. If there is no arc

� !

xv with x b et w een v and v

1

, or there is suc h an x

but x is opp osite to v , then, as in Figure 4.6, w e can mo v e v past v

1

to reduce the total

cost. ( c ( v ) b ecomes 0 and the cost of all other v ertices do es not increase.) Hence, in

a 1-balanced v ertex ordering, for ev ery (0,2)-v ertex v , there m ust b e an arc

� !

xv from a

(1,1)-v ertex x b et w een v and v

1

. W e sa y x blo cks v .

v

0-2

x

v

1

v

2

)

x

v

1

v

1-1

v

2

Figure 4.6: Mo v e v past v

1

.

Supp ose a (1,1)-v ertex x blo c ks distinct v ertices v and w . x m ust b e b et w een v and

w , as otherwise x w ould b e a (0,2)-v ertex. Supp ose v < x < w . As in Figure 4.7, if

w e mo v e v past v

1

and mo v e w past w

1

then b oth v and w b ecome balanced and c ( x )

remains zero. The cost of all other v ertices do es not c hange. In particular, c ( v

1

) and

c ( w

1

) do not c hange since the graph con tains no 2-cycles.

v

0-2

w

1

x

1-1

v

1

w

2-0

= )

w

1-1

w

1

x

1-1

v

1

v

1-1

Figure 4.7: Mo v e v past v

1

and mo v e w past w

1

.

Hence in a 2-balanced v ertex ordering a (1,1)-v ertex can blo c k at most one (0,2)-

v ertex. The total cost of the ordering is t wice the n um b er of (0,2)-v ertices plus the

n um b er of (0,1)-v ertices. Since ev ery (0,2)-v ertex has a blo c k er whic h is a (1,1)-v ertex,

and a (1,1)-v ertex blo c ks at most one (0,2)-v ertex, the n um b er of (0,2)-v ertices is at

most the n um b er of (1,1)-v ertices. So the total cost is at most the n um b er of (0,2)-

v ertices plus the n um b er of (0,1)-v ertices plus the n um b er of (1,1)-v ertices, whic h is at
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most n .

Using a similar analysis to that in Lemma 4.6, it is easily seen that the algorithm

describ ed in the previous pro of runs in O ( n ) time. W e therefore ha v e the follo wing

result.

Corollary 4.3. A vertex or dering of a maximum outde gr e e two digr aph with total c ost

at most n c an b e determine d in O ( n ) time.



Chapter 5

The General P osition Mo del for

Three-Dimensional Orthogonal

P oin t-Dra wing

In this chapter we describ e the gener al p osition mo del for pr o ducing 3-D or-

tho gonal p oint-dr awings. We pr esent a numb er of algorithms for pr o ducing

ortho gonal p oint-dr awings in this mo del. A mong other r esults we establish

the b est known upp er b ound for the total numb er of b ends in 3-D ortho gonal

p oint dr awings, and the b est known upp er b ound for the volume of 3-b end

ortho gonal p oint-dr awings.

A 3-D orthogonal p oin t-dra wing is said to b e a gener al p osition 3-D orthogonal

p oin t-dra wing if no t w o v ertices lie in a common grid plane. W e are in terested in the

follo wing problem.

Problem 5.1. BEND-MINIMUM GENERAL POSITION 3-D

POINT-DRA WING

Instanc e : A graph G with �( G ) � 6.

Output : A general p osition 3-D orthogonal p oin t-dra wing of G with the minim um

n um b er of b ends.

78
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This c hapter is organised as follo ws. Section 5.1 describ es a represen tation for gen-

eral p osition 3-D orthogonal p oin t-dra wings, th us forming a foundation for the main

algorithms to follo w. W e initially concen trate on the problem of minimising the total

n um b er of b ends p er edge in general p osition 3-D orthogonal p oin t-dra wings. As dis-

cussed in Section 3.4.4, algorithms for pro ducing general p osition orthogonal dra wings

can b e classi�ed as la y out-based or routing-based.

In Section 5.2 w e presen t our la y out-based approac h for 3-D orthogonal p oin t-

dra wing. Firstly , w e describ e an algorithm whic h minimises the total n um b er of b ends

for a �xed diagonal v ertex la y out. W e also describ e a metho d, based on a maxim um-

clique form ulation, for searc hing for b end-minim um dra wings giv en a �xed general

p osition v ertex la y out.

Our routing-based approac h for pro ducing 3-D orthogonal p oin t-dra wings is de-

scrib ed in Section 5.3. The Dia gonal La yout and Mo vement algorithm describ ed

in Section 5.4 com bines the la y out- and routing-based approac hes. It establishes the

b est kno wn upp er b ound for the total n um b er of b ends in 3-D orthogonal p oin t-

dra wings of simple graphs, and is a 7 = 6-appro ximation algorithm for the problem

BEND-MINIMUM GENERAL POSITION 3-D POINT-DRA WING. F urthermore, the

same algorithm pro duces 2-b end p oin t-dra wings for maxim um degree �v e graphs.

In Section 5.5 w e consider the problem of minimising the maxim um n um b er of

b ends p er edge route in a orthogonal p oin t-dra wing. W e presen t t w o algorithms, b oth

of whic h follo w the la y out-based approac h. The �rst algorithm, giv en a �xed general

p osition v ertex la y out, determines an orthogonal p oin t-dra wing with three b ends p er

edge. W e then describ e a mo di�cation of the 3-Bends algorithm of Eades et al. [86 , 87 ]

whic h pro duces 3-D orthogonal p oin t-dra wings using a diagonal v ertex la y out with

n

3

+ O

�

n

5 = 2

�

v olume. This is the b est kno wn upp er b ound for the v olume of 3-b end

3-D orthogonal p oin t-dra wings.

Finally , in Section 5.6 w e presen t lo w er b ounds for the n um b er of b ends in general

p osition orthogonal p oin t-dra wings. These results ha v e imp ortan t implications for the

nature of an y solution to the 2-b ends problem (see Section 3.5.1). Figure 5.1 pro vides

an o v erview of the algorithms presen ted in this c hapter.
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Graph G

La y out-Based Approac h

Algorithm 5.11

Bo ok Em b edding

+

Diagonal V ertex

La y out

+

P oin t-Routing

� Cycle Co v er

Decomp osition

� 2- and 3-b end

Outer Edge Routes

Algorithm 5.10

Arbitrary V ertex

La y out

+

P oin t-Routing

� Cycle Co v er

Decomp osition

� 3-b end Outer Edge

Routes

Median

Placemen t

Ordering

+

st -

Ordering

+

Diagonal La y out

+ +

Algorithm 5.5

Bend-Min. Routing

� construct H

� 3-colour H

Routing-Based

Algorithm 5.7

P oin t-Routing

� Cycle Co v er

Decomp osition, or

� Systems of

T ransitions

+

V ertex La y out

� Median Placemen t

Heuristic for eac h i -

ordering

Com bined Approac h

Algorithm 5.8

2-Balanced V ertex

Ordering

+

Diagonal La y out

+

Determine Routing

� construct graph H

� 3-colour V ( H )

+

Routing determines

mo v emen t of v ertices

Algorithm 5.1 General Position 3-D Point-Dra wing

� P ort Assignmen t � Construct Edge Routes � Remo v e Crossings � Remo v e Empt y Planes

Max. Bends 3 3 4 4 4 4

Avg. Bends 3 3 2

7

12

2

2
3

2

1
2

2

1
3

V olume n

3

+ O

�

n

5 = 2

�

8 n

3

�

19
12

n

�

3

�

5
3

n

�
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Figure 5.1: Algorithms for general p osition 3-D orthogonal p oin t-dra wing. The b ounds are for 6-regular graphs.
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5.1 Represen tation

Consider a general p osition 3-D orthogonal p oin t-dra wing of a graph G with maxim um

degree �( G ) � 6. Since no t w o v ertices share a common co ordinate, this dra wing

de�nes X -, Y -, and Z -v ertex orderings of G , represen ting the relativ e co ordinates of

the v ertices. The assignmen t of p orts to edge routes de�nes a (non-prop er) 3-colouring

of A ( G ), where an arc

� !

v w 2 A ( G ) is coloured i 2 f X ; Y ; Z g if the edge route v w uses an

i -p ort at v . Clearly , for eac h v ertex v 2 V ( G ), there are at most t w o arcs

� !

v w 2 A ( G )

receiving the same colour. W e therefore represen t a general p osition 3-D orthogonal

p oin t-dra wing of G b y:

� A (3-D gener al p osition) vertex layout , consisting of X -, Y -, and Z -v ertex order-

ings ( x

1

; x

2

; : : : ; x

n

), ( y

1

; y

2

; : : : ; y

n

) and ( z

1

; z

2

; : : : ; z

n

) of G .

� A (3-D) p oint-r outing , consisting of a 3-colouring of A ( G ) suc h that for eac h

v ertex v 2 V ( G ), there are at most t w o arcs

� !

v w 2 A ( G ) receiving the same

colour; i.e., �

�

 !

G [ i ]

�

� 2, for eac h colour i 2 f X ; Y ; Z g .

In a general p osition v ertex la y out, for an edge v w to ha v e a 2-b end edge route, it

is necessary for the rev ersal arcs

� !

v w ;

� !

w v 2 A ( G ) to b e coloured di�eren tly . If for ev ery

edge v w 2 E ( G ), the rev ersal arcs

� !

v w ;

� !

w v 2 A ( G ) are coloured di�eren tly , then w e call

the p oin t-routing a 2-b end p oin t-routing.

As discussed in Section 3.4.4, algorithms for pro ducing general p osition 3-D or-

thogonal dra wings can b e classi�ed as la y out-based or routing-based. Our la y out-based

algorithms determine a v ertex la y out initially , follo w ed b y the computation of a p oin t-

routing. Our routing-based algorithm determines the v ertex la y out with resp ect to a

pre-determined p oin t-routing.

The follo wing algorithm forms the �nal step of all our algorithms. Giv en a v er-

tex la y out and a p oin t-routing, it constructs a la y out- and routing-preserving general

p osition 3-D orthogonal p oin t-dra wing (p ossibly with crossings) in linear time. By a

sequence of p ort assignmen t sw aps, the algorithm then remo v es all edge route crossings

from the dra wing in quadratic time in the w orst case.

Algorithm 5.1. General Position 3-D Point-Dra wing
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Input : � graph G with �( G ) � 6.

� general p osition 3-D v ertex la y out of V ( G ).

� p oin t-routing of G (with 3 colours).

Output : general p osition 3-D orthogonal p oin t-dra wing of G

1. F or eac h v ertex v 2 V ( G ),

if v = x

i

= y

j

= z

k

then initially p osition v at (3 i; 3 j; 3 k ).

2. Apply Algorithm 5.2 Determine Por t Assignment .

3. Apply Algorithm 5.3 Constr uct Edge R outes .

4. Apply Algorithm 5.4 Point-Dra wing Remo ve Edge Cr ossings .

5. Delete eac h grid-plane not con taining a v ertex or a b end.

In what follo ws w e describ e the details of the comp onen ts of Algorithm General

Position 3-D Point-Dra wing .

5.1.1 Edge Routes

As a �rst step in constructing edge routes for a giv en v ertex la y out and p oin t-routing of

a graph, w e determine the assignmen t of p orts to arcs. The follo wing algorithm assigns

p orts to arcs so that, whenev er p ossible, the p ort at a v ertex v assigned to an arc

� !

v w

p oin ts to w ard w . Recall that A

G

( v ) [ i ] is the set of outgoing arcs at a v ertex v 2 V ( G )

whic h are coloured i 2 f X ; Y ; Z g .

Algorithm 5.2. Determine Por t Assignment

Input : � graph G with �( G ) � 6

� general p osition 3-D v ertex la y out of G

� p oin t-routing of G (with 3 colours)

Output : routing-preserving assignmen t of p orts to A ( G )
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for eac h v ertex v 2 V ( G ), for eac h colour i 2 f X ; Y ; Z g do

if A

G

( v )[ i ] = f

� !

v w g then

Assign to

� !

v w the i -p ort at v p oin ting to w ards w .

else if A

G

( v )[ i ] = f

� !

v u ;

� !

v w g ( u 6= w ) then

if v is b et w een u and w in the i -ordering then

Assign to

� !

v u and

� !

v w the i -p orts at v p oin ting to w ards u and w .

else if

� !

uv 2 A

G

( u )[ i ] then

Assign to

� !

v u the i -p ort at v p oin ting a w a y from u .

Assign to

� !

v w the i -p ort at v p oin ting to w ards w .

else if

� !

w v 2 A

G

( w ) [ i ] then

Assign to

� !

v w the i -p ort at v p oin ting a w a y from w .

Assign to

� !

v u the i -p ort at v p oin ting to w ards u .

else

Arbitrarily assign the i -p orts at v to

� !

v u and

� !

v w .

end-if

end-if

end-for

The follo wing algorithm, for a giv en p ort assignmen t, determines eac h edge route

with the minim um n um b er of b ends.

Algorithm 5.3. Constr uct Edge R outes

Input : � graph G with �( G ) � 6

� general p osition 3-D v ertex la y out of G

� p ort assignmen t for G

Output : general p osition 3-D p oin t-dra wing of G (p ossibly with crossings)

F or eac h edge v w 2 E ( G ),

1. If p ort(

� !

v w ) is p erp endicular to p ort(

� !

w v ), p ort (

� !

v w ) p oin ts to w ard w , and p ort(

� !

w v )

p oin ts to w ard v then route v w with the 2-b end edge route sho wn in Figure 5.2.
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v

w

1

v

w

(a) p erp endicular p orts

1

(b) parallel p orts

v

w

1

(a) anc hored at v

v

w

1

(b) anc hored at w

v

w

1

1

(a) p erp endicular p orts

v

w

1

1

(b) parallel p orts

v

w

Figure 5.2: 2-b end edge route v w .

2. If exactly one of p ort (

� !

v w ) or p ort(

� !

w v ) p oin ts a w a y from w or v resp ectiv ely then,

supp osing

� !

v w do es, use a 3-b end edge route for v w , said to b e anchor e d at v , as

illustrated in Figure 5.3.

v

w

1

v

w

(a) p erp endicular p orts

1

(b) parallel p orts

v

w

1

(a) anc hored at v

v

w

1

(b) anc hored at w

v

w

1

1

(a) p erp endicular p orts

v

w

1

1

(b) parallel p orts

v

w

Figure 5.3: 3-b end edge routes v w anc hored at v .

3. If p ort (

� !

v w ) p oin ts to w ard w , p ort(

� !

w v ) p oin ts to w ard v , and p ort(

� !

v w ) is parallel

to p ort(

� !

w v ), then c ho ose v or w arbitrarily and, as in Figure 5.4, route v w with

the 3-b end edge route said to b e anchor e d at the c hosen v ertex.

v
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1

v

w

(a) p erp endicular p orts

1

(b) parallel p orts

v

w

1

(a) anc hored at v

v

w

1

(b) anc hored at w

v

w

1

1

(a) p erp endicular p orts

v

w

1

1

(b) parallel p orts

v

w

Figure 5.4: 3-b end edge routes.
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4. If p ort(

� !

v w ) p oin ts a w a y from w and p ort(

� !

w v ) p oin ts a w a y from v then use a

4-b end edge route for v w as in Figure 5.5. W e sa y the edge route v w is anchor e d

at v and at w .

v

w

1

v

w

(a) p erp endicular p orts

1

(b) parallel p orts

v

w

1

(a) anc hored at v

v

w

1

(b) anc hored at w

v

w

1

1

(a) p erp endicular p orts

v

w

1

1

(b) parallel p orts

v

w

Figure 5.5: 4-b end edge routes v w anc hored at v and at w .

F or a giv en assignmen t of p orts, eac h edge route uses the minim um n um b er of b ends,

so in a general p osition 3-D orthogonal p oin t-dra wing the only edge routes needed are

those describ ed ab o v e (assuming that edge crossings are allo w ed). If the edge route v w

is anc hored at v then w e sa y the arc

� !

v w has b een anchor e d . Note that if for some edge

v w , the arcs

� !

v w and

� !

w v are coloured the same, then the edge route v w needs at least

three b ends; i.e., at least one of

� !

v w and

� !

w v is anc hored. The dra wings pro duced ha v e

precisely 2 m + k b ends where k is the n um b er of anc hored arcs.

Lemma 5.1. The algorithms Determine Por t Assignment and Constr uct Edge

R outes c onstruct a gener al p osition 3-D ortho gonal p oint-dr awing (p ossibly with e dge

cr ossings) with pr e cisely one anchor e d ar c for e ach instanc e of the fol lowing c onditions

(se e Figur e 5.6).

� F or some v ertex v and colour i 2 f X ; Y ; Z g ,

(a)

� !

v u ;

� !

v w 2 A

G

( v )[ i ] ( u 6= w ), and

(b) v is not b et w een u and w in the i -ordering.

(5.1)
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� F or some edge v w 2 E ( G ) and colour i 2 f X ; Y ; Z g ,

(a)

� !

v w ;

� !

v u 2 A

G

( v )[ i ] ( w 6= u ),

(b)

� !

w v ;

� !

w x 2 A

G

( w ) [ i ] ( v 6= x ),

(c) v is b et w een u and w in the i -ordering, and

(d) w is b et w een v and x in the i -ordering.

(5.2)

Pr o of. In Algorithm Constr uct Edge R outes , there is one anc hored arc in Cases

2 and 3, and t w o anc hored arcs in Case 4. Case 3 o ccurs precisely when (5.2) o ccurs.

If Case 2 o ccurs there is one instance of (5.1) , and if Case 4 o ccurs then there are

t w o instances of (5.1) . Hence there is one anc hored arc for eac h instance of (5.1) and

(5.2) .

(a) Case (5.1)

v u w

(b) Case (5.2)

u v w x

Figure 5.6: Cases with anc hored arcs (with v ertices in the i -ordering and arcs coloured

i ).

5.1.2 Remo ving Edge Crossings

W e no w c haracterise all p ossible in tersections b et w een edge routes constructed b y the

previous algorithm. As illustrated in Figure 5.7, eac h edge route can b e considered to

consist of a 2-b end edge route p ossibly with unit length segmen ts attac hed at either

end. The segmen ts of the 2-b end comp onen t of an edge route v w in order from v to w

are called the v -se gment , the midd le se gment , and the w -se gment of v w .

F or a v ertex v = x

i

= y

j

= z

k

, w e sa y that the ( X = 3 i � 1)-plane, the ( X = 3 i )-

plane and the ( X = 3 i + 1)-plane b elong to v , and similarly for Y - and Z -co ordinates.

Note that the middle segmen t of an edge route v w con tains grid-p oin ts b elonging to

v and w and no other v ertices. Grid-p oin ts con tained in the v -segmen t of v w , except

for the grid-p oin t at the in tersection of the v -segmen t of v w and the middle segmen t

of v w , only b elong to v .
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v

w

v -segmen t

w -segmen t

middle segmen t

8 > > < > > :

9

>

>

=

>

>

;

8

<

:

Figure 5.7: Segmen ts of the 2-b end comp onen t of an edge route.

Supp ose in a dra wing pro duced b y the algorithm Constr uct Edge R outes the

edge routes v w and xy in tersect. If v w and xy are non-adjacen t then the grid-p oin t

of in tersection m ust b elong to eac h of v , w , x and y , whic h implies that t w o of these

v ertices are coplanar. Since the v ertices are in general p osition, t w o of f v ; w ; x; y g are

equal. Hence in tersecting edge routes m ust b e inciden t to a common v ertex. Supp ose

the edge routes v u and v w in tersect.

In all edge routes, there are no consecutiv e unit length segmen ts, and an edge

crossing in v olving a unit-length segmen t m ust also in v olv e the adjacen t non-unit-length

segmen t, so w e need only consider in tersections b et w een non-unit-length segmen ts.

Case 1 | The v -segmen ts of v u and v w in tersect: Clearly b oth of v u and

v w m ust b e anc hored at v , and they m ust in tersect as in Figure 5.8. Sw apping the

p orts assigned to

� !

v u and

� !

v w , and remo ving b oth anc hors eliminates the edge crossing.

Doing so in tro duces no new edge crossings.
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�
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-
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-
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�

�

v

u

w

6

-

6

-

�

�

v

u

w

= )

Figure 5.8: Case 1 | Rerouting in tersecting v -segmen ts (whic h m ust b e anc hored).

Case 2 | The v -segmen t of v w in tersects the middle segmen t of v u :

Case 2(a) | v w is not anc hored: Clearly v u m ust b e anc hored. Since the

middle segmen t of v u is parallel with the p ort assigned to

� !

v u , the p orts assigned to

� !

v u

and

� !

uv m ust b e p erp endicular. As sho wn in Figure 5.9, b y sw apping the p orts assigned
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to

� !

v u and

� !

v w , anc horing

� !

v w , and unanc horing

� !

v u , the edge crossing is remo v ed. Note

that the new edge routes con tain no new grid p oin ts b elonging to u or w , so there are

no new edge crossings in tro duced b y this op eration.
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Figure 5.9: Case 2(a) | Rerouting in tersecting v -segmen t of v w and middle segmen t

of v u if v w is not anc hored.

Case 2(b) | v w is anc hored (see Figure 5.10): The edge route v u ma y b e

anc hored at v , and if it is, then as in Case 2(a), the p orts assigned to

� !

v u and

� !

uv m ust

b e p erp endicular. By sw apping the p orts at v assigned to

� !

v u and

� !

v w the edge crossing

is remo v ed. The arc

� !

v u is no w not anc hored, if

� !

v u w as anc hored then

� !

v w is no w

anc hored, and if

� !

v u w as unanc hored then

� !

v w is no w unanc hored. Hence an anc hor, and

th us a b end, is eliminated. Note that this op eration ma y in tro duce new edge crossings

b et w een uv and some other edge inciden t to u .
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Figure 5.10: Case 2(b) | Rerouting in tersecting v -segmen t of anc hored v w and middle

segmen t of v u .

Case 3 | The middle segmen ts of v u and v w in tersect (See Figure 5.11):

Note that

� !

v u and

� !

v w ma y or ma y not b e anc hored. If

� !

v u is anc hored then the edge

route v u m ust use p erp endicular p orts at v and u , and similarly , if

� !

v w is anc hored then

the edge route v w m ust b e assigned p erp endicular p orts at v and w . Sw apping the

p orts assigned to

� !

v u and

� !

v w , and sw apping an y anc hors, remo v es the edge crossing.

Note that the sum of the lengths of the new middle segmen ts of v u and v w is strictly
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Figure 5.11: Rerouting in tersecting middle-segmen ts.

less than the previous sum. This op eration ma y in tro duce new edge crossings b et w een

uv and some other edge at u , or b et w een w v and some other edge at w .

The follo wing algorithm summarises the crossing remo v al phase of our algorithm.

Algorithm 5.4. Point-Dra wing Remo ve Edge Cr ossings

Input : � graph G with �( G ) � 6

� general p osition 3-D orthogonal p oin t-dra wing of G (p ossibly with crossings)

generated b y the Constr uct Edge R outes algorithm.

Output : general p osition 3-D orthogonal p oin t-dra wing of G (without crossings).

V  V ( G )

while V 6= ; do

Cho ose v 2 V , and set V  V n f v g .

for eac h Case 2(b) or Case (3) crossing b et w een edges v u and v w do

Sw ap the p orts at v assigned to

� !

v u and

� !

v w .

Reroute the edge routes v u and v w according

to Algorithm 5.3 Constr uct Edge R outes .

Set V  V [ f v ; u; w g .

end-for

end-while

for eac h v ertex v 2 V ( G ) do

for eac h Case (1) or Case 2(a) crossing b et w een edges v u and v w do

Sw ap the p orts at v assigned to v u and v w .

end-for

end-for
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Lemma 5.2. The algorithm Point-Dra wing Remo ve Edge Cr ossings r emoves

al l cr ossings fr om the given 3-D ortho gonal p oint-dr awing in O

�

n

2

�

time.

Pr o of. In Case 3 and Case 2(b), but not Cases 2(a) and Case 1, sw apping p orts ma y

create new edge route crossings b et w een uv and some other edge route inciden t to u ,

or similarly at w . Therefore remo ving all Case 3 and Case 2(b) crossings in the �rst

phase of the algorithm, and remo ving all Cases 2(a) and Case 1 edge crossings in the

second phase of the algorithm, remo v es all crossings from the dra wing.

In Case 3 the sum of the lengths of the middle segmen ts of v u and v w is reduced

(see the segmen ts in b old). The length of eac h middle segmen t is O ( n ) and there are

at most 3 n middle segmen ts in total, so the sum of the lengths of the middle segmen t

is O

�

n

2

�

.

In Case 2(b) (and also in Case 1) at least one anc hored arc (and th us a b end) is

eliminated. The n um b er of anc hored arcs is at most 6 n .

Hence the sum of the lengths of the middle segmen ts plus the n um b er of anc hored

arcs is O

�

n

2

�

, and ev ery Case 3 or Case 2(b) p ort sw ap reduces this n um b er b y at least

one. Therefore the algorithm executes O

�

n

2

�

Case 3 or Case 2(b) p ort sw aps. With

eac h suc h p ort sw ap three v ertices are added to V for re-c hec king. Hence, Case 2(b)

and Case 3 needs to b e c hec k ed for some v ertex O

�

n

2

�

times. T o c hec k Case 2(b) and

Case 3 for a particular v ertex v in v olv es comparing the co ordinates of a O (1) n um b er

of pairs of edge routes inciden t to v . Hence the �rst phase of the algorithm tak es O

�

n

2

�

time.

Similarly , for a particular v ertex, Case 1 and Case 2(a) can b e c hec k ed in constan t

time. So the second phase of the algorithm tak es O ( n ) time, and the algorithm remo v es

all edge crossings in O

�

n

2

�

time.

W e can no w pro v e the main result of this section.

Theorem 5.1. Supp ose G is a gr aph with �( G ) � 6 , and we ar e given a gener al p osi-

tion vertex layout and p oint-r outing of G with k instanc es of (5.1) and (5.2) . Then the

algorithm General Position 3-D Point-Dra wing wil l, in O

�

n

2

�

time, c onstruct a

layout-pr eserving 3-D ortho gonal p oint-dr awing of G with at most four b ends p er e dge

r oute and at most 2 m + k b ends in total. The b ounding b ox volume is at most ( n + k = 3)

3

.
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Pr o of. As discussed earlier there is one anc hored arc for eac h o ccurrence of (5.1) and

(5.2) . Clearly , a grid-plane not con taining a v ertex or a b end can b e remo v ed without

a�ecting the dra wing. The ( X = 3 i � 1)-plane b elonging to a v ertex v = x

i

con tains a

b end if and only if there is an anc hored arc

� !

v w assigned an X -p ort (i.e., coloured X )

with its v -segmen t lying in this plane. Similarly for Y -planes and Z -planes. Therefore,

after remo ving grid-planes not con taining a v ertex or a b end, the b ounding b o x is

( n + k

X

) � ( n + k

Y

) � ( n + k

Z

), where k

i

is the n um b er of anc hored arcs coloured i ,

i 2 f X ; Y ; Z g . It is w ell-kno wn that of the b o xes with �xed sum of side length the cub e

has maxim um v olume (see for example Kazarino� [126 ]). So if k is the total n um b er of

anc hored arcs then the b ounding b o x v olume is maximised when k

X

= k

Y

= k

Z

= k = 3,

so the b ounding b o x v olume is at most ( n + k = 3)

3

.

5.2 La y out-Based Algorithms

W e no w describ e our la y out-based approac h for pro ducing general p osition 3-D orthog-

onal p oin t-dra wings. Here w e are concerned with the follo wing problem.

Problem 5.2. LA YOUT-BASED GENERAL POSITION 3-D POINT-

DRA WING

Instanc e : A general p osition 3-D v ertex la y out of a graph G with �( G ) � 6.

Output : A la y out-preserving 3-D orthogonal p oin t-dra wing of G with the minim um

n um b er of b ends.

This problem amoun ts to �nding a p oin t-routing of G with the minim um n um b er

of instances of (5.1) and (5.2) . W e conjecture that it is NP-hard.

5.2.1 Diagonal General P osition V ertex La y out

W e initially consider la y out-based algorithms with a diagonal la y out of the v ertices.

A diagonal la y out w as �rst used for 3-D orthogonal p oin t-dra wing b y the 3-BENDS

algorithm of Eades et al. [86 , 87 ]. Consider a diagonal la y out of a maxim um de-

gree six graph G with corresp onding v ertex ordering < . A v ertex v 2 V ( G ) has

max f max f s

<

( v ) ; p

<

( v ) g � 3 ; 0 g arcs inciden t to v whic h m ust b e assigned a p ort at v

whic h p oin t a w a y from their destination. Suc h arcs m ust b e anc hored. Eac h edge route
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has at least t w o b ends and eac h anc hored arc con tributes one further b end. Therefore

the total n um b er of b ends in a diagonal la y out 3-D orthogonal p oin t-dra wing is at least

2 m +

X

v 2 V ( G )

max f max f s

<

( v ) ; p

<

( v ) g � 3 ; 0 g : (5.3)

The follo wing algorithm determines a diagonal la y out 3-D orthogonal p oin t-dra wing

with precisely this n um b er of b ends, th us solving the LA YOUT-BASED GENERAL

POSITION 3-D POINT-DRA WING problem in the case of a diagonal la y out.

Algorithm 5.5. Dia gonal General Position 3-D Point-Dra wing

Input : � graph G with �( G ) � 6

� v ertex ordering < of G

Output : diagonal la y out 3-D p oin t-dra wing of G

1. Construct a graph H with V ( H ) = A ( G ).

2. F or eac h v ertex v 2 V ( G ), add cliques

�

v v

A

; v v

B

; v v

C

	

and

�

v v

D

; v v

E

; v v

F

	

to

E ( H ), according to T able 5.1. (Refer to Section 4.1 for the relev an t de�nitions.

If deg ( v ) < 6 then some of v v

A

, v v

B

, v v

C

, v v

D

, v v

E

and v v

F

will not b e de�ned,

so the ab o v e-men tioned cliques ma y b e empt y or consist of a single edge.)

T able 5.1: De�nition of v v

A

, v v

B

, v v

C

, v v

D

, v v

E

and v v

F

v v v

A

v v

B

v v

C

v v

D

v v

E

v v

F

� -v ertex ( � � 3) v v

� 3

v v

� 2

v v

� 1

v v

1

v v

2

v v

3

4-v ertex v v

� 2

v v

� 1

v v

1

v v

2

v v

3

v v

4

5-v ertex v v

� 1

v v

1

v v

2

v v

3

v v

4

v v

5

6-v ertex v v

1

v v

2

v v

3

v v

4

v v

5

v v

6

3. F or eac h edge v w 2 E ( G ), add the edge f

� !

v w ;

� !

w v g to E ( H ) (called an `r'-edge),

as illustrated in Figure 5.12.

4. Determine a p oin t-routing of G from a v ertex 3-colouring of H .
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v v

1

v v

� 1

v v

� 2

`r'

`r'

`r'

v v

2

v v

3

v v

4

`r'

`r'

`r'

Figure 5.12: The subgraph of H corresp onding to a 2-4 v ertex v .

5. Apply Algorithm 5.1 General Position 3-D Point Dra wing .

Lemma 5.3. The algorithm Dia gonal General Position 3-D Point-Dra wing

determines, in O ( n ) time, a diagonal layout 3-D ortho gonal p oint-dr awing of G with

2 m +

X

v 2 V ( G )

max f max f s

<

( v ) ; p

<

( v ) g � 3 ; 0 g :

b ends and at most four b ends p er e dge r oute. The volume is

0

@

n +

1

3

X

v 2 V ( G )

max f max f s

<

( v ) ; p

<

( v ) g � 3 ; 0 g

1

A

3

:

Pr o of. A v ertex of H is inciden t with one `r'-edge and at most t w o unlab elled edges,

so the graph H has maxim um degree �( H ) � 3, and is not K

4

, so b y Bro oks' The-

orem [47 ], H is v ertex 3-colourable. The pro of of Bro ok's Theorem due to Lo v� asz

[147 ] and simpli�ed b y Bry an t [49 ] describ es an algorithm for v ertex 3-colouring H in

O ( j E ( H ) j ) = O ( n ) time. The 3-colouring of V ( H ) determines a 3-colouring of A ( G ).

The unlab elled edges ensure that at most t w o arcs at a v ertex v can receiv e the same

colour, so the colouring is a p oin t-routing of G .

Applying Theorem 5.1 with the giv en diagonal la y out and this p oin t-routing de-

termines a 3-D orthogonal p oin t-dra wing with 2 m + k b ends where k is the n um b er

of instances of (5.1) and (5.2) . Since all pairs of rev ersal arcs are coloured di�eren tly

there are no instances of (5.2) .

Supp ose

� !

v u ;

� !

v w 2 A

G

( v ) [ i ] ( u 6= w ) for some v ertex v and colour i 2 f X ; Y ; Z g .

Then w e can assume

� !

v u 2

�

v v

A

; v v

B

; v v

C

	

and

� !

v w 2

�

v v

D

; v v

E

; v v

F

	

. An instance of
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(5.1) o ccurs if v is not b et w een u and w in the i -ordering. This o ccurs if and only if

v u = v v

i

for some i , 1 � i � max f max f s

<

( v ) ; p

<

( v ) g � 3 ; 0 g . So there are

k =

X

v 2 V ( G )

max f max f s

<

( v ) ; p

<

( v ) g � 3 ; 0 g :

anc hored arcs. By Theorem 5.1 the v olume b ound holds.

Consider the algorithm Point-Dra wing Remo ve Edge Cr ossings applied with

a diagonal la y out. Clearly Case 3 cannot o ccur. If Case 2(b) o ccurs then

� !

v w m ust

b e anc hored and p ort (

� !

v w ) p oin ts to w ards w . Ho w ev er, in Algorithm Dia gonal Gen-

eral Position 3-D Point-Dra wing if an arc

� !

v w is anc hored then p ort (

� !

v w ) p oin ts

a w a y from w . Hence Cases 3 and 2(b) cannot o ccur when w e apply Point-Dra wing

Remo ve Edge Cr ossings , so it tak es O ( n ) time. Therefore eac h step of Dia gonal

La yout 3-D Point-Dra wing tak es O ( n ) time. The result follo ws.

Com bining (5.3) and Lemma 5.3 w e obtain the follo wing result.

Theorem 5.2. The pr oblem LA YOUT-BASED GENERAL POSITION 3-D POINT-

DRA WING c an b e solve d in O ( n ) time in the c ase of a diagonal layout.

W e no w can c haracterise those 2-b end 3-D orthogonal p oin t-dra wings with a diag-

onal la y out, a result �rst established b y W o o d [220 ].

Corollary 5.1. A diagonal layout of a gr aph G admits a 2-b end 3-D ortho gonal p oint-

dr awing if and only if every vertex v in the c orr esp onding vertex or dering has s ( v ) � 3

and p ( v ) � 3 .

Pr o of. By Theorem 5.2, a diagonal la y out admits a 2-b end p oin t-dra wing if and only

if, for ev ery v ertex v , max f max f s ( v ) ; p ( v ) g � 3 ; 0 g = 0; i.e., max f s ( v ) ; p ( v ) g � 3; i.e.,

s ( v ) � 3 and p ( v ) � 3.

If w e apply algorithm Dia gonal General Position 3-D Point-Dra wing with a

diagonal la y out whose v ertex ordering is determined using st -orderings (see Section 4.2)

w e obtain the follo wing result.

Corollary 5.2. If a gr aph G with maximum de gr e e �( G ) � 6 has c c onne cte d c omp o-

nents and k end-blo cks, then ther e exists a diagonal layout 3-D ortho gonal p oint-dr awing
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of G , which c an b e determine d in O ( n ) time, with at most 3 m � n + c + k b ends and

at most ((2 n + m + c + k ) = 3)

3

volume. If G is 6-r e gular and has a c onstant numb er

of bic onne cte d c omp onents then the numb er of b ends is at most 8 m= 3 + O (1) and the

volume is at most (5 n= 3)

3

+ O

�

n

5 = 2

�

.

Pr o of. Firstly , remo v e eac h v ertex with degree one and its inciden t edge from G . Sup-

p ose the remaining graph, called G

0

, has n

0

v ertices, m

0

edges, c

0

connected comp onen ts

and k

0

end-blo c ks. Let n

i

b e the n um b er of v ertices v 2 V ( G

0

) with deg

G

0

( v ) = i . By

Lemma 4.2, G

0

has a v ertex ordering < with c

0

+ k

0

v ertices ha ving zero predecessors

or zero successors. F or suc h a v ertex v , max f s ( v ) ; p ( v ) g = deg ( v ), so

max f max f s ( v ) ; p ( v ) g � 3 ; 0 g =

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

0 ; if deg

G

( v ) � 3;

1 ; if deg

G

( v ) = 4;

2 ; if deg

G

( v ) = 5;

3 ; if deg

G

( v ) = 6.

F or all other v ertices v w e ha v e

max f max f s ( v ) ; p ( v ) g � 3 ; 0 g �

8

>

>

>

>

>

<

>

>

>

>

>

:

0 ; if deg

G

( v ) � 4;

1 ; if deg

G

( v ) = 5;

2 ; if deg

G

( v ) = 6.

Hence

X

v 2 V ( G

0

)

max f max f s ( v ) ; p ( v ) g � 3 ; 0 g � n

5

+ 2 n

6

+ c

0

+ k

0

:

If w e determine a 3-D orthogonal p oin t-dra wing of G

0

with Algorithm 5.5 Dia go-

nal General Position 3-D Point-Dra wing using the v ertex ordering < , then b y

Lemma 5.3 there is at most

2 m

0

+

X

v 2 V ( G

0

)

max f max f s ( v ) ; p ( v ) g � 3 ; 0 g � 2 m

0

+ n

5

+ 2 n

6

+ c

0

+ k

0

b ends. No w,

0 � n

3

+ 2 n

4

+ n

5
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2 n

5

+ 4 n

6

� n

3

+ 2 n

4

+ 3 n

5

+ 4 n

6

2 n

5

+ 4 n

6

� (2 n

2

+ 3 n

3

+ 4 n

4

+ 5 n

5

+ 6 n

6

) � 2 n

0

2 n

5

+ 4 n

6

� 2 m

0

� 2 n

0

n

5

+ 2 n

6

� m

0

� n

0

2 m

0

+ n

5

+ 2 n

6

+ c

0

+ k

0

� 3 m

0

� n

0

+ c

0

+ k

0

:

So the n um b er of b ends in the dra wing of G

0

is at most 3 m

0

� n

0

+ c

0

+ k

0

. It is easily

seen that the v ertices with degree one can b e reinserted in to the diagonal la y out, and

eac h inciden t edge routed with t w o b ends. Hence the n um b er of b ends in the dra wing

of G is 3 m

0

� n

0

+ c

0

+ k

0

+ 2( m � m

0

) = m

0

� n

0

+ c

0

+ k

0

+ 2 m .

No w, ( n � n

0

) = ( c � c

0

) + ( k � k

0

). So ( n � n

0

) � ( m � m

0

) + ( c � c

0

) + ( k � k

0

), and

hence m

0

� n

0

+ c

0

+ k

0

� m � n + c + k . So the n um b er of b ends in the dra wing of G

is at most 3 m � n + c + k .

The n um b er of anc hored arcs is at most m � n + c + k , so the v olume of the dra wing

of G is at most ( n + ( m � n + c + k ) = 3)

3

= ((2 n + m + c + k ) = 3)

3

.

If G is 6-regular and has a constan t n um b er of biconnected comp onen ts then the

n um b er of b ends is 8 m= 3 + O (1) and the v olume is (5 n= 3)

3

+ O

�

n

5 = 2

�

.

By Lemmas 4.2 and 5.3, the st -orderings and the dra wing itself can b e determined

in O ( n ) time, resp ectiv ely .

If w e use Algorithm 4.1 Median Pla cement Ordering to determine the v ertex

ordering of a diagonal la y out, w e obtain the follo wing result.

Corollary 5.3. A gr aph G with maximum de gr e e �( G ) � 6 has a diagonal layout

3-D ortho gonal p oint-dr awing, which c an b e determine d in O ( n ) time, with at most

5 m= 2 + n= 4 b ends and at most ( m= 6 + 13 n= 12)

3

volume. F or 6-r e gular gr aphs the

numb er of b ends is at most 31 m= 12 and the volume is at most (19 n= 12)

3

.

Pr o of. Let < b e a v ertex ordering of G determined b y Algorithm 4.1 Median Pla ce-

ment Ordering (with insertion ordering determined b y Algorithm 4.2 Inser tion

Ordering ). Supp ose G has n

i

v ertices with degree i . Determine a diagonal la y out

3-D p oin t-dra wing, with corresp onding v ertex ordering < , using the algorithm Di-

a gonal General Position 3-D Point-Dra wing . By Lemma 5.3, the n um b er of
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anc hors is

X

v 2 V ( G )

max f max f s

<

( v ) ; p

<

( v ) g � 3 ; 0 g :

A degree one or t w o v ertex v has max f s

<

( v ) ; p

<

( v ) g � 1, so

max f max f s

<

( v ) ; p

<

( v ) g � 3 ; 0 g � (max f s

<

( v ) ; p

<

( v ) g � 3) + 2 :

A degree three or four v ertex v has max f s

<

( v ) ; p

<

( v ) g � 2, so

max f max f s

<

( v ) ; p

<

( v ) g � 3 ; 0 g � (max f s

<

( v ) ; p

<

( v ) g � 3) + 1 :

A degree �v e or six v ertex v has max f s

<

( v ) ; p

<

( v ) g � 3, so

max f max f s

<

( v ) ; p

<

( v ) g � 3 ; 0 g = max f s

<

( v ) ; p

<

( v ) g � 3 :

Hence the n um b er of anc hored arcs is at most

X

v 2 V ( G )

(max f s

<

( v ) ; p

<

( v ) g � 3) + 2 n

1

+ 2 n

2

+ n

3

+ n

4

�

3 m

2

+

n

4

� 3 n + 2 n

1

+ 2 n

2

+ n

3

+ n

4

(b y Theorem 4.2)

�

m

2

+

1

2

( n

1

+ 2 n

2

+ 3 n

3

+ 4 n

4

+ 5 n

5

+ 6 n

6

) �

11

4

( n

1

+ n

2

+ n

3

+ n

4

+ n

5

+ n

6

)

+ 2 n

1

+ 2 n

2

+ n

3

+ n

4

=

m

2

+

1

4

( � n

1

+ n

2

� n

3

+ n

4

� n

5

+ n

6

)

�

m

2

+

n

4

:

By Lemma 5.3 the total n um b er of b ends is at most 5 m= 2 + n= 4, and v olume is at

most ( n + ( m= 2 + n= 4) = 3)

3

= ( m= 6 + 13 n= 12)

3

. F or 6-regular graphs the n um b er of

b ends is at most 31 m= 12 and the v olume is at most (19 n= 12)

3

.

By Theorem 4.2 and Lemma 5.3, the v ertex ordering and the dra wing itself can b e

determined in O ( n ) time, resp ectiv ely .

F or graphs with a v erage degree at least �v e, using the Median Pla cement Or-

dering algorithm to determine the diagonal la y out pro duces dra wings with few er b ends

and less v olume than the algorithm based on st -orderings.



CHAPTER 5. GENERAL POSITION 3-D POINT-DRA WING 98

5.2.2 Arbitrary General P osition V ertex la y out

In this section w e consider the la y out-based approac h for minimising the n um b er of

b ends in 3-D orthogonal p oin t-dra wings giv en a �xed general p osition la y out. Although

the metho ds dev elop ed run in exp onen tial time, they ha v e pro v ed to b e e�ectiv e in

searc hing for 2-b end dra wings of reasonably small graphs.

Maxim um Clique F orm ulations

W e no w presen t a metho d for searc hing for solutions to LA YOUT-BASED GENERAL

POSITION 3-D POINT-DRA WING using a maxim um w eigh t clique form ulation. Con-

sider the e dge r oute graph R consisting of a v ertex for ev ery p ossible edge route. F or

eac h edge v w 2 E ( G ) there are 36 p ossible edge routes, one for eac h com bination of

p orts at v and w . V ertices are adjacen t in R if and only if their corresp onding edge

routes can co-exist in the dra wing; i.e., v ertices of R corresp onding to edge routes for

the same edge are non-adjacen t, and v ertices corresp onding to edge routes whic h use

the same p ort are non-adjacen t. All other pairs of v ertices in R are adjacen t. A v er-

tex is in a clique of R if and only if the corresp onding edge route is in the dra wing.

The w eigh t of the v ertex corresp onding to an edge route v w is 4 � #b ends ( v w ) . So a

maxim um w eigh t clique will de�ne a b end-minim um dra wing.

Lemma 5.4. A gener al p osition vertex layout of a gr aph G has a layout-pr eserving

3-D ortho gonal p oint-dr awing with B b ends if and only if the gr aph R has a clique of

weight 4 m � B .

In App endix C w e review the existing clique �nding algorithms and presen t a simple

algorithm whic h p erforms w ell in comparison to the established metho ds. The graph R

has 36 m v ertices and is quite dense, so ev en for relativ ely small graphs G , this metho d

for solving LA YOUT-BASED GENERAL POSITION 3-D POINT-DRA WING is not

practical. W e shall no w in tro duce a related problem whose maxim um clique form ulation

can b e solv ed for relativ ely small instances.

Problem 5.3. LA YOUT-BASED 2-BEND 3-D POINT-DRA WING

Instanc e : A general p osition v ertex la y out of a graph G with �( G ) � 6.
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Output : A la y out-preserving 2-b end 3-D orthogonal p oin t-dra wing of a subgraph G

1

�

G with the maxim um n um b er of edges.

W e conjecture that this problem is also NP-hard. The problem LA YOUT-BASED

2-BEND 3-D POINT-DRA WING suggests an approac h for pro ducing 3-D orthogonal

p oin t-dra wings where w e �nd a partial 2-b end p oin t-routing and then arbitrarily extend

it to a p oin t-routing of G . W e shall describ e t w o metho ds for the solution of LA YOUT-

BASED 2-BEND 3-D POINT-DRA WING, the �rst in terms of a maxim um clique

form ulation and the second in v olving h yp ergraph matc hing.

Consider the ar c r oute graph R with v ertex set V ( R ) = A ( G ) � f X ; Y ; Z g . There

is an edge in R b et w een `compatible' arc routes. W e de�ne the (complemen t of the)

edge set of R as follo ws. Since eac h arc

� !

v w 2 A ( G ) can b e coloured at most once,

for eac h pair of distinct colours i; j 2 f X ; Y ; Z g , the edge f (

� !

v w ; i ) ; (

� !

v w ; j ) g 62 E ( R ).

F or a 2-b end edge route v w , rev ersal arcs m ust b e coloured di�eren tly , so for eac h

colour i 2 f X ; Y ; Z g , the edge f (

� !

v w ; i ) ; (

� !

w v ; i ) g 62 E ( R ). Since di�eren t arcs m ust

b e assigned di�eren t p orts, for eac h v ertex v 2 V ( G ), for eac h pair of arcs

� !

v u ;

� !

v w 2

A

G

( v ) and for eac h colour i 2 f X ; Y ; Z g , if v <

i

u; w or u; w <

i

v , then the edge

f (

� !

v u ; i ) ; (

� !

v w ; i ) g 62 E ( R ). All other pairs of v ertices of R are adjacen t. The next result

follo ws immediately from the de�nition of R , where including a v ertex (

� !

v w ; i ) 2 V ( R )

in a clique of R corresp onds to colouring the arc

� !

v w with colour i .

Lemma 5.5. F or a �xe d gener al p osition vertex layout of a maximum de gr e e six gr aph

G , ther e is a layout-pr eserving 2-b end 3-D ortho gonal p oint-dr awing of a sub gr aph G

1

�

G if and only if R has a clique of size 2 j E ( G

1

) j .

Giv en a clique Q of R , to determine a p oin t-routing of G n G

1

, colour those arcs

� !

v w 2 A ( G ) without a corresp onding v ertex in Q , with whatev er spare colour is a v ailable,

so that there are at most t w o outgoing arcs at eac h v ertex v receiving the same colour.

Clearly , the arc route graph can b e used if a partial routing of the arcs is sp eci�ed.

Moreo v er, if w e relax the general p osition mo del so that some v ertices share a com-

mon co ordinate, w e can sp ecify a partial routing of the edges b y 2-b end non-planar

edge routes, and use the arc route graph form ulation to searc h for 2-b end general p o-

sition p oin t-dra wings in the remainder of the graph. This approac h w as used to �nd
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some of the 2-b end p oin t-dra wings of the complete m ulti-partite graphs presen ted in

App endix B.

Hyp ergraph Matc hing F orm ulation

W e no w form ulate the LA YOUT-BASED 2-BEND 3-D POINT-DRA WING problem

as a h yp ergraph matc hing problem. Consider the h yp ergraph P with v ertex set

V ( P ) = A ( G ) [ p orts ( G ) [ ( E ( G ) � f X ; Y ; Z g ) ;

and edge set consisting of t w o edges eac h of size three, for eac h edge

� !

v w 2 E ( G ) and

colour i 2 f X ; Y ; Z g . If v <

i

w then

(

� !

v w ; p ort( v ; + i ) ; ( f v ; w g ; i )) ; (

� !

w v ; p ort( v ; � i ) ; ( f v ; w g ; i )) 2 E ( P ) ;

and if w <

i

v then

(

� !

v w ; p ort( v ; � i ) ; ( f v ; w g ; i )) ; (

� !

w v ; p ort( v ; + i ) ; ( f v ; w g ; i )) 2 E ( P ) :

P is 3-uniform and 3-colourable. The v ertex corresp onding to an arc

� !

v w 2 A ( G )

has degree three, the v ertex corresp onding to a p ositiv e (resp ectiv ely , negativ e) i -p ort

at a v ertex v 2 V ( G ) has degree s

i

( v ) ( p

i

( v )), and the v ertex corresp onding to a pair

(

� !

v w ; i ) has degree t w o.

Lemma 5.6. Ther e is a layout-pr eserving 2-b end 3-D ortho gonal p oint-dr awing of a

sub gr aph G

1

� G if and only if P has a matching M with j M j = 2 j E ( G

1

) j .

Pr o of. Including an edge (

� !

v w ; p ort ( v ; � i ) ; ( f v ; w g ; i )) in a matc hing M of P corre-

sp onds to assigning the arc

� !

v w 2 A ( G ) the colour i in a p oin t-routing of G . By

construction the arc v w will b e assigned the i -p ort at v p oin ting to w ards w when edge

routes are determined.

Giv en a matc hing M of P , for eac h arc

� !

v w 2 A ( G ) there is at most one edge

in M inciden t to the v ertex corresp onding to v w , so eac h arc is coloured at most

once. F or eac h ( i

�

)-p ort at a v ertex v there is at most one edge in M inciden t to

the v ertex corresp onding to p ort ( v ; � i ), so eac h p ort is used at most once. Since

the edges (

� !

v w ; p ort( v ; � i ) ; ( f v ; w g ; i )) and (

� !

w v ; p ort( v ; � i ) ; ( f v ; w g ; i )) ha v e a common
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v ertex, namely ( f v ; w g ; i ), they cannot b oth b e in M . So rev ersal arcs are coloured

di�eren tly , and a 2-b end p oin t-routing of G is determined. By the rev erse argumen t, a

la y out-preserving 2-b end 3-D orthogonal p oin t-dra wing of a subgraph G

1

determines a

matc hing of size 2 j E ( G

1

) j .

A matc hing of the h yp ergraph P de�nes a matc hing in the graph P

0

formed from P

b y remo ving the v ertices ( f v ; w g ; i ) and their inciden t edges. Hall's marriage theorem

[114 ] th us pro vides the follo wing necessary condition for the existence of a matc hing

in P , and th us a necessary condition for the LA YOUT-BASED 2-BEND 3-D POINT-

DRA WING problem.

A t eac h v ertex v 2 V ( H ), for an y set S � A

G

( G

1

) v , the n um b er of p orts

at v whic h p oin t to w ard a v ertex w for some arc

� !

v w 2 S is at least j S j .

(5.4)

This implies that the n um b er of neigh b ours of a v ertex v in a single o ctan t relativ e

to v is at most three, in a single quadran t is at most four, in half-space m ust b e at

most �v e. The follo wing example illustrates wh y (5.4) is not su�cen t for our problem.

Consider adjacen t v ertices v and w , suc h that s

Z

( v ) = 5, p

Z

( w ) = 5, and w <

Z

v .

Both v w and

� !

w v m ust b e coloured Z , as in Figure 5.13.

v

w

Figure 5.13: A la y out satisfying (5.4) but without a 2-b end routing.

The Gallai-Edmonds matc hing structure theorem (see [148 ]) pro vides a mec hanism

describing all maxim um matc hings of an y (bipartite or non-bipartite) graph. W e can

use this tec hnique to ev aluate all the maxim um matc hings of P

0

suc h that rev ersal arcs
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receiv e di�eren t colours, th us pro viding a metho d for the solution of LA YOUT-BASED

2-BEND 3-D POINT-DRA WING. Unfortunately there ma y b e an exp onen tial n um b er

of suc h matc hings, so this algorithm is not p olynomial.

5.3 Routing-Based Algorithm

W e no w describ e a routing-based algorithm for pro ducing general p osition 3-D orthog-

onal p oin t-dra wings. This metho d determines a general p osition v ertex la y out with

resp ect to a pre-determined p oin t-routing. Our aim is to pro duce dra wings with as

man y 2-b end edge routes as p ossible. Hence the routing whic h is determined is a

2-b end p oin t-routing. Initially w e presen t t w o algorithms for determining a 2-b end

p oin t-routing of a giv en graph. The routing-based v ertex-la y out algorithm itself is

describ ed in Section 5.3.2.

5.3.1 2-Bend Routing Algorithms

Cycle Co v er Decomp osition

Our �rst metho d for determining a 2-b end p oin t-routing is based on the algorithm for

determining a disjoin t cycle co v er decomp osition describ ed in Section 2.5.

Algorithm 5.6. 2-Bend 3-D Point-R outing

Input : graph G with �( G ) � 6

Output : 2-b end 3-D general p osition p oin t-routing of G .

1. Determine a cycle co v er decomp osition of G with red, green and blue cycle co v ers.

2. F or eac h edge v w in the red cycle co v er, set col(

� !

v w )  X and col(

� !

w v )  Y .

3. F or eac h edge v w in the green cycle co v er, set col(

� !

v w )  Y and col(

� !

w v )  Z .

4. F or eac h edge v w in the blue cycle co v er, set col(

� !

v w )  Z and col (

� !

w v )  X .
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Lemma 5.7. The algorithm 2-Bend 3-D Point-R outing determines a 2-b end p oint-

r outing in O ( n ) time.

Pr o of. There are at most t w o arcs at eac h v ertex v coloured i 2 f X ; Y ; Z g and rev ersal

arcs are coloured di�eren tly , so the colouring is a 2-b end p oin t-routing. By Theorem 2.1,

the cycle co v er decomp osition and hence the 2-b end p oin t-routing can b e found in O ( n )

time.

Systems of T ransitions

W e no w describ e a second metho d for determining a 2-b end p oin t-routing based on

systems of transitions. Supp ose G is an Eulerian graph. (A non-Eulerian graph of

maxim um degree six can b e augmen ted to a 6-regular graph, as in Theorem 2.1.) A

tr ansition at a v ertex v is a pair of distinct edges inciden t with v . A system of tr ansitions

at v is a partition of f v w 2 E ( G ) g in to transitions at v . A system of tr ansitions of G

is a family T

G

= f T

v

: v 2 V g where T

v

is a system of transitions at v [98 , 121 ].

A k -colouring of the transitions in T

G

suc h that transitions at a common v ertex and

transitions with a common edge receiv e di�eren t colours determines a k -colouring of

A ( G ) suc h that rev ersal arcs are coloured di�eren tly and �(

 !

G [ i ]) = 2 for eac h colour

i ; i.e., a p oin t-routing. W e therefore v ertex-colour the graph T ( G ) whose v ertex set

consists of all transitions in T

G

, with v ertices of T ( G ) b eing adjacen t if their corre-

sp onding transitions in G are (1) at a common v ertex of G , or (2) con tain a common

edge of G .

These t w o t yp es of edges decomp ose the graph T ( G ) in to (1) a collection of v ertex-

disjoin t cliques f C

v

: v 2 V ( G ) g where j C

v

j = deg

G

( v ) = 2, and (2) a 2-regular spanning

subgraph. If the system of transitions is determined b y follo wing an Eulerian tour of

G , this 2-regular spanning subgraph is, in fact, a Hamiltonian cycle.

Hence, for a 6-regular graph G , if w e determine the system of transitions b y follo wing

an Eulerian tour of G , the graph T ( G ) has an edge-decomp osition in to a Hamiltonian

cycle and a set of edge-disjoin t triangles. Eac h triangle represen ts a v ertex of G and

the edges around the Hamiltonian cycle corresp ond to the Eulerian tour of G .

That a 4-regular graph with suc h a `cycle plus triangles' decomp osition is v ertex

3-colourable w as conjectured b y Erd} os and �rst pro v ed b y Fleisc hner and Stiebitz [99 ]
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using a non-constructiv e and non-elemen tary colouring result of Alon and T arsi [3 ].

Sac hs [189 ] has since dev elop ed a constructiv e and elemen tary pro of. So T ( G ) is v ertex

3-colourable, th us determining a 2-b end p oin t-routing of G .

5.3.2 Determining a La y out

F or a �xed routing of a graph G , in a general p osition 3-D orthogonal p oin t-dra wing

with the minim um n um b er of b ends, eac h i -ordering, i 2 f X ; Y ; Z g , is an optimal

solution to the balanced ordering problem on the subgraph

 !

G [ i ]. In the follo wing

algorithm, to determine eac h i -ordering, w e use the lo cal minim um approac h for the

balanced ordering problem dev elop ed in Chapter 4.

Algorithm 5.7. R outing-Based General Position 3-D Point-Dra wing

Input : graph G with �( G ) � 6

Output : general p osition 3-D orthogonal p oin t-dra wing of G .

1. Determine a 2-b end p oin t-routing of G using Algorithm 5.6 2-Bend 3-D Point-

R outing .

2. F or eac h i 2 f X ; Y ; Z g , set the i -ordering to b e a 2-balanced ordering of

 !

G [ i ]

(see Theorem 4.5).

3. Apply Algorithm 5.1 General Position 3-D Point-Dra wing .

Theorem 5.3. The algorithm R outing-Based General Position 3-D Point-

Dra wing determines, in O

�

n

2

�

time, a 4-b end 3-D ortho gonal p oint-dr awing of G

with at most 2 m + 3 n= 2 b ends and at most (3 n= 2)

3

b ounding b ox volume.

Pr o of. In a 2-b end p oin t-routing, rev ersal arcs are coloured di�eren tly , so

 !

G [ i ] has

no 2-cycles, for eac h colour i 2 f X ; Y ; Z g .

 !

G [ i ] has maxim um outdegree t w o, so b y

Theorem 4.5, a 2-balanced v ertex ordering of

 !

G [ i ] has total cost at most n . Applying

Theorem 5.1, since rev ersal arcs are coloured di�eren tly , there will b e no instances of

(5.2) , and in eac h i -ordering there will b e at most n= 2 instances of (5.1) . Hence there
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will b e at most n= 2 anc hored arcs coloured i , for eac h i 2 f X ; Y ; Z g . In total there will

b e at most 3 n= 2 anc hored arcs, so the total n um b er of b ends is at most 2 m + 3 n= 2,

and the b ounding b o x v olume is at most ( n + n= 2)

3

= (3 n= 2)

3

. By Theorem 2.1

calculating the cycle co v ers and b y Theorem 4.5 eac h v ertex ordering tak es O ( n ) time.

The �nal step of the algorithm, whic h b y Theorem 5.1 tak es O

�

n

2

�

time, is the most

time-consuming. So the o v erall algorithm tak es O

�

n

2

�

time.

5.4 Diagonal La y out and Mo v emen t Algorithm

In this section w e describ e an algorithm for 3-D orthogonal p oin t-dra wing whic h, in

some sense, com bines the la y out- and routing-based approac hes. Initially the v ertices

are placed along the main diagonal of a cub e, and a p oin t-routing is determined. This

routing also de�nes the mo v emen t of v ertices a w a y from the diagonal. This algorithm

establishes the b est kno wn upp er b ound for the total n um b er of b ends in 3-D orthogonal

p oin t-dra wings.

Algorithm 5.8. Dia gonal La yout and Mo vement

Input : graph G with �( G ) � 6.

Output : general p osition 3-D orthogonal p oin t-dra wing of G .

1. Determine a v ertex ordering < of V ( G ) using Algorithm 4.4 Almost 2-Balanced

Ver tex Ordering . Call a v ertex v b alanc e d if max f s ( v ) ; p ( v ) g � 3, and unb al-

anc e d otherwise.

2. Initialise the X -, Y - and Z -orderings of a general p osition v ertex la y out to b e the

v ertex ordering < .

3. F or eac h un balanced v ertex v 2 V ( G ), dep ending on the n um b er of predecessors

and successors of v in the v ertex ordering < (see Section 4.1), lab el arcs

� !

v w 2 A ( G )

as movement or sp e cial arcs, according to T able 5.2.

4. Determine a p oin t-routing of G with Algorithm 5.9 Dlm | Determine Point-

R outing , describ ed in Section 5.4.2.
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T able 5.2: De�nition of mo v emen t and sp ecial arcs at an un balanced v ertex v .

v (0,4) (1,4) (0,5) (2,4) (1,5) (0,6)

v v

1

mo v emen t mo v emen t mo v emen t sp ecial mo v emen t mo v emen t

v v

2

- - mo v emen t - sp ecial mo v emen t

v v

3

- - - - - sp ecial

5. F or eac h mo v emen t arc v w coloured i 2 f X ; Y ; Z g , mo v e v to immediately past

w in the i -ordering.

6. Apply Algorithm 5.1 General Position 3-D Point-Dra wing

5.4.1 Mo v emen t of V ertices

The general stratgey of the Dia gonal La yout and Mo vement algorithm is to anc hor

at most one arc

� !

v w at eac h v ertex v . The p ort at a v ertex v assigned to an unanc hored

arc

� !

v w m ust p oin t to w ard w . In the initial diagonal la y out, there are three p ositiv e

p orts whic h can b e assigned to unanc hored successor arcs, and three negativ e p orts

whic h can b e assigned to unanc hored predecessor arcs. So, at a balanced v ertex v (i.e.,

max f s ( v ) ; p ( v ) g � 3), all of the arcs

� !

v w need not b e anc hored.

If s ( v ) > 3 (resp ectiv ely , p ( v ) > 3) the p ositiv e (negativ e) p orts can b e assigned to

at most three successor (predecessor) arcs of v . The remaining successor (predecessor)

arcs

� !

v w m ust b e assigned a negativ e (p ositiv e) p ort at v . These are precisely the

movement and sp e cial arcs de�ned in T able 5.2. Note that there is one sp ecial arc

� !

v w

at eac h un balanced degree six v ertex v . W e shall pro v e that sp ecial arcs will b ecome

anc hored when algorithm General Position 3-D Point-Dra wing is applied.

If v w is a mo v emen t arc coloured i , then v is mo v ed to immediately past w in the

i -ordering (Step 5 of the algorithm), th us allo wing v w to b e assigned the p ort( v ; � i ) for

p ositiv e v and the p ort ( v ; + i ) for negativ e v . In Figure 5.14 w e illustrate the mo v emen t

and anc horing pro cess in the case of a p ositiv e (0,6)-v ertex.

F or a v ertex v with max f s ( v ) ; p ( v ) g > 3, if v w = v v

k

is a mo v emen t or sp ecial
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Figure 5.14: v is a p ositiv e (0,6)-v ertex, v v

1

is a mo v emen t arc coloured X , v v

2

is a

mo v emen t arc coloured Y , v v

3

is an sp ecial arc coloured Z ; mo v e v to v

0

.

arc then k � b c

v

= 2 c , so rule M1 is applicable. Therefore w cannot b e opp osite to v ,

and hence

� !

w v cannot also b e a mo v emen t or sp ecial arc. (Consequen tly when edges are

routed no 4-b end edge routes are constructed immediately . It is only through sw apping

p orts to remo v e crossings that a 4-b end edge route can b e in tro duced.) F urthermore,

if v v

k

is a mo v emen t arc then k � b ( c

v

� 1) = 2 c , so b y rules M2 and M3, if v and w are

opp osite un balanced v ertices then the mo v emen t arcs of v do not `cross o v er' or ha v e

the same destination v ertex as the mo v emen t arcs of w .

5.4.2 Determining a P oin t-Routing

T o determine a p oin t-routing w e construct a graph H with v ertex set V ( H ) = A ( G ).

V ertices are adjacen t in H if the corresp onding arcs m ust use p erp endicular p orts. A

3-v ertex-colouring of H then determines a p oin t-routing of A ( G ).

Algorithm 5.9. Dlm | Determine Point-R outing

Input : � graph G with �( G ) � 6.

� v ertex ordering of G determined in Step 1

of Algorithm Dia gonal La yout and Mo vement .

� classi�cation of mo v emen t and sp ecial arcs from Step 3
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of Algorithm Dia gonal La yout and Mo vement .

Output : p oin t-routing of A ( G ).

1. Construct a graph H with v ertex set V ( H ) = A ( G ). W e distinguish four t yp es

of edges of H as follo ws.

(a) The �rst t yp e of edge ensures that arcs whic h `comp ete' for the same p orts

are coloured di�eren tly . In T able 5.3 the arcs v v

A

, v v

B

, v v

C

, v v

D

, v v

E

and

v v

F

are de�ned for eac h t yp e of v ertex. (If v is a balanced or a p ositiv e

(resp ectiv ely , negativ e) un balanced v ertex then v v

A

, v v

B

and v v

C

will b e

assigned the negativ e (p ositiv e) p orts at v . The arcs v v

D

, v v

E

and v v

F

will

b e assigned the p ositiv e (negativ e) p orts at v .) F or eac h v ertex v 2 V ( G ),

add a triangle

�

v v

A

; v v

B

; v v

C

	

and

�

v v

D

; v v

E

; v v

F

	

to E ( H ).

T able 5.3: De�nition of v v

A

, v v

B

, v v

C

, v v

D

, v v

E

and v v

F

v v v

A

v v

B

v v

C

v v

D

v v

E

v v

F

balanced v v

� 3

v v

� 2

v v

� 1

v v

1

v v

2

v v

3

(0,4)-v ertex v v

1

- - v v

2

v v

3

v v

4

(1,4)-v ertex v v

� 1

v v

1

- v v

2

v v

3

v v

4

(2,4)-v ertex v v

� 2

v v

� 1

v v

1

v v

2

v v

3

v v

4

(0,5)-v ertex v v

1

v v

2

- v v

3

v v

4

v v

5

(1,5)-v ertex v v

� 1

v v

1

v v

2

v v

3

v v

4

v v

5

(0,6)-v ertex v v

1

v v

2

v v

3

v v

4

v v

5

v v

6

(b) If neither the arc

� !

v w not its rev ersal arc

� !

w v are sp ecial then add the edge

f

� !

v w ;

� !

w v g (lab elled `r') to E ( H ).

(c) If

� !

v w and

� !

w x are b oth mo v emen t arcs for some v ertices v , w and x , then

add the edge f

� !

v w ;

� !

w x g (lab elled ` � ') to E ( H ). (This ensures that v and w

do not mo v e in the same ordering.)

(d) If v v

2

is a mo v emen t arc coloured i then v will mo v e past v

1

in the i -

ordering. T o ensure that v

1

v do es not use the incorrect i -p ort at v

1

, add the



CHAPTER 5. GENERAL POSITION 3-D POINT-DRA WING 109

edge

�

v v

2

; v

1

v

	

(lab elled ` �� ') to E ( H ). (Observ e that in Figure 5.14, v

1

v

cannot use the p ort ( v

1

; Y

+

).)

2. Rep eatedly remo v e v ertices of H with degree at most t w o, and merge non-adjacen t

v ertices v ; w 2 V ( H ) in a K

4

n v w subgraph (and replace an y parallel edges b y a

single edge).

3. Determine a prop er v ertex-colouring of H with three colours.

4. Colour the remo v ed v ertices v 2 V ( H ) in rev erse order of their remo v al, with a

colour di�eren t from the ( � 2) neigh b ours of v .

5. Determine a 3-colouring of A ( G ) from the colouring of V ( H ).

Lemma 5.8. The gr aph H is vertex 3-c olour able in O ( n ) time.

Pr o of. If K

4

n v w is a subgraph of H for some non-adjacen t v ertices v and w , then in

an y prop er 3-colouring of V ( H ), v and w m ust receiv e the same colour, so merging

these v ertices preserv es the 3-colourabilit y of H . W e no w sho w that after rep eatedly

remo ving v ertices with degree at most t w o, and merging pairs of v ertices in a K

4

n v w

subgraph, H has maxim um degree three, and is not K

4

, so b y Bro oks' Theorem [47 ],

is 3-colourable.

F or an un balanced v ertex v , let H

v

b e the subgraph of H consisting of the v ertices

v v

A

, v v

B

and v v

C

and their inciden t edges. W e shall initially sho w that H

v

`reduces'

to a maxim um degree three subgraph.

F or a degree six un balanced v ertex v , the v ertex of H corresp onding to the sp ecial

arc v v

C

is inciden t with at most t w o (unlab elled) edges, and therefore can b e remo v ed

from H . Since a (0,6)-v ertex and a (0,5)-v ertex v b oth ha v e v v

A

and v v

B

as mo v emen t

arcs, H

v

is the same for a (0,6)-v ertex v (after remo ving v v

C

) and for a (0,5)-v ertex v

(see Figures 5.15 and 5.16). Similarly , for (1,5)- and (2,4)-v ertices, H

v

is the same as

for (1,4)- and (2,3)- v ertices resp ectiv ely . W e therefore need only consider (0,5)-, (1,4)-

or (0,4)- un balanced v ertices. Th us the result for graphs with un balanced degree six

v ertices in the v ertex ordering reduces to the result for v ertex orderings without suc h

v ertices.
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Consider a (0,5)-v ertex v . v

1

ma y b e balanced or a (1,4)-v ertex. If v

1

is balanced

then, as in Figure 5.15, v v

1

has degree t w o and can b e remo v ed. In the remaining

graph, v v

2

and v

1

v ha v e degree three.
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Figure 5.15: The subgraph H

v

for a (0,5)-v ertex or a (0,6)-v ertex v with v

1

balanced.

No w, if v

1

is a (1,4)-v ertex then, as in Figure 5.16, v v

2

and v

1

( v

1

)

1

are the non-

adjacen t v ertices in a K

4

n f e g subgraph. If w e merge these v ertices then v

1

v and

v v

1

ha v e degree t w o and can b e remo v ed. If v

2

is balanced then there is no edge

f v v

2

; v

2

( v

2

)

1

g . If v

2

is un balanced then v

2

m ust b e a (1,4)-v ertex, and therefore v

2

v

and the edge f v v

2

; v

2

v g (lab elled `r') will b e remo v ed (see Figure 5.17). In either case

v v

2

(= v

1

( v

1

)

1

) has degree three.
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Figure 5.16: The subgraph H

v

for a (0,5)-v ertex or a (0,6)-v ertex v with v

1

a (1,4)-

v ertex.

Consider a (1,4)-v ertex v , and assume that v

� 1

is not a (0,5)-v ertex with ( v

� 1

)

1

= v

(w e ha v e already considered this case). As in Figure 5.17, the v ertex v v

� 1

has degree

t w o and can b e remo v ed. v v

1

no w has degree at most three. F or a (0,4)-v ertex v , H

v

simply consists of the degree one v ertex v v

1

, whic h can b e remo v ed.

Consider a v ertex v v

j

2 V ( H ) for some j 2 f D ; E ; F g , or j 2 f A; B ; C g if v is

balanced. v v

j

is inciden t with at most t w o unlab elled edges and to at most one edge

lab elled `r'. Unless v

j

is a (0,5)- or (0,6)-v ertex and ( v

j

)

1

= v (in whic h case v v

j

is

inciden t with an edge lab elled ` �� ' and has already b een considered), v v

j

has degree at
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Figure 5.17: The subgraph H

v

of H for a (1,4)-v ertex or a (1,5)-v ertex v .

most three.

W e ha v e sho wn that all remaining v ertices in H ha v e degree at most three, and it

is easily seen that H is not K

4

, so b y Bro oks' Theorem [47 ], H is 3-colourable. The

pro of of Bro ok's Theorem due to Lo v� asz [147 ] and simpli�ed b y Bry an t [49 ] describ es

an algorithm for �nding a v ertex 3-colouring of H in O ( j E ( H ) j ) = O ( n ) time.

The 3-v ertex-colouring of H determines a 3-colouring of A ( G ). The unlab elled edges

in H ensure that at most t w o outgoing arcs at eac h v ertex v receiv e the same colour. So

the 3-colouring of H determines a p oin t-routing of G (Step 4 of Algorithm Dia gonal

La yout and Mo vement ), and hence Algorithm General Position 3-D Point-

Dra wing is applicable (Step 6 of Algorithm Dia gonal La yout and Mo vement ).

Theorem 5.4. F or a given gr aph G with maximum de gr e e six, the Dia gonal La yout

and Mo vement algorithm wil l, in O

�

n

2

�

time, determine a 4-b end 3-D ortho gonal

p oint-dr awing of G with b ounding b ox volume (4 n= 3)

3

= 2 : 37 n

3

and at most 7 m= 3

b ends. If G has maximum de gr e e �ve then the b ounding b ox has volume n

3

and e ach

e dge r oute has two b ends.

Pr o of. W e no w calculate the n um b er of b ends and the v olume of the dra wing whic h will

result when w e apply algorithm General Position 3-D Point-Dra wing . T o do so,

w e coun t the n um b er of instances of (5.1) . Supp ose the arcs

� !

v u ;

� !

v w 2 A

G

( v ) [ i ] ( u 6= w )

for some v ertex v and colour i 2 f X ; Y ; Z g . W e can assume that

� !

v u 2 f v v

A

; v v

B

; v v

C

g

and

� !

v w 2 f v v

D

; v v

E

; v v

F

g .

Supp ose

� !

v u is a mo v emen t arc. Then u is not b et w een v and w in the initial

ordering. v mo v es past u in the i -ordering, and since the mo v emen t arcs originating at

w (if an y) do not cross o v er u , w cannot mo v e past u in an y ordering. Therefore v is

b et w een u and w in the �nal i -ordering.
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Supp ose

� !

v u is neither a mo v emen t arc nor a sp ecial arc. Then v is b et w een u and

w in the initial ordering, and v do es not mo v e past u or w in an y ordering. If u mo v es

past v then it do es so in the same ordering as the colour assigned to the mo v emen t arc

� !

uv . Since f

� !

v u ;

� !

uv g 2 E ( H ) in this case,

� !

uv is not coloured i , so u do es not mo v e in the

i -ordering. Similarly w do es not mo v e in the i -ordering, and hence, v is b et w een u and

w in the i -ordering.

So, the only case where v is not b et w een u and w in the i -ordering is if

� !

v u or

� !

v w is

sp ecial. Since ev ery v ertex is inciden t to at most one sp ecial arc, ev ery instance of (5.1)

corresp onds to a unique sp ecial arc. Hence there are at most k instances of (5.1) where

k is the n um b er of sp ecial arcs, whic h is precisely the n um b er of un balanced degree six

v ertices.

No w supp ose there is an instance of (5.2) ; i.e., there is a pair of rev ersal arcs

� !

v w ;

� !

w v 2 A ( G ) receiving the same colour i ,

� !

v u 2 A

G

( v )[ i ] ( w 6= u ),

� !

w x 2 A

G

( w ) [ i ]

( v 6= x ), v is b et w een u and w in the i -ordering, and w is b et w een v and x in the

i -ordering. The `r' edges in H ensure that one of

� !

v w and

� !

w v , sa y

� !

v w , m ust b e sp ecial.

Ho w ev er, in this case v will not b e b et w een u and w in the i -ordering. So there are no

instances of (5.2) .

If k is the n um b er of sp ecial arcs then Theorem 5.1 asserts G has a 4-b end 3-D

orthogonal p oin t-dra wing with b ounding b o x v olume ( n + k = 3)

3

and 2 m + k b ends.

Since k � n the b ounding b o x v olume is at most ( n + n= 3)

3

= (4 n= 3)

3

. If d is the

a v erage degree of those v ertices without sp ecial arcs then 6 k + d ( n � k ) = 2 m and the

n um b er of b ends is 2 m + k = 2 m + (2 m � d ( n � k )) = 6 = 7 m= 3 � d ( n � k ) = 6. Since

n � k the dra wing has at most 7 m= 3 total b ends.

F or maxim um degree �v e graphs, no sp ecial arcs are in tro duced b y the algorithm

and rev ersal arcs are coloured di�eren tly , so the p oin t-routing is a 2-b end p oin t-routing.

By the same argumen t as ab o v e, if

� !

v u ;

� !

v w 2 A

G

( v ) [ i ] ( u 6= w ) then v is b et w een u and

w in the i -ordering. Hence, the conditions (5.1) and (5.2) do not o ccur. So there are

no anc hored arcs in the p oin t-dra wing pro duced. With no anc hored edge routes, no

new anc hors can b e in tro duced b y the edge crossing remo v al stage. So the crossing-free

dra wing has t w o b ends p er edge route and b ounding b o x v olume n

3

.

The 3-colouring of H tak es O ( j E ( H ) j ) = O ( n ) time, and b y Theorem 5.1, algorithm
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General Position 3-D Point-Dra wing tak es O

�

n

2

�

time, so the algorithm Dia g-

onal La yout and Mo vement tak es O

�

n

2

�

time.

Corollary 5.4. The algorithm Dia gonal La yout and Mo vement is a

7 = 6 -appr oximation algorithm for the BEND-MINIMUM GENERAL POSITION 3-D

POINT-DRA WING pr oblem.

Pr o of. Since ev ery general p osition 3-D orthogonal p oin t-dra wing has at least 2 m b ends,

and the Dia gonal La yout and Mo vement algorithm determines a general p osition

3-D orthogonal p oin t-dra wing with at most 7 m= 3 b ends, the appro ximation factor is

at most (7 m= 3) = (2 m ) = 7 = 6.

5.5 3-Bend Algorithms

W e no w consider the problem of minimising the maxim um n um b er of b ends on an y edge

route in 3-D orthogonal p oin t-dra wings. As discussed in Section 3.5.1, K

5

pro vides a

lo w er b ound of t w o for the maxim um n um b er of b ends p er edge route in 3-D orthogonal

p oin t-dra wings. Eades et al. [86 , 87 ] �rst established that ev ery maxim um degree six

graph has an orthogonal p oin t-dra wing with a maxim um of three b ends p er edge route.

Their 3-Bends algorithm is based on an arbitrary diagonal la y out of the v ertices, and a

cycle co v er decomp osition of the edges. As stated in their pap er the dra wings pro duced

ha v e 27 n

3

v olume; b y simply deleting grid-planes not con taining a v ertex or a b end the

v olume is easily seen to b e at most 8 n

3

.

The Increment al algorithm of P apak ostas and T ollis [166 , 168 ], using an ad-ho c

v ertex la y out and edge routing strategy , also pro duces orthogonal p oin t-dra wings with

at most three b ends p er edge. The v olume of the dra wings pro duced is at most 4 : 63 n

3

.

This algorithm has the adv an tage of supp orting the on-line insertion of v ertices in

constan t time.

In this section w e describ e an algorithm, whic h giv en an arbitrary 3-D general p o-

sition v ertex la y out of graph, determines a 3-b end la y out-preserving orthogonal p oin t-

dra wing. W e then presen t an algorithm, whic h is a mo di�cation of the 3-Bends al-

gorithm of Eades et al. [86 , 87 ], for pro ducing 3-D orthogonal p oin t-dra wings with
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n

3

+ O

�

n

5 = 2

�

v olume and at most three b ends p er edge. This is the b est kno wn upp er

b ound for the v olume of 3-b end 3-D orthogonal p oin t-dra wings.

5.5.1 Edge Routes

In this section w e emplo y a mo di�ed v ersion of Algorithm General Position 3-D

Point-Dra wing as the basis for our main algorithms. Giv en a maxim um degree

six graph G , a general p osition v ertex la y out and a p oin t-routing of G w e p osition the

v ertices as in Algorithm General Position 3-D Point-Dra wing , ho w ev er our algo-

rithms directly sp ecify the p ort assignmen t. W e again emplo y Algorithm Constr uct

Edge R outes , although w e only use 2-b end edge routes (see Figure 5.2) and 3-b end

edge routes with parallel p orts (see Figures 5.3(b) and 5.4). F urthermore, 3-b end edge

routes using p orts p oin ting in the same direction are constructed somewhat di�eren tly ,

as w e no w describ e.

The minimal b o x con taining all v ertices is called the inner b ox . F or eac h direction

d 2 f X

�

; Y

�

; Z

�

g , the b o x extending out from the d -face of the inner b o x is called the

d -outer b ox , as sho wn in Figure 5.18.

X

Y

Z

Y

�

-outer b o x

X

�

-outer b o x

Z

�

-outer b o x

Z

+

-outer b o x

X

+

-outer b o x

Y

+

-outer b o x

Figure 5.18: Inner and Outer Bo xes.
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2-b end edge routes and 3-b end edge routes v w using opp osite p orts at v and w are

routed en tirely within the inner b o x exactly as w as the case previously . W e call these

edge routes inner . If, for some direction d , an edge is assigned d -p orts at b oth end-

v ertices, instead of the edge route sho wn in Figure 5.3(b), w e use the edge route sho wn

in Figure 5.19, whic h is routed to a height h ( v w ) in the d -outer b o x. The algorithms

to follo w sp ecify the v alue of h ( v w ).

h ( v w )

v

w

inner b o x

Figure 5.19: Outer 3-b end edge route.

This approac h has the adv an tage that some edges routed in a particular outer

b o x can ha v e the same heigh t, th us reducing the v olume. Also, giv en a dra wing only

using the ab o v e-men tioned edge routes, w e shall pro v e that the Algorithm 5.4 Point-

Dra wing Remo ve Edge Cr ossings will not in tro duce an y 4-b end edge routes. A

disadv an tage of this approac h is that the edge routes are longer.

5.5.2 Arbitrary La y out 3-Bend Algorithm

The follo wing algorithm for pro ducing 3-b end 3-D orthogonal p oin t-dra wings whic h

preserv e a giv en general p osition v ertex la y out, is based on a cycle co v er decomp osition

of the graph. Edges in the cycle co v er C

i

, i 2 f X ; Y ; Z g , are routed using i -p orts at

b oth end-v ertices. All edges are outer 3-b end edge routes except in the case of an o dd
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cycle where one edge of the cycle is an inner 3-b end edge route. Edges in a particular

outer b o x are routed with unique heigh t.

Algorithm 5.10. General Position 3-Bend 3-D Point-Dra wing

Input : � m ultigraph G with �( G ) � 6

� general p osition 3-D v ertex la y out of V ( G )

Output : la y out-preserving 3-b end 3-D orthogonal p oin t-dra wing of G

1. Supp ose the X -, Y - and Z -v ertex orderings are ( x

1

; x

2

; : : : ; x

n

), ( y

1

; y

2

; : : : ; y

n

)

and ( z

1

; z

2

; : : : ; z

n

), resp ectiv ely .

2. F or eac h v ertex v 2 V ( G ), if v = x

i

= y

j

= z

k

then p osition v at (3 i; 3 j; 3 k ).

3. Determine a cycle co v er decomp osition C

X

, C

Y

, C

Z

of G (see Section 2.5).

4. F or eac h i 2 f X ; Y ; Z g , and for eac h cycle C = ( v

1

; v

2

; : : : ; v

k

) of C

i

:

� If k is ev en, then tra v erse the cycle and assign to eac h edge alternately the

i

+

/ i

�

p orts at b oth end-v ertices.

� If k is o dd, then assign to the edge v

k

v

1

the i -p orts at v

k

and v

1

whic h p oin t

to w ard eac h other. T ra v erse the remainder of the cycle and assign to eac h

edge alternately i

+

/ i

�

p orts at b oth end-v ertices, as sho wn in Figure 5.20.

v

k

v

1

v

2

v

3

v

k � 2

v

k � 1

(a) v

k

<

i

v

1

i

+

i

�

i

+

i

+

i

�

i

�

i

+

i

�

i

+

i

+

i

�

i

�

v

k

v

1

v

2

v

3

v

k � 2

v

k � 1

(b) v

1

<

i

v

k

i

�

i

+

i

�

i

�

i

+

i

+

i

�

i

+

i

�

i

�

i

+

i

+

Figure 5.20: P ort assignmen t for an o dd cycle in C

i

.

5. F or eac h d 2 f X

�

; Y

�

; Z

�

g , for eac h edge v w assigned d -p orts at v and w , assign

to v w a unique height h ( v w ) � 1.
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6. F or eac h edge v w 2 E ( G ) assigned d -p orts, for some direction d , at b oth v and

w , route v w with the 3-b end edge route sho wn in Figure 5.19 in the d -outer b o x.

Route edges assigned opp osite p orts as in Figure 5.4.

7. Apply Algorithm 5.4 Point-Dra wing Remo ve Edge Cr ossings .

8. Remo v e eac h grid-plane not con taining a v ertex or a b end.

Theorem 5.5. The algorithm General Position 3-Bend 3-D Point-Dra wing

determines, in O

�

n

2

�

time, a layout-pr eserving 3-D ortho gonal p oint-dr awing of G with

8 n

3

b ounding b ox volume and thr e e b ends p er e dge r oute.

Pr o of. By construction, eac h edge is assigned unique p orts at its end-v ertices, and

only 3-b end edge routes are used. W e no w pro v e that giv en a general p osition 3-D

orthogonal p oin t-dra wing only using 2-b end edge routes and 3-b end edge routes with

parallel p orts (routed as describ ed ab o v e), the algorithm Point-Dra wing Remo ve

Edge Cr ossings will not in tro duce a 4-b end edge route.

F or the edge route sho wn in Figure 5.19, b oth of the segmen ts in the outer b o x are

called midd le segmen ts. The segmen t of suc h an edge route inciden t to the end-v ertex

v is called a v -se gment .

Since middle segmen ts on outer edge routes ha v e unique heigh t, they cannot in ter-

sect. A v -segmen t parallel to the i -axis has an i -co ordinate b elonging to v and no other

v ertex, so v -segmen ts can only in tersect as in Case 1 of Algorithm 5.4 Point-Dra wing

Remo ve Edge Cr ossings . Sw apping p orts, in this case, do es not in tro duce an y new

edge route crossings, so cannot in tro duce a 4-b end edge route. Therefore the only

p ossible in tersection is b et w een the middle segmen ts of 2-b end edge routes (Case 3 of

Algorithm 5.4 Point-Dra wing Remo ve Edge Cr ossings ). Sw apping p orts remo v es

the crossing, and b oth edge routes remain t w o b end edge routes.

The inner b o x is initially 3 n � 3 n � 3 n . Ev ery edge in cycle co v er C

i

either adds

one i -plane in the outer b o x or o ccupies one of the i -planes b elonging to one of its

end-v ertices. Since there are at most m= 3 edges in eac h cycle co v er, after remo ving

grid-planes not con taining a v ertex or a b end, the b ounding b o x v olume is at most
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( n + m= 3)

3

� 8 n

3

. The most time-consuming step of the algorithm is the remo v al of

edge crossings whic h tak es O

�

n

2

�

time.

W e no w describ e a heuristic for determining sets of edge routes in the same outer b o x

whic h can b e routed with the same heigh t, th us reducing the v olume of the dra wing.

Construct a graph H with v ertex set corresp onding to the edges of G routed in a

particular outer b o x, with edges b et w een v ertices of H corresp onding to edge routes

whic h will in tersect if routed with same heigh t. Then if w e determine the heigh ts of the

edge routes from a v ertex-colouring of H , then w e obtain an in tersection-free dra wing.

In general, this metho d do es not pro vide impro v ed w orst case v olume b ounds. In the

next section w e describ e an algorithm whic h do es pro vide impro v ed v olume b ounds, b y

allo wing certain edges routed in a particular outer b o x to ha v e the same heigh t.

5.5.3 Diagonal La y out 3-Bend Algorithm

W e no w describ e a mo di�cation to the 3-Bends algorithm of Eades et al. [86 , 87 ],

whic h pro vides the b est kno wn upp er b ound for the v olume of 3-b end 3-D orthogonal

p oin t-dra wings.

Algorithm 5.11. Dia gonal General Position 3-Bend Point-Dra wing

Input : m ultigraph G with �( G ) � 6

Output : 3-b end 3-D orthogonal p oin t-dra wing of G

1. Determine a b o ok-em b edding of G using the algorithm of Malitz [151 ] (See

Section 1.3). Supp ose ( v

1

; v

2

; : : : ; v

n

) is the spine ordering, and p : E ( G ) !

f 1 ; 2 ; : : : ; P g is the page n um b ering where P = O (

p

n ).

2. Apply the 3-Bends algorithm of Eades et al. [86 , 87 ] using ( v

1

; v

2

; : : : ; v

n

) as the

ordering of the v ertices along the diagonal, and route eac h 3-b end edge route v w

as sho wn in Figure 5.19 with h ( v w ) = p ( v w ).

3. Remo v e eac h grid-plane not con taining a v ertex or a b end.
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Theorem 5.6. The algorithm Dia gonal General Position 3-Bend Point-

Dra wing determines a 3-D ortho gonal p oint-dr awing of G with n

3

+ O

�

n

5 = 2

�

b ounding

b ox volume and thr e e b ends p er e dge r oute.

Pr o of. Note that the only t yp es of edge routes used in the 3-Bends algorithm of Eades

et al. [86 , 87 ] are 2-b end edge routes and 3-b end edge routes with b oth p orts p oin ting

in the same direction. So, b y the pro of of Theorem 5.5, edge routes can only in tersect

if they are routed with the same heigh t in the same outer b o x; i.e., they are in the same

page of the b o ok em b edding. Ho w ev er, if edges routed at the same heigh t in tersect in

the outer b o x, then they w ould also in tersect in the b o ok em b edding (see Figure 5.21).

Hence there are no edge route crossings.

Figure 5.21: Edges in the same page and routed in the same outer b o x.

The b ounding b o x is ( P + n + P ) � ( P + n + P ) � ( P + n + P ). By Malitz [151 ],

P = O (

p

m ) = O (

p

n ), so the v olume is ( n + O (

p

n ) )

3

= n

3

+ O

�

n

5 = 2

�

.

5.6 Lo w er Bounds

Since ev ery edge route in a general p osition 3-D orthogonal dra wing has at least

t w o b ends, there is an ob vious lo w er b ound of 2 m for the BEND-MINIMUM GEN-

ERAL POSITION 3-D POINT-DRA WING problem. W e no w presen t in�nite families
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of graphs whic h require more than t w o b ends p er edge in an y general p osition 3-D

orthogonal p oin t-dra wing. Our results are based on the observ ation that if an edge is

routed using the X

+

p ort at the v ertex x

n

, then this edge route m ust b e anc hored, and

similarly for other `extreme' p orts, as in Figure 5.22.

�

�

�

�

�

�

Figure 5.22: Edge routes using `extreme' p orts are necessarily anc hored.

F or 6-regular graphs all p orts m ust b e used, so suc h a graph requires at least 2 m + 6

b ends in a general p osition 3-D orthogonal p oin t-dra wing. Hence the graph consisting

of some n um b er of disjoin t copies of K

7

pro vides the follo wing lo w er b ound. Note that

general p osition 3-D orthogonal p oin t-dra wings of K

7

with 2 m + 6 b ends do exist.

Lemma 5.9. Ther e exists an in�nite family of gr aphs, e ach with at le ast 2 m + 6 n= 7

b ends in any gener al p osition 3-D ortho gonal p oint-dr awing.

Note that this lo w er b ound di�ers from our upp er b ound of 7 m= 3 (see Theorem 5.4)

b y only n= 7. F or biconnected graphs w e ha v e the follo wing lo w er b ound

1

.

Lemma 5.10. Ther e exists an in�nite family of bic onne cte d gr aphs, e ach with at le ast

2 m + 4 n= 7 b ends in any gener al p osition 3-D ortho gonal p oint-dr awing.

Pr o of. Consider the 6-regular graph G

a

( a � 2) formed from a copies of K

7

n e (for

some edge e ) with a cycle added b et w een the copies, as illustrated in Figure 5.23.

Clearly G

a

is biconnected. Remo ving an edge from K

7

can sa v e at most t w o an-

c hored arcs, so a general p osition 3-D orthogonal p oin t-dra wing of K

7

n e has at least

1

This result w as disco v ered in conjunction with Therese Biedl.
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K

7

n e K

7

n e K

7

n e

� � �

8 > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > :

a copies

Figure 5.23: The graph G

a

.

2 j E ( K

7

n e ) j + 4 b ends. The `cycle' edges of G

a

eac h ha v e at least t w o b ends, so G

a

has at least 2 m + 4 n= 7 b ends.

Lemma 5.11. Ther e exists an in�nite family of 4-c onne cte d gr aphs, e ach with at le ast

2 m + 2 n= 7 b ends in any gener al p osition 3-D ortho gonal p oint-dr awing.

Pr o of. Consider the 6-regular graph G

a;b

( a; b � 2) formed from the a � b 4-regular

`torus grid' graph replacing eac h v ertex b y K

7

n f e

1

; e

2

g (for some non-inciden t edges

e

1

, e

2

), as sho wn in Figure 5.24.

Remo ving an y three v ertices from G

a;b

cannot disconnect the graph, but remo ving

four v ertices can, so G

a;b

is 4-connected. Remo ving t w o edges from K

7

can sa v e at most

four anc hored arcs, so a general p osition 3-D orthogonal p oin t-dra wing of K

7

n f e

1

; e

2

g

has at least 2 j E ( K

7

n f e

1

; e

2

g ) j + 2 b ends. Edges not in a K

7

n f e

1

; e

2

g ha v e at least

t w o b ends, so G

a;b

has at least 2 m + 2 n= 7 b ends.

This sequence of lo w er b ounds suggests the follo wing op en problem.

Op en Problem 5.1. Do es ev ery 6-connected 6-regular graph ha v e a general p osition

3-D orthogonal p oin t-dra wing with at most 2 m + 6 b ends?

5.6.1 2-Bends Problem

W e no w lo ok at the rami�cations of the ab o v e lo w er b ounds for the 2-b ends problem

discussed in Section 3.5.1. Edge routes with at most t w o b ends can b e classi�ed as

0-b end, 1-b end, 2-b end planar or 2-b end non-planar, as illustrated in Figure 5.25.

Lemma 5.12. Supp ose in a given 2-b end 3-D ortho gonal p oint-dr awing of an m -e dge

gr aph G the numb er of 0-b end e dge r outes is k

0

and the numb er of 2-b end planar e dge
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Figure 5.24: The graph G

a;b

.

v w

(a) 0-b end

v

w

(b) 1-b end

v

w

(c) 2-b end

planar

v

w

(d) 2-b end

planar

v

w

(e) 2-b end

non-planar

Figure 5.25: Edge routes v w with at most t w o b ends.
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r outes is k

2

. Then ther e exists a gener al p osition 3-D ortho gonal p oint-dr awing of G

with 2 m + k

0

+ k

2

b ends.

Pr o of.

2

W e no w sho w that b y inserting planes and adding b ends to the edge routes that

the giv en 2-b end dra wing can b e transformed in to a dra wing with a general p osition

v ertex la y out and the stated n um b er of b ends.

Consider a grid-plane P con taining k v ertices ( k > 1). As illustrated in Figure 5.26,

replace the plane b y k adjacen t planes, and p osition eac h of the k v ertices in a unique

plane.

a

b

d

c

= )

a

b

c

d

Figure 5.26: Remo ving a plane con taining man y v ertices.

A 0-b end edge route is split in the middle and replaced b y the 2-b end planar edge

route sho wn in Figure 5.25(c). (If the 0-b end edge has length one then an extra plane

p erp endicular to the original plane is also inserted.)

Edge segmen ts from an edge with at least one b end and inciden t to a v ertex v are

routed in the plane con taining v . F or a 1-b end edge route v w in the original plane, an

extra segmen t is inserted p erp endicular to P , running b et w een the planes con taining v

and w . Hence v w is replaced b y a 2-b end non-planar edge route.

F or a 2-b end edge route v w in the original plane, the middle segmen t of v w is routed

arbitrarily in the plane con taining v or w , and a third segmen t is inserted p erp endicular

2

This pro of w as dev elop ed in conjunction with An tonios Sym v onis.
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to P , running b et w een the planes con taining v and w . Hence v w is replaced b y a 3-b end

non-planar edge route.

F or a 2-b end non-planar edge route v w inciden t to one of the k v ertices, the segmen t

of v w p erp endicular to P is extended in the ob vious manner. Similarly , an edge passing

through the original plane and not inciden t to an y of the k v ertices, is extended so that

it passes through all k planes.

This pro cess is con tin ued un til there are no grid-planes con taining more than one

v ertex. Note that a 0-b end edge route will �rstly b e replaced b y a 2-b end planar edge,

and in a second transformation will b e replaced b y a 3-b end edge route (as sho wn

in Figure 5.26 for edge ab ). The resulting dra wing has no crossings, has a general

p osition v ertex la y out, and ev ery edge has t w o b ends except for the 0-b end and 2-b end

planar edge routes in the original dra wing, whic h no w ha v e three b ends. Hence the

new dra wing has 2 m + k

0

+ k

2

b ends.

Corollary 5.5. Ther e exists an in�nite family of 6-r e gular n -vertex gr aphs, such that

in any 2-b end 3-D ortho gonal p oint-dr awing of any one of the gr aphs, k

0

+ k

2

� 6 n= 7 .

Pr o of. By Lemma 5.9, there exists an in�nite family of graphs, eac h with at least

2 m + 6 n= 7 b ends in an y general p osition 3-D orthogonal p oin t-dra wing. If there is a

2-b end p oin t-dra wing of suc h a graph, then b y Lemma 5.12 there is exists a general

p osition p oin t-dra wing with 2 m + k

0

+ k

2

b ends. Hence 2 m + k

0

+ k

2

� 2 m + 6 n= 7, so

k

0

+ k

2

� 6 n= 7.

The follo wing t w o results are obtained using the same argumen t applied with Lem-

mas 5.10 and 5.11, resp ectiv ely .

Corollary 5.6. Ther e exists an in�nite family of 6-r e gular bic onne cte d n -vertex gr aphs,

such that in any 2-b end 3-D ortho gonal p oint-dr awing of any one of the gr aphs, k

0

+ k

2

�

4 n= 7 .

Note that a 1-factor has n= 2 edges, and n= 2 < 4 n= 7, so there exists biconnected

graphs for whic h an y 2-b end 3-D orthogonal p oin t-dra wing has more than a 1-factor of

0-b end and 2-b end planar edge routes.
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Corollary 5.7. Ther e exists an in�nite family of 6-r e gular 4-c onne cte d n -vertex gr aphs,

such that in any 2-b end 3-D ortho gonal p oint-dr awing of any one of the gr aphs, k

0

+ k

2

�

2 n= 7 .



Chapter 6

The General P osition Mo del for

Tw o-Dimensional Orthogonal

Bo x-Dra wing

In this chapter we pr esent algorithms for pr o ducing 2-D ortho gonal b ox-

dr awings which establish impr ove d de gr e e-r estriction r esults c omp ar e d to ex-

isting algorithms. The metho ds and r esults pr esente d in this chapter wer e

publishe d in Wo o d [221 ].

A 2-D orthogonal graph dra wing is said to b e in the gener al p osition mo del if no t w o

v ertices are in tersected b y a single grid-line. W e call suc h a dra wing a gener al p osition

2-D orthogonal dra wing. This c hapter, whic h describ es algorithms for pro ducing gen-

eral p osition 2-D orthogonal dra wings, is organised as follo ws. In Section 6.1 w e presen t

a framew ork for the main algorithms to follo w. As discussed in Section 3.4.4 w e classify

suc h algorithms as layout- or r outing-b ase d . Section 6.2 describ es our la y out-based al-

gorithm. The v ertex la y out algorithm is based on metho ds dev elop ed in Chapter 4 for

the balanced v ertex ordering problem. The arc-routing algorithm, whic h can b e applied

to an arbitrary general p osition 2-D v ertex la y out, constructs and colours the v ertices

of a certain graph. The dra wings pro duced ha v e the smallest kno wn degree-restriction

b ound for b ounded asp ect ratio dra wings. This strategy is generalised to a m ulti-

dimensional setting in Chapter 7. Routing-based approac hes to 2-D general p osition

126



CHAPTER 6. GENERAL POSITION 2-D BO X-DRA WING 127

b o x-dra wing are giv en b y P apak ostas and T ollis [164 , 169 ] and Biedl and Kaufmann

[30 ].

6.1 Represen tation

Consider a general p osition 2-D orthogonal b o x-dra wing of a graph G . Since no t w o

v ertices share a common co ordinate, this dra wing induces X - and Y -v ertex orderings

of G , represen ting the relativ e co ordinates of the v ertices. The assignmen t of p orts to

edge routes induces a (non-prop er) 2-colouring of A ( G ), where an arc

� !

v w 2 A ( G ) is

coloured i 2 f X ; Y g if the edge route v w uses an i -p ort at v .

Since eac h pair of v ertices di�er in b oth co ordinates, an edge route has at least one

b end. Our algorithms use exactly one b end p er edge route. The p orts used b y a 1-b end

edge route m ust b e p erp endicular and p oin t to w ard the other v ertex (see Figure 6.1);

i.e., rev ersal arcs are coloured di�eren tly . W e therefore represen t a general p osition 2-D

orthogonal b o x-dra wing of G b y:

� A ( 2-D gener al p osition ) vertex layout consisting of v ertex orderings ( <

X

; <

Y

) of

G , whic h represen t the relativ e co ordinates of the v ertices in eac h dimension.

� A ( 2-D gener al p osition ) ar c-r outing of G consisting of a 2-colouring of A ( G ) suc h

that for ev ery edge v w 2 E ( G ), the rev ersal arcs

� !

v w 2 A ( G ) and

� !

w v 2 A ( G ) are

coloured di�eren tly

1

.

In the X -ordering a predecessor (resp ectiv ely , successor) arc of a v ertex v is called

a X -pr e de c essor ( X -suc c essor ) ar c of v . W e denote the n um b er of predecessor and

successor arcs of v in the X -ordering b y p

X

( v ) and s

X

( v ) resp ectiv ely . The cost of a

v ertex v 2 V ( G ) in the X -ordering, de�ned in Section 4.1 to b e j s

X

( v ) � p

X

( v ) j , is

denoted b y c

X

( v ). Similarly de�nitions are made for the Y -ordering.

F or eac h v ertex v 2 V ( G ) and direction d 2 f� X ; � Y g , the set of outgoing arcs

� !

v w 2 A ( G ) with w in direction d from v , is denoted b y A

G

( v ) h d i . W e represen t a

1

A 2-D arc-routing can simply b e represen ted b y an orien tation of the edges. F or an edge v w

orien ted from v to w , the arcs

� !

v w and

� !

w v are coloured X and Y , resp ectiv ely . This is the approac h

tak en b y Biedl and Kaufmann [30 ]. W e use the 2-colouring represen tation for consistency with our

represen tation for m ulti-dimensional arc-routings used in Chapters 5 and 7.
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3 � 3

3 � 2

3 � 2

Figure 6.1: 2-D 1-b end edge routes

quadran t relativ e to v b y the corresp onding pair of non-opp osite directions. The set of

arcs

� !

v w 2 A ( G ) with w in some quadran t Q relativ e to v is denoted b y A

G

( v ) h Q i ; i.e.,

A

G

( v ) h Q i =

\

d 2 Q

A

G

( v ) h d i :

Using the notation in tro duced in Section 2.1, for some dimension i 2 f X ; Y g ,

A

G

( v ) h i

�

i i refers to the arcs in A

G

( v ) h i

�

i coloured i . If an arc v w 2 A

G

( v ) h X

�

i X ,

for example, then the edge route v w will lea v e v on the left. A v ertex v clearly m ust

ha v e width at least

M

X

( v ) = max

n

�

�

A

G

( v )




Y

+

�

[ Y ]

�

�

;

�

�

A

G

( v )




Y

�

�

[ Y ]

�

�

o

;

and heigh t

M

Y

( v ) = max

n

�

�

A

G

( v )




X

+

�

[ X ]

�

�

;

�

�

A

G

( v )




X

�

�

[ X ]

�

�

o

:

W e no w presen t an algorithm, whic h giv en a 2-D general p osition v ertex la y out and

arc-routing of a graph G , determines a general p osition 2-D orthogonal b o x-dra wing of

G . This algorithm will form the �nal step in our graph dra wing algorithms to follo w.

Algorithm 6.1. General Position 2-D Bo x-Dra wing

Input : � graph G

� 2-D general p osition v ertex la y out of V ( G )

� 2-D general p osition arc-routing of A ( G )

Output : general p osition 2-D b o x-dra wing of G
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1. Represen t eac h v ertex v 2 V ( G ) b y a M

X

( v ) � M

Y

( v ) rectangle with maxim um

corner at

0

@

X

w �

X

v

M

X

( w ) ;

X

w �

Y

v

M

Y

( w )

1

A

:

2. F or eac h v ertex v 2 V ( G ) and i 2 f X ; Y g , assign p orts on the ( � i )-face of v to the

arcs

� !

v w 2 A

G

( v ) h i

�

i [ i ] . T o reduce the n um b er of crossings w e assign particular

p orts on v to these arcs in order of the distance from v to w in the i -ordering, as

illustrated in Figure 6.2.

X

Y

�

A

f

X

+

;Y

+

g

( v )[ X ]

�

A

f

X

+

;Y

�

g

( v )[ X ]

n

A

f

X

�

;Y

+

g

( v )[ X ]

8

>

<

>

:

A

f

X

�

;Y

�

g

( v )[ X ]

9 > = > ;

A

f

X

�

;Y

+

g

( v )[ Y ]

�

A

f

X

+

;Y

+

g

( v )[ Y ]

�

A

f

X

�

;Y

�

g

( v )[ Y ]

8 > < > :

A

f

X

+

;Y

�

g

( v )[ Y ]

v

Figure 6.2: P ort assignmen ts at a v ertex v .

3. F or eac h edge v w 2 E ( G ), if the arcs

� !

v w and

� !

w v ha v e b een assigned an X -p ort

and a Y -p ort at v and at w with co ordinates of ( x

v

; y

v

) and ( x

w

; y

w

) resp ectiv ely ,

then the edge v w is routed from v to w with one b end as follo ws.

( x

v

; y

v

) ! ( x

w

; y

v

) ! ( x

w

; y

w

)

The next result follo ws immediately from the ab o v e construction.

Lemma 6.1. The algorithm General Position 2-D Bo x-Dra wing determines a
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gener al p osition 2-D ortho gonal b ox-dr awing of G with b ounding b ox

 

X

v

M

X

( v )

!

�

 

X

v

M

Y

( v )

!

:

Each vertex v has surfac e

2 ( M

X

( v ) + M

Y

( v )) :

6.2 La y out-Based Approac h

In a 2-D general p osition v ertex la y out of a graph G , the cost of a v ertex v 2 V ( G ) is

de�ned to b e the a v erage

2

cost of v o v er the X - and Y -orderings; i.e.,

c ( v ) =

1

2

( c

X

( v ) + c

Y

( v )) :

W e are in terested in the follo wing problem.

Problem 6.1. 2-D GENERAL POSITION VER TEX LA YOUT

Instanc e : Graph G , in teger K � 0.

Question : Do es G ha v e a 2-D general p osition v ertex la y out with max

v

c ( v ) � K ?

W e conjecture that this problem is NP-complete. In Section 6.2.3, w e pro vide an

algorithm whic h determines a v ertex la y out with a tigh t b ound on max

v

c ( v ).

6.2.1 Arc-Routing Algorithm

The follo wing algorithm, giv en an arbitrary 2-D general p osition v ertex la y out of a graph

G , determines a 2-D general p osition arc-routing of G . T o represen t the colouring of

A ( G ) w e v ertex-colour a graph H with v ertex set V ( H ) = A ( G ).

Algorithm 6.2. 2-D General Position Ar c-R outing

Input : 2-D general p osition v ertex la y out of a graph G .

Output : 2-D general p osition arc-routing of A ( G ).

2

W e use the `a v erage' here rather than the `sum' since this de�nition will b e extended to a m ulti-

dimensional setting in Chapter 7.
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1. F or eac h edge v w 2 E ( G ), add the edge f v w ; w v g to E ( H ) (called an r -e dge ).

2. F or eac h v ertex v 2 V ( G ) and for eac h quadran t Q relativ e to v ,

(a) Arbitrarily partition the arcs in A

G

( v ) h Q i in to pairs

f

� !

v u

1

;

� � !

v w

1

g ; : : : ; f

� !

v u

k

;

� � !

v w

k

g , with at most one leftover arc in A

G

( v ) h Q i not

included in a pair.

(b) Add an edge (called a q -e dge ) to E ( H ) b et w een the v ertices corresp onding

to the arcs

� !

v u

j

and

� !

v w

j

, 1 � j � k .

3. Split those v ertices in v 2 V ( G ) with at least three lefto v er arcs in A

G

( v ) in to

t w o groups V

X

and V

Y

of equal size (or di�ering b y one).

4. F or eac h v ertex v 2 V ( G ):

(a) If there are exactly t w o lefto v er arcs

� !

v u ;

� !

v w 2 A

G

( v ) then add an edge (called

an l -edge) b et w een the v ertices in H corresp onding to

� !

v u and

� !

v w .

(b) If v 2 V

i

( i 2 f X ; Y g ) has exactly three lefto v er arcs then add an edge, called

an l -edge, b et w een the v ertices of H corresp onding to the t w o lefto v er arcs at

v whic h are b oth i -successor arcs or b oth i -predecessor arcs (see Figure 6.3).

(c) If v 2 V

i

( i 2 f X ; Y g ) has four lefto v er arcs then add edges (called l -edges)

b et w een the v ertices of H corresp onding to the t w o lefto v er i -successor arcs

of v , and b et w een the v ertices of H corresp onding to the t w o lefto v er i -

predecessor arcs of v (see Figure 6.3).

5. Determine a 2-colouring of A ( G ) from a v ertex-colouring of H with t w o colours.

Lemma 6.2. The algorithm 2-D General Position Ar c-R outing determines a

2-D gener al p osition ar c-r outing of G in O ( m + n ) time such that for e ach vertex v ,

2( M

X

( v ) + M

Y

( v )) � deg ( v ) + c ( v ) + 4 ;
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(a) v 2 V

X

X

Y

v

(b) v 2 V

Y

X

Y

v

Figure 6.3: Connecting lefto v er arcs at v .

and for e ach i 2 f X ; Y g ,

X

v

M

i

( v ) �

m

2

+

1

4

 

3 n + 1 +

X

v

c

i

( v )

!

:

Pr o of. A cycle in H consists of alternating r - and ( q - or l -) edges and is therefore of

ev en length. So H is bipartite, and a 2-colouring of H can b e computed in O ( j E ( H ) j ) =

O ( m ) time, th us determining a 2-colouring of A ( G ). Since the v ertices corresp onding to

rev ersal arcs

� !

v w and

� !

w v are adjacen t in H , this 2-colouring of A ( G ) is a 2-D arc-routing

of A ( G ).

F or eac h quadran t q relativ e to a v ertex v and in eac h pair of the partition of

A

G

( v ) h Q i , the arcs

� !

v u

i

and

� !

v w

i

are coloured di�eren tly , so w e ha v e the follo wing

b ounds on, for example, the n um b er of X -successor arcs

� !

v w coloured X .

$

�

�

A

G

( v ) hf X

+

; Y

+

g i

�

�

2

%

+

$

�

�

A

G

( v ) hf X

+

; Y

�

g i

�

�

2

%

�

�

�

A

G

( v )




X

+

�

X

�

�

�

&

�

�

A

G

( v ) h f X

+

; Y

+

g i

�

�

2

'

+

&

�

�

A

G

( v ) h f X

+

; Y

�

gi

�

�

2

'

:

So,

s

X

( v )

2

� 1 �

�

�

A

G

( v )




X

+

�

X

�

�

�

s

X

( v )

2

+ 1 :

Similarly , w e ha v e the follo wing b ound on the n um b er of X -predecessor arcs coloured
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X .

p

X

( v )

2

� 1 �

�

�

A

G

( v )




X

�

�

X

�

�

�

p

X

( v )

2

+ 1 :

Recall that M

Y

( v ) = max fj A

G

( v ) h X

+

i X j ; j A

G

( v ) h X

�

i X jg . So

1

2

max f s

X

( v ) ; p

X

( v ) g � 1 � M

Y

( v ) �

1

2

max f s

X

( v ) ; p

X

( v ) g + 1

1

4

(deg ( v ) + c

X

( v )) � 1 � M

Y

( v ) �

1

4

( deg ( v ) + c

X

( v )) + 1 (b y (4.1) )

Using the same argumen t for the n um b er of Y -successors and Y -predecessors coloured

Y , for eac h i; j 2 f X ; Y g ( i 6= j ),

1

4

( deg ( v ) + c

j

( v )) � 1 � M

i

( v ) �

1

4

(deg ( v ) + c

j

( v )) + 1 : (6.1)

So

2 ( M

X

( v ) + M

Y

( v )) � 2

�

1

4

(2 deg ( v ) + c

X

( v ) + c

Y

( v )) + 2

�

= deg ( v ) +

c

X

( v ) + c

Y

( v )

2

+ 4

= deg ( v ) + c ( v ) + 4 :

No w, in eac h quadran t relativ e to a v ertex v , there is at most one lefto v er arc at v .

A v ertex v with at most t w o lefto v er arcs has, for eac h i 2 f X ; Y g ,

M

i

( v ) �

�

max f s

i

( v ) ; p

i

( v ) g

2

�

:

A v ertex v 2 V

i

with at least three lefto v er arcs has

M

i

( v ) �

�

max f s

i

( v ) ; p

i

( v ) g

2

�

, and

M

j

( v ) �

max f s

j

( v ) ; p

j

( v ) g

2

+ 1 ( j 6= i; j 2 f X ; Y g ) :

So, for eac h i 2 f X ; Y g ,

X

v

M

i

( v ) =

X

v 62 V

j

M

i

( v ) +

X

v 2 V

j

M

i

( v )

�

X

v 62 V

j

max f s

i

( v ) ; p

i

( v ) g + 1

2

+

X

v 2 V

j

�

max f s

j

( v ) ; p

j

( v ) g

2

+ 1

�

=

n

2

+

j V

j

j

2

+

X

v

max f s

i

( v ) ; p

i

( v ) g

2
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=

n

2

+

d n= 2 e

2

+

X

v

deg ( v ) + c

i

( v )

4

(b y (4.1) )

�

n

2

+

n + 1

4

+

m

2

+

X

v

c

i

( v )

4

�

m

2

+

1

4

 

3 n + 1 +

X

v

c

i

( v )

!

:

6.2.2 Fixed V ertex La y out Dra wings

W e no w deriv e results for a �xed general p osition v ertex la y out.

Algorithm 6.3. Fixed General Position 2-D Bo x-Dra wing

Input : � graph G

� 2-D general p osition v ertex la y out of V ( G )

Output : la y out-preserving 2-D orthogonal b o x-dra wing of G .

1. Determine an arc-routing with Algorithm 6.2 2-D General Position Ar c-

R outing .

2. Apply Algorithm 6.1 General Position 2-D Bo x-Dra wing .

Theorem 6.1. F or an arbitr ary 2-D gener al p osition vertex layout, A lgorithm Fixed

General Position 2-D Bo x-Dra wing determines a 2-D ortho gonal b ox-dr awing of

G in O ( m + n ) time such that:

� Each e dge r oute has 1 b end.

� Each vertex is 2-de gr e e-r estricte d.

� The asp e ct r atio of a vertex v is at most 2 + o (deg ( v )) .

� The b ounding b ox is at most

�

m +

3 n + 1

4

�

�

�

m +

3 n + 1

4

�

:
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Pr o of. By Lemma 6.2, for ev ery v ertex v ertex v , surface ( v ) � deg ( v ) + c ( v ) + 4. Since

c ( v ) � deg ( v ), v is 2-degree-restricted.

F or eac h i 2 f X ; Y g , 0 � c

i

( v ) � deg ( v ), so b y (6.1) ,

1

4

deg ( v ) � 1 � M

i

( v ) �

1

2

deg ( v ) + 1 : (6.2)

Hence,

max

�

M

X

( v )

M

Y

( v )

;

M

Y

( v )

M

X

( v )

�

�

deg ( v ) = 2 + 1

deg ( v ) = 4 � 1

= 2 + o (deg ( v ))

So v has asp ect ratio at most 2 + o (deg ( v )) . The b ounding b o x is

 

X

v

M

X

( v )

!

�

 

X

v

M

Y

( v )

!

Since c

i

( v ) � deg ( v ) and b y Lemma 6.2, the b ounding b o x is

 

m

2

+

1

4

 

3 n + 1 +

X

v

deg ( v )

! !

�

 

m

2

+

1

4

 

3 n + 1 +

X

v

deg ( v )

! !

=

�

m +

3 n + 1

4

�

�

�

m +

3 n + 1

4

�

:

6.2.3 Balanced V ertex La y out Dra wings

W e no w describ e ho w the metho ds dev elop ed for the balanced ordering problem in

Section 4.3 can b e applied to �nd `balanced' 2-D general p osition v ertex la y outs. By

balanced w e mean that there is an upp er b ound on the cost c ( v ) for eac h v ertex v .

The follo wing algorithm, whic h is similar to the v ertex la y out tec hnique of Biedl and

Kaufmann [30 ], is illustrated in Figure 6.4.
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Algorithm 6.4. Balanced 2-D General Position Ver tex La yout

Input : graph G .

Output : 2-D general p osition v ertex la y out of G .

1. Determine an arbitrary v ertex ordering ( v

1

; v

2

; : : : ; v

n

) of G .

2. Determine the X -ordering using Algorithm 4.1 Median Pla cement Ordering

with insertion ordering ( v

1

; v

2

; : : : ; v

n

).

3. Determine the Y -ordering using Algorithm 4.1 Median Pla cement Ordering

with insertion ordering ( v

n

; v

n � 1

; : : : ; v

1

).

v

1

v

3

v

5

v

6

v

4

v

2

Figure 6.4: Balanced 2-D v ertex la y out of K

6

.

Theorem 6.2. The algorithm Balanced 2-D General Position Ver tex La yout

determines a 2-D gener al p osition vertex layout of G in O ( m + n ) time such that for

e ach vertex v ,

c ( v ) � 1 +

1

2

deg ( v ) :

Pr o of. F or eac h v ertex v , b y Lemma 4.3 concerning the p erformance of the algorithm

Median Pla cement Ordering with arbitrary insertion orderings, c

X

( v ) � s ( v ) + 1

and c

Y

( v ) � p ( v ) + 1, where s ( v ) and p ( v ) are the n um b er of successors and predecessors

of v resp ectiv ely in the v ertex ordering ( v

1

; v

2

; : : : ; v

n

). So c ( v ) � ( s ( v ) + p ( v ) + 2) = 2 =

deg ( v ) = 2 + 1.
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Note that the ab o v e b ound is tigh t up to the additiv e constan t, since an extremal

v ertex in the X -ordering has c

X

( v ) = deg ( v ), so c ( v ) � deg ( v ) = 2. W e no w presen t

our algorithm for 2-D orthogonal b o x-dra wing using a balance general p osition v ertex

la y out.

Algorithm 6.5. Balanced General Position 2-D Bo x-Dra wing

Input : graph G .

Output : 2-D orthogonal b o x-dra wing of G .

1. Determine a general p osition v ertex la y out with Algorithm 6.4 Balanced 2-D

General Position Ver tex La yout .

2. Determine an arc-routing with Algorithm 6.2 2-D General Position Ar c-

R outing .

3. Apply Algorithm 6.1 General Position 2-D Bo x-Dra wing .

Theorem 6.3. The algorithm Balanced General Position 2-D Bo x-Dra wing

determines a 2-D ortho gonal b ox-dr awing of G in O ( m + n ) time such that:

� Each e dge r oute has 1 b end.

� Each vertex is

3

2

-de gr e e-r estricte d.

� The asp e ct r atio of a vertex v is 2 + o ( deg ( v )) .

� The b ounding b ox ar e a is

�

3 m +4 n +2

4

�

�

�

3 m +4 n +2

4

�

.

Pr o of. F or an y v ertex v , b y Lemma 6.2, surface ( v ) = 2( M

X

( v ) + M

Y

( v )) � deg ( v ) +

c ( v ) + 4. By Theorem 6.2, in a 2-D balanced v ertex la y out, for ev ery v ertex v 2 V ( G ),

c ( v ) � 1 + deg ( v ) = 2. So surface ( v ) �

3

2

deg ( v ) + 5, and eac h v ertex is 3 = 2-degree-

restricted. By Lemma 6.2, the b ounding b o x is

 

X

v

M

X

( v )

!

�

 

X

v

M

Y

( v )

!
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�

 

1

4

X

v

c

X

( v ) +

m

2

+

3 n + 1

4

!

�

 

1

4

X

v

c

Y

( v ) +

m

2

+

3 n + 1

4

!

:

The X - and Y -orderings are determined b y algorithm Median Pla cement Order-

ing , so b y Corollary 4.1, the b ounding b o x is at most

�

m + n

4

+

m

2

+

3 n + 1

4

�

�

�

m + n

4

+

m

2

+

3 n + 1

4

�

=

�

3 m + 4 n + 2

4

�

�

�

3 m + 4 n + 2

4

�

:

6.2.4 Diagonal V ertex La y out Dra wings

W e no w presen t an algorithm for pro ducing 2-D orthogonal square-dra wings using a

diagonal la y out.

Algorithm 6.6. Dia gonal General Position 2-D Square-Dra wing

Input : graph G .

Output : 2-D orthogonal square-dra wing of G .

1. Determine a 2-D diagonal la y out of G with the corresp onding v ertex ordering

determined b y Algorithm 4.1 Median Pla cement Ordering (with insertion

ordering determined b y Algorithm 4.2 Inser tion Ordering ).

2. Determine a 2-D arc-routing with Algorithm 6.2 2-D General Position Ar c-

R outing .

3. Apply Algorithm 6.1 General Position 2-D Bo x-Dra wing .

Theorem 6.4. The algorithm Dia gonal General Position 2-D Square-Dra wing

determines a diagonal layout 2-D squar e-dr awing in O ( m + n ) time such that:

� Each e dge r oute has one b end.

� Each vertex is 2 -de gr e e-r estricte d.



CHAPTER 6. GENERAL POSITION 2-D BO X-DRA WING 139

� The b ounding b ox volume is

�

3 m

4

+

5 n

8

�

�

�

3 m

4

+

5 n

8

�

Pr o of. W e represen t a v ertex v b y the max f M

X

( v ) ; M

Y

( v ) g � max f M

X

( v ) ; M

Y

( v ) g

square. Algorithm 2-D General Position Ar c-R outing determines a 2-D arc-

routing suc h that,

M

X

( v ) ; M

Y

( v ) �

�

max f s ( v ) ; p ( v ) g

2

�

:

Hence

surface ( v ) = 4

�

max f s ( v ) ; p ( v ) g

2

�

� 2 ( max f s ( v ) ; p ( v ) g + 1)

� 2 deg ( v ) + 2 :

So eac h v ertex v is 2-degree-restricted. The b ounding b o x side length is at most

X

v

�

max f s ( v ) ; p ( v ) g

2

�

�

X

v

�

1

2

( max f s ( v ) ; p ( v ) g + 1)

�

�

1

2

�

3 m

2

+

n

4

+ n

�

(b y Theorem 4.2)

�

3 m

4

+

5 n

8

:

The b ounding b o x v olume b ound follo ws.



Chapter 7

The General P osition Mo del for

Multi-Dimensional Orthogonal

Bo x-Dra wing

In this chapter we pr esent and analyse algorithms for pr o ducing gener al

p osition D -dimensional ortho gonal b ox-dr awings ( D � 3 ) of arbitr ary de gr e e

gr aphs. F or D = 3 , our r esults establish impr ove d b ounds for the de gr e e-

r estriction of vertic es. This chapter was publishe d in Wo o d [222 ].

A D -dimensional orthogonal dra wing is in the gener al p osition mo del , called a gen-

er al p osition orthogonal dra wing, if no t w o v ertices are in tersected b y a single ( D � 1)-

dimensional grid-h yp erplane. This c hapter presen ts algorithms for determining general

p osition D -dimensional orthogonal dra wings, for some constan t D � 3. These algo-

rithms generalise those for general p osition 2-D orthogonal b o x-dra wing presen ted in

Chapter 6.

This c hapter is organised as follo ws. Section 7.1 pro vides a framew ork for the

dev elopmen t of the main algorithms to follo w. As discussed in Section 3.4.4, algorithms

for general p osition orthogonal graph dra wing can b e classi�ed as la y out- or routing-

based. W e presen t la y out-based algorithms in Section 7.2 and a routing-based algorithm

for general p osition 3-D dra wing in Section 7.3.

140
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7.1 F ramew ork

Consider a general p osition D -dimensional orthogonal dra wing of a graph G . Since no

t w o v ertices share a common co ordinate, this dra wing induces D v ertex orderings of G ,

represen ting the relativ e co ordinates of the v ertices in eac h dimension. The assignmen t

of p orts to edge routes, induces a (non-prop er) D -colouring of A ( G ), where an arc

� !

v w 2 A ( G ) is coloured i 2 f 1 ; 2 ; : : : ; D g if the edge route v w uses an i -p ort at v . Since

eac h pair of v ertices di�er in all D co ordinates, eac h edge route has at least D � 1 b ends.

The p orts used b y a ( D � 1)-b end edge route m ust b e p erp endicular and p oin t to w ard

the other v ertex, as in Figure 7.1, so for eac h edge v w the rev ersal arcs

� !

v w ;

� !

w v 2 A ( G )

are coloured di�eren tly .

Figure 7.1: ( D � 1)-b end edge routes in D = 3 dimensions.

W e therefore represen t a general p osition D -dimensional orthogonal dra wing of G

b y:

� A ( D -dimensional gener al p osition) vertex layout of V ( G ), consisting of D v ertex

orderings ( <

1

; <

2

; : : : ; <

D

) of G . W e call <

i

, 1 � i � D , the i -or dering of the

la y out, and for D = 3 w e will refer to the 1-, 2-, and 3-orderings as the X -, Y -

and Z -orderings.

� A ( D -dimensional gener al p osition) ar c-r outing of A ( G ), consisting of a D -colouring

of A ( G ) suc h that for eac h edge v w 2 E ( G ) the rev ersal arcs

� !

v w ;

� !

w v 2 A ( G ) are

coloured di�eren tly .
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Consider a D -dimensional general p osition v ertex la y out of a graph G . In eac h

i -ordering, 1 � i � D , a predecessor (resp ectiv ely , successor) arc of a v ertex v is called

an i -pr e de c essor ( i -suc c essor ) ar c of v (see Section 4.1). W e denote the n um b er of

predecessor and successor arcs of v in the i -ordering b y p

i

( v ) and s

i

( v ), resp ectiv ely . The

cost of a v ertex v 2 V ( G ) in the i -ordering, de�ned in Chapter 4 to b e j s

i

( v ) � p

i

( v ) j , is

denoted c

i

( v ). The c ost of v is de�ned to b e the a v erage cost of v o v er the D orderings;

i.e.,

c ( v ) =

1

D

X

1 � i � D

c

i

( v )

The follo wing problem is of in terest.

Problem 7.1. D -DIMENSIONAL GENERAL POSITION VER TEX LA Y-

OUT

Instanc e : graph G , in teger K � 0.

Question : Do es G ha v e a D -dimensional general p osition v ertex la y out with c ( v ) � K

for ev ery v ertex v 2 V ( G )?

W e conjecture that this problem is NP-complete. In Section 7.2.3 w e pro vide lo w er

and upp er b ounds for this problem. The metho ds to b e describ ed in this section are

summarised in the follo wing algorithm.

Algorithm 7.1. D -Dimensional General Position Bo x-Dra wing

Input : � graph G

� D -dimensional general p osition v ertex la y out of V ( G )

� D -dimensional general p osition arc-routing of A ( G )

Output : general p osition D -dimensional b o x-dra wing of G

1. F or eac h v ertex v 2 V ( G ), determine the size �

1

( v ) � �

2

( v ) � � � � � �

D

( v ) of the

b o x represen ting v (see Section 7.1.1).

2. P osition eac h v ertex v 2 V ( G ) at the grid-p oin t with maxim um i -co ordinate of

X

w � v

�

i

( w ) :
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Note that the b ounding b o x has size

 

X

v

�

1

( v )

!

�

 

X

v

�

2

( v )

!

� � � � �

 

X

v

�

D

( v )

!

:

3. Assign p orts to edges, as describ ed in Section 7.1.2. (An arc

� !

v w 2 A

G

( v )[ i ] will

b e assigned a p ort on the i -face of v p oin ting to w ards w .)

4. F or eac h edge v w 2 E ( G ) construct a ( D � 1)-b end edge route as follo ws. Supp ose

the arc

� !

v w 2 A ( G ) is coloured i 2 f 1 ; 2 ; : : : ; D g and its rev ersal arc

� !

w v is coloured

j > i . The edge route v w consists of D con tiguous grid-line segmen ts whic h

tra v erse the sides of the h yp ercub e with corners at p ort(

� !

v w ) and p ort (

� !

w v ). These

segmen ts are resp ectiv ely parallel to the i; ( i � 1) ; : : : ; 1 ; ( i + 1) ; ( i + 2) ; : : : ; ( j �

1) ; D ; ( D � 1) ; : : : ; j axes.

5. Remo v e edge crossings using Algorithm 7.2 Bo x-Dra wing Remo ve Edge Cr oss-

ings .

F or a giv en general p osition v ertex la y out, A

G

( v ) h d i denotes the set of outgoing

arcs at some v ertex v 2 V ( G ) in the direction d ; i.e.,

A

G

( v ) h d i =

8

>

<

>

:

f

� !

v w 2 A

G

( v ) : v <

d

w g ; if d > 0;

f

� !

v w 2 A

G

( v ) : w <

� d

v g ; if d < 0.

F or eac h direction d 2 f 1 ; 2 ; : : : ; D g and v ertex v 2 V ( G ), the set of arcs in

A

G

( v ) h d i , whic h are coloured i is denoted A

G

( v ) h d i [ i ]. If an arc

� !

v w 2 A

G

( v ) h i

�

i [ i ]

then the edge route v w uses an ( i

�

)-p ort at v . The maxim um of the n um b er of edges

routed on the ( i

+

)-face and ( i

�

)-face of v is denoted M

i

( v ); i.e.,

M

i

( v ) = max

n

�

�

A

G

( v ) h i i [ i ]

�

�

;

�

�

A

G

( v )




i

�

�

[ i ]

�

�

o

:

Clearly surface

i

( v ) m ust b e at least M

i

( v ).

7.1.1 Determining V ertex Size

W e no w describ e ho w to determine the size of the grid-b o x represen ting a v ertex v giv en

the n um b er of edges routed on eac h face of v . F or eac h v ertex v w e wish to determine
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p ositiv e in tegers �

i

( v ), 1 � i � D , suc h that surface

i

( v ) is at least M

i

( v ); i.e.,

determine �

i

( v ) ; 1 � i � D suc h that 8 i

Y

1 � j � D

j 6= i

�

j

( v ) � M

i

( v ) : (7.1)

Our aim is to minimise the surface ( v ) suc h that (7.1) is satis�ed. F or eac h i with

M

i

( v ) = 0 w e replace M

i

( v ) b y 1. A solution to the new problem with

surface ( v ) � k

 

X

i

2 M

i

( v )

!

+ k

0

is a solution to the original problem with

surface ( v ) � k

 

X

i

2 M

i

( v )

!

+

�

k

0

+ D

�

:

So w e no w assume that M

i

( v ) � 1.

W e de�ne M

�

( v ) to b e the geometric mean of f M

i

( v ) : i = 1 ; 2 ; : : : ; D g ; i.e.,

M

�

( v ) =

 

Y

i

M

i

( v )

!

1 =D

:

Lemma 7.1. A r e al-value d exact solution to (7.1) c an b e obtaine d with �

i

( v ) = r

i

( v )

wher e we de�ne

r

i

( v ) =

M

�

( v )

D = ( D � 1)

M

i

( v )

(7.2)

Pr o of. F or eac h i , 1 � i � D ,

surface

i

( v ) =

Y

1 � k � D

k 6= i

r

k

( v )

=

Y

1 � k � D

k 6= i

�

M

�

( v )

D = ( D � 1)

.

M

k

( v )

�

=

Y

1 � k � D

k 6= i

0

B

@

0

@

Y

1 � j � D

M

j

( v )

1

A

1 = ( D � 1)

.

M

k

( v )

1

C

A

=

Y

1 � k � D

k 6= i

0

B

B

@

 

Y

1 � j � D

j 6= k

M

j

( v )

!

.

M

k

( v )

D � 2

1

C

C

A

1 = ( D � 1)
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=

0

B

B

@

Y

1 � k � D

k 6= i

0

B

B

@

 

Y

1 � j � D

j 6= k

M

j

( v )

!

.

M

k

( v )

D � 2

1

C

C

A

1

C

C

A

1 = ( D � 1)

=

0

B

B

@

 

M

i

( v )

D � 1

Y

1 � j � D

j 6= i

M

j

( v )

D � 2

!,  

Y

1 � k � D

k 6= i

M

k

( v )

D � 2

!

1

C

C

A

1 = ( D � 1)

=

�

M

i

( v )

D � 1

�

1 = ( D � 1)

= M

i

( v )

This result suggests to obtain an in teger-v alued solution to (7.1) , set �

i

( v ) = d r

i

( v ) e

for eac h i . W e no w presen t a tec hnical lemma whic h will b e applied in the analysis of

the algorithms to follo w. It essen tially sa ys that if the ratios among f M

1

; M

2

; : : : ; M

D

g

are b ounded then surface ( v ) is asymptotically 2

P

i

M

i

( v ), whic h is the ob vious lo w er

b ound.

Theorem 7.1. If for e ach i; j , 1 � i; j � D , M

i

( v ) = M

j

( v ) � f ( v ) , for some function

f : V ( G ) ! R , then setting �

i

( v ) = d r

i

( v ) e ,

surfac e ( v ) � 2

X

i

M

i

( v ) + O

�

f ( v )

D � 2

�

 

X

i

M

i

( v )

!

( D � 2) = ( D � 1)

Pr o of. W e initially sho w that M

i

( v ) = M

j

( v ) � f ( v ) implies r

i

( v ) =r

j

( v ) � f ( v ) for all

i; j , 1 � i; j � D .

max

i

r

i

( v ) = min

j

r

j

( v ) �

 

max

i

M

�

( v )

D = ( D � 1)

M

i

( v )

!

�

 

min

i

M

�

( v )

D = ( D � 1)

M

i

( v )

!

= M

j

( v ) = M

i

( v ) ;

where M

i

( v ) and M

j

( v ) are maxim um and minim um of f M

1

( v ) ; M

2

( v ) ; : : : ; M

D

( v ) g .

Hence r

i

( v ) =r

j

( v ) � f ( v ) for all i; j , 1 � i; j � D .

F or eac h i , 1 � i � D ,

surface

i

( v ) =

Y

j 6= i

�

j

( v ) <

Y

j 6= i

( r

j

( v ) + 1)
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Since

Q

j 6= i

r

j

( v ) = M

i

( v ), our aim to is to sho w that adding one to r

j

( v ) do es not

increase surface

i

( v ) b y to o m uc h. T o this end, w e establish the follo wing result, whose

pro of w e defer un til Lemma 7.2.

If x

1

; x

2

; : : : ; x

n

> 0 with x

i

; x

j

� �( � 1), for all i; j , 1 � i; j � D , then

n

Y

i =1

( x

i

+ 1) =

n

Y

i =1

x

i

+ O

�

�

n � 1

�

 

n

Y

i =1

x

i

!

( n � 1) =n

(7.3)

Applying (7.3) , with f x

1

; x

2

; : : : ; x

n

g = f r

j

: j 6= i g and � = f ( v ), w e obtain

Y

j 6= i

( r

j

+ 1) �

Y

j 6= i

r

j

+ O

�

f ( v )

D � 2

�

0

@

Y

6= i

r

j

1

A

( D � 2) = ( D � 1)

:

Hence

surface

i

( v ) � M

i

( v ) + O

�

f ( v )

D � 2

�

M

i

( v )

( D � 2) = ( D � 1)

Therefore

surface ( v )

� 2

X

i

M

i

( v ) +

X

i

O

�

f ( v )

D � 2

�

M

i

( v )

( D � 2) = ( D � 1)

� 2

X

i

M

i

( v ) + O

�

f ( v )

D � 2

�

X

i

M

i

( v )

( D � 2) = ( D � 1)

� 2

X

i

M

i

( v ) + O

�

f ( v )

D � 2

�

 

D

1 = ( D � 1)

X

i

M

i

( v )

!

( D � 2) = ( D � 1)

(b y Cauc h y-Sc h w arz)

� 2

X

i

M

i

( v ) + O

�

f ( v )

D � 2

�

 

X

i

M

i

( v )

!

( D � 2) = ( D � 1)

Lemma 7.2. If x

1

; x

2

; : : : ; x

n

> 0 ( n � 2 ) with x

i

=x

j

� � , for al l i; j , 1 � i; j � D ,

then

n

Y

i =1

( x

i

+ 1) �

n

Y

i =1

x

i

+ O

�

�

n � 1

�

 

n

Y

i =1

x

i

!

( n � 1) =n

(7.4)

Pr o of. Supp ose x

1

� x

2

� � � � � x

n

. Denote

Q

k

i =1

x

i

b y P

k

. W e pro ceed b y induction

on k with the follo wing induction h yp othesis.

k

Y

i =1

( x

i

+ 1) � P

k

+ O

�

�

k � 1

�

( P

k

)

( k � 1) =k

(7.5)
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Consider the case of k = 2. Since x

1

=x

2

� �, w e ha v e x

2

� x

1

= � and x

1

x

2

� x

2

1

= �.

So x

1

�

p

x

1

x

2

�. Similarly x

2

�

p

x

1

x

2

�. So ( x

1

+ 1)( x

2

+ 1) = x

1

x

2

+ x

1

+ x

2

+ 1 �

x

1

x

2

+ 2

p

x

1

x

2

� + 1 � x

1

x

2

+ O (�)

p

x

1

x

2

. So the induction h yp othesis holds for

n = 2.

Supp ose the induction h yp othesis holds for all k

0

< k . Then

k

Y

i =1

( x

i

+ 1)

= ( x

k

+ 1)

k � 1

Y

i =1

( x

i

+ 1)

� ( x

k

+ 1)

�

P

k � 1

+ O

�

�

k � 2

�

( P

k � 1

)

( k � 2) = ( k � 1)

�

(b y the induction h yp othesis)

� P

k

+ x

k

O

�

�

k � 2

�

( P

k � 1

)

( k � 2) = ( k � 1)

+ P

k � 1

+ O

�

�

k � 2

�

( P

k � 1

)

( k � 2) = ( k � 1)

(7.6)

W e no w determine upp er b ounds in terms of � and P

k

for eac h comp onen t of (7.6) .

Since x

k

� x

j

, for j , 1 � j � k � 1, w e ha v e x

k � 1

k

� P

k � 1

. So

x

k

� ( P

k � 1

)

1 = ( k � 1)

: (7.7)

No w, for all j , 1 � j � k � 1, w e ha v e x

j

=x

k

� �. So x

k

� x

j

= �, and hence

x

k � 1

k

� P

k � 1

= �

k � 1

x

k

k

� P

k

= �

k � 1

x

k

� ( P

k

= �

k � 1

)

1 =k

x

� 1

k

� (�

k � 1

=P

k

)

1 =k

x

� 1

k

� �

( k � 1) =k

P

� 1 =k

k

P

k � 1

� �

( k � 1) =k

P

1 � 1 =k

k

P

k � 1

� (� P

k

)

( k � 1) =k

: (7.8)

No w,

x

k

O

�

�

k � 2

�

( P

k � 1

)

( k � 2) = ( k � 1)

� ( P

k � 1

)

1 = ( k � 1)

O

�

�

k � 2

�

( P

k � 1

)

( k � 2) = ( k � 1)

(b y (7.7) )

� O

�

�

k � 2

�

P

k � 1
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� O

�

�

k � 2

�

(� P

k

)

( k � 1) =k

(b y (7.8) )

� O

�

�

k � 1

�

( P

k

)

( k � 1) =k

: (7.9)

No w,

O

�

�

k � 2

�

( P

k � 1

)

( k � 2) = ( k � 1)

� O

�

�

k � 2

� �

(� P

k

)

( k � 1) =k

�

( k � 2) = ( k � 1)

(b y (7.8) )

� O

�

�

k � 2

�

( � P

k

)

( k � 2) =k

(b y (7.8) )

� O

�

�

k � 1

�

( P

k

)

( k � 2) =k

: (7.10)

Substituting (7.8) , (7.9) and (7.10) in to (7.6) w e obtain,

k

Y

i =1

( x

i

+ 1)

� P

k

+ O

�

�

k � 1

�

( P

k

)

( k � 1) =k

+ (� P

k

)

( k � 1) =k

+ O

�

�

k � 1

�

( P

k

)

( k � 2) =k

� P

k

+ O

�

�

k � 1

�

( P

k

)

( k � 1) =k

:

Hence the induction h yp othesis holds for k , and b y the induction principle the result

holds.

In D = 3 dimensions w e ha v e the follo wing b ound for the surface ( v ) regardless of

whether M

X

( v ), M

Y

( v ) and M

Z

( v ) ha v e b ounded ratios.

Lemma 7.3. F or every M

X

( v ) , M

Y

( v ) and M

Z

( v ) ther e is a solution to (7.1) with

surfac e ( v ) � 4 ( M

X

( v ) + M

Y

( v ) + M

Z

( v )) + O (1)

Pr o of. In what follo ws f i; j; k g = f X ; Y ; Z g , and w e omit the `( v )' from M

i

( v ), r

i

( v ),

etc. Note that for D = 3, problem (7.1) b ecomes

determine �

i

; �

j

; �

k

suc h that �

i

�

j

� M

k

; �

i

�

k

� M

j

and �

j

�

k

� M

i

: (7.11)

W e wish to minimise the surface ( v ) = 2 ( �

i

�

j

+ �

i

�

k

+ �

j

�

k

) . F or eac h i 2 f X ; Y ; Z g

the real-v alued exact solution to (7.11) is giv en b y

( �

i

=) r

i

=

r

M

j

M

k

M

i

:
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Supp ose without loss of generalit y that M

i

� M

j

and M

i

� M

k

. Then r

i

� r

j

and

r

i

� r

k

. W e initially consider three sp ecial cases for small v alues of r

i

.

Case 1: r

i

� 1 (i.e., M

i

� M

j

M

k

).

W e set �

i

 1, �

j

 M

k

and �

k

 d M

i

= M

k

e . Hence

�

i

�

j

= M

k

; �

i

�

k

� M

i

= M

k

� M

j

and �

j

�

k

� M

k

( M

i

= M

k

) = M

i

:

So a v alid solution to (7.11) is determined. W e ha v e the follo wing upp er b ound.

surface ( v ) = 2( �

i

�

j

+ �

i

�

k

+ �

j

�

k

)

= 2( M

k

+ d M

i

= M

k

e + M

k

d M

i

= M

k

e )

< 2( M

k

+ M

i

= M

k

+ 1 + M

k

( M

i

= M

k

+ 1))

= 2(2 M

k

+ M

i

= M

k

+ M

i

+ 1)

� 2(2 M

k

+ 2 M

i

+ 1) :

So, in this case the result stands.

Case 2: 1 < r

i

�

p

2 (i.e., M

j

M

k

= 2 � M

i

< M

j

M

k

).

W e set �

i

 1, �

j

 M

k

and �

k

 M

j

. Hence

�

i

�

j

= M

k

; �

i

�

k

= M

j

and �

j

�

k

= M

k

M

j

> M

i

:

So a v alid solution to (7.11) is determined. W e ha v e the follo wing upp er b ound.

surface ( v ) = 2( �

i

�

j

+ �

i

�

k

+ �

j

�

k

)

= 2( M

k

+ M

j

+ M

k

M

j

)

� 2( M

k

+ M

j

+ 2 M

i

) :

So, in this case the result stands.

Case 3:

p

2 < r

i

� 2 (i.e., M

j

M

k

= 4 � M

i

< M

j

M

k

= 2).

Set �

i

 2. Assume without loss of generalit y that M

j

� M

k

, and set �

j

 d M

k

= 2 e

and �

k

 M

j

. Hence

�

i

�

j

= 2 d M

k

= 2 e � M

k

;
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�

i

�

k

= 2 M

j

> M

j

, and

�

j

�

k

= d M

k

= 2 e M

j

� M

j

M

k

= 2 > M

i

:

So a v alid solution to (7.11) is determined. W e ha v e the follo wing upp er b ound.

surface ( v ) = 2( �

i

�

j

+ �

i

�

k

+ �

j

�

k

)

= 2(2 d M

k

= 2 e + 2 M

j

+ d M

k

= 2 e M

j

)

� 2( M

k

+ 1 + 2 M

j

+ M

j

M

k

= 2 + M

j

= 2)

� 2( M

k

+ 1 + 2 M

j

+ 2 M

i

+ M

k

= 2)

= 2(2 M

i

+ 2 M

j

+ 3 M

k

= 2 + 1)

So, in this case the result stands.

Case 4: r

i

> 2 for ev ery i 2 f 1 ; 2 ; 3 g .

Set �

i

 d r

i

e , �

j

 d r

j

e , and �

k

 d r

k

e . Ob viously this is a v alid solution to

(7.11) and w e ha v e the follo wing upp er b ound.

surface ( v ) = 2( �

i

�

j

+ �

i

�

k

+ �

j

�

k

)

< 2(( r

i

+ 1)( r

j

+ 1) + ( r

i

+ 1)( r

k

+ 1) + ( r

j

+ 1)( r

k

+ 1))

= 2(( r

i

r

j

+ r

i

+ r

j

+ 1) + ( r

i

r

k

+ r

i

+ r

k

+ 1) + ( r

j

r

k

+ r

j

+ r

k

+ 1))

= 2(( M

k

+ r

i

+ r

j

) + ( M

j

+ r

i

+ r

k

) + ( M

i

+ r

j

+ r

k

) + 3)

It is w ell-kno wn that x + y � xy for an y t w o real n um b ers x; y � 2. So r

i

+ r

j

�

r

i

r

j

= M

k

, r

i

+ r

k

� r

i

r

k

= M

j

and r

j

+ r

k

� r

j

r

k

= M

i

. Hence

surface ( v ) � 2(2 M

i

+ 2 M

j

+ 2 M

k

+ 3) ;

and, in this case the result stands.

7.1.2 Determining P ort Assignmen ts

Giv en a general p osition v ertex la y out and arc-routing, w e no w describ e ho w to assign

p orts on a v ertex v to the arcs inciden t to v suc h that an arc

� !

v w 2 A ( v )[ i ] is assigned

an i -p ort on v p oin ting to w ard w . Supp ose the k

th

se gment of an ar c

� !

v w , 1 � k � D ,

refers to the k

th

segmen t of the edge route v w starting at v .
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W e �rstly assign p orts to arcs so that no t w o edges routed on the same face can

in tersect. This algorithm impro v es on the algorithm of Biedl [27 ] for D = 3, in that w e

p oten tially use all the p orts on a face. This is p ossible due to the second stage of our

p ort assignmen t metho d whic h eliminates all subsequen t edge route crossings.

W e no w describ e ho w to assign the p orts on the ( i

+

)-face of a v ertex v (for some

dimension i ), to the arcs in A

G

( v ) h i

+

i [ i ] ; i.e. arcs

� !

v w coloured i with w in direction i

+

from v . Assigning p orts on the ( i

�

)-face to the arcs in A

G

( v ) h i

�

i [ i ] is analogous.

W e group the arcs in A

G

( v ) h i

+

i [ i ] according to the direction of their second segmen t,

whic h b y the routing of edges describ ed in Algorithm 7.1 D -Dimensional General

Position Bo x-Dra wing is one of ( i + 1)

+

, ( i + 1)

�

, ( i � 1)

+

and ( i � 1)

�

. F or these

cases w e sa y an arc in A

G

( v ) h i i [ i ] is either an up , down , right or left arc, resp ectiv ely .

P orts are assigned so that the p orts `underneath' the second segmen t of an arc are

assigned to arcs within the same grouping.

Firstly , as illustrated in Figure 7.2(a), w e partition the face in to t w o regions, the

�rst with enough p orts for the Do wn and Righ t arcs, and the second with enough p orts

for the Up and Left arcs. Within the �rst region w e determine the p orts to b e used b y

the Righ t arcs b y n um b ering the p orts starting at the top-righ t corner in a righ t-to-left

ro w-b y-ro w fashion, as in Figure 7.2(a). Similarly , w e determine the p orts of the second

region to b e used b y the Left arcs b y n um b ering the p orts starting at the b ottom-left

corner of the second region in a left-to-righ t ro w-b y-ro w fashion. The remaining p orts

in the �rst region are assigned to the Do wn arcs and the remaining p orts in the second

region are assigned to the Up arcs, as in Figure 7.2(b).

W e assign p orts to the arcs in eac h grouping in turn, and within a grouping w e

assign p orts to the arcs in increasing order of the length of the �rst segmen t of the arc.

Since our graphs are simple this length is unique. F or eac h arc w e c ho ose an un used

p ort within its grouping so that the second segmen t of the pro duced edge route has

minim um p ossible length, as in Figure 7.2(b). Clearly no t w o edges routed on the same

face can in tersect.
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(a) (b)

Do wn & Righ t

Up & Left

1 2 3 12

3456

Figure 7.2: Determining p ort assignmen ts on a face.

7.1.3 Remo ving Edge Crossings

W e no w sho w ho w to remo v e edge route crossings in general p osition D -dimensional

orthogonal b o x-dra wings ( D � 3). The metho d is a generalisation of the crossing

elimination rule for 3-D orthogonal p oin t-dra wings sho wn in Figure 5.11.

Supp ose the edge routes v w and xy in tersect at some grid-p oin t, and the in tersecting

segmen ts of v w and xy are a - and b -segmen ts, resp ectiv ely (for some dimensions a and

b ). Lab el the endp oin ts of these segmen ts r , s , p and q as sho wn in Figure 7.3(a).

a

b

v r ws

x

q

y

p

b bb bb b

b

b

b

b

b

b

(a)

v

r

ws

x

q

y

p

bb b

b

b

b

(b)

x

w

v

y

p

s

bb b

b

b

b

(c)

Figure 7.3: Remo ving edge crossings in general p osition.

In what follo ws w e describ e a sequence of segmen ts con tained in an edge route as a

p ath . Since the graph is simple, w e can assume without loss of generalit y that y 6= w .

Therefore p ort(

� !

w v ) and p ort (

� !

y x ) di�er in ev ery co ordinate. It follo ws that for ev ery

dimension i except for a and b , there is an i -segmen t on the paths from w to s , and
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y to p . This implies there is at most one segmen t on the paths r to v , and if there

is suc h a segmen t then it is a b -segmen t. Similarly , there is at most one segmen t on

the path q to x , and if there is suc h a segmen t then it is an a -segmen t. This implies

that v and x are coplanar, and since the v ertices are in general p osition, v = x . By

the construction used in the previous section, edge routes are assigned unique p orts

on a face, and no t w o edge routes on the same face can in tersect. So the paths from

r to v (= x ) and from q to x (= v ) ha v e exactly one segmen t, and the edge crossing

o ccurs b et w een the second segmen ts of arcs inciden t to a common v ertex, as sho wn

in Figure 7.3(b). Eac h suc h crossing can b e remo v ed b y sw apping the p orts assigned

to these arcs, and rerouting the corresp onding edge routes as sho wn in Figure 7.3(c).

W e ha v e the follo wing algorithm for remo ving edge route crossings in general p osition

orthogonal dra wings.

Algorithm 7.2. Bo x-Dra wing Remo ve Edge Cr ossings

Input : D -dimensional general p osition orthogonal dra wing of a graph G (p ossibly with

crossings)

Output : D -dimensional general p osition orthogonal dra wing of G (without crossings).

A  A ( G )

while A 6= ; do

Cho ose

� !

v w 2 A .

Set A  A n f

� !

v w g .

if

� !

v w in tersects some other arc

� !

v u then

Sw ap the p orts at v assigned to

� !

v w and

� !

v u .

Reroute the edge routes v u and v w as describ ed ab o v e.

Set A  A [ f

� !

v u ;

� !

v w g .

if D = 3 then

Set A  A [ f

� !

uv ;

� !

w v g .

end-if

end-if

end-while
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Lemma 7.4. The algorithm Bo x-Dra wing Remo ve Edge Cr ossings r emoves al l

cr ossings fr om the given gener al p osition ortho gonal b ox-dr awing in O ( mn �) time.

Pr o of. W e shall pro v e that at all times the set A con tains all arcs whic h p ossibly

in tersect some other arc. Initially this is true since A = A ( G ). As pro v ed ab o v e, an arc

� !

v w can only in tersect another arc inciden t to v . Hence, if

� !

v w do es not in tersect some

other arc

� !

v u , then

� !

v w do es not in tersect an y arc, and

� !

v w can b e remo v ed from A .

Supp ose that

� !

v w in tersects some other arc

� !

v u . After sw apping the p orts assigned

to

� !

v u and

� !

v w all new edge crossings m ust in v olv e

� !

v u or

� !

v w (or

� !

uv or

� !

w v if D = 3).

By adding

� !

v u and

� !

v w (and

� !

uv and

� !

w v if D = 3) to A for re-c hec king, w e main tain

the condition that A con tains all arcs whic h p ossibly in tersect some other arc. The

algorithm con tin ues un til A = ; , at whic h p oin t the dra wing m ust b e crossing-free.

F or an arc

� !

v w whose second segmen t is parallel to the i -axis, let l (

� !

v w ) = j p � q j ,

where ( u

1

; u

2

; : : : ; u

n

) is the i -ordering of the v ertices and v = u

p

and w = u

q

.

No w l (

� !

v w ) = O ( n ), so

P

� !

v w

l (

� !

v w ) = O ( mn ). Eac h p ort sw ap b et w een arcs

� !

v w and

� !

v u reduces l (

� !

v w ) + l (

� !

v u ). Hence there will b e O ( mn ) p ort sw aps. Therefore O ( mn )

arcs are added to A , so O ( mn ) arcs are c hec k ed for crossings. T o test if an arc in tersects

some other arc tak es O (�) time, so the algorithm tak es O ( mn �) time.

The e�ect of a n um b er of p ort sw aps, all in the same plane, is sho wn in Figure 7.4.

�

�

�

�

�
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�

���

�	

�

���

�	

�

���

�	

�

���

�	

�

���

�	

�

���

�	

�

���

�	

= )

�

�

�

�

�

?

Figure 7.4: Rerouting crossing edge routes.
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Based on the ab o v e metho ds for p ort assignmen t and the elimination of edge cross-

ings w e ha v e the follo wing result.

Lemma 7.5. Given a D -dimensional gener al p osition vertex layout, D -dimensional

gener al p osition ar c-r outing and the size of e ach vertex of a gr aph G , if for every vertex

v 2 V ( G ) the surfac e

i

( v ) � M

i

( v ) for e ach i , 1 � i � D , then a cr ossing-fr e e assign-

ment of the p orts on e ach vertex v to the ar cs A

G

( v ) c an b e determine d in O ( mn �)

time.

7.1.4 Upp er Bounds

W e no w establish upp er b ounds for the surface and v olume of the b ounding b o x of a

general p osition D -dimensional orthogonal b o x-dra wing in terms of the size and shap e

of the v ertices. F or eac h v ertex v w e denote the arithmetic, geometric and harmonic

means of �

1

( v ) ; �

2

( v ) ; : : : ; �

D

( v ) b y �

+

( v ), �

�

( v ) and �

�

( v ) resp ectiv ely; i.e.,

�

+

( v ) =

1

D

X

1 � i � D

�

i

( v ) ; �

�

( v ) =

0

@

Y

1 � i � D

�

i

( v )

1

A

1 =D

; �

�

( v ) = D

0

@

X

1 � i � D

1

�

i

( v )

1

A

� 1

:

Ob viously v olume ( v ) = �

�

( v )

D

, and also,

surface ( v ) = 2

X

1 � i � D

Y

1 � j � D

j 6= i

�

j

( v )

= 2

X

1 � i � D

�

�

( v )

D

�

i

( v )

= 2 �

�

( v )

D

X

1 � i � D

1

�

i

( v )

=

2 D �

�

( v )

D

�

�

( v )

: (7.12)

The arithmetic, geometric and harmonic means of the dimensions of the b ounding

b o x are denoted b y �

+

, �

�

and �

�

resp ectiv ely . As in (7.12) w e ha v e,

surface ( b ounding b o x ) =

2 D ( �

�

)

D

�

�

: (7.13)

It is w ell-kno wn that, of the D -dimensional h yp erb o xes with �xed sum of side

lengths, the D -dimensional h yp ercub e has maxim um v olume and maxim um surface
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area (see for example Kazarino� [126 ]). Giv en a D -dimensional v ertex v , consider the

h yp ercub e C with the same sum of side lengths as v ; i.e., C has side length �

+

( v ). W e

de�ne the surfac e asp e ct ( v ) to b e the ratio of the surface( C ) to the surface( v ), and the

volume asp e ct ( v ) to b e the ratio of the v olume( C ) to the v olume( v ). Clearly surface

asp ect and v olume asp ect are b oth at least one. By (7.12) w e ha v e,

surface asp ect ( v ) =

surface ( C )

surface ( v )

=

�

+

( v )

D � 1

�

�

( v )

�

�

( v )

D

; (7.14)

v olume asp ect ( v ) =

v olume ( C )

v olume ( v )

=

�

�

+

( v )

�

�

( v )

�

D

: (7.15)

Lemma 7.6. F or a gener al p osition D -dimensional ortho gonal b ox-dr awing,

surface ( b ounding b o x ) � n

D � 2

X

v

surface asp ect ( v ) � surface ( v )

Pr o of. Since the surface asp ect of the b ounding b o x is at least one, b y (7.14) applied

to the b ounding b o x,

( �

�

)

D

=�

�

� ( �

+

)

D � 1

;

so b y (7.13) ,

surface ( b ounding b o x ) =

2 D ( �

�

)

D

�

�

� 2 D

�

�

+

�

D � 1

:

The a v erage side `length' of the b ounding b o x is

�

+

=

1

D

X

i

X

v

�

i

( v ) :

So the surface of the b ounding b o x is

2 D

 

1

D

X

i

X

v

�

i

( v )

!

D � 1

= 2 D

 

X

v

1

D

X

i

�

i

( v )

!

D � 1

= 2 D

 

X

v

�

+

( v )

!

D � 1

:

By the Cauc h y-Sc h w arz inequalit y ,

2 D

 

X

v

�

+

( v )

!

D � 1

� 2 D n

D � 2

X

v

�

+

( v )

D � 1
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= n

D � 2

X

v

�

�

+

( v )

D � 1

�

�

( v )

�

�

( v )

D

�

�

�

2 D �

�

( v )

D

�

�

( v )

�

= n

D � 2

X

v

surface asp ect ( v ) � surface ( v ) :

It is easily seen that this b ound is tigh t for D = 2, for same-sized h yp ercub e dra w-

ings and in the case of n = D pairwise p erp endicular lines. The pro of of the follo wing

b ound on the v olume of the b ounding b o x is similar to that of Lemma 7.6.

Lemma 7.7. F or a gener al p osition D -dimensional ortho gonal b ox-dr awing,

v olume ( b ounding b o x ) � n

D � 1

X

v

v olume asp ect ( v ) �

�

surface ( v )

2 D

�

D = ( D � 1)

Pr o of. The v olume of the b ounding b o x is

( �

�

)

D

�

�

�

+

�

D

=

0

@

X

1 � i � D

X

v

�

i

( v )

D

1

A

D

=

0

@

X

v

X

1 � i � D

�

i

( v )

D

1

A

D

=

 

X

v

�

+

( v )

!

D

:

By the Cauc h y-Sc h w arz inequalit y ,

 

X

v

�

+

( v )

!

D

� n

D � 1

X

v

�

+

( v )

D

= n

D � 1

X

v

�

�

+

( v )

�

�

( v )

�

D

�

�

( v )

D

= n

D � 1

X

v

v olume asp ect ( v ) � v olume ( v )

Of the D -dimensional h yp erb o xes with �xed surface S , the cub e with side length

( S= 2 D )

1 = ( D � 1)

has maxim um v olume [126 ]. So

v olume ( b ounding b o x ) � n

D � 1

X

v

v olume asp ect ( v ) �

�

surface ( v )

2 D

�

D = ( D � 1)

:
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Corollary 7.1. F or a gener al p osition D -dimensional ortho gonal b ox-dr awing,

surface ( b ounding b o x ) � n

D � 2

X

v

asp ect ratio ( v ) � surface ( v )

v olume ( b ounding b o x ) � n

D � 1

X

v

asp ect ratio ( v ) �

�

surface ( v )

2 D

�

D = ( D � 1)

:

Pr o of. Of the D -dimensional h yp erb o xes with �xed sum of side lengths, the line has

minim um surface and minim um v olume, so the surface asp ect and v olume asp ect of a

line is maxim um (for the D -dimensional h yp erb o xes with �xed sum of side lengths).

The surface asp ect and v olume asp ect of a line are no more than its asp ect ratio. The

result follo ws from Lemma 7.6 and Lemma 7.7.

The next result will b e used to establish a b ound on the b ounding b o x v olume for

the orthogonal graph dra wing algorithms presen ted in Sections 7.2 and 7.3.

Theorem 7.2. A d -de gr e e-r estricte d gener al p osition D -dimensional ortho gonal b ox-

dr awing with e ach vertex having asp e ct r atio at most a has

v olume ( b ounding b o x ) � a

�

n

D � 2

�

dm

D

+ o ( m )

��

D = ( D � 1)

Pr o of. By Corollary 7.1,

v olume ( b ounding b o x ) � n

D � 1

X

v

a

�

surface ( v )

2 D

�

D = ( D � 1)

:

By the Cauc h y-Sc h w arz inequalit y ,

v olume ( b ounding b o x ) � a n

D � 1

 

n

( D � 1) =D � 1

X

v

surface ( v )

2 D

!

D = ( D � 1)

= a n

D � 1

n

� 1 = ( D � 1)

 

X

v

surface ( v )

2 D

!

D = ( D � 1)

= a n

D ( D � 2) = ( D � 1)

 

X

v

surface ( v )

2 D

!

D = ( D � 1)

= a

 

n

D � 2

X

v

surface ( v )

2 D

!

D = ( D � 1)

Since the dra wing is d -degree-restricted,

v olume ( b ounding b o x ) � a

 

n

D � 2

X

v

d � deg ( v ) + o (deg ( v ))

2 D

!

D = ( D � 1)



CHAPTER 7. GENERAL POSITION BO X-DRA WING 159

= a

�

n

D � 2

�

dm

D

+ o ( m )

��

D = ( D � 1)

:

7.2 La y out-Based Algorithms

In this section w e describ e our la y out-based approac h for determining general p osition

D -dimensional orthogonal dra wings, for some constan t D � 3. In Section 7.2.1 w e

presen t an algorithm for determining an arc-routing giv en an arbitrary general p osition

v ertex la y out. W e deriv e algorithms using �xed, balanced and diagonal v ertex la y outs

in Sections 7.2.2, 7.2.3 and 7.2.4.

7.2.1 Arc-Routing Algorithm

W e no w presen t an algorithm for determining an arc-routing of A ( G ) with resp ect to

a giv en general p osition v ertex la y out of a graph G . T o represen t the colouring of

A ( G ) w e v ertex-colour a graph H with v ertex set V ( H ) = A ( G ). W e represen t a D -

dimensional orthan t b y the corresp onding set of D pairwise non-opp osite directions.

F or a giv en v ertex v and direction d , the set of orthan ts f T : d 2 T g in direction d from

v is denoted �

D

d

( v ). W e denote the set of arcs

� !

v w at a v ertex v with w in orthan t T

b y A

G

( v ) h T i ; i.e.,

A

G

( v ) h T i =

\

d 2 T

A

G

( v ) h d i :

Algorithm 7.3. D -Dimensional General Position Ar c-R outing

Input : � graph G

� D -dimensional general p osition v ertex la y out of V ( G )

Output: D -dimensional general p osition arc-routing of A ( G )

1. F or eac h edge v w 2 E ( G ), insert the edge f

� !

v w ;

� !

w v g to E ( H ) (called an `r'-e dge ).

2. F or eac h v ertex v 2 V ( G ) and for eac h orthan t T relativ e to v ,
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(a) P artition the arcs in A

G

( v ) h T i in to sets Q

1

; Q

2

; : : : ; Q

k

, so that j Q

j

j = D ,

1 � j < k (see Figure 7.5).

(b) Add a clique (called `c'-e dges ) to E ( H ) b et w een the v ertices of H corre-

sp onding to the arcs in Q

j

, 1 � j � k .

3. Determine a D -colouring of A ( G ) from a v ertex-colouring of H with D colours.

v

�

( X

+

; Y

+

; Z

�

)-

orthan t

�

( X

+

; Y

+

; Z

+

)-

orthan t

�

( X

�

; Y

+

; Z

�

)-

orthan t

�

( X

�

; Y

+

; Z

+

)-

orthan t

�

( X

+

; Y

�

; Z

+

)-

orthan t

�

( X

+

; Y

�

; Z

�

)-

orthan t

�

( X

�

; Y

�

; Z

+

)-

orthan t

�

( X

�

; Y

�

; Z

�

)-

orthan t

Figure 7.5: P artitioning of A

G

( v ) and construction of H for D = 3.

Lemma 7.8. The algorithm D -Dimensional General Position Ar c-R outing

determines an ar c-r outing of A ( G ) in O ( D ( m + n )) time such that for e ach vertex

v 2 V ( G ) ,

2

X

i

M

i

( v ) � deg ( v ) + c ( v ) + ( D � 1)2

D

:

Pr o of. A v ertex of H is inciden t with one `r' edge and at most D � 1 `c' edges. So the

maxim um degree �( H ) � D , and since the complete graph K

D +1

6� H , b y Bro oks'

Theorem [47 ], H is v ertex D -colourable. The pro of of Bro ok's Theorem due to Lo v� asz

[147 ] and simpli�ed b y Bry an t [49 ] describ es an algorithm for �nding a v ertex-colouring
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of H with at most �( H ) colours in O ( j E ( H ) j ) = O ( D m ) time. The v ertex-colouring

of H determines a D -dimensional routing of A ( G ). Since f

� !

v w ;

� !

w v g 2 E ( H ), rev ersal

arcs are coloured di�eren tly , so the routing is an arc-routing.

F or eac h orthan t T relativ e to a v ertex v and in eac h partition of A

G

( v ) h T i , there is

at most one arc

� !

v w coloured i , 1 � i � D . Therefore, for eac h dimension i , 1 � i � D ,

w e ha v e the follo wing b ounds on the n um b er of arcs

� !

v w coloured i with w in direction

i

+

from v .

X

T 2 �

D

i

( v )

$

�

�

A

G

( v ) h T i

�

�

D

%

�

�

�

A

G

( v ) h i i [ i ]

�

�

�

X

T 2 �

D

i

( v )

&

�

�

A

G

( v ) h T i

�

�

D

'

:

So,

1

D

0

@

0

@

X

T 2 �

D

i

( v )

�

�

A

G

( v ) h T i

�

�

1

A

� ( D � 1) j �

D

i

( v ) j

1

A

�

�

�

A

G

( v ) h i i [ i ]

�

�

�

1

D

0

@

0

@

X

T 2 �

D

i

( v )

�

�

A

G

( v ) h T i

�

�

1

A

+ ( D � 1) j �

D

i

( v ) j

1

A

:

It follo ws that

1

D

�

s

i

( v ) � ( D � 1)2

D � 1

�

�

�

�

A

G

( v ) h i i [ i ]

�

�

�

1

D

�

s

i

( v ) + ( D � 1)2

D � 1

�

:

Similarly ,

1

D

�

p

i

( v ) � ( D � 1)2

D � 1

�

�

�

�

A

G

( v )




i

�

�

[ i ]

�

�

�

1

D

�

p

i

( v ) + ( D � 1)2

D � 1

�

:

Since M

i

( v ) = max f j A

G

( v ) h i i [ i ] j ; j A

G

( v ) h i

�

i [ i ] jg ,

1

D

�

max f s

i

( v ) ; p

i

( v ) g � ( D � 1)2

D � 1

�

� M

i

( v ) �

1

D

�

max f s

i

( v ) ; p

i

( v ) g + ( D � 1)2

D � 1

�

:

By (4.1) ,

1

D

�

1

2

( deg ( v ) + c

i

( v )) � ( D � 1)2

D � 1

�
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� M

i

( v ) �

1

D

�

1

2

(deg ( v ) + c

i

( v )) + ( D � 1)2

D � 1

�

: (7.16)

Summing o v er all dimensions, w e obtain,

X

i

M

i

( v ) �

X

i

1

D

�

1

2

(deg ( v ) + c

i

( v )) + ( D � 1)2

D � 1

�

2

X

i

M

i

( v ) �

X

i

1

D

�

deg ( v ) + c

i

( v ) + ( D � 1)2

D

�

2

X

i

M

i

( v ) � deg ( v ) + c ( v ) + ( D � 1)2

D

:

7.2.2 Fixed V ertex La y out Dra wings

W e no w deriv e an algorithm for a �xed general p osition v ertex la y out.

Algorithm 7.4. Fixed General Position D -Dimensional Bo x-Dra wing

Input : � graph G .

� D -dimensional general p osition v ertex la y out of V ( G ).

Output : la y out-preserving D -dimensional orthogonal b o x-dra wing of G .

1. Determine an arc-routing with Algorithm 7.3 D -Dimensional General Posi-

tion Ar c-R outing .

2. Apply Algorithm 7.1 D -Dimensional General Position Bo x-Dra wing .

Theorem 7.3. The algorithm Fixed General Position D -Dimensional Bo x-

Dra wing determines a layout-pr eserving D -dimensional ortho gonal b ox-dr awing of G

in O ( mn �) time such that:

� Each e dge r oute has D � 1 b ends.

� Each vertex is 2 -de gr e e-r estricte d

� The asp e ct r atio of e ach vertex v is at most 2 + o ( deg ( v )) .
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� The b ounding b ox volume is O

�

�

n

D � 2

m

�

D = ( D � 1)

�

.

Pr o of. By (7.16) and since c

i

( v ) � deg ( v ),

1

D

�

1

2

deg ( v ) � ( D � 1)2

D � 1

�

� M

i

( v ) �

1

D

�

deg ( v ) + ( D � 1)2

D � 1

�

:

So for all i; j , 1 � i; j; � D ,

M

i

( v )

M

j

( v )

�

deg ( v ) + ( D � 1)2

D � 1

1

2

deg ( v ) � ( D � 1)2

D � 1

�

2 deg ( v ) + ( D � 1)2

D

deg ( v ) � ( D � 1)2

D

�

2

�

deg ( v ) � ( D � 1)2

D

�

+ 3( D � 1)2

D

deg ( v ) � ( D � 1)2

D

� 2 +

3( D � 1)2

D

deg ( v ) � ( D � 1)2

D

:

It follo ws from Theorem 7.1 with

f ( v ) = 2 +

3( D � 1)2

D

deg ( v ) � ( D � 1)2

D

that

surface ( v ) � 2

X

i

M

i

+

�

2 +

3( D � 1)2

D

deg ( v ) � ( D � 1)2

D

�

D � 2

 

X

i

M

i

!

( D � 2) = ( D � 1)

:

F or constan t D w e ha v e

surface ( v ) � 2

X

i

M

i

+

�

2 + O

�

deg ( v )

� 1

��

D � 2

 

X

i

M

i

!

( D � 2) = ( D � 1)

: (7.17)

By Lemma 7.8 and since c ( v ) � deg ( v ) with D a constan t w e ha v e

2

X

i

M

i

( v ) � 2 deg ( v ) + O (1) :

Hence,

surface ( v ) � 2 deg ( v ) + O (1)

�

2 + O

�

deg ( v )

� 1

� �

D � 2

�

deg ( v ) + O (1)

�

( D � 2) = ( D � 1)

� 2 deg ( v ) + O

�

deg ( v )

( D � 2) = ( D � 1)

�

� 2 deg ( v ) + o (deg ( v )) :
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So v is 2-degree-restricted. Supp ose �

i

( v ) and �

j

( v ) are the maxim um and minim um

of f �

1

( v ) ; �

2

( v ) ; : : : ; �

D

( v ) g , resp ectiv ely . Then

asp ect ratio ( v ) = �

i

( v ) =�

j

( v )

=

0

@

�

i

( v )

Y

k 6= i;j

�

k

( v )

1

A

�

0

@

�

j

( v )

Y

k 6= i;j

�

k

( v )

1

A

=

0

@

Y

k 6= j

�

k

( v )

1

A

�

0

@

Y

k 6= i

�

k

( v )

1

A

=

surface

j

( v )

surface

i

( v )

:

No w,

surface

j

( v ) � M

j

( v ) + O

�

f ( v )

D � 2

�

M

j

( v )

( D � 2) = ( D � 1)

� M

j

( v ) +

�

2 + O

�

deg ( v )

� 1

��

D � 2

M

j

( v )

( D � 2) = ( D � 1)

:

Since M

j

( v ) �

1

D

�

deg ( v ) + ( D � 1)2

D � 1

�

, for constan t D w e ha v e

surface

j

( v ) �

1

D

deg ( v ) + O

�

deg ( v )

( D � 2) = ( D � 1)

�

:

No w surface

i

( v ) � deg ( v ) = 2 D , so

asp ect ratio ( v ) �

1

D

deg ( v ) + O

�

deg ( v )

( D � 2) = ( D � 1)

�

1

2 D

deg ( v )

�

2 deg ( v ) + O

�

deg ( v )

( D � 2) = ( D � 1)

�

deg ( v )

� 2 + o ( deg ( v )) :

Hence the asp ect ratio of v is 2 + o ( deg ( v )) . The v olume b ound follo ws immediately

from Theorem 7.2.

Applying Algorithm D -Dimensional General Position Bo x-Dra wing , whic h

tak es O ( mn �) time, is the most time-consuming step of the algorithm. So Algorithm

Fixed General Position D -Dimensional Bo x-Dra wing tak es O ( mn �) time.

7.2.3 Balanced V ertex La y out Dra wings

W e initially sho w that the complete graph pro vides a lo w er b ound for the problem

D -DIMENSIONAL GENERAL POSITION VER TEX LA YOUT.
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Lemma 7.9. In any D -dimensional gener al p osition vertex layout of K

n

ther e is a

vertex v with

c ( v ) �

deg ( v )

2

:

Pr o of. By Lemma 4.1, the total cost of a D -dimensional la y out of K

n

is

X

v

1

D

X

i

c

i

( v ) =

1

D

X

i

X

v

c

i

( v ) =

1

D

X

i

�

n

2

= 2

�

=

�

n

2

2

�

:

So ev en if eac h v ertex has the same cost, there exists a v ertex v with

c ( v ) �

�

n

2

= 2

�

n

=

8

>

<

>

:

n= 2 ; if n is ev en;

( n

2

� 1) = 2 n; if n is o dd.

>

n � 1

2

=

deg ( v )

2

:

The follo wing algorithm pro vides a tigh t upp er b ound for the problem

D -DIMENSIONAL GENERAL POSITION VER TEX LA YOUT. It is based on the

algorithm for determining balanced 2-D general p osition v ertex la y outs presen ted in

Chapter 6.

Algorithm 7.5. Balanced D -Dimensional General Position Ver tex La yout

Input : graph G and p ositiv e in teger D .

Output : D -dimensional general p osition v ertex la y out of G .

1. Determine a 2-D general p osition v ertex la y out, represen ted b y X - and Y - v er-

tex orderings, with Algorithm 6.4 Balanced 2-D General Position Ver tex

La yout .

2. Set the i -ordering of the v ertex la y out to b e the X -ordering for o dd i , 1 � i � D .

3. Set the i -ordering of the v ertex la y out to b e the Y -ordering for ev en i , 1 � i � D .
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Theorem 7.4. The algorithm Balanced D -Dimensional General Position Ver-

tex La yout determines a D -dimensional gener al p osition vertex layout of G in

O ( D ( m + n )) time such that for e ach vertex v ,

c ( v ) � 1 +

d D = 2 e

D

deg ( v ) :

Pr o of. F or eac h v ertex v and eac h ordering i , 1 � i � D , the cost c

i

( v ) � s ( v ) + 1 if i

is o dd, and c

i

( v ) � p ( v ) + 1 if i is ev en. So

c ( v ) �

1

D

��

D

2

�

( s ( v ) + 1) +

�

D

2

�

( p ( v ) + 1)

�

=

1

D

��

D

2

�

deg ( v ) +

��

D

2

�

�

�

D

2

��

s ( v ) + D

�

�

1

D

��

D

2

�

deg ( v ) + D

�

= 1 +

d D = 2 e

D

deg ( v ) :

By Theorem 6.2, a balanced 2-D v ertex la y out can b e determined in O ( m + n ) time,

so algorithm Balanced D -Dimensional General Position Ver tex La yout tak es

O ( D ( m + n )) time.

F or a D -dimensional general p osition v ertex la y out of K

n

the upp er b ound pro vided

b y Theorem 7.4 is

c ( v ) � 1 +

d D = 2 e

D

deg ( v ) =

8

>

<

>

:

( n + 1) = 2 ; if D is ev en;

1 + ( n � 1)( D + 1) = 2 D ; if D is o dd.

F or ev en D , the di�erence b et w een this upp er b ound and the lo w er b ound of

Lemma 7.9 is at most 1. F or o dd D , the di�erence b et w een the upp er and lo w er

b ounds is at least n= 2 D . It is an op en problem to establish tigh t b ounds on max

v

c ( v )

in the case of o dd D . W e no w deriv e results for general p osition orthogonal graph

dra wing based on a balanced v ertex la y out.

Algorithm 7.6. Balanced General Position D -Dimensional Bo x-Dra wing

Input : graph G .

Output : D -dimensional orthogonal b o x-dra wing of G .
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1. Determine a general p osition v ertex la y out with the Balanced D -Dimensional

General Position Ver tex La yout algorithm.

2. Determine an arc-routing with Algorithm 7.3 D -Dimensional General Posi-

tion Ar c-R outing .

3. Apply Algorithm 7.1 D -Dimensional General Position Bo x-Dra wing .

Theorem 7.5. The algorithm Balanced General Position D -Dimensional Bo x-

Dra wing determines a D -dimensional ortho gonal b ox-dr awing of G in O ( mn �) time

such that:

� Each e dge r oute has D � 1 b ends.

� Each vertex is 3 = 2 -de gr e e-r estricte d if D is even,

and (3 = 2 + 1 = 2 D ) -de gr e e-r estricte d if D is o dd.

� The asp e ct r atio of e ach vertex v is 2 + o ( deg ( v )) .

� The b ounding b ox volume is O

�

�

n

D � 2

m

�

D = ( D � 1)

�

.

Pr o of. By Lemma 7.8, and since in a D -dimensional balanced v ertex la y out (Theo-

rem 7.4), for ev ery v ertex v , c ( v ) � 1 +

d D = 2 e

D

deg ( v ), it follo ws that

2

X

i

M

i

( v ) �

�

1 +

d D = 2 e

D

�

deg ( v ) + O (1) :

By (7.17) ,

surface ( v ) � 2

X

i

M

i

+

�

2 +

O (1)

deg ( v )

�

2( D � 2)

 

X

i

M

i

!

( D � 2) = ( D � 1)

:

So surface ( v ) is at most

�

1 +

d D = 2 e

D

�

deg ( v ) +

�

2 +

O (1)

deg ( v )

�

2( D � 2)

��

1 +

d D = 2 e

D

�

deg ( v )

�

( D � 2) = ( D � 1)

�

�

1 +

d D = 2 e

D

�

deg ( v ) + O

�

deg ( v )

( D � 2) = ( D � 1)

�

=

�

1 +

d D = 2 e

D

�

deg ( v ) + o ( deg ( v )) :

So v is 3 = 2-degree-restricted if D is ev en, and 3 = 2 + 1 = 2 D -degree-restricted if D is o dd.

The b ounding b o x v olume, asp ect ratio and time b ounds follo w from Theorem 7.3.
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7.2.4 Diagonal V ertex La y out Dra wings

W e no w presen t t w o algorithms for pro ducing orthogonal b o x-dra wings with a diagonal

general p osition v ertex la y out.

Algorithm 7.7. Dia gonal General Position D -Dimensional Cube-Dra wing

Input : graph G .

Output : D -dimensional orthogonal h yp ercub e-dra wing of G .

1. Determine a D -dimensional diagonal v ertex la y out of G with corresp onding v ertex

ordering determined b y Algorithm 4.1 Median Pla cement Ordering (with

insertion ordering determined b y the Algorithm 4.2 Inser tion Ordering ).

2. Determine an arc-routing with Algorithm 7.3 D -Dimensional General Posi-

tion Ar c-R outing .

3. Apply Algorithm 7.1 D -Dimensional General Position Bo x-Dra wing .

Theorem 7.6. The algorithm Dia gonal General Position D -Dimensional Cube-

Dra wing determines a D -dimensional hyp er cub e-dr awing in O ( D ( m + n )) time such

that:

� Each e dge r oute has D � 1 b ends.

� Each vertex is 2 -de gr e e-r estricte d.

� The b ounding b ox volume is at most

 

n +

�

n

D � 2

2 D

�

3 m +

n

2

�

�

1 = ( D � 1)

!

D

Pr o of. By Theorem 7.3 for arbitrary D -dimensional general p osition v ertex la y outs,

eac h v ertex is 2-degree-restricted.

F or eac h v ertex v and dimension i , 1 � i � D , when applying the algorithm D -

Dimensional General Position Bo x-Dra wing ,

�

i

( v ) =

&

�

max f s ( v ) ; p ( v ) g

D

�

1 = ( D � 1)

'

:
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Hence v is a cub e, and for eac h dimension i , the side length of the b ounding b o x is

X

v

�

i

( v ) =

X

v

&

�

max f s ( v ) ; p ( v ) g

D

�

1 = ( D � 1)

'

< n +

X

v

�

max f s ( v ) ; p ( v ) g

D

�

1 = ( D � 1)

� n +

 

n

D � 2

X

v

max f s ( v ) ; p ( v ) g

D

!

1 = ( D � 1)

(b y Cauc h y-Sc h w arz)

� n +

�

n

D � 2

D

�

3 m

2

+

n

4

��

1 = ( D � 1)

(b y Theorem 4.2)

The result for the b ounding b o x v olume follo ws.

F or a diagonal la y out, it is easily seen that there are no edge crossings (see Sec-

tion 7.1.3), so there is no need to apply Algorithm Bo x-Dra wing Remo ve Edge

Cr ossings . Hence the algorithm Dia gonal General Position D -Dimensional

Cube-Dra wing tak es O ( D ( m + n )) time.

W e no w presen t an algorithm for pro ducing D -dimensional orthogonal line-dra wings

using a diagonal la y out.

Algorithm 7.8. Dia gonal General Position D -Dimensional Line-Dra wing

Input : graph G .

Output : D -dimensional orthogonal line-dra wing of G .

1. Determine a diagonal D -dimensional general p osition v ertex la y out of G with the

corresp onding v ertex ordering determined b y Algorithm 4.1 Median Pla cement

Ordering (with insertion ordering determined b y Algorithm 4.2 Inser tion Or-

dering ).

2. Determine a ( D � 1)-dimensional arc-routing with Algorithm 7.3 General Po-

sition Ar c-R outing .

3. Represen ting eac h v ertex b y a D -axis-parallel line, apply Algorithm 7.1

D -Dimensional General Position Bo x-Dra wing .
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Theorem 7.7. The algorithm Dia gonal General Position D -Dimensional Line-

Dra wing determines a D -dimensional ortho gonal line-dr awing of G in O ( D ( m + n ))

time such that:

� Each e dge r oute has D � 1 b ends.

� Each vertex has asp e ct r atio at most deg ( v ) = ( D � 1) + O (1) .

� Each vertex is a 2 -de gr e e-r estricte d D -axis p ar al lel line.

� The b ounding b ox volume is at most

n

D � 1

�

(2 D � 3) n + 3 m

2( D � 1)

�

Pr o of. This pro of is similar to that of Theorem 7.6. Algorithm D -Dimensional Gen-

eral Position Ar c-R outing determines a ( D � 1)-dimensional arc-routing suc h that,

for eac h i , 1 � i � D � 1,

M

i

( v ) �

�

max f s ( v ) ; p ( v ) g

D � 1

�

:

W e represen t eac h v ertex v b y a line of length

�

D

( v ) =

�

max f s ( v ) ; p ( v ) g

D � 1

�

�

max f s ( v ) ; p ( v ) g + D � 2

D � 1

:

The asp ect ratio b ound follo ws, and

surface ( v ) = 2 ( ( D � 1) �

D

( v ) + 1) � 2 ( max f s ( v ) ; p ( v ) g + D � 1) :

Since max f s ( v ) ; p ( v ) g � deg ( v ), the dra wing is 2-degree-restricted and has heigh t

X

v

�

D

( v ) �

X

v

max f s ( v ) ; p ( v ) g + D � 2

D � 1

�

�

D � 2

D � 1

�

n +

6 m + n

4( D � 1)

(b y Theorem 4.2)

�

4( D � 2) n + 6 m + n

4( D � 1)

�

(4 D � 7) n + 6 m

4( D � 1)

:
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The b ounding b o x v olume b ound follo ws.

As w as the case for cub e-dra wings with a diagonal la y out, there is no need to

apply Algorithm 7.2 Bo x-Dra wing Remo ve Edge Cr ossings . Hence the algorithm

Dia gonal General Position D -Dimensional Cube-Dra wing tak es O ( D ( m + n ))

time.

7.3 3-D Routing-Based Algorithm

In this section w e describ e a routing-based approac h to 3-D orthogonal b o x-dra wing

in the general p osition mo del. The follo wing algorithm determines a general p osition

v ertex la y out with resp ect to a predetermined arc-routing. Recall that for a giv en arc-

routing of a graph G , for eac h dimension i 2 f X ; Y ; Z g , the subgraph of

 !

G induced b y

the arcs coloured i is denoted

 !

G [ i ].

Algorithm 7.9. 3-D General Position R outing-Based La yout

Input : � graph G

� 3-D general p osition arc-routing of A ( G )

Output : 3-D general p osition v ertex la y out of V ( G ).

for i 2 f X ; Y ; Z g do

Determine the i -ordering

b y applying Algorithm 4.1 Median Pla cement Ordering to

 !

G [ i ].

end-for

If

 !

G [ i ] is acyclic for eac h dimension i 2 f X ; Y ; Z g , w e sa y the arc-routing is acyclic ,

and b y Theorem 4.1, Algorithm 4.1 Median Pla cement Ordering determines min-

im um cost orderings. W e no w describ e algorithms for �nding 2- and 3-colour acyclic

arc-routings.
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7.3.1 Acyclic Arc-Routing

T o determine a 2-colour acyclic arc-routing of G , start with a v ertex ordering < of

G , and for eac h edge v w 2 E ( G ) ( v < w ), colour the arc

� !

v w with colour X and

� !

w v

with colour Y . Clearly

 !

G [ X ] and

 !

G [ Y ] are b oth acyclic. This approac h is used

b y Biedl and Kaufmann [30 ] for 2-D orthogonal graph dra wing. Biedl [27 ] uses this

2-colour acyclic arc-routing metho d to determine the X - and Y -orderings of a 3-D

general p osition v ertex la y out; eac h v ertex is then represen ted b y a line parallel to the

Z -axis. The 3-D dra wings pro duced ha v e small v olume ( O

�

n

2

m

�

) but are inheren tly

t w o-dimensional. The follo wing algorithm determines a 3-colour acyclic arc-routing

and is illustrated in Figure 7.6.

Algorithm 7.10. 3-Colour A cyclic Ar c-R outing

Input : A graph G .

Output : A 3-colour acyclic arc-routing of G .

Determine a 1-balanced v ertex ordering < of G using

Algorithm 4.3 1-Balanced Ver tex Ordering .

for eac h v ertex v 2 V ( G ) do

for k = 1 ; 2 ; : : : ; b c ( v ) = 2 c do

assign the arc

� !

v v

k

the colour Z

end-for

end-for

for eac h uncoloured arc

� !

v w do

if v < w then assign to

� !

v w the colour X else assign to

� !

v w the colour Y

end-for

Lemma 7.10. A lgorithm 3-Colour A cyclic Ar c-R outing determines a 3-c olour

r outing of G .

Pr o of. Ob viously if

� !

v w is coloured X (resp ectiv ely , Y ) then the rev ersal arc

� !

w v cannot

b e coloured X ( Y ). If

� !

v w is coloured Z then

� !

w v cannot also b e coloured Z , as otherwise
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Z

X

Y

v

v

1

v

k

v

k +1

v

s ( v )

v

� 1

v

� p ( v )

b b b b b b b

Figure 7.6: Routing arcs at a p ositiv e v ertex v ; k = b c ( v ) = 2 c .

w w ould b e opp osite to v , and v could mo v e past w under rule M1 . By Lemma 4.5,

rev ersal arcs are coloured di�eren tly and the colouring is an arc-routing. Clearly

 !

G [ X ]

and

 !

G [ Y ] are acyclic. A p ositiv e v ertex v cannot ha v e an incoming arc

� !

w v 2

 !

G [ Z ]

with v < w as otherwise w could mo v e past v under rule M1 (see Corollary 4.2).

Similarly for negativ e v ertices. Hence

 !

G [ Z ] is also acyclic.

Algorithm 7.11. R outing-Based 3-D General Position Bo x-Dra wing

Input : graph G .

Output : 3-D orthogonal b o x-dra wing of G .

1. Determine a 3-D arc-routing of A ( G ) with Algorithm 7.10 3-Colour A cyclic

R outing .

2. Determine a la y out with Algorithm 7.9 3-D General Position R outing-

Based La yout .

3. Apply Algorithm 7.1 3 -Dimensional General Position Bo x-Dra wing .

Theorem 7.8. The algorithm R outing-Based 3-D General Position Bo x-

Dra wing determines a 3-D ortho gonal b ox-dr awing in O ( mn �) time such that

� Each e dge r oute has 2 b ends.

� Each vertex v is 2-de gr e e-r estricte d and has asp e ct r atio at most deg ( v ) = 4 .

� The b ounding b ox volume is

�( G )

4

�

n

�

2

3

m + O (1) n

� �

3 = 2
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Pr o of. F or a p ositiv e v ertex v ,

deg

 !

G [ Z ]

( v ) =

�

c ( v )

2

�

; deg

 !

G [ Y ]

( v ) = min f s ( v ) ; p ( v ) g ; and deg

 !

G [ X ]

( v ) =

�

deg ( v )

2

�

:

F or eac h i 2 f X ; Y ; Z g , since

 !

G [ X ] is acyclic, b y Theorem 4.1, in eac h of the

orderings of

 !

G [ X ],

 !

G [ Y ] and

 !

G [ Z ] the cost c

i

( v ) � 1, for ev ery v ertex v .

M

X

( v ) �

�

1

2

�

deg ( v )

2

��

=

deg ( v )

4

+ O (1) ;

M

Y

( v ) �

�

min f s ( v ) ; p ( v ) g

2

�

=

min f s ( v ) ; p ( v ) g

2

+ O (1) ;

M

Z

( v ) �

�

1

2

�

c ( v )

2

��

=

c ( v )

4

+ O ( 1) :

So, for eac h p ositiv e v ertex v and similarly for negativ e v ertices,

M

X

( v ) + M

Y

( v ) + M

Z

( v )

�

deg ( v )

4

+

min f s ( v ) ; p ( v ) g

2

+

c ( v )

4

+ O (1)

�

deg ( v ) + 2 min f s ( v ) ; p ( v ) g + deg ( v ) � 2 min f s ( v ) ; p ( v ) g

4

+ O (1) (b y (4.1) )

=

deg ( v )

2

+ O (1) :

By Lemma 7.3,

surface ( v ) � 2 deg ( v ) + O (1) ;

and v is 2-degree-restricted. A v ertex v has maxim um asp ect ratio if, in the lo cally

balanced v ertex ordering, c ( v ) = 0, s ( v ) = 0 or p ( v ) = 0, in whic h case v is a line of

length deg ( v ) = 4. Applying Theorem 7.2 w e ha v e

v olume ( b ounding b o x ) �

�( G )

4

�

n

�

2

3

m +

O (1)

6

n

� �

3 = 2

Applying Algorithm D -Dimensional General Position Bo x-Dra wing , whic h

tak es O ( mn �) time, is the most time-consuming step of the algorithm. So Algorithm

R outing-Based 3-D General Position Bo x-Dra wing tak es O ( mn �) time.

The dra wings pro duced b y the ab o v e algorithm ha v e smaller asp ect ratio, on a v-

erage, than those pro duced b y the algorithm based on a 2-colour acyclic routing [27 ].

F urthermore, edges can b e routed on all sides of a v ertex. Hence the dra wings are

orien tation-indep enden t.
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Chapter 8

Equitable Edge-Colouring

In this chapter we pr esent and analyse a gr e e dy algorithm for determining

a (non-pr op er) e dge-c olouring of a multigr aph such that for e ach vertex the

c olours ar e evenly distribute d ab out the e dges incident to that vertex. Such

a c olouring is c al le d an e quitable e dge-c olouring. This algorithm is use d

in subse quent gr aph dr awing algorithms pr esente d in Chapters 9 and 10 to

assign p orts to e dge r outes.

8.1 Simple Graphs

W e initially recall a result due to Hilton and de W erra [117 ] concerning equitable edge-

colourings of graphs. An edge-colouring of a graph G with k colours is said to b e

e quitable if for eac h v ertex v 2 V ( G ) and eac h pair of colours i and j , the n um b er of

edges inciden t to v coloured i and j di�er b y at most one.

Theorem 8.1 ([117 ]). If k � 2 and G is a gr aph such that no vertex de gr e e is a

multiple of k , then G has an e quitable e dge-c olouring with k c olours.

W e ha v e the follo wing result.

Corollary 8.1. If k � 2 and G is a gr aph, then ther e is an e dge-c olouring of G with k

c olours such that for e ach vertex v 2 V ( G ) and c olour i , the numb er of e dges incident

with v c olour e d i is at most d (deg ( v ) + 1) =k e .

176
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Pr o of. F or eac h v ertex v 2 V ( G ) with degree a m ultiple of k , add a new v ertex v

0

and

a new edge v v

0

to G to create a graph G

0

. G

0

has no v ertex with degree a m ultiple

of k , so G

0

has an equitable edge-colouring with k colours. A t eac h v ertex v 2 V ( G

0

)

and colour i the n um b er of edges inciden t to v coloured i is at most d deg

G

0

( v ) =k e �

d (deg

G

( v ) + 1) =k e .

8.2 Multigraphs

The result of Hilton and de W erra is dep enden t on the graph b eing simple. W e no w

presen t a greedy heuristic for edge-colouring m ultigraphs with k colours. Giv en a partial

edge-colouring col : E ( G ) ! f 1 ; 2 ; : : : ; k g of a m ultigraph G w e de�ne

N ( v ) = j f v w 2 E ( G ) : v w is coloured g j

M ( v ) = max

i

j f v w 2 E ( G ) : col( v w ) = i g j

C ( v ) = f i 2 f 1 ; 2 ; : : : ; k g : M ( v ) = j f v w 2 E ( G ) : col( v w ) = i g jg :

M ( v ) is the maxim um n um b er of edges inciden t with v assigned the same colour,

and C ( v ) is the set of colour(s) most abundan t at v .

Algorithm 8.1. Quasi-Equit able Edge-Colour

Input : m ultigraph G , p ositiv e in teger k .

Output : edge-colouring of G with at most k colours.

for eac h edge v w 2 E ( G ) do

if C ( v ) [ C ( w ) 6= f 1 ; 2 ; : : : ; k g then Cho ose i 2 f 1 ; 2 ; : : : ; k g n ( C ( v ) [ C ( w )).

else if C ( v ) = C ( w ) then Cho ose i 2 f 1 ; 2 ; : : : ; k g .

else if j C ( v ) j � j C ( w ) j then Cho ose i 2 C ( v ) n C ( w ).

else ( j C ( w ) j > j C ( v ) j ) Cho ose i 2 C ( w ) n C ( v ).

Set the colour of v w to b e i .

end-for
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Theorem 8.2. The algorithm Quasi-Equit able Edge-Colour wil l determine, in

O

�

m

2

�

time, a e dge k -c olouring of a multigr aph G , such that for every vertex v 2 V ( G ) ,

M ( v ) �

2 deg ( v )

k

+ 1 :

Pr o of. Firstly , observ e that

N ( v ) � j C ( v ) j � M ( v ) : (8.1)

A t eac h step of the algorithm the only v ertex u for whic h M ( u ) can p ossibly increase

is v and w . So, for eac h v ertex v w e apply induction on N ( v ) with the follo wing inductiv e

h yp othesis.

if N ( v ) � t then M ( v ) �

2 N ( v )

k

+ 1 : (8.2)

The basis for the induction is trivial. No w, supp ose that for N ( v ) = t , M ( v ) �

2 N ( v ) =k + 1 and the next edge inciden t to v to b e coloured is v w .

In the �rst case of the algorithm v w is coloured with a colour not in C ( v ), so M ( v )

do es not increase. By (8.2) for N ( v ) = t , (8.2) holds for N ( v ) = t + 1.

In the second case, C ( v ) = C ( w ) = f 1 ; 2 ; : : : ; k g . By (8.1) , N ( v ) � j C ( v ) j � M ( v ) =

k � M ( v ). So M ( v ) � N ( v ) =k � 2( N ( v ) + 1) =k + 1, and (8.2) holds for N ( v ) = t + 1.

In the third case, C ( v ) [ C ( w ) = f 1 ; 2 ; : : : ; k g and j C ( v ) j � j C ( w ) j . So j C ( v ) j � k = 2.

By (8.1) N ( v ) � k M ( v ) = 2, so M ( v ) � 2 N ( v ) =k , and (8.2) holds for N ( v ) = t + 1.

In the fourth case, the edge v w is coloured with a colour not in C ( v ), so M ( v ) do es

not increase. By (8.2) for N ( v ) = t , (8.2) holds for N ( v ) = t + 1.

Up on termination of the algorithm N ( v ) = deg ( v ), so for ev ery v ertex v 2 V ( G ),

M ( v ) � 2 deg ( v ) =k + 1.

W e no w analyse the time complexit y of the algorithm. It is easily seen that

the iteration of the algorithm corresp onding to the colouring of the edge v w tak es

O (deg ( v ) + deg ( w ) + k ) time. So the algorithm tak es

X

v w 2 E ( G )

O ( deg ( v ) + deg ( w ) + k ) = O

0

@

mk +

X

v 2 V ( G )

deg ( v )

2

1

A

time. W e no w pro v e that for non-negativ e n um b ers d

1

; d

2

; : : : ; d

n

,

n

X

i =1

d

2

i

�

 

n

X

i =1

d

i

!

2

: (8.3)
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The result will follo w. W e pro ceed b y induction on n . F or n = 1, equalit y holds in

(8.3) . Assume that (8.3) holds for all n

0

< n . Then

n

X

i =1

d

2

i

=

n � 1

X

i =1

d

2

i

+ d

2

n

�

 

n � 1

X

i =1

d

i

!

2

+ d

2

n

(b y induction)

�

 

n � 1

X

i =1

d

i

!

2

+ d

2

n

+ 2 d

n

 

n � 1

X

i =1

d

i

!

=

  

n � 1

X

i =1

d

i

!

+ d

n

!

2

=

 

n

X

i =1

d

i

!

2

So the time tak en b y the algorithm is

O

0

@

mk +

 

X

v

deg ( v )

!

2

1

A

= O

�

mk + 4 m

2

�

:

If k > m then trivially there is an edge m -colouring of G with the required prop erties,

so w e can assume that k � m . Hence the algorithm tak es O

�

m

2

�

time.

Finally , w e presen t a w ell-kno wn algorithm for the case of k = 2, whic h pro vides

an impro v emen t on the previous result. This tec hnique has b een emplo y ed for graph

dra wing in [30 , 31 ] for example.

Algorithm 8.2. 2-Edge-Colour

Input : m ultigraph G .

Output : edge 2-colouring of G .

1. P air the o dd degree v ertices of G , and add an edge to G b et w een the paired

v ertices. All v ertices no w ha v e ev en degree.

2. F ollo w an Eulerian tour of G , and colour the edges alternately with di�eren t

colours.
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Theorem 8.3. The algorithm 2-Edge-Colour wil l, in O ( m ) time, determine a e dge

2 -c olouring of a multigr aph G , such that for every vertex v 2 V ( G ) ,

M ( v ) �

�

deg ( v )

2

�

+ 1 :

Pr o of. In an y graph there is an ev en n um b er of v ertices with o dd degree, so the �rst

step of the algorithm is v alid. An undirected graph has an Eulerian tour if and only

if ev ery v ertex has ev en degree. See Ev en [90 ] for an algorithm for �nding an Eulerian

tour in O ( m ) time.

A t eac h v ertex v , there is at most one `extra' edge inciden t with v added in Step 1.

If the Eulerian tour has o dd length then the �rst and last edges in the tour will receiv e

the same colour. Therefore, at ev ery v ertex v , there will b e at least d deg ( v ) = 2 e � 1

pairs of edges inciden t with v receiving di�eren t colours. The remaining ( � 2) edges

inciden t to v ma y receiv e the same colour, so the maxim um n um b er of edges inciden t

with v and receiving the same colour is d deg ( v ) = 2 e + 1.



Chapter 9

The Coplanar V ertex La y out

Mo del for Three-Dimensional

Orthogonal Graph Dra wing

In this chapter we pr esent algorithms for pr o ducing 3-D ortho gonal dr aw-

ings in the c oplanar vertex layout mo del; i.e., ther e exists a single grid-

plane interse cting every vertex. We pr esent thr e e algorithms, for pr o ducing

(1) 1-b end line-dr awings, (2) dr awings with optimal volume, and (3) cub e-

dr awings with optimal volume. A disadvantage of this mo del is that the

dr awings pr o duc e d ar e inher ently orientation-dep endent.

In this c hapter w e presen t algorithms for determining c oplanar 3-D orthogonal

dra wings; i.e., there exists a grid-plane in tersecting ev ery v ertex. Section 9.1 describ es

an algorithm whic h represen ts the v ertices b y Z -lines p ositioned in a 2-D diagonal, and

pro duces 1-b end line-dra wings based on a b o ok em b edding of the graph.

The algorithms in the remainder of the c hapter are a pro duct of join t researc h with

Therese Biedl and T orsten Thiele [34 ]. In Section 9.2 w e presen t an algorithm whic h

p ositions the v ertices in O (

p

n ) � O (

p

n ) grid, and pro duces line-dra wings with optimal

v olume for regular graphs, and four b ends p er edge route. A v ariation of this algorithm

pro duces 3-b end dra wings with an increase in the v olume. Our algorithm presen ted in

Section 9.3 p ositions the v ertices in a O

�

p

m + n

�

� O

�

p

m + n

�

grid, and determines
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degree-restricted cub e-dra wings with O

�

( m + n )

3 = 2

�

v olume, whic h is optimal. This

algorithm, whic h can b e considered a generalisation of the Comp a ct algorithms of

Eades et al. [86 , 87 ] for 3-D p oin t-dra wing, is an impro v emen t on the line-dra wing

algorithm of W o o d [223 ].

9.1 1-Bend Bo x-Dra wing Algorithm

Biedl et al. [32 , 33 ] construct 3-D orthogonal dra wings of K

n

, and hence for an y simple

graph, with O

�

n

3

�

v olume and one b end p er edge route. This construction, called the

Lifting-Edges algorithm b y Biedl [27 ], represen ts the v ertices as Z -lines of length

n p ositioned in a 2-D diagonal la y out. Eac h edge is routed with one b end in some

Z -plane. As men tioned in [32 , 33 ], the assignmen t of Z -planes to edge routes is closely

related to the assignmen t of pages to edges in b o ok em b eddings. The follo wing algo-

rithm, illustrated in Figure 9.1, exploits a b o ok em b edding to construct 3-D orthogonal

dra wings with one b end p er edge route.

Algorithm 9.1. Coplanar 1-Bend Dra wing

Input : n -v ertex m -edge m ultigraph G with gen us g .

Output : 3-D orthogonal dra wing of G .

1. Find a b o ok-em b edding of G using the algorithm of Malitz [150 ] (see Section 1.3).

Supp ose ( v

1

; v

2

; : : : ; v

n

) is the spine ordering and page : E ( G ) ! f 1 ; 2 ; : : : ; P g is

the page n um b ering with P = O

�

p

g

�

.

2. Orien t eac h edge v

i

v

j

2 E ( G ) from left to righ t in the ordering ( v

1

; v

2

; : : : ; v

n

);

i.e., if i < j then the edge v

i

v

j

is directed from v

i

to v

j

.

3. Denote b y G

R

the subgraph of G consisting of the edges in an y page p 2

f 1 ; 2 ; : : : ; d P = 2 e g , and b y G

L

the subgraph of G consisting of the edges in the

remaining pages. (Edges in G

R

will b e routed through grid-p oin ts ( x; y ; z ) with

x � y , and edges in G

L

will b e routed through grid-p oin ts ( x; y ; z ) with y � x .)

4. Determine edge-colourings of G

R

and of G

L

, eac h with d 2 m=n e colours, us-

ing Algorithm 8.1 Quasi-Equit able Edge-Colour . Supp ose col : E ( G ) !
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O ( n )

deg ( v ) n

m

+ 1

deg ( v ) n

m

+ 1

O ( n )

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

X

Y

Z

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

page

1

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

page

d P = 2 e

col = 1

col = 2

col = d 2 m=n e

col = 1

col = 2

col = d 2 m=n e

Figure 9.1: Coplanar 1-b end dra wing with a diagonal v ertex la y out.

f 1 ; 2 ; : : : ; d 2 m=n e g is the resulting edge-colouring of G .

5. F or eac h v ertex v 2 V ( G ), supp ose M

+ R

( v ) (resp ectiv ely , M

+ L

( v )) is the max-

im um n um b er of outgoing edges

� !

v w 2 E ( G

R

) (

� !

v w 2 E ( G

L

)) on the same page

and receiving the same colour. Similarly , M

� R

( v ) (resp ectiv ely , M

� L

( v )) is the

maxim um n um b er of incoming edges

� !

w v 2 E ( G

R

) (

� !

w v 2 E ( G

L

)) on the same

page and receiving the same colour.

6. F or eac h v ertex v

i

2 V ( G ), set

M

X

( v

i

) = max

�

M

+ L

( v

i

) ; M

� R

( v

i

)

	

, and

M

Y

( v

i

) = max

�

M

+ R

( v

i

) ; M

� L

( v

i

)

	

:
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Represen t v

i

b y the

M

X

( v

i

) � M

Y

( v

i

) �

�

P

2

� �

2 m

n

�

b o x with maxim um corner at

0

@

X

j � i

M

X

( v

j

) ;

X

j � i

M

Y

( v

j

) ;

�

P

2

� �

2 m

n

�

1

A

:

(Note that for v ertices v with degree at most the a v erage degree

2 m

n

, M

X

( v ) and

M

Y

( v ) will probably b e 1, and hence v will b e represen ted b y a line.)

7. F or eac h v ertex v 2 V ( G ), for eac h page p 2 f 1 ; 2 ; : : : ; d P = 2 e g , and for eac h colour

c 2 f 1 ; 2 ; : : : ; d 2 m=n eg , supp ose f

� !

v w

1

;

� !

v w

2

; : : : ;

� !

v w

k

g are the outgoing edges at v

in G

R

whic h are coloured c and app ear in page p , where w

1

� w

2

� � � � � w

k

in

the spine ordering. As illustrated in Figure 9.1, assign the X

+

-p orts at v with

Z -co ordinates of ( p � 1) d 2 m=n e + c to these edges, suc h that, if i < j then the

Y -co ordinate of the p ort assigned to

� !

v w

i

is less than the Y -co ordinate of the p ort

assigned to

� !

v w

j

. No w supp ose f

� � !

w

1

v ;

� � !

w

2

v ; : : : ;

� � !

w

k

v g are the incoming edges at v in

G

R

whic h are coloured c and app ear in page p , where w

k

� w

k � 1

� � � � � w

1

in the

spine ordering (taking care to consisten tly order parallel edges f v w g at v and w ;

see Figure 9.1). Assign the Y

�

-p orts at v with Z -co ordinates of ( p � 1) d 2 m=n e + c

to these edges, suc h that, if i < j then the X -co ordinate of the p ort assigned to

� !

w

i

v is less than the X -co ordinate of the p ort assigned to

� !

w

j

v .

8. F or eac h edge

� !

v w 2 E ( G

R

), if

� !

v w has b een assigned p orts at v and w with

co ordinates of ( x

v

; y

v

; z

0

) and ( x

w

; y

w

; z

0

) resp ectiv ely , then route

� !

v w with one

b end as follo ws:

�

x

v

; y

v

; z

0

�

!

�

x

w

; y

v

; z

0

�

!

�

x

w

; y

w

; z

0

�

9. In an analogous manner to the case for edges in G

R

, route edges

� !

v w 2 E ( G

L

)

using Y

+

-p orts at v and X

�

-p orts at w , as illustrated in Figure 9.1.
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Theorem 9.1. The algorithm Coplanar 1-Bend Dra wing determines an ortho g-

onal b ox-dr awing of G with one b end p er e dge and O

�

nm

p

g

�

volume, wher e g is the

genus of G .

Pr o of. By construction eac h edge has one b end, and edge routes are assigned unique

p orts, so t w o X -segmen ts do not in tersect, and t w o Y -segmen ts do not in tersect. An

X -segmen t and a Y -segmen t can only in tersect if they ha v e the same Z -co ordinate.

Tw o edges ha v e the same Z -co ordinate if and only if they are on the same page of the

b o ok em b edding and they receiv e the same colour in Step 4. Hence the X -segmen t

and the Y -segmen t of edges on di�eren t pages of the b o ok em b edding or receiving a

di�eren t colours, will not in tersect. By the metho d used in Step 7 for assigning p orts

to edges on the same page and receiving the same colour, suc h edge routes will not

in tersect. Hence no t w o edges routes in tersect.

In the edge-colouring of G

R

, the maxim um n um b er of edges inciden t to a v ertex

v receiving the same colour, b y Theorem 8.2, is at most 2 deg

G

R

( v ) = d 2 m=n e + 1 �

n deg

G

( v ) =m + 1. So eac h of M

+ R

( v ), M

� R

( v ), M

+ L

( v ) and M

� L

( v ) is at most

n deg

G

( v ) =m + 1, and hence M

X

( v ) and M

Y

( v ) are at most n deg

G

( v ) =m + 1. The width

and depth of the b ounding b o x is therefore at most

P

v

( n deg

G

( v ) =m + 1) = 3 n . The

heigh t of the b ounding b o x is d P = 2 e d 2 m=n e = O

�

m

p

g =n

�

. So the b ounding b o x has

v olume O

�

nm

p

g

�

.

Note that smaller dra wings can b e pro duced in practice b y the follo wing mo di�-

cation to algorithm Coplanar 1-Bend Dra wing . F or eac h page p , determine an

edge-colouring (still with d 2 m=n e colours) of the subgraph of G consisting of the edges

in page p suc h that, for eac h v ertex v , there at at most deg ( v ) n=m edges inciden t to v

receiving the same colour. Then w e need only allo cate as man y la y ers for the routing

of edges in page p , as there are used colours.

Since the gen us of a m ultigraph is the same as the gen us of the underlying simple

graph, and since the gen us of a graph is at most m , our v olume b ound is

O

�

min

�

n

2

m; nm

3 = 2

	�

. Note that, for the complete graph K

n

, this v olume b ound

is O

�

n

4

�

, whic h is more than the v olume of the construction of K

n

due to Biedl et al.

[32 , 33 ]. F or sparse graphs with m = O

�

n

4 = 3

�

the ab o v e algorithm pro duces dra wings
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with less v olume than the K

n

construction. The follo wing op en problem is of in terest.

Op en Problem 9.1. Do es ev ery graph ha v e an orthogonal b o x-dra wing with one b end

p er edge and O

�

n

2

p

m

�

v olume?

9.2 Optimal V olume Line-Dra wing Algorithm

The follo wing algorithm for pro ducing coplanar orthogonal line-dra wings represen ts

the v ertices b y Z -lines in a O (

p

n ) � O (

p

n ) grid. Edges are routed with four b ends in

la y ers, eac h consisting of t w o Z -planes, as illustrated in Figure 9.2.

X

Y

Z

Figure 9.2: 4-b end edge routes.

Algorithm 9.2. Optimal V olume Line-Dra wing

Input : n -v ertex m -edge m ultigraph G with maxim um degree �.

Output : 3-D orthogonal line-dra wing of G .

1. Assign to eac h v ertex v 2 V ( G ) a unique pair

( x

v

; y

v

) 2

�

1 ; 2 ; : : : ;

�

p

n

�	

�

�

1 ; 2 ; : : : ;

�

p

n

�	

:
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2. P air the o dd degree v ertices of G and add an edge b et w een the paired v ertices.

Orien t the edges of G b y follo wing an Eulerian tour of G . Remo v e the inserted

edges.

3. Construct a graph H with V ( H ) = E ( G ), and add an edge to H b et w een the

v ertices corresp onding to orien ted edges

� !

v w and

� !

xy if v is in the same column as

x , or w is in the same ro w as y .

4. V ertex-colour the graph H using the algorithm Greed y Ver tex-Colour with

colours f 0 ; 1 ; : : : ; �( H ) g (see Section 2.2). F or eac h edge v w 2 E ( G ), if the

v ertex of H corresp onding to v w is coloured i 2 f 0 ; 1 ; : : : ; �( H ) g then set the

height h ( v w )  2 i . Supp ose M = max

v w 2 E ( G )

h ( v w ) + 1.

5. Represen t eac h v ertex v b y the line

�

2 x

v

; 2 y

v

; 0

�

� !

�

2 x

v

; 2 y

v

; M

�

:

6. F or eac h orien ted edge

� !

v w 2 E ( G ), construct the follo wing edge route for v w , as

illustrated in Figure 9.2.

( 2 x

v

; 2 y

v

; h (

� !

v w )) ! ( 2 x

v

+ 1 ; 2 y

v

; h (

� !

v w )) ! (2 x

v

+ 1 ; 2 y

v

+ 1 ; h (

� !

v w )) !

( 2 x

v

+ 1 ; 2 y

v

+ 1 ; h (

� !

v w ) + 1) ! (2 x

w

; 2 y

v

+ 1 ; h (

� !

v w ) + 1) ! (2 x

w

; 2 y

w

; h (

� !

v w ) + 1)

Theorem 9.2. The algorithm Optimal V olume Line-Dra wing determines a 3-D

ortho gonal line-dr awing of G in O ( m �

p

n ) time with O

�

� n

3 = 2

�

volume and four b ends

p er e dge r oute.

Pr o of. In eac h edge route the �rst, third and �fth segmen ts ha v e unit length. An edge

crossing in v olving a unit-length segmen t m ust also in v olv e one of the adjacen t segmen ts

in the edge route, so to sho w that the dra wing is crossing-free, w e need only consider

p oten tial in tersections b et w een the second and the fourth segmen ts of the edge routes.

These segmen ts are parallel to the Y - and X -axes, resp ectiv ely . Suc h Y -segmen ts ha v e

ev en Z -co ordinate, and suc h X -segmen ts ha v e o dd Z -co ordinate, so an X -segmen t do es

not in tersect a Y -segmen t. F or t w o X -segmen ts to in tersect, they m ust ha v e the same
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heigh t and b e routed in the same ro w. Since orien ted edges destined for v ertices in

the same ro w receiv e di�eren t heigh ts, no t w o X -segmen ts in tersect. Similarly , for t w o

Y -segmen ts to in tersect, they m ust ha v e the same heigh t and b e routed in the same

column. Since orien ted edges starting at v ertices in the same column receiv e di�eren t

heigh ts, no t w o Y -segmen ts in tersect.

The v ertex in H corresp onding to an edge

� !

v w 2 E ( G ) has degree

X

x in ro w( v )

deg ( x ) +

X

y in ro w( w )

deg ( y ) :

So the maxim um degree of H is at most 2� d

p

n e . Hence the maxim um heigh t of an

edge route is 4� d

p

n e + 1 = O (�

p

n ) . Since the width and depth of the dra wing are

b oth 2 d

p

n e , the b ounding b o x has O

�

� n

3 = 2

�

v olume.

The greedy v ertex-colouring of H tak es O ( j E ( H ) j ) time. Since j V ( H ) j = m and

�( H ) � 2� d

p

n e , the algorithm tak es O ( m �

p

n ) time.

F or regular graphs, the ab o v e algorithm pro duces dra wings with O ( m

p

n ) v olume,

whic h b y Theorem 3.2 is optimal for an y 3-D orthogonal graph dra wing. By dra wing

v ertices of large degree separately , and using a particular la y out of the remaining v er-

tices, a mo di�cation of the ab o v e algorithm ac hiev es this optimal b ound for all graphs

(see [34 ]).

If w e eliminate the middle segmen t from eac h edge route used in Algorithm 9.2

Optimal V olume Line-Dra wing , and assign eac h edge a unique heigh t then w e

obtain the follo wing result.

Theorem 9.3. A 3-D ortho gonal line-dr awing of a multigr aph G c an b e determine d in

O ( m ) time with O ( nm ) volume and thr e e b ends p er e dge r oute.

This algorithm is particularly appropriate for m ultila y er VLSI as there are no v er-

tical edge segmen ts, whic h are called cr oss-cuts ; see [2 ].

9.3 Optimal V olume Cub e-Dra wing Algorithm

In the follo wing algorithm for pro ducing coplanar orthogonal dra wings, v ertices are

initially represen ted b y squares in the ( Z = 0)-plane, and their p ositions are determined
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b y an O

�

p

m + n

�

� O

�

p

m + n

�

square-pac king. V ertices are then extended in the Z

dimension to form cub es, and edges are routed either ab o v e or b elo w the v ertices.

By Theorem 3.2, the b ounding b o x v olume of O

�

( m + n )

3 = 2

�

is optimal for degree-

restricted orthogonal b o x-dra wings with b ounded asp ect ratio (assuming m = 
( n )).

Algorithm 9.3. Optimal V olume Cube-Dra wing

Input : n -v ertex m -edge m ultigraph G .

Output : 3-D orthogonal cub e-dra wing of G .

1. Determine an edge 2-colouring of G using Algorithm 8.2 2-Edge-Colour . Sup-

p ose the induced subgraphs are G

+

and G

�

, and for eac h v ertex v 2 V ( G ) set

M ( v ) = max f deg

G

+

( v ) ; deg

G

�

( v ) g :

Orien t the edges of G b y follo wing the Eulerian tour used in Algorithm 8.2.

2. F or eac h v ertex v 2 V ( G ), initially represen t v b y a square S

v

of size

�

2

l

p

M ( v )

m

+ 2

�

�

�

2

l

p

M ( v )

m

+ 2

�

:

3. P osition the squares f S

v

: v 2 V ( G ) g in the ( Z = 0)-plane with the square-

pac king algorithm of Kleitman and Krieger [127 ].

= V ertices after

Step 4.

= Un used

space in square-

pac king.

Figure 9.3: Square pac king.
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4. F or eac h v ertex v 2 V ( G ), let ( x

0

; y

0

; 0) b e the grid-p oin t in S

v

with minim um

ev en X -co ordinate and minim um ev en Y -co ordinate. Replace S

v

b y the

�

2

l

p

M ( v )

m

� 1

�

�

�

2

l

p

M ( v )

m

� 1

�

�

�

2

l

p

M ( v )

m

� 1

�

cub e with minim um corner at

�

x

0

; y

0

; 2 � 2

l

p

M ( v )

m�

(see Figure 9.3).

5. Assign eac h edge v w 2 E ( G

+

) unique Z

+

-p orts at v and w b oth with ev en X -

co ordinate and ev en Y -co ordinate.

6. Construct a graph H with V ( H ) = E ( G

+

), and add the edge f v w ; xy g to E ( H )

if the p ort assigned to v w at v is in the same column as the p ort assigned to xy

at x , or the p ort assigned to v w at w is in the same ro w as the p ort assigned to

xy at y .

7. V ertex-colour the graph H using the algorithm Greed y Ver tex-Colour with

colours f 1 ; 2 ; : : : ; �( H ) + 1 g (see Section 2.2). F or eac h v ertex v 2 V ( H ) coloured

i corresp onding to an edge v w , set the height h ( v w )  i .

8. F or eac h orien ted edge v w 2 E ( G

+

), construct an edge route for v w as follo ws.

Supp ose the p orts on v and w assigned to v w ha v e co ordinates ( v

X

; v

Y

; 0) and

( w

X

; w

Y

; 0), resp ectiv ely . Route the edge v w with one of the follo wing four or six

b end routes, as illustrated in Figure 9.4.

� v

X

= w

X

:

( v

X

; v

Y

; 0) ! ( v

X

; v

Y

; 2 h ( v w )) ! ( v

X

+ 1 ; v

Y

; 2 h ( v w )) !

( v

X

+ 1 ; w

Y

; 2 h ( v w )) ! ( v

X

; w

Y

; 2 h ( v w )) ! ( v

X

; w

Y

; 0)

� v

Y

= w

Y

:

( v

X

; v

Y

; 0) ! ( v

X

; v

Y

; 2 h ( v w ) + 1) ! ( v

X

; v

Y

+ 1 ; 2 h ( v w ) + 1) !

( w

X

; v

Y

+ 1 ; 2 h ( v w ) + 1) ! ( w

X

; v

Y

; 2 h ( v w ) + 1) ! ( w

X

; v

Y

; 0)

� v

X

6= w

X

and v

Y

6= w

Y

:

( v

X

; v

Y

; 0) ! ( v

X

; v

Y

; 2 h ( v w )) ! ( v

X

+ 1 ; v

Y

; 2 h ( v w )) !

( v

X

+ 1 ; w

Y

+ 1 ; 2 h ( v w )) ! ( v

X

+ 1 ; w

Y

+ 1 ; 2 h ( v w ) + 1) !

( w

X

; w

Y

+ 1 ; 2 h ( v w ) + 1) ! ( w

X

; w

Y

; 2 h ( v w ) + 1) ! ( w

X

; w

Y

; 0)
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X

Y

Z

v

w

2 h ( v w )

x

y

2 h ( xy ) + 1

u

2 h ( v u )

Figure 9.4: Routing edges ab o v e the plane Z = 0.

9. Rep eat Steps 5-8 for the edges in E ( G

�

), assigning Z

�

-p orts and constructing

edge routes b elo w the v ertices.

Theorem 9.4. The algorithm Optimal V olume Cube-Dra wing determines an or-

tho gonal cub e-dr awing of G in O

�

m

p

m + n

�

time, with O

�

( m + n )

3 = 2

�

b ounding b ox

volume and at most six b ends p er e dge. Each vertex is 12-de gr e e-r estricte d.

Pr o of. After step 3, v ertices are disjoin t with Z

+

-faces in the ( Z = 0)-plane, and with

corners at grid-p oin ts with ev en co ordinates. So, for eac h v ertex v , the the n um b er of

Z

+

-p orts on S

v

with ev en X - and ev en Y -co ordinate is

l

p

M ( v )

m

2

� M ( v ), so there

are enough p orts on v for the routing of edges in G

+

on the Z

+

-face, and for edges in

G

�

on the Z

�

-face.

In eac h edge route, there are no consecutiv e unit length segmen ts. Therefore to sho w

that the dra wing is crossing-free, w e need only sho w that non-unit length edge segmen ts

do not in tersect. V ertical segmen ts cannot in tersect b ecause unique p orts are assigned

to the edges. X -parallel segmen ts ha v e o dd Z -co ordinate and Y -parallel segmen ts ha v e

ev en Z -co ordinate, so an X -parallel segmen t cannot in tersect a Y -parallel segmen t.

A v ertical segmen t has ev en X and Y co ordinate, a X -parallel segmen t has o dd Y -
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co ordinate, and a Y -parallel segmen t has o dd X -co ordinate, so a v ertical segmen t

cannot in tersect a X - or Y -parallel segmen t. Tw o Y -parallel segmen ts can only in tersect

if they o v erlap. Since edges originating in the same column ha v e di�eren t heigh ts,

t w o Y -parallel segmen ts cannot in tersect. Similarly , t w o X -parallel segmen ts can only

in tersect if originating in the same ro w and in this case they ha v e di�eren t heigh ts, so

they cannot in tersect. So no t w o edges can in tersect.

F or eac h v ertex v , the surface ( v ) is

6

�

2

l

p

M ( v )

m

� 1

�

2

� 6

�

p

2 deg ( v ) + O ( 1)

�

2

= 12 deg ( v ) + O

�

p

deg ( v )

�

:

Th us v is 12-degree-restricted.

The total area of the squares f S

v

: v 2 V ( G ) g (b efore Step 3) is

P

v

�

2

l

p

M ( v )

m

+ 1

�

2

.

By Theorem 8.3, M ( v ) � d deg ( v ) = 2 e + 1, th us the total area is at most

X

v

�

2

l

p

d deg ( v ) = 2 e + 1

m

+ 1

�

2

�

X

v

�

p

2 deg ( v ) + O (1)

�

2

�

X

v

�

2 deg ( v ) + O

�

p

deg ( v )

�

+ O ( 1)

�

� 4 m + O

 

n +

X

v

p

deg ( v )

!

� 4 m + O

0

@

n +

s

n

X

v

deg ( v )

1

A

(b y Cauc h y-Sc h w arz)

� 4 m + O

�

n +

p

nm

�

:

The algorithm of Kleitman and Krieger [127 ] pac ks squares with a total area of 1

in a

2

p

3

�

p

2 rectangle. So the squares f S

v

: v 2 V ( G ) g can b e pac k ed in a rectangle

with size

�

2

p

3

q

4 m + O

�

n +

p

nm

�

�

�

�

p

2

q

4 m + O

�

n +

p

nm

�

�

�

�

4

r

m

3

+ O

�

q

n +

p

nm

� �

�

�

2

p

2 m + O

�

q

n +

p

nm

� �

:

The maxim um degree of H is th us

�( H ) �

�

4

p

3

+ 2

p

2

�

p

m + O

�

q

n +

p

nm

�

:
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A greedy v ertex-colouring of H requires at most �( H ) + 1 colours; hence the heigh t of

the dra wing ab o v e the ( Z = 0)-plane, and the heigh t b elo w the v ertices, whic h is t wice

the n um b er of colours, is

�

8

p

3

+ 4

p

2

�

p

m + O

�

q

n +

p

nm

�

:

The heigh t of the v ertices is max

v

2

l

p

M ( v )

m

� 1 � max

v

p

2 deg ( v ) + O ( 1) =

p

2�( G ) + O ( 1) �

p

2 m + O (1) : Th us the total heigh t of the dra wing is at most

�

16

p

3

+ 9

p

2

�

p

m + O

�

q

n +

p

nm

�

:

W e ha v e sho wn that eac h of the heigh t, width and depth of the dra wing is

O

�

p

m +

q

n +

p

nm

�

: (9.1)

If n = O ( m ) then (9.1) is O (

p

m ), and if m = O ( n ) then (9.1) is O (

p

n ). Hence the

heigh t, width and depth of the dra wing are eac h O (

p

m +

p

n ), whic h is O

�

p

m + n

�

b y the Cauc h y-Sc h w arz inequalit y . The v olume of the b ounding b o x is therefore

O

�

( m + n )

3 = 2

�

. Note that in most applications n � m , hence the v olume is

�

4

p

3

� 2

p

2 �

�

16

p

3

+ 9

p

2

�

m

3 = 2

< 144 m

3 = 2

:

The time-consuming stage of the algorithm is the v ertex-colouring of H . This can

b e computed in

O ( j E ( H ) j ) = O ( j V ( H ) j �( H )) = O

�

m

�

p

m +

q

n +

p

nm

��

;

whic h is O

�

m

p

m + n

�

b y the same argumen t used ab o v e. By construction there are

at most six b ends p er edge.

If w e remo v e the middle segmen t from eac h edge and assign eac h edge a unique

heigh t then the o v erall heigh t is O ( m ) and w e obtain the follo wing result.

Theorem 9.5. Every gr aph has an ortho gonal cub e-dr awing, which c an b e c ompute d

in O ( m ) time, with O ( m ( m + n )) b ounding b ox volume and �ve b ends p er e dge. Each

vertex is 12-de gr e e-r estricte d.
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Note that if w e reduce the length in the Z -direction of the b o x represen ting a

v ertex then the surface of the b o x can b e reduced at the exp ense of an increase in the

asp ect ratio. In particular, for asp ect ratio r , it is easily seen that a v ertex will b e

4(1 + 2 =r )-degree-restricted.



Chapter 10

The Non-Collinear V ertex La y out

Mo del for Three-Dimensional

Orthogonal Graph Dra wing

In this chapter we pr esent an algorithm for pr o ducing 3-D ortho gonal b ox-

dr awings in the non-c ol line ar mo del. The b ox-dr awings pr o duc e d have op-

timal volume for r e gular gr aphs. We use this algorithm as the b asis for

another algorithm to gener ate 3-D ortho gonal p oint-dr awings with optimal

volume. The advantage of this mo del over the c oplanar vertex layout mo del

is that the dr awings ar e orientation-indep endent, which for p oint-dr awings

c omes at the c ost of one mor e b end p er e dge r oute.

10.1 Bo x-Dra wing Algorithm

The algorithm to follo w determines a 3-D non-collinear v ertex la y out b y lifting the

v ertices from a plane grid in to 3-D space in an orien tation-indep enden t manner. W e call

the b o x surrounding the v ertices the inner b ox . F or eac h direction d 2 f X

�

; Y

�

; Z

�

g ,

the b o x extending out from the d -face of the inner b o x is called the d -outer b ox , as

sho wn in Figure 5.18 (page 114). Eac h edge is routed in an outer b o x determined b y

an equitable edge-colouring. Within eac h outer b o x, the routing of edges resem bles the

195
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metho d emplo y ed in Algorithm 9.3 Optimal V olume Cube-Dra wing .

Algorithm 10.1. Non-Collinear Bo x-Dra wing

Input : m ultigraph G with maxim um degree �.

Output : 3-D orthogonal cub e-dra wing of G .

1. Assign eac h v ertex v 2 V ( G ) a unique pair ( x ( v ) ; y ( v )) with

0 � x ( v ) ; y ( v ) �

�

p

n

�

� 1 :

2. F or eac h v ertex v 2 V ( G ), set z ( v )  x ( v ) + y ( v ) (mo d d

p

n e ) (see Figure 10.1).

X

Y

0 1 2 3

1

2

3

z

=

0

z

=

1

z

=

2

z

=

3

z

=

0

z

=

1

z

=

2

Figure 10.1: Determining z ( v ).

3. De�ne the `v ertex spacing' � = 2

� l

p

d �( G ) = 3 e

m

+ 1

�

.

4. Represen t eac h v ertex v 2 V ( G ) b y the

�

2

l

p

d deg ( v ) = 3 e

m

+ 1

�

�

�

2

l

p

d deg ( v ) = 3 e

m

+ 1

�

�

�

2

l

p

d deg ( v ) = 3 e

m

+ 1

�

cub e with minim um corner at (� x ( v ) ; � y ( v ) ; � z ( v )) , as sho wn in Figure 10.2.

5. Apply Algorithm 8.1 Quasi-Equit able Edge-Colour to G with k = 6. Sup-

p ose the edge-colouring determines an assignmen t of directions f X

�

; Y

�

; Z

�

g to

E ( G ).
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Inner b o x

XY

Z

XY

Z

Figure 10.2: Non-Collinear V ertex La y out.

6. F or eac h edge v w 2 E ( G ) in direction d 2 f X

�

; Y

�

; Z

�

g , arbitrarily assign

unique p orts at v and w in direction d with ev en j -co ordinate and o dd k -co ordinate,

where i , j and k are de�ned in T able 10.1 as functions of d . Call these the usable

p orts, as sho wn in Figure 10.3.

T able 10.1: De�nition of i , j , k

d i j k

X

�

X Y Z

Y

�

Y Z X

Z

�

Z X Y

7. Arbitrarily orien t the edges of G .

8. F or eac h direction d 2 f X

+

; Y

+

; Z

+

g apply the follo wing steps.

(a) Construct a graph H with V ( H ) corresp onding to the edges of G in direction

d . Add the edge f

� !

v w ;

� !

xy g to E ( H ) if the p ort assigned to

� !

v w at v has the
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X

Y

Z

Figure 10.3: Usable p orts on near-b y v ertices.

same j -co ordinate as the p ort assigned to

� !

xy at x , or the p ort assigned to

� !

v w at w has the same k -co ordinate as the p ort assigned to

� !

xy at y .

(b) V ertex-colour the graph H using the algorithm Greed y Ver tex-Colour

with colours f 1 ; 2 ; : : : ; �( H ) + 1 g (see Section 2.2). F or eac h v ertex v 2

V ( H ) coloured � corresp onding to an edge

� !

v w , set the height h (

� !

v w )  � .

(c) F or eac h orien ted edge

� !

v w 2 E ( G ) in direction d , construct the edge route

with ( i; j; k ) co ordinates as follo ws. Supp ose

� !

v w is assigned the p ort at

( v

i

; v

j

; v

k

) on v and the p ort at ( w

i

; w

j

; w

k

) on w . If v

k

= w

k

then use the

follo wing 4-b end edge route, whic h extends a distance of 2 h (

� !

v w ) in to the

d -outer b o x, as illustrated in Figure 10.4 (and similarly if v

j

= w

j

).

( v

i

; v

j

; v

k

) ! (� ( d

p

n e � 1) + 2 h (

� !

v w ) ; v

j

; v

k

) !
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( � ( d

p

n e � 1) + 2 h (

� !

v w ) ; v

j

; v

k

+ 1) !

( � ( d

p

n e � 1) + 2 h (

� !

v w ) ; w

j

; v

k

+ 1) !

( � ( d

p

n e � 1) + 2 h (

� !

v w ) ; w

j

; v

k

) ! ( w

i

; w

j

; v

k

)

v

w

i

j

k

v

w

X

Y

Z

Figure 10.4: Edge route for v w if v

k

= w

k

.

Otherwise use the follo wing 6-b end edge route illustrated in Figure 10.5.

( v

i

; v

j

; v

k

) ! (� ( d

p

n e � 1) + 2 h (

� !

v w ) ; v

j

; v

k

) !

( � ( d

p

n e � 1) + 2 h (

� !

v w ) ; v

j

; v

k

+ 1) !

( � ( d

p

n e � 1) + 2 h (

� !

v w ) ; w

j

+ 1 ; v

k

+ 1) !

( � ( d

p

n e � 1) + 2 h (

� !

v w ) + 1 ; w

j

+ 1 ; v

k

+ 1) !

( � ( d

p

n e � 1) + 2 h (

� !

v w ) + 1 ; w

j

+ 1 ; w

k

) !

( � ( d

p

n e � 1) + 2 h (

� !

v w ) + 1 ; w

j

; w

k

) ! ( w

i

; w

j

; w

k

).

9. Rep eat Step 8 for directions X

�

, Y

�

and Z

�

, routing edges in the X

�

, Y

�

and

Z

�

outer b o xes, resp ectiv ely .

Theorem 10.1. F or every multigr aph G , the algorithm Non-Collinear Bo x-

Dra wing determines a 3-D ortho gonal cub e-dr awing in O

�

m

2

�

time, with O

�

( n �)

3 = 2

�

b ounding b ox volume and six b ends p er e dge r oute. Each vertex is 8-de gr e e-r estricte d.

Pr o of. The n um b er of usable p orts on a face of a v ertex v is

l

p

d deg ( v ) = 3 e

m � l

p

d deg ( v ) = 3 e

m

+ 1

�

� d deg ( v ) = 3 e + 1 :

By Theorem 8.2, there are at most d deg ( v ) = 3 e + 1 edges inciden t to v in a giv en

direction so there are enough usable p orts at v . It is easily seen that no t w o v ertices

are in tersected b y a single grid-line.
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v

w

i

j

k

v

w

X

Y

Z

Figure 10.5: Edge routes v w in the non-collinear mo del.

In all edge routes, there are no consecutiv e unit length segmen ts, and an edge cross-

ing in v olving a unit-length segmen t m ust also in v olv e the adjacen t non-unit-length

segmen t, so to sho w that the dra wing is crossing-free, w e need only consider in tersec-

tions b et w een non-unit-length segmen ts. W e distinguish b et w een segmen ts con tained

within the outer b o xes, and the segmen ts inciden t with v ertices.

Clearly , segmen ts con tained in di�eren t outer b o xes cannot in tersect, and in an i -

outer b o x, the j -parallel segmen ts ha v e ev en i -co ordinate and the k -parallel segmen ts

ha v e o dd i -co ordinate. Hence no t w o segmen ts con tained in an outer b o x can in tersect.

Consider a segmen t con tained in an i -outer b o x and a segmen t inciden t to a v ertex.

If the segmen t inciden t to a v ertex is not in direction i then no in tersection can o ccur.

If this segmen t is in direction i then it has ev en j -co ordinate and o dd k -co ordinate,

whereas a j -parallel segmen t in the i -outer b o x has ev en k -co ordinate, and a k -parallel

segmen t in the i -outer b o x has o dd j -co ordinate. So a segmen t inciden t to a v ertex

and a segmen t con tained in an outer b o x cannot in tersect.

No w consider t w o segmen ts inciden t to di�eren t v ertices. (Segmen ts inciden t to the

same v ertex are assigned unique p orts so no in tersection can o ccur.) If one suc h segmen t
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is in a p ositiv e direction and the other is in a negativ e direction then no in tersection

can o ccur. If the t w o segmen ts are in the same direction then they are parallel so no

in tersection can o ccur. If the t w o segmen ts are in directions i and j then one will ha v e

ev en k -co ordinate and the other will ha v e o dd k -co ordinate, so they cannot in tersect.

Therefore no t w o edge routes in tersect.

The inner b o x has corners at

(0 ; 0 ; 0) and

�

�

��

p

n

�

� 1

�

; �

� �

p

n

�

� 1

�

; �

� �

p

n

�

� 1

��

;

so the width, depth and heigh t of the inner b o x is � (

p

n ). The graph H has �( H ) =

2� d

p

n e , so the heigh t of an edge is at most 4� d

p

n e . Hence the b ounding b o x has

width, depth and heigh t 8� d

p

n e . Since � = O

�

p

�

�

, the b ounding b o x v olume is

O

�

( n �)

3 = 2

�

.

F or eac h v ertex v 2 V ( G ), the surface ( v ) is

6

�

2

l

p

d deg ( v ) = 3 e

m

+ 1

�

2

= 8 deg ( v ) + o (deg ( v )) :

So the dra wing is 8-degree-restricted.

By Theorem 8.2, Step 5 of the algorithm tak es O

�

m

2

�

time. The six v ertex-

colourings of H eac h tak e O ( j E ( H ) j ) = O ( j V ( H ) j �( H )) = O

�

m

p

n �

�

time. No w,

� � m , so assuming m � n , w e ha v e � � m

2

=n . So

p

n � � m and m

p

n � � m

2

.

Hence Step 5 is most time-consuming step of the algorithm, and the total time tak en

is O

�

m

2

�

.

F or simple graphs w e can use an equitable edge-colouring of G (see Corollary 8.1)

instead of Algorithm Quasi-Equit able Edge-Colour in Step 5 of the ab o v e algo-

rithm. The `v ertex spacing' is de�ned as � = 2

� l

p

d �( G ) = 6 e

m

+ 1

�

and eac h v ertex

is a

�

2

l

p

d deg ( v ) = 6 e

m

+ 1

�

�

�

2

l

p

d deg ( v ) = 6 e

m

+ 1

�

�

�

2

l

p

d deg ( v ) = 6 e

m

+ 1

�

cub e. W e obtain the follo wing result.

Corollary 10.1. F or every gr aph with maximum de gr e e � ther e exists a 3-D ortho gonal

cub e-dr awing with O

�

( n �)

3 = 2

�

b ounding b ox volume and at most six b ends p er e dge

r oute. Each vertex is 4-de gr e e-r estricte d.
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F or regular (m ulti)graphs the b ounding b o x v olume b ound in Theorem 10.1 is

O

�

m

3 = 2

�

, whic h, b y Theorem 3.2 is optimal for degree-restricted orthogonal b o x-dra wings

with b ounded asp ect ratio.

Op en Problem 10.1. Can the algorithm Non-Collinear Bo x-Dra wing b e mo di-

�ed to pro duce b o x-dra wings with b ounding b o x v olume O

�

( m + n )

3 = 2

�

? This amoun ts

to �nding a non-collinear v ertex la y out with an O

�

p

m + n

�

� O

�

p

m + n

�

� O

�

p

m + n

�

inner b o x.

10.2 P oin t-Dra wing Algorithm

W e no w presen t our algorithm for pro ducing 3-D orthogonal p oin t-dra wings in the non-

collinear mo del. This algorithm follo ws a similar approac h as the previous b o x-dra wing

algorithm except that only the X

+

, Y

+

and Z

+

outer b o xes are used, and a cycle co v er

decomp osition determines the p ort assignmen t instead of an equitable edge-colouring.

Algorithm 10.2. Non-Collinear Point-Dra wing

Input : m ultigraph G with �( G ) � 6.

Output : 3-D orthogonal p oin t-dra wing of G .

1. Assign eac h v ertex v 2 V ( G ) a unique pair ( x ( v ) ; y ( v )) with

0 � x ( v ) ; y ( v ) �

�

p

n

�

� 1 :

2. F or eac h v ertex v 2 V ( G ), set z ( v )  x ( v ) + y ( v ) (mo d d

p

n e ), and place v at

(4 x ( v ) ; 4 y ( v ) ; 4 z ( v )).

3. Determine a cycle co v er decomp osition of G (see Theorem 2.1) and assign direc-

tions X

+

, Y

+

and Z

+

to the edges app earing in the �rst, second and third cycle

co v ers, resp ectiv ely .

4. Considering v to b e represen ted b y the 3 � 3 � 3 b o x cen tred at v , determine

edge routes as describ ed in Steps 6-8 of Algorithm 10.1 Non-Collinear Bo x-

Dra wing .
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5. F or eac h v ertex v 2 V ( G ) connect the edges inciden t with v from the surface of

the 3 � 3 � 3 b o x to the p oin t represen ting v , as sho wn in Figure 10.6.

X

Y

Z

Figure 10.6: A v ertex inside a 3 � 3 b o x.

Theorem 10.2. The algorithm Non-Collinear Point-Dra wing determines in

O

�

n

3 = 2

�

time a 3-D ortho gonal p oint-dr awing of the given gr aph G , with O

�

n

3 = 2

�

b ound-

ing b ox volume and at most 8 b ends p er e dge r oute.

Pr o of. This result follo ws immediately from Theorem 10.1 and the observ ations that

edges will b e routed b y algorithm Non-Collinear Bo x-Dra wing as indicated in

Figure 10.6, and one extra b end is added to eac h end of an edge route.



Chapter 11

Multi-Dimensional Orthogonal

P oin t-Dra wing

In this chapter we study multi-dimensional ortho gonal p oint-dr awings of

gr aphs, as suggeste d by Liu [145 , Note 8.5.2]. In p articular, we pr esent an

algorithm for gener ating minimum-dimensional ortho gonal p oint-dr awings

of arbitr ary de gr e e gr aphs in the non-c ol line ar c oplanar vertex layout mo del

with at most six b ends p er e dge. We also c onstruct minimum-dimensional

ortho gonal p oint-dr awings of K

n

with at most two b ends p er e dge, a r esult

�rst pr esente d in [219 ].

W e sa y a D -dimensional orthogonal p oin t-dra wing of a graph G is minimum-

dimensional if there do es not exist a ( D � 1)-dimensional orthogonal p oin t-dra wing

of G . Consider an orthogonal p oin t-dra wing of an arbitrary degree graph G . A t a

v ertex in the D -dimensional orthogonal grid there are 2 D p orts, so an orthogonal

p oin t-dra wing of G requires at least d �( G ) = 2 e dimensions. W e shall sho w that only a

few graphs G do not ha v e an orthogonal p oin t-dra wing in d �( G ) = 2 e dimensions. W e

de�ne the b end numb er of G to b e the minim um in teger b suc h that there exists a

minim um-dimensional p oin t-dra wing of G with at most b b ends p er edge route.

T rivially K

1

and K

2

ha v e minim um-dimensional orthogonal p oin t-dra wings without

an y b ends (in the 0- and 1-dimensional grids, resp ectiv ely). K

3

is our �rst example

of a graph G whic h do es not ha v e an orthogonal p oin t-dra wing in d �( G ) = 2 e (= 1)

204
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dimensions. The 1-b end 2-D orthogonal p oin t-dra wing of K

3

establishes that the b end

n um b er of K

3

is one. In fact, all cycles C

n

( n � 3) do not ha v e an orthogonal p oin t-

dra wing in d �( C

n

) = 2 e (= 1) dimensions. C

n

do es ha v e a 1-b end 2-D orthogonal p oin t-

dra wing so the b end n um b er of C

n

is one.

If w e de�ne `minim um-dimensional' so that edge-crossings are allo w ed in 2-D or-

thogonal p oin t-dra wings, b y the algorithms of Biedl and Kan t [28 ] and P apak ostas and

T ollis [165 ], all maxim um degree four graphs ha v e b end n um b er at most t w o. If 2-D

dra wings m ust b e crossing-free, then b y the algorithm of Biedl and Kan t [28 ], the b end

n um b er of a planar graph with maxim um degree at most four is at most t w o (except

the o ctahedron graph whic h requires a 3-b end edge route [91 ]).

By Theorem 5.4, graphs with maxim um degree at most �v e ha v e a 2-b end 3-D

orthogonal p oin t-dra wing, so the b end n um b er of suc h graphs is at most t w o. Maxim um

degree six m ultigraphs ha v e a 3-b end 3-D orthogonal p oin t-dra wing (see Section 5.5),

so maxim um degree six m ultigraphs ha v e b end n um b er at most three.

In Section 11.1 w e shall sho w that the b end n um b er of K

n

is t w o. T o do so, w e

initially pro v e a tigh t b ound for the n um b er of dimensions required for a 1-b end orthog-

onal p oin t-dra wing of K

n

. W e then construct minim um-dimensional p oin t-dra wings of

K

n

with at most t w o b ends p er edge route, a result whic h establishes the b end n um b er

of K

n

to b e t w o except for some isolated cases. The algorithm presen ted in Section 11.2

establishes an upp er b ound of six for the b end n um b er of an arbitrary m ultigraph.

11.1 Dra wings of K

n

W e no w pro v e a lo w er b ound for the n um b er of dimensions required for a 1-b end

orthogonal p oin t-dra wing of K

n

.

Theorem 11.1. F or n � 3 , a 1-b end ortho gonal p oint-dr awing of K

n

r e quir es at le ast

n � 1 dimensions.

Pr o of. T o construct a 1-b end ( n � 1)-dimensional p oin t-dra wing of K

n

, for eac h dimen-

sion i , 1 � i � n � 1, place a v ertex v

i

at 1 on the i -axis, and place the remaining

v ertex at the origin. Connect eac h v

i

to the origin b y a 0-b end edge route, and connect
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v ertices v

i

and v

j

b y a 1-b end edge route through (0 ; : : : ; 0 ; 1 ; 0 ; : : : ; 0 ; 1 ; 0 ; : : : ; 0) where

the 1's app ear in the i - and j -co ordinates.

Supp ose there is a ( n � 2)-dimensional orthogonal p oin t-dra wing of K

n

with at

most one b end p er edge route. Let v b e some v ertex of K

n

. De�ne T

0

to b e the set of

dimensions i , 1 � i � n � 2, suc h that no edge route uses p ort ( v ; + i ) or p ort ( v ; � i ).

Let T

1

b e the set of dimensions with exactly one p ort at v in use, and let T

2

b e the

set of dimensions with b oth p orts at v in use. Clearly j T

0

j + j T

1

j + j T

2

j = n � 2 and

0 j T

0

j + 1 j T

1

j + 2 j T

2

j = n � 1, implying j T

0

j = j T

2

j � 1 and j T

2

j � 1.

Let i 2 T

2

and let v a and v b b e the edges assigned p ort( v ; � i ) and p ort ( v ; + i ),

resp ectiv ely . No w, v a and v b cannot b oth b e 0-b end edge routes, as otherwise ab w ould

ha v e to b e a 2-b end edge route. Supp ose one of v a or v b is a 0-b end edge route and

the other is a 1-b end edge route, as sho wn in Figure 11.1. Let j b e the direction of the

second segmen t of the 1-b end edge. Clearly , no edge v x could b e routed with p ort ( v ; j )

as otherwise there w ould b e no p ossible 0- or 1-b end edge route for xa nor xb . If v x is

routed with p ort( v ; � j ) then xa or xb w ould need t w o b ends, so j 2 T

0

.

a v
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b

6

j

-

i

a

v

b
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�

.

.

.

.

.

.

6
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-

i

(a)
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b

(b)

a

v

b

(c)

a

v

b

(d)

a

v

b

c

d

�

�

�

�

�

�

�

�

�

�

�

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�

��

k

-

i

Figure 11.1: A 0-b end and a 1-b end edge

If the edge routes v a and v b b oth ha v e one b end then, as in Figure 11.2, for ab to

ha v e a 0- or 1-b end edge route, the second segmen ts of v a and v b m ust p oin t in the

same direction j , as in cases (c) and (d). By the same argumen t as b efore, this implies

that j 2 T

0

.

Supp ose j T

2

j > 1 and dimension k 2 T

2

n f i g . Let v c and v d b e the edges routed

using p ort( v ; + k ) and p ort ( v ; � k ), resp ectiv ely . F or ac , ad , bc and bd to ha v e 1-b end

edge routes, the edges v a , v b , v c and v d all m ust ha v e one b end and their second

segmen ts m ust p oin t in the same direction and ha v e the same length, as in Figure 11.3.

Therefore ab and cd m ust in tersect, so j T

2

j = 1.

j T

2

j = 1 implies j T

0

j = 0, but j 2 T

0

, whic h is a con tradiction. Therefore K

n

do es
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-
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b
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�

�

�
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Figure 11.2: Tw o 1-b end edges
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-
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b
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�

�

�

�

�

�

�
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Figure 11.3: i; k 2 T

2

not ha v e a ( n � 2)-dimensional orthogonal p oin t-dra wing with at most one b end p er

edge route.

A minim um-dimensional orthogonal p oin t-dra wing of K

n

has at least d �( K

n

) = 2 e =

b n= 2 c dimensions. F or n � 4, w e ha v e n � 1 > b n= 2 c , so a minim um-dimensional

orthogonal p oin t-dra wing of K

n

( n � 4) requires at least t w o b ends in some edge route.

There is a 2-D 2-b end orthogonal p oin t-dra wing of K

4

, so the b end n um b er of K

4

is

t w o. K

5

also has a 2-D 2-b end orthogonal p oin t-dra wing (of course, with crossings),

so it to o has b end n um b er t w o. If w e do not allo w crossings in 2-D dra wings then K

5

requires three dimensions. By Theorem 11.1 a 3-D orthogonal p oin t-dra wing of K

5

still requires an edge route with at least t w o b ends. A 2-b end 3-D orthogonal p oin t-

dra wing of K

5

is pro vided in Figure 2.3(b) (on page 28). W e no w construct 2-b end

minim um-dimensional orthogonal p oin t-dra wings of K

n

for n � 6.

Theorem 11.2. F or every n � 6 , the b end numb er of K

n

is 2.

Pr o of. W e initially consider the case of o dd n . In Figure 3.6 there is a 2-b end 3-D

orthogonal p oin t-dra wing of K

7

, so the result is true for n = 7. W e no w construct a

(( n � 1) = 2)-dimensional 2-b end p oin t-dra wing of K

n

for o dd n � 9. Let the v ertex set
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of K

n

b e

V ( K

n

) = f v

1

; v

2

; : : : ; v

7

g [ f a

i

; b

i

: 4 � i � ( n � 1) = 2 g :

The K

7

subgraph induced b y the v ertices f v

1

; v

2

; : : : ; v

7

g is dra wn with t w o b ends

p er edge route as in Figure 3.6 (on page 53). In particular w e place the f v

1

; v

2

; : : : ; v

7

g

as follo ws.

v

1

: (2 ; 0 ; 0 ; 0 ; : : : ; 0) v

2

: ( � 2 ; 0 ; 0 ; 0 ; : : : ; 0)

v

3

: (0 ; 2 ; 0 ; 0 ; : : : ; 0) v

4

: (0 ; � 2 ; 0 ; 0 ; : : : ; 0)

v

5

: (0 ; 0 ; 2 ; 0 ; : : : ; 0) v

6

: (0 ; 0 ; � 2 ; 0 ; : : : ; 0)

v

7

: (1 ; 1 ; 1 ; 0 ; : : : ; 0) :

F or eac h i , 4 � i � ( n � 1) = 2, place a

i

and b

i

at

a

i

: (1 ; 0 ; 0 ; : : : ; 2 ; 0 ; 0 ; : : : ; 0) b

i

: (1 ; 0 ; 0 ; : : : ; � 2 ; 0 ; 0 ; : : : ; 0)

(with the 2 and � 2 at co ordinate i ). The edge a

i

v

j

and b

i

v

j

, 4 � i � ( n � 1) = 2,

1 � j � 7, are routed according to Figure 11.4.

X

i

Y

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

v
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v

2

v

3

v

4

a

i

b

i

X

i

Z

�

�

�

�

�

�

�

�

v

5

v

6

a

i

b

i

Z

i

Y

-

6

�

�

�	

�

�

�

�

v

7

a

i

b

i

(a) In the Z = 0 h yp erplane (b) In the Y = 0 h yp erplane (c) In the X = 1 h yp erplane

-�

6

?

b

i +1

b

i

a

i

a

i +1

(a)

-�

6

?

b

j

a

i

a

j

b

i

(b)

Figure 11.4: Edge routes a

i

v

j

and b

i

v

j

.

The edges a

i

b

i

, a

i

a

i +1

, b

i

a

i +1

, a

i

b

i +1

and b

i

b

i +1

, 4 � i � ( n � 3) = 2, are routed

according to Figure 11.5(a). The edges a

i

a

j

, b

i

a

j

, a

i

b

j

, and b

i

b

j

, 4 � i � ( n � 3) = 2,

i + 2 � j � ( n � 1) = 2 are routed according to Figure 11.5(b).

A straigh t line edge route from a

( n � 1) = 2

to b

( n � 1) = 2

passing through the v acan t

grid-p oin t (1 ; 0 ; 0 ; : : : ; 0) completes the dra wing.
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�
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�
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�

�

�

�

v

7

a

i
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i

(a) In the Z = 0 h yp erplane (b) In the Y = 0 h yp erplane (c) In the X = 1 h yp erplane

-�

6

?

b

i +1

b

i

a

i

a

i +1

(a)

-�

6

?

b

j

a

i

a

j

b

i

(b)

Figure 11.5: Edge routes in the X = 1 h yp erplane.

It is easily seen that a unique p ort assignmen ts are determined b y this edge routing

sc heme. The grid-p oin ts con tained in edge routes describ ed in Figure 11.4 only con tain

grid-p oin ts with a non-zero i co ordinate (except for the v ertices themselv es). So suc h

edge routes cannot cross an edge route in the K

7

subgraph induced b y f v

1

; v

2

; : : : ; v

7

g .

Similarly , an edge route a

i

v

k

or b

i

v

k

cannot cross an edge route a

j

v

k

or b

j

v

k

(1 � k � 7).

Except for the grid-p oin ts (1 ; 0 ; : : : ; 0 ; 4 ; 0 ; : : : ; 0) (in edge a

i

b

i

), (1 ; 0 ; : : : ; 0 ; 1 ;

0 ; : : : ; 0) (in edge a

i

a

i +1

) and (1 ; 0 ; : : : ; 0 ; � 1 ; 0 ; : : : ; 0) (in edge b

i

a

i +1

), the edge routes

describ ed in Figure 11.5 only con tain grid-p oin ts with non-zero i and j co ordinates.

They will therefore not cross other edges. By c hec king grid-p oin ts in the X = 1

h yp erplane it is easily seen that these particular grid-p oin ts are not in an y other edge

routes. So no t w o edge routes cross.

Hence there is a 2-b end minim um-dimensional orthogonal p oin t-dra wing of K

n

for

o dd n � 7. In fact there are O ( n

2

) 1-b end edge routes and only O ( n ) 2-b end edge

routes. F or ev en n � 6, remo ving a single v ertex from the dra wing of K

n +1

pro vides a

minim um-dimensional 2-b end orthogonal p oin t-dra wing of K

n

. By Theorem 11.1, n � 1

dimensions are required for a 1-b end p oin t-dra wing of K

n

, so the b end n um b er of K

n

is 2, for n � 6.
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11.2 Algorithm

As men tioned b y Eades et al. [87 ], their 3-Bends algorithm easily generalises to giv e an

algorithm for pro ducing a minim um-dimensional orthogonal p oin t-dra wing of a graph

G with at most d �( G ) = 2 e b ends p er edge route. This algorithm places the v ertices

along the main diagonal of a d �( G ) = 2 e -dimensional h yp ercub e. Here w e place the

v ertices along a 2-D diagonal within d �( G ) = 2 e -dimensional space, and use at most six

b ends p er edge route

1

.

Algorithm 11.1. Minimum-Dimensional Point-Dra wing

Input : A m ultigraph G with maxim um degree �( G ) � 5.

Output : A minim um-dimensional orthogonal p oin t dra wing of G .

1. Determine G

0

and its cycle co v ers C

1

; C

2

; : : : ; C

d

where d = d �( G ) = 2 e (see The-

orem 2.1).

2. Arbitrarily assign the n um b ers f 1 ; 2 ; : : : ; n g to the v ertices of G .

(W e shall refer to a v ertex b y its n um b er.)

3. P osition v ertex a at (2 a; 3 a; 0 ; : : : ; 0) 2 Z

d

.

4. Construct edge routes for eac h arc in G

0

, as describ ed b elo w.

5. F or eac h edge of G , dra w the edge route of the corresp onding arc in G

0

.

The follo wing metho d used to classify arcs according to a v ertex ordering is due to

Eades et al. [86 , 87 ]. Consider an arc ab 2 E ( G

0

) in cycle co v er C

1

, and supp ose bc is

the next arc in the cycle con taining ab . W e route the arc ab dep ending on the relativ e

v alues of a , b and c . In the follo wing �gures, the arro w head indicates the p ort at b to

b e assigned to the arc bc .

1

In [219 ] it w as erroneously stated that using a 3-D diagonal v ertex la y out, �v e b ends p er edge route

w as p ossible.
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Case 1.1: If a < b < c then w e sa y ab is normal incr e asing . As in Figure 11.6(a),

route ab with the 4-b end edge:

(2 a; 3 a; 0 ; 0 ; : : : ; 0) ! (2 b � 1 ; 3 a; 0 ; 0 ; : : : ; 0) ! (2 b � 1 ; 3 a; 1 ; 0 ; : : : ; 0)

! (2 b � 1 ; 3 b; 1 ; 0 ; : : : ; 0) ! (2 b � 1 ; 3 b; 0 ; 0 ; : : : ; 0) ! (2 b; 3 b; 0 ; 0 ; : : : ; 0)

Case 1.2: If a > b > c then w e sa y ab is normal de cr e asing . As in Figure 11.6(b),

route ab with the 4-b end edge:

(2 a; 3 a; 0 ; 0 ; : : : ; 0) ! (2 b + 1 ; 3 a; 0 ; 0 ; : : : ; 0) ! (2 b + 1 ; 3 a; 1 ; 0 ; : : : ; 0)

! (2 b + 1 ; 3 b; 1 ; 0 ; : : : ; 0) ! (2 b + 1 ; 3 b; 0 ; 0 ; : : : ; 0) ! (2 b; 3 b; 0 ; 0 ; : : : ; 0)

X

Y

Z

a

b

(a) Increasing

b

a

(b) Decreasing

X

Y

Z

a

b

(b) Increasing to a lo cal maxim um

b

a

(b) Decreasing to a lo cal minim um

X

Y

Z

a

b

(a) Increasing

b

a

(b) Decreasing

X

Y

Z

a

b

(a) Increasing to a lo cal maxim um

b

a

(b) Decreasing to a lo cal minim um

Figure 11.6: Normal arcs ab in C

1

.

Case 1.3: If a < b > c then w e sa y ab is incr e asing to a lo c al maximum . As in

Figure 11.7(a), route ab with the 4-b end edge:

(2 a; 3 a; 0 ; 0 ; : : : ; 0) ! (2 b + 1 ; 3 a; 0 ; 0 ; : : : ; 0) ! (2 b + 1 ; 3 a; 1 ; 0 ; : : : ; 0)

! (2 b + 1 ; 3 b; 1 ; 0 ; : : : ; 0) ! (2 b + 1 ; 3 b; 0 ; 0 ; : : : ; 0) ! (2 b; 3 b; 0 ; 0 ; : : : ; 0)

Case 1.4: If a > b < c then w e sa y ab is de cr e asing to a lo c al minimum . As in

Figure 11.7(b), route ab with the 4-b end edge:

(2 a; 3 a; 0 ; 0 ; : : : ; 0) ! (2 b � 1 ; 3 a; 0 ; 0 ; : : : ; 0) ! (2 b � 1 ; 3 a; 1 ; 0 ; : : : ; 0)

! (2 b � 1 ; 3 b; 1 ; 0 ; : : : ; 0) ! (2 b � 1 ; 3 b; 0 ; 0 ; : : : ; 0) ! (2 b; 3 b; 0 ; 0 ; : : : ; 0)

Observ e that all arcs ab in C

1

are routed using the X -p orts at a and b . No w consider

an arc ab 2 E ( G

0

) in cycle co v er C

2

and, as b efore, supp ose bc is the next arc in the

cycle con taining ab .

Case 2.1: If ab is normal increasing then, as in Figure 11.8(a), route ab with the

5-b end edge:
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X

Y

Z
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b
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b

a

(b) Decreasing

X

Y

Z

a

b

(b) Increasing to a lo cal maxim um

b

a

(b) Decreasing to a lo cal minim um

X
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b
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b

a

(b) Decreasing

X

Y

Z

a

b

(a) Increasing to a lo cal maxim um

b

a

(b) Decreasing to a lo cal minim um

Figure 11.7: Lo cal min/max arcs ab in C

1

.

(2 a; 3 a; 0 ; 0 ; : : : ; 0) ! (2 a; 3 a + 1 ; 0 ; 0 ; : : : ; 0) ! (2 a; 3 a + 1 ; 1 ; 0 ; : : : ; 0) !

(2 a; 3 b � 1 ; 1 ; 0 ; : : : ; 0) ! (2 a; 3 b � 1 ; 0 ; 0 ; : : : ; 0) !

(2 b; 3 b � 1 ; 0 ; 0 ; : : : ; 0) ! (2 b; 3 b; 0 ; 0 ; : : : ; 0)

Case 2.2: If ab is normal decreasing then, as in Figure 11.8(b), route ab with the

5-b end edge:

(2 a; 3 a; 0 ; 0 ; : : : ; 0) ! (2 a; 3 a � 1 ; 0 ; 0 ; : : : ; 0) ! (2 a; 3 a � 1 ; 1 ; 0 ; : : : ; 0) !

(2 a; 3 b + 1 ; 1 ; 0 ; : : : ; 0) ! (2 a; 3 b + 1 ; 0 ; 0 ; : : : ; 0) !

(2 b; 3 b + 1 ; 0 ; 0 ; : : : ; 0) ! (2 b; 3 b; 0 ; 0 ; : : : ; 0)

X

Y

Z

a

b

(a) Increasing

b

a

(b) Decreasing

X

Y

Z

a

b

(b) Increasing to a lo cal maxim um

b

a

(b) Decreasing to a lo cal minim um

X

Y

Z

a

b

(a) Increasing

b

a

(b) Decreasing

X

Y

Z

a

b

(a) Increasing to a lo cal maxim um

b

a

(b) Decreasing to a lo cal minim um

Figure 11.8: Normal arcs ab in C

2

.

Case 2.3: If ab is increasing to a lo cal maxim um then, as in Figure 11.9(a), route ab

with the 5-b end edge:

(2 a; 3 a; 0 ; 0 ; : : : ; 0) ! (2 a; 3 a + 1 ; 0 ; 0 ; : : : ; 0) ! (2 a; 3 a + 1 ; 1 ; 0 ; : : : ; 0) !

(2 a; 3 b + 1 ; 1 ; 0 ; : : : ; 0) ! (2 a; 3 b + 1 ; 0 ; 0 ; : : : ; 0) !

(2 b; 3 b + 1 ; 0 ; 0 ; : : : ; 0) ! (2 b; 3 b; 0 ; 0 ; : : : ; 0)

Case 2.4: If ab is decreasing to a lo cal minim um then, as in Figure 11.9(b), route ab

with the 5-b end edge:

(2 a; 3 a; 0 ; 0 ; : : : ; 0) ! (2 a; 3 a � 1 ; 0 ; 0 ; : : : ; 0) ! (2 a; 3 a � 1 ; 1 ; 0 ; : : : ; 0) !
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(2 a; 3 b � 1 ; 1 ; 0 ; : : : ; 0) ! (2 a; 3 b � 1 ; 0 ; 0 ; : : : ; 0) !

(2 b; 3 b � 1 ; 0 ; 0 ; : : : ; 0) ! (2 b; 3 b; 0 ; 0 ; : : : ; 0)

X

Y

Z

a

b

(a) Increasing

b

a

(b) Decreasing

X

Y

Z

a

b

(b) Increasing to a lo cal maxim um

b

a

(b) Decreasing to a lo cal minim um

X

Y

Z

a

b

(a) Increasing

b

a

(b) Decreasing

X

Y

Z

a

b

(a) Increasing to a lo cal maxim um

b

a

(b) Decreasing to a lo cal minim um

Figure 11.9: Lo cal min/max arcs ab in C

2

.

Observ e that arcs in C

2

are assigned the Y -p orts at b oth ends. W e no w describ e

ho w to route arcs in cycle co v er C

j

, 3 � j � d �( G ) = 2 e . Supp ose ( a

1

; a

2

; : : : ; a

k

) is a

cycle in C

j

. As illustrated in Figure 11.10, the incoming arc at a v ertex a

i

uses the

� j = + j p ort and the outgoing arc uses the + j = � j p ort, for o dd/ev en i .

a

4

j

+

j

�

a

3

j

�

j

+

a

2

j

�

j

+

a

1

j

�

j

+

a

k

j

+

=j

�

j

�

=j

+

�

�

�

�

�

�

��

H

H

H

H

H

Hj

�

�

�

�

�

�*

A

AK

A

A

r

r

r

Figure 11.10: P ort assignmen t for a cycle in C

j

, j � 3.

� F or eac h o dd i , 1 � i � k � 1, as in Figure 11.11(a), route the arc a

i

a

i +1

with the

4-b end edge:

(2 a

i

; 3 a

i

; 0 ; : : : ; 0) ! (2 a

i

; 3 a

i

; 0 ; : : : ; 2 ; 0 ; : : : ; 0) !

(2 a

i

; 3 a

i +1

; 0 ; : : : ; 0 ; 2 ; 0 ; : : : ; 0) ! (2 a

i

; 3 a

i +1

; 0 ; : : : ; 0 ; 3 ; 0 ; : : : ; 0) !

(2 a

i +1

; 3 a

i +1

; 0 ; : : : ; 0 ; 3 ; 0 : : : ; 0) ! (2 a

i +1

; 3 a

i +1

; 0 : : : ; 0)

� F or eac h ev en i , 2 � i � k , as in Figure 11.11(b), route the arc a

i

a

i +1

(or a

i

a

1

if

i = k ) with the 4-b end edge:
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(2 a

i

; 3 a

i

; 0 ; : : : ; 0) ! (2 a

i

; 3 a

i

; 0 ; : : : ; 0 ; � 2 ; 0 ; : : : ; 0) !

(2 a

i

; 3 a

i +1

; 0 ; : : : ; 0 ; � 2 ; 0 ; : : : ; 0) ! (2 a

i

; 3 a

i +1

; 0 ; : : : ; 0 ; � 3 ; 0 ; : : : ; 0) !

(2 a

i +1

; 3 a

i +1

; 0 ; : : : ; 0 ; � 3 ; 0 ; : : : ; 0) ! (2 a

i +1

; 3 a

i +1

; 0 ; : : : ; 0)

X

Y

j

a

i

a

i +1

(a) i o dd.

a

i

a

i +1

(b) i ev en.

X

Y

j

j + 1

a

k

a

1

Figure 11.11: Arc a

i

a

i +1

in cycle co v er C

j

, j � 3.

� If k is o dd then, as in Figure 11.12, route the arc a

k

a

1

with the follo wing 6-b end

edge. If j = D (= d �( G ) = 2 e ) then dimension j + 1 is 3.

(2 a

k

; 3 a

k

; 0 ; : : : ; 0) ! (2 a

k

; 3 a

k

; 0 ; : : : ; 0 ; 2 ; 0 ; 0 ; : : : ; 0) !

(2 a

k

; 3 a

k

; 0 ; : : : ; 0 ; 2 ; 2 ; 0 ; : : : ; 0) ! (2 a

k

; 3 a

1

; 0 ; : : : ; 0 ; 2 ; 2 ; 0 ; : : : ; 0) !

(2 a

k

; 3 a

1

; 0 ; : : : ; 0 ; � 3 ; 2 ; 0 ; : : : ; 0) ! (2 a

k

; 3 a

1

; 0 ; : : : ; 0 ; � 3 ; 0 ; 0 ; : : : ; 0) !

(2 a

1

; 3 a

1

; 0 ; : : : ; 0 ; � 3 ; 0 ; 0 ; : : : ; 0) ! (3 a

1

; 3 a

1

; 0 ; : : : ; 0 ; : : : ; 0)

X

Y

j

a

i

a

i +1

(a) i o dd.

a

i

a

i +1

(b) i ev en.

X

Y

j

j + 1

a

k

a

1

Figure 11.12: Arc a

k

a

1

( k o dd) in cycle co v er C

j

, j � 3.

Theorem 11.3. The algorithm Minimum-Dimensional Point-Dra wing determines

a minimum-dimensional 6-b end ortho gonal p oint-dr awing of G , which c an b e c ompute d

in O (�

2

n ) time.

Pr o of. The cycle co v er decomp osition giv es for eac h v ertex exactly one incoming arc

and one outgoing arc in eac h of the d cycle co v ers. Observ e that arcs in cycle co v er C

j

use the j -p orts at eac h v ertex. Hence a v alid p ort assignmen t has b een determined,
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and the �rst segmen ts of edges inciden t to a particular v ertex do not in tersect (except

at the v ertex itself ).

Consider edge routes in cycle co v ers C

1

and C

2

. The X -parallel segmen ts lie in the

( Z = 0)-plane and Y -parallel segmen ts lie in the Z = 1 plane, so a X -parallel segmen t

cannot in tersect a Y -parallel segmen t. Note that the X -parallel segmen ts of an arc ab

in C

1

lie in the Y Z -plane con taining a , and the X -parallel segmen ts of an arc ab in C

2

lie in the Y Z -plane o�set from b b y a distance of 1. Similarly for Y -parallel segmen ts,

so b y the spacing b et w een the v ertices, no t w o edge routes in C

1

or C

2

can in tersect.

No w consider edge routes in a cycle co v er C

j

, j � 3. Apart from the p oin t

(2 a

k

; 3 a

1

; 0 ; : : : ; 0 ; 2 ; 0 ; : : : ; 0) for some arc a

k

a

1

in C

j

( k o dd) with the 2 in co ordi-

nate j + 1, grid-p oin ts in edge routes in C

j

ha v e non-zero j -co ordinate and a zero

k -co ordinate for eac h k � 3 ( k 6= j ). Hence edge routes in C

j

and C

k

( j 6= k , j; k � 3)

do not in tersect. X -parallel segmen ts of an edge route in C

j

ha v e a j -co ordinate of � 3,

and Y -parallel segmen ts of edge routes in C

j

ha v e j -co ordinate of � 2, so no t w o edges

in a cycle co v er C

j

can in tersect. The grid-p oin t (2 a

k

; 3 a

1

; 0 ; : : : ; 2 ; 0 ; : : : ; 0) with the 2

in co ordinate j + 1 can only b e in the arc a

k

a

1

( k o dd) in cycle co v er C

j

, so it to o do es

not in tersect an y other edge routes.

Hence the dra wing is crossing-free, and eac h edge route has at most six b ends. By

Theorem 2.1, the cycle co v er decomp osition and hence the whole dra wing can computed

in O (�

2

n ) time.
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Chapter 12

Conclusion

In this c onclusion we summarise the main achievements of this thesis, the

op en pr oblems in 3-D ortho gonal gr aph dr awing which have b e en identi�e d,

and discuss avenues for futur e work in 3-D gr aph dr awing.

This thesis has in v estigated problems related to the automatic generation of 3-D

orthogonal graph dra wings. Orthogonal graph dra wing has applications in VLSI circuit

design and soft w are engineering, for example. The metho ds dev elop ed ha v e also b een

applied to 2-D orthogonal graph dra wing and generalised to m ulti-dimensional space.

12.1 Mo dels and Algorithms

The follo wing mo dels for 3-D orthogonal graph dra wing ha v e either b een in tro duced

or extended in this thesis. The algorithms in this thesis, whic h t ypically ha v e p olyno-

mial time complexit y , explore tradeo�s b et w een the established aesthetic criteria for

measuring the qualit y of the pro duced dra wings.

General P osition V ertex La y out Mo del:

A 3-D orthogonal graph dra wing is in the general p osition mo del if no t w o v ertices

are in tersected b y a single grid-plane; e.g., b y p ositioning the v ertices along the main

diagonal of cub e. W e ha v e presen ted algorithms for pro ducing orien tation-indep enden t

dra wings in the general p osition mo del with few b ends. A disadv an tage of this mo del

is that the v olume of dra wings is necessarily large.

217
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W e ha v e describ ed an algorithm whic h, giv en a �xed general p osition v ertex la y out

of an arbitrary degree graph, constructs a general p osition dra wings with b ounded

degree-restriction and b ounded asp ect ratio (Algorithm 7.4). This algorithm is also

applicable in a 2-D or m ulti-dimensional setting. Using a balanced v ertex la y out, our

algorithm pro duces dra wings with the smallest kno wn b ounds for the degree-restriction

of v ertices (Algorithm 7.6).

Our algorithm for pro ducing 3-D orthogonal p oin t-dra wings of maxim um degree

six graphs establishes the b est kno wn upp er b ound for the total n um b er of b ends in

3-D orthogonal p oin t-dra wings (Algorithm 5.8). Another algorithm establishes the b est

kno wn upp er b ound for the v olume of 3-D orthogonal p oin t-dra wings with three b ends

p er edge route (Algorithm 5.11).

Coplanar V ertex La y out Mo del:

A 3-D orthogonal graph dra wing is in the coplanar v ertex la y out mo del if there exists

a grid-plane whic h in tersects all v ertices. W e ha v e considered t w o v ariations of this

mo del, namely the non-c ol line ar coplanar mo del and the coplanar grid mo del. Our

algorithms pro duce orthogonal dra wings in these mo dels with few b ends and small

v olume, resp ectiv ely . A disadv an tage of the coplanar v ertex la y out mo del is that the

dra wings pro duced are necessarily orien tation-dep enden t.

Our algorithm for orthogonal dra wing in the non-collinear coplanar mo del exploits

a b o ok em b edding to obtain 1-b end dra wings, whic h for sparse graphs ha v e less v olume

than existing metho ds for 1-b end dra wing (Algorithm 9.1).

W e ha v e presen ted t w o algorithms for pro ducing 3-D orthogonal b o x-dra wings in

the coplanar grid mo del. The �rst algorithm pro duces dra wings with optimal v olume

for regular graphs (Algorithm 9.2). The second algorithm pro duces degree-restricted

3-D orthogonal cub e-dra wings with optimal v olume (Algorithm 9.3).

Non-Collinear V ertex La y out Mo del:

A 3-D orthogonal graph dra wing is in the non-collinear v ertex la y out mo del if no t w o

v ertices are in tersected b y a single grid-line. In this mo del, w e presen t an algorithm

for pro ducing 3-D orthogonal b o x-dra wings with optimal v olume for regular graphs
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(Algorithm 10.1). This algorithm is then used as the basis for pro ducing 3-D orthogo-

nal p oin t-dra wings with optimal v olume (Algorithm 10.2). These are the only kno wn

algorithms for pro ducing orien tation-indep enden t 3-D orthogonal graph dra wings with

optimal v olume.

12.2 Metho ds

As part of our in v estigation in to orthogonal graph dra wings, w e ha v e dev elop ed and

extended existing metho ds whic h ma y b e of indep enden t in terest. These include:

� algorithms for the balanced v ertex ordering problem, whic h w e use as the basis

for determining general p osition v ertex la y outs;

� an algorithm for equitable edge-colouring of m ultigraphs, whic h w e use to deter-

mine p ort assignmen ts;

� an approac h to p ort assignmen t based on arc-colouring;

� the use of v ertex-colouring to determine the heigh ts of edge routes; and

� an exact algorithm for the maxim um clique problem, whic h w e use for searc hing

for 2-b end p oin t-dra wings.

12.3 Op en Problems

In the course of this thesis w e ha v e raised man y op en problems, including the follo wing.

� Do es ev ery graph ha v e a degree-restricted 3-D orthogonal b o x-dra wing with at

most one b end p er edge route? Do es ev ery graph ha v e a 3-D orthogonal b o x-

dra wing with O

�

n

2

p

m

�

v olume and at most one b end p er edge route? (See

Sections 3.5.2 and 9.1.)

� Do es ev ery graph ha v e a 3-D orthogonal b o x-dra wing with O ( m

p

n ) v olume and

at most three b ends p er edge route? (See Sections 3.5.2 and 9.2.)
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� Do es ev ery graph ha v e a degree-restricted 3-D orthogonal cub e-dra wing with

O

�

( m + n )

3 = 2

�

v olume and at most �v e b ends p er edge route? (See Sections 3.5.2

and 9.3.)

� Do es ev ery graph with maxim um degree six ha v e a 3-D orthogonal p oin t-dra wing

with at most t w o b ends p er edge route? [86 , 87 ] (See Sections 3.5.1 and 5.6.1.)

� Do es ev ery graph with maxim um degree six ha v e a 3-D orthogonal p oin t-dra wing

with O

�

n

3 = 2

�

v olume and at most six b ends p er edge route? (See Section 3.5.1.)

� Can the T op ology-Shap e-Metrics approac h b e applied to 3-D orthogonal graph

dra wing? F or example, giv en a (linkless) 3-D em b edding of a graph with max-

im um degree six, can an em b edding-preserving 3-D orthogonal p oin t-dra wing

with the minim um n um b er of b ends b e determined in p olynomial time? (See

Section 3.2.2.) Note that a 3-D graph em b edding can b e represen ted b y a 2-D

pro jection for whic h `o v er/under' crossings are sp eci�ed.

� Dev elop b ounds for the aesthetic criteria, b esides b ounding b o x v olume and the

n um b er of b ends, of 3-D orthogonal graph dra wings. F or example, the total edge

length and the maxim um edge length could b e studied.

12.4 F uture W ork

The dev elopmen t of three-dimensional graph dra wing is in its infancy . While algorithms

for 3-D orthogonal graph dra wing ha v e b een dev elop ed whic h optimise certain aesthetic

criteria, most notably the b ounding b o x v olume, it is reasonable to ask whether the

dra wings pro duced are feasible for visualisation purp oses. W e no w outline a v en ues of

researc h aimed at pro ducing more readable 3-D graph dra wings.

Firstly , the question of what are the prop erties of 3-D graph dra wings whic h are

most appropriate for visualisation purp oses has not b een addressed in an y scien ti�c

manner. It is unrealistic to assume that the aesthetic criteria for 2-D graph dra wings

automatically apply in a three-dimensional setting. In particular, the exp erimen ts of

Purc hase et al. [176 ] and Purc hase [175 ] con�rm that the minimisation of crossings is

an imp ortan t aesthetic criterion for 2-D graph dra wings, ho w ev er in three dimensions
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all graphs can b e dra wn without crossings. Also, it w ould b e in teresting to determine

if 3-D graph dra wings are b etter for visualisation purp oses than their t w o-dimensional

coun terparts (see W are and F ranc k [213 ] for a preliminary study).

A critical issue in 3-D graph visualisation is the question of ho w to displa y a graph

dra wing on a computer screen. Man y issues from computer graphics, suc h as rendering

and shading, immediately arise. A system for displa ying, and in teracting with, 3-D

graph dra wings needs to b e dev elop ed. Suc h a system could incorp orate metho ds for

�nding viewp oin ts of 3-D dra wings with few o cclusions (see Kamada and Ka w ai [123 ],

Bose et al. [39 ], Eades et al. [81 ] and Houle and W ebb er [120 ]).

As w ell as solving the op en problems discussed in Section 12.3, w e no w prop ose

a n um b er of researc h directions to b e b e pursued with the goal of pro ducing b etter

3-D orthogonal dra wings. Firstly , heuristic impro v emen ts can b e made to man y of the

algorithms prop osed in the literature and those presen ted in this thesis. F or example, in

Section 5.5.2 w e discuss the use of a v ertex-colouring metho d to determine the heigh ts

of edge routes in Algorithm General Position Three-Bend Point-Dra wing , th us

reducing the v olume of the dra wings pro duced. Secondly , a set of re�nemen ts could

b e dev elop ed, whic h giv en an arbitrary 3-D orthogonal graph dra wing, mo dify the

dra wing to impro v e particular aesthetic qualities. Suc h re�nemen ts could form the

basis of a p ost-pro cessing step in an y 3-D orthogonal graph dra wing algorithm, as

has b een done for 2-D orthogonal graph dra wing b y F• o�meier et al. [101 ] and Six

et al. [197 ]. An exp erimen tal ev aluation of the p erformance of 3-D orthogonal graph

dra wing algorithms, measuring the relativ e impro v emen ts gained through heuristics and

re�nemen ts, could b e carried out. A �rst step in this direction, w as the exp erimen t

of Di Battista et al. [74 ] measuring the p erformance of a n um b er of 3-D orthogonal

p oin t-dra wing algorithms.

T o pro duce 3-D graph dra wings whic h are p oten tially more readable than 3-D or-

thogonal dra wings a more exible mo del could b e emplo y ed. It is exp ected that for 3-D

p olyline graph dra wings (see Section 1.4.3), considerably few er b ends will b e needed

to pro duce dra wings with small v olume. The tradeo� b et w een angular resolution and

the n um b er of b ends in suc h dra wings is an in teresting area for researc h. Of theo-

retical in terest is the dev elopmen t of algorithms for dra wing graphs in non-orthogonal
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three-dimensional grids.
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App endix A

Lo w er Bounds for

Three-Dimensional Orthogonal

P oin t-Dra wing

In this App endix w e establish lo w er b ounds for the n um b er of b ends in 3-D orthogonal

p oin t-dra wings of simple graphs and m ultigraphs. Firstly , w e sho w that a 3-D orthog-

onal p oin t-dra wing of K

5

has at least sev en b ends. This is the only kno wn non-trivial

lo w er b ound for the total n um b er of b ends in a 3-D orthogonal p oin t-dra wing of a sim-

ple graph. Theorem 11.1 sho ws that a 3-D orthogonal p oin t-dra wing of K

5

has an edge

route with at least t w o b ends. W e then pro vide a formal pro of of the w ell-kno wn result

that the m ultigraph with t w o v ertices and six edges has an edge route with at least

three b ends in an y 3-D orthogonal p oin t-dra wing. Finally , w e sho w this m ultigraph has

at least 12 b ends in an y 3-D orthogonal p oin t-dra wing, and w e pro vide suc h a dra wing.

Throughout this app endix w e implicitly use ob vious symmetries to reduce the n um b er

of cases to consider.

A.1 Simple Graphs

Our result for K

5

dep ends on the follo wing results concerning 3-D orthogonal p oin t-

dra wings of small cycles. Figure A.1 sho ws 3-D orthogonal p oin t-dra wings of the 4-cycle

C

4

and of the 5-cycle C

5

, eac h with no b ends.

224
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(a) (b)

(a) (b)

(a) (b)

(a) (b) (c)

Figure A.1: 0-b end 3-D orthogonal p oin t-dra wings of (a) C

4

and (b) C

5

.

Lemma A.1. The only 0-b end 3-D ortho gonal p oint-dr awings of C

4

and of C

5

ar e

those shown in Figur e A.1.

Pr o of. W e shall pro v e this result for C

5

. The pro of for C

4

is similar. Supp ose k is the

n um b er of edges in the longest straigh t-line path in a 0-b end 3-D orthogonal p oin t-

dra wing of C

5

. Ob viously k � 4. If k = 4 then, as in Figure A.2(a), there m ust b e a

2-b end edge route. If k = 3 then, as in Figure A.2(b), there are t w o p ossible place for

the �nal v ertex, and in either case there m ust b e a 1-b end edge route.

(a) (b)

(a) (b)

(a) (b)

(a) (b) (c)

Figure A.2: The cases (a) k = 4 and (b) k = 3.

If k = 2 then, as in Figure A.3, the edges connecting to the ends of the 2-path, ma y

b e (a) p erp endicular, (b) in opp osite directions, or (c) in the same direction. In case

(a) there m ust b e a 2-b end edge route. In case (b) there m ust b e a 3-b end edge route,

and case (c) pro duces the 0-b end dra wing of C

5

sho wn in Figure A.1(b).

(a) (b)

(a) (b)

(a) (b)

(a) (b) (c)

Figure A.3: The case k = 2.
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If k = 1 then, as in Figure A.4, the edges connecting to the ends of the 1-path

(whic h is dra wn parallel to the X -axis), ma y b e (a) p erp endicular, (b) in the same

direction, or (c) in opp osite directions. In eac h case there are no 1-b end edge routes

connecting the end-p oin ts of the resulting 4-path whic h do not in tro duce a straigh t-line

path with t w o edges. So it is imp ossible to add the remaining v ertex to mak e a 0-b end

5-cycle with k = 1.

(a) (b)

(a) (b)

(a) (b)

(a) (b) (c)

Figure A.4: The case k = 1.

Hence the only dra wing of the 5-cycle with no b ends is that sho wn in Figure A.1(b)

with k = 2.

In Figure 2.3(b) (page 28) there is a 3-D orthogonal p oin t-dra wing of K

5

with sev en

b ends. W e no w sho w that this is optimal.

Theorem A.1. Every 3-D ortho gonal p oint-dr awing of K

5

has at le ast seven b ends.

Pr o of. Supp ose, to the con trary , that there is a 3-D orthogonal p oin t-dra wing of K

5

with a total of six b ends.

Our pro of pro ceeds b y considering the structure of the subgraph of K

5

consisting

of the 0-b end edges. It is easily v eri�ed that in an y subgraph of K

5

with at least

sev en edges there is a K

3

subgraph. Since K

3

do es not ha v e a 0-b end 3-D orthogonal

p oin t-dra wing, the n um b er of 0-b end edge routes in the dra wing of K

5

is at most six.

Clearly , in an y K

3

-free 6-edge subgraph of K

5

there is a 4-cycle. Giv en a 4-cycle,

the only w a y to add a �fth v ertex and t w o more edges without creating a triangle is

to connect the �fth v ertex to the non-adjacen t v ertices of the 4-cycle. Hence, the only

6-edge K

3

-free subgraph of K

5

is that sho wn in Figure A.5(a), whic h w e call H .

Note that H con tains C

4

. By Lemma A.1 the only 0-b end 3-D orthogonal p oin t-
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(a) (b)

(a) (b)

Figure A.5: (a) K

3

-free 6-edge subgraph H of K

5

; (b) H do es not ha v e a 0-b end 3-D

p oin t-dra wing

dra wing of C

4

is a rectangle. It is not p ossible to connect the non-adjacen t v ertices of

a rectangle b y t w o 0-b end edges (see Figure A.5(b)). Hence H do es not ha v e a 0-b end

3-D orthogonal p oin t-dra wing. So the n um b er of 0-b end edge routes in the dra wing of

K

5

is at most �v e. By Theorem 11.1, an y 3-D p oin t-dra wing of K

5

has an edge route

with at least t w o b ends. It follo ws that in a p oin t-dra wing of K

5

with six b ends there

is precisely one 2-b end edge, four 1-b end edges and �v e 0-b end edges.

A K

3

-free subgraph of K

5

with �v e edges is C

5

or con tains C

4

. By Lemma A.1,

the only 0-b end dra wings of C

5

and C

4

are the rectangles sho wn in Figure A.1. As

illustrated in Figure A.6, the diagonally opp osite v ertices of the rectangles m ust b e

connected b y a 3-b end edge route, whic h is a con tradiction. The result follo ws.

(a) (b)

(a) (b)

Figure A.6: 3-b end edge `across' the 4- and 5-cycle.
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A.2 Multigraphs

In Figure A.7 w e sho w 3-D orthogonal p oin t-dra wings of the m ultigraph with t w o

v ertices and six edges.

(a) (b) (c)

(b)(a)

Figure A.7: Dra wings of the 2-v ertex 6-edge m ultigraph with (a) a maxim um of three

b ends p er edge route, and (b) a total of t w elv e b ends.

W e no w pro v e that the maxim um n um b er of b ends p er edge route in the dra wing

in Figure A.7(a) is optimal.

Lemma A.2. The multigr aph with two vertic es and six e dges has a 3-b end e dge r oute

in every 3-D ortho gonal p oint-dr awing.

Pr o of. Since the graph is 6-regular ev ery p ort at the v ertices v and w m ust b e used.

The t w o v ertices can b e (a) collinear, (b) coplanar but not collinear, or (c) not coplanar,

as illustrated in Figure A.8.

(a) (b) (c)

(b)(a)

Figure A.8: The 2-v ertex 6-edge m ultigraph needs a 3-b end edge route.

In eac h case a p ort at v ertex v p oin ting a w a y from w requires at least three b ends

to reac h w .

W e no w pro v e that the total n um b er of b ends in the dra wing in Figure A.7(b) is

optimal.
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Lemma A.3. The multigr aph with two vertic es and six e dges has at le ast 12 b ends in

any 3-D ortho gonal p oint-dr awing.

Pr o of. If the v ertices are not coplanar then at one of the v ertices, three of the p orts

need at least t w o b ends to reac h the other v ertex, and the other three p orts need at

least three b ends to reac h the other v ertex. So a non-coplanar dra wing has at least 15

b ends.

If the v ertices are coplanar but not collinear then at one of the v ertices, t w o of the

p orts need at least one b end to reac h the other v ertex, t w o of the p orts need at least

t w o b ends to reac h the other v ertex, and the remaining t w o p orts need at least three

b ends to reac h the other v ertex. So a non-collinear coplanar dra wing has at least 12

b ends.

If the v ertices are collinear then at one of the v ertices, four of the p orts need at

least t w o b ends to reac h the other v ertex, and one of the p orts needs at least three

b ends to reac h the other v ertex. So a non-collinear coplanar dra wing has at least 11

b ends. Supp ose, without loss of generalit y , that the v ertices are in an X -line, and there

is suc h a dra wing with 11 b ends. Then there m ust b e four 2-b end edge routes, and

one 3-b end edge route. These four 2-b end edge routes m ust use the Y

�

and Z

�

p orts

at eac h v ertex. Therefore, the edge routed using the X

�

and X

+

p ort m ust ha v e four

b ends, whic h is a con tradiction. The result follo ws.



App endix B

3-D Orthogonal `Cage' Dra wings

As discussed in Chapter 3, the 2-b ends problem (Problem 3.3) is one of the most

in teresting op en problems in the �eld of 3-D orthogonal graph dra wing. This problem

asks whether ev ery maxim um degree six graph has a 3-D orthogonal p oin t-dra wing with

at most t w o b ends p er edge route. W e no w presen t 3-D orthogonal p oin t-dra wings of

the 6-regular m ulti-partite graphs K

7

, K

2 ; 2 ; 2 ; 2

, K

3 ; 3 ; 3

and K

6 ; 6

with t w o b ends p er edge

route, th us pro viding evidence for the conjecture that ev ery maxim um degree six graph

has a 2-b end 3-D orthogonal p oin t-dra wing.

W o o d [219 ] presen ted the �rst 2-b end 3-D orthogonal p oin t-dra wing of K

7

. This

dra wing is less symmetric than the dra wing presen ted here. In a 2-b end 3-D orthogonal

p oin t-dra wing the edge routes assigned an `extreme' p ort m ust b e planar. The 2-b end

p oin t-dra wings whic h follo w consist of t w o parts. The outer `cage' includes planar

and non-planar 2-b end edge routes (see Figure 5.25). The `in terior' consists solely of

non-planar 2-b end edge routes.

2-Bend Dra wing of K

7

:

Figures B.1 and B.2 resp ectiv ely sho w a K

6

cage dra wing and a K

1 ; 6

in terior dra wing

whic h com bine to giv e the 8 � 8 � 8 2-b end p oin t-dra wing of K

7

from Figure 3.6. The

v ertices are p ositioned at (2 ; 0 ; 0), ( � 2 ; 0 ; 0), (0 ; 2 ; 0), (0 ; � 2 ; 0), (0 ; 0 ; 2), (0 ; 0 ; � 2) and

(1 ; 1 ; 1).

230
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6

Z

-

Y

�

�	

X

6

Z

-

Y

�

�	

X

Figure B.1: K

6

cage.

2-Bend Dra wings of K

2 ; 2 ; 2 ; 2

and K

3 ; 3 ; 3

:

Our 2-b end 3-D p oin t-dra wings of K

2 ; 2 ; 2 ; 2

and K

3 ; 3 ; 3

b oth use the o ctahedron graph

cage sho wn in Figure B.3.

Com bining the o ctahedron cage with the K

2 ; 6

in terior dra wing sho wn in Figure B.4

giv es a 9 � 9 � 9 2-b end 3-D orthogonal p oin t-dra wing of K

2 ; 2 ; 2 ; 2

.

Com bining the o ctahedron cage with the in terior dra wing sho wn in Figure B.5 giv es

a 10 � 10 � 10 2-b end 3-D orthogonal p oin t-dra wing of K

3 ; 3 ; 3

.
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6

Z

-

Y

�

�	

X

6

Z

-

Y

�

�	

X

Figure B.2: K

1 ; 6

dra wing forming the in terior of K

7
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Figure B.3: Octahedron cage
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Figure B.4: K

2 ; 6

dra wing forming the in terior of K

2 ; 2 ; 2 ; 2
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Figure B.5: In terior of K

3 ; 3 ; 3

.
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2-Bend Dra wing of K

6 ; 6

:

Our 2-b end 3-D orthogonal p oin t-dra wing of K

6 ; 6

consists of the `bipartite cage' sho wn

in Figure B.6, and the in terior dra wing of Figure B.7 dra wn three times with:

(1) I = X , J = Y , K = Z , (2) I = Y , J = Z , K = X , (3) I = Z , J = X , K = Y .

W e p osition the v ertices of K

6 ; 6

as indicated in T able B.1, obtaining a 12 � 12 � 12

2-b end 3-D orthogonal p oin t-dra wing of K

6 ; 6

. This dra wing w as found using the searc h

tec hnique presen ted in Section 5.2.2, whic h is based on the algorithm in App endix C

for the maxim um clique problem.
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Figure B.6: Bipartite cage.
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Figure B.7: In terior of K

6 ; 6

.

T able B.1: Co ordinates of V ( K

6 ; 6

).

X

+

W

(4,-2,0) Y

+

W

(0,4,-2) Z

+

W

(-2,0,4)

X

+

B

(3,2,0) Y

+

B

(0,3,2) Z

+

B

(2,0,3)

X

�

W

(-4,1,-1) Y

�

W

(-1,-4,1) Z

�

W

(1,-1,-4)

X

�

B

(-5,-3,-1) Y

�

B

(-1,-5,-3) Z

�

B

(-3,-1,-5)



App endix C

Maxim um Clique Algorithm

In this app endix we describ e an algorithm for �nding a maximum clique in a

gr aph and c omp ar e its p erformanc e with le ading algorithms for this pr oblem

in an exp erimental study. In Se ction 5.2.2 we describ e how this algorithm

c an b e use d for se ar ching for 2-b end 3-D ortho gonal p oint-dr awings. F or

example, it was use d to �nd the 2-b end dr awing of K

6 ; 6

pr esente d in Ap-

p endix B. This algorithm and the exp erimental r esults wer e publishe d in

[218 ].

C.1 In tro duction

As de�ned in Section 2.2, a clique of an undirected graph G is a set of pairwise adjacen t

v ertices. A set of pairwise non-adjacen t v ertices is called an indep endent set . In this

app endix w e address the Maximum Clique Pr oblem ; i.e., for a giv en undirected graph

G �nd a maxim um cardinalit y clique of G (whose cardinalit y w e denote b y ! ( G )).

Clearly the maxim um clique problem is equiv alen t to that of �nding a maxim um

indep enden t set in the complemen tary graph. Applications for this problem exist in

signal pro cessing, computer vision and exp erimen tal design for example (see Balas and

Y u [13 ]). Unfortunately , not only is the exact problem NP-hard (see Garey and Johnson

[105 ]), but Arora et al. [7 ] sho w that appro ximating the maxim um clique problem within

a factor of j V j

�

for some � > 0 is NP-hard .

Early algorithms included the branc h and b ound algorithm of Bron and Kerb osc h

236
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[46 ] to generate all the cliques of a graph and the recursiv e algorithm of T arjan and

T ro jano wski [206 ] to determine a maxim um indep enden t set of an n -v ertex graph in

O (2

n= 3

) time. Recen t approac hes to the maxim um clique problem ha v e included the

branc h and b ound algorithms of Carraghan and P ardalos [52 ], P ardalos and Ro dgers

[170 ], Balas and Y u [13 ], Balas and Xue [11 , 12 ], Bab el and Tinhofer [9 ], and Bab el

[8 ]. In their surv ey pap er, P ardalos and Xue [171 ] iden tify the follo wing k ey issues in a

branc h and b ound algorithm for the maxim um clique problem.

1. Ho w to �nd a go o d lo w er b ound, i.e., a clique of large size?

2. Ho w to �nd a go o d upp er b ound on the size of a maxim um clique?

3. Ho w to branc h, i.e., break a problem in to smaller subproblems?

In Section C.2 w e address the �rst t w o of these questions. In Section C.3 w e presen t

our branc h and b ound algorithm, and in Section C.4 w e discuss computational results of

our algorithm in comparison with leading algorithms for the maxim um clique problem.

C.2 Heuristics

The algorithm of Balas and Y u [13 ] concen trates on the determination of lo w er b ounds

using an algorithm to �nd a maxim um clique of a maximal triangulated induced sub-

graph at selected searc h tree no des. This metho d is extended to the maxim um w eigh t

clique problem b y Balas and Xue [11 ]. The algorithm to follo w and the algorithm of

Balas and Xue [12 ] determine a lo w er b ound at the ro ot no de of the searc h tree, using

the algorithm of Balas [10 ] to �nd a maxim um clique of an edge-maximal triangulated

subgraph. T o pro vide lo w er b ounds at non-ro ot searc h tree no des w e use the follo wing

w ell-kno wn heuristic whic h w e call Greed y Clique . Giv en a graph G , main tain a set

S (initially S  V ( G )) of candidate v ertices to b e added to the curren t clique. Add a

v ertex v 2 S to the curren t clique, set S  ( S n f v g ) \ V

G

( v ), and con tin ue un til S = ; .

W e no w turn our atten tion to the determination of upp er b ounds. The algorithms

of Carraghan and P ardalos [52 ] and P ardalos and Ro dgers [170 ] use the size of a giv en

subgraph as an upp er b ound for the size of a clique in that subgraph. V ertex-colourings

pro vide m uc h tigh ter upp er b ounds. A v ertex k -c olouring of a graph G partitions V ( G )
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in to k indep enden t sets ( C

1

; C

2

; : : : ; C

k

) called c olour classes . Eac h v ertex of a clique

m ust b e coloured di�eren tly , so k is an upp er b ound for ! ( G ). As discussed in Sec-

tion 2.2, the algorithm Greed y Ver tex-Colour is a simple heuristic for determining

a v ertex-colouring of a graph.

In [8, 9, 12 ] upp er b ounds for the maxim um clique problem are determined using

the Dsa tur v ertex-colouring heuristic of Brelaz [43 ]. Brelaz de�nes the satur ation

de gr e e of an uncoloured v ertex v to b e the n um b er of colours assigned to the v ertices

adjacen t to v . While uncoloured v ertices remain, the Dsa tur heuristic c ho oses an

uncoloured v ertex v with maxim um saturation degree (breaking ties b y higher degree),

and colouring v with the minim um colour not already assigned to an adjacen t v ertex.

This metho d colours the connected comp onen ts of G in turn, and within eac h con-

nected comp onen t the initial v ertices c hosen form a clique. So Dsa tur pro vides b oth

a lo w er and upp er b ound for ! ( G ). Comparisons of Greed y Ver tex Colour and

Dsa tur in [12 , 217 ] sho w that for all but a few of the tested graphs Dsa tur requires

(up to 27.5%) few er colours than Greed y Ver tex Colour , although Dsa tur is

considerably slo w er. F or v ery sparse and v ery dense graphs, Dsa tur is an order of

magnitude more exp ensiv e than colour [12 ].

A fr actional c olouring of a graph G is a set C of (p ossibly in tersecting) w eigh ted

colour classes (i.e., indep enden t sets), suc h that for eac h v ertex v 2 V ( G ) the sum of

the w eigh ts of the colour classes con taining v is at least one. Since a colour class can

con tain at most one v ertex of a clique, in a fractional colouring the sum of the w eigh ts

of those colour classes in tersecting a clique Q is at least j Q j . Therefore the total w eigh t

of a fractional colouring of a graph G is an upp er b ound for ! ( G ). The upp er b ound

from a minim um w eigh t fractional colouring is in general tigh ter than that pro vided b y

a minim um v ertex-colouring [12 ]; unfortunately determining suc h a fractional colouring

is NP-hard [112 ] .

Balas and Xue [12 ] use the follo wing heuristic F CP for the fractional colouring

problem to pro vide upp er b ounds for the maxim um clique problem. After i iterations

of F CP , eac h v ertex is coloured exactly i times, and eac h colour class is assigned w eigh t

1 =i , so t

i

= j C j =i is an upp er b ound for ! ( G ). Initially C  ; , i  1 and t

0

 1 .

Iteration i of F CP executes the follo wing algorithm.
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F or eac h v ertex v , include v in the �rst colour class C

j

2 C , if one exists, suc h that

C

j

[ f v g remains an indep enden t set. Supp ose U is the set of v ertices not included in a

colour class. Find a v ertex-colouring ( C

1

; C

2

; : : : ; C

k

) of G [ U ] (using Greed y Ver tex

Colour or Dsa tur ), and set C  C [ f C

1

; C

2

; : : : ; C

k

g and t

i

 j C j =i . If t

i

< t

i � 1

then set i  i + 1 and rep eat, otherwise return the upp er b ound b t

i � 1

c .

T o pro v e a time complexit y result for F CP , the authors amend the stopping rule so

that the n um b er of colour classes j C j do es not exceed the n um b er of v ertices j V j . Our

implemen tation also includes this feature. Note that for man y graphs a tigh ter upp er

b ound can b e calculated b y reiterating the algorithm after either stopping condition is

satis�ed.

By F CP

G

and F CP

D

w e refer to algorithm F CP with Greed y Ver tex Colour

and Dsa tur determining v ertex-colourings, resp ectiv ely . The comparison of these

heuristics in [12 , 217 ] sho w that the impro v emen ts in upp er b ound b y F CP

G

o v er

Greed y Ver tex Colour range from 0{21 colours, and for F CP

D

o v er Dsa tur the

impro v emen ts range from 0{7 colours.

C.3 Maxim um Clique Algorithm

W e no w presen t our branc h and b ound algorithm MC for the maxim um clique problem,

whic h uses the F CP heuristic to determine upp er b ounds, and, lik e the algorithms in [52 ,

170 ], activ ates exactly one new searc h tree no de at eac h branc hing stage. Other branc h

and b ound algorithms for the maxim um clique problem activ ate man y searc h tree no des

at eac h branc hing step. This is ine�cien t as new b ounds need to b e determined for eac h

subgraph considered. A lo w er b ound (i.e., a large maxim um clique) is only determined

at the ro ot no de of the searc h tree. T o do so w e use the linear-time algorithm of Balas

and Y u [13 ] (also see Xue [225 ]) for �nding a maxim um clique in an edge-maximal

triangulated subgraph of the input graph.

Giv en a graph G , algorithm MC main tains the follo wing conditions:

� If h is the curren t depth of the searc h tree then the set of v ertices

f v

1

; v

2

; : : : ; v

h � 1

g � V ( G ) is a clique of G .

� M is the curren t largest clique found b y the algorithm; h � 1 � j M j � ! ( G ).
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� F or 1 � i � h , the v ertex set S

i

�

i � 1

T

j =1

V

G

( v

j

) consists of candidates for enlarging

f v

1

; v

2

; : : : ; v

i � 1

g .

� F or eac h i , 1 � i � h , ( C

i

1

; C

i

2

; : : : ; C

i

k

i

) is a v ertex-colouring of G [ S

i

]. Both k

i

and k

0

i

(determined b y F CP) are upp er b ounds for ! ( G [ S

i

]), with k

0

i

� k

i

.

� An activ e no de of the searc h tree corresp onds to the subproblem of �nding a

maxim um clique larger than M of the subgraph:

G

i

= G [ f v

1

; v

2

; : : : ; v

i � 1

g [ S

i

], for 1 � i � h .

Clearly ! ( G

i

) � i � 1 + k

0

i

� i � 1 + k

i

.

Algorithm C.1. MaxClique

Input: graph G

Output: maxim um clique of G

Step 0: Initialisation

Find a maxim um clique M of an edge-maximal triangulated subgraph of G [13 , 225 ].

Set h  1, S

h

 V ( G ) and go to Step 2.

Step 1: Calculate L ower Bound

Q  Greed y Clique ( G [ S

h

]).

if h � 1 + j Q j > j M j then set M  f v

1

; v

2

; : : : ; v

h � 1

g [ Q .

Go to Step 2.

Step 2: Calculate Upp er Bound

Find a v ertex-colouring ( C

h

1

; C

h

2

; : : : ; C

h

k

h

) of G [ S

h

].

if h � 1 + k

h

� j M j then go to Step 4.

Apply F CP to G [ S

h

] to obtain a further upp er b ound k

0

h

� ! ( G [ S

h

]).

if h � 1 + k

0

h

� j M j then go to Step 4.

Go to Step 3.

Step 3: Br anching

Cho ose a v ertex v

h

2 C

h

k

h

with maxim um deg

G

( v

h

).
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Set S

h +1

 S

h

\ V

G

( v

h

), S

h

 S

h

n f v

h

g , C

h

k

h

 C

h

k

h

n f v

h

g .

if C

h

k

h

= ; then set k

h

 k

h

� 1 and if k

h

< k

0

h

then set k

0

h

 k

h

.

Set h  h + 1.

Go to Step 1.

Step 4: Backtr acking

if h = 1 then stop : M is a maxim um clique of G .

Set h  h � 1.

if h � 1 + k

0

h

� j M j then go to Step 4.

Go to Step 3.

In the second line of Step 3, the problem of �nding a maxim um clique of G

h

is

divided in to t w o sub-problems. If v

h

is a v ertex of G [ S

h

] then a clique Q of G

h

will b e

con tained in either:

G

h +1

= G [ f v

1

; v

2

; : : : ; v

h

g [ ( S

h

\ V

G

( v

h

))] (if v

h

2 Q )

or G

h

= G [ f v

1

; v

2

; : : : ; v

h � 1

g [ ( S

h

n f v

h

g )] (if v

h

62 Q ).

W e c ho ose v

h

from the �nal colour class C

h

k

h

, as the latter colour classes generated

b y Greed y Ver tex Colour and b y Dsa tur tend to b e smaller than the initial ones.

Therefore the upp er b ound k

h

is reduced more quic kly than if an arbitrary v ertex in S

h

w as c hosen. Note that, since j M j � h � 1 and h � 1 + k

h

> j M j whenev er the algorithm

go es to Step 3, w e ha v e k

h

� 1 at this stage, and hence the colour class C

h

k

h

m ust exist.

Theorem C.1. Given an undir e cte d gr aph G , algorithm MC �nds a maximum clique

M of G .

Pr o of. This result follo ws immediately from the observ ation that algorithm MC main-

tains the ab o v emen tioned conditions throughout the algorithm.

C.4 Exp erimen tal Results

See [217 ] for a complete description of the implemen tation of our algorithms in GAP

[193 ] on a Sun Sparcstation 10.
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T o ev aluate the e�ectiv eness of the F CP heuristic as an upp er b ounding device

for the maxim um clique problem, w e ha v e also dev elop ed an algorithm MC

0

whic h

skips the third and fourth lines of Step 2, th us not using F CP to calculate a further

upp er b ound. MC

G

(resp ectiv ely , MC

0

G

) uses Greed y Clique to determine a clique in

Step 1, and F CP

G

( Greed y Ver tex Colour ) to determine upp er b ounds in Step 2.

MC

D

(resp ectiv ely , MC

0

D

) uses F CP

D

( Dsa tur ) for these purp oses.

W e no w compare the p erformance of algorithms MC

G

, MC

D

, MC

0

G

and MC

0

D

with

existing algorithms for the maxim um clique problem. By BXB w e refer to a com bina-

tion of the algorithms of Bab el [8 ] and Balas and Xue [12 ], the most e�cien t kno wn

algorithms for the maxim um clique problem. BXB uses F CP

D

to calculate lo w er and

upp er b ounds at eac h searc h tree no de, and uses branc hing rule I I in [8 ], their b est

p erforming branc hing rule. The branc hing rules in [8] and [12 ] (whic h is stated for

w eigh ted graphs) b oth generally activ ate more than one new searc h tree no de.

T able C.1 sho ws the a v erage size of the lo w er b ound determined at the ro ot no de

(LB), the a v erage size of a maxim um clique ( j M j ), the a v erage CPU time tak en b y

eac h of the algorithms, and the a v erage n um b er of searc h tree no des generated b y eac h

algorithm, for 10 uniform random graphs with n = j V ( G ) j v ertices and % edge densit y

d = 200 j E j =n ( n � 1).

In T able C.2 w e compare the algorithms for a selection of the DIMA CS b enc hmark

graphs whic h w ere dev elop ed as part of the 1993 DIMA CS Challenge (see Johnson

and T ric k [122 ]). They include non-uniform random graphs with relativ ely large clique

sizes, and graphs whic h ha v e arisen in co ding theory , the Steiner T riple Problem, tiling

of h yp ercub es, v ertex co v er problems and fault diagnosis. T able B.2 sho ws the size n

and % densit y d of the graph, the CPU time tak en b y eac h algorithm, and the n um b er

of searc h tree no des generated b y eac h algorithm. Column BX refers to the n um b er of

searc h tree no des for the algorithm of Balas and Xue [12 ], as stated in their pap er. T o

accurately compare algorithms w e use the v alues presen ted in [12 ] for the lo w er b ound

at the ro ot no de for eac h of the tested algorithms.

In most cases the algorithms MC

D

, BXB and BX, whic h use the upp er b ound

heuristic F CP

D

, generate the least n um b er of searc h tree no des. MC

D

on a v erage

generates less searc h tree no des than BXB for 12 of the 16 sets of random graphs. F or
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T able C.1: P erformance of Maxim um Clique Finding Algorithms on Uniform Random

Graphs

CPU Time (seconds) Searc h T ree No des

n d LB j M j

MC

G

MC

D

MC

0

G

MC

0

D

BXB MC

G

MC

D

MC

0

G

MC

0

D

BXB

100 10 3.7 3.9 0.222 0.428 0.160 0.280 0.432 24.3 18.7 24.8 18.7 23.1

100 20 4.7 5.1 0.363 0.755 0.277 0.523 0.752 38.1 33.9 40.6 34.7 39.2

100 30 5.6 6.3 0.959 1.590 0.422 0.883 1.390 53.4 45.6 79.2 52.9 50.3

100 40 6.9 7.6 1.325 3.148 0.613 1.508 3.020 109.8 82.4 165.6 102.8 89.1

100 50 8.1 9.1 2.515 6.894 1.478 3.780 6.458 254.1 198.7 344.5 234.9 201.9

100 60 10.4 11.6 5.497 14.18 1.932 6.860 14.87 468.4 328.7 707.5 405.8 365.4

100 70 12.8 14.8 14.31 36.85 3.445 18.08 38.38 1,048 672.7 1,705 893.4 698.1

100 80 18.0 20.0 35.43 92.84 6.525 46.46 88.62 1,786 1,253 2,961 1,696 1,160

100 90 28.0 30.7 73.84 150.1 12.12 71.30 134.1 2,126 1,109 4,043 1,523 974.3

200 10 4.0 4.3 1.013 2.498 0.962 1.715 2.705 92.3 83.5 98.2 83.7 91.2

200 20 5.1 5.9 2.708 5.810 1.548 4.217 5.965 140.3 120.7 202.2 137.6 126.9

200 30 6.1 7.3 7.030 17.71 3.187 9.095 18.56 519.9 396.2 699.5 476.8 386.0

200 40 7.6 9.0 16.04 47.64 5.510 26.04 49.85 1,539 1,162 2,011 1,279 1,317

200 50 10.0 11.1 57.49 161.5 12.68 81.31 168.1 4,295 2,810 6,846 3,622 2,889

200 60 12.1 14.0 249.9 755.6 45.66 380.4 820.4 17,461 11,704 26,857 14,712 13,109

200 70 15.3 18.1 1,993 5,830 341.9 2,945 5,829 102,122 64,430 173,810 88,354 63,972

CPU Time (seconds) Searc h T ree No des

j M j

MC

G

MC

D

MC

0

G

MC

0

D

BXB MC

G

MC

D

MC

0

G

MC

0

D

BXB

29 160.0 263.1 26.34 122.5 285.8 4,957 2,014 9,854 2,721 2,216

30 66.09 158.2 10.38 74.80 134.4 1,885 1,183 3,259 1,620 966

31 53.27 94.34 9.740 45.92 79.52 1,392 643.5 2,815 938.5 522

32 50.80 138.0 7.809 66.97 92.19 1,323 1,005 2,465 1,372 623

33 12.03 36.32 2.300 17.90 22.80 256 217 391 307 123

12 of the DIMA CS b enc hmark graphs, the lo w er b ound and upp er b ound calculated at

the ro ot no de b y these algorithms are equal, and therefore only one searc h tree no de

is generated. Of the other 26 DIMA CS b enc hmark graphs, MC

D

uses the least searc h

tree no des of these algorithms 15 times, BXB 10 times, and BX 8 times.



APPENDIX
C.

MAXIMUM
CLIQUE

ALGORITHM
244

T able C.2: P erformance of Maxim um Clique Finding Algo-

rithms on the DIMA CS Benc hmark Graphs

CPU Time (seconds) Searc h T ree No des

DIMA CS

Graph

n d j M j

MC

G

MC

D

MC

0
G

MC

0
D

BXB MC

G

MC

D

MC

0
G

MC

0
D

BXB BX

bro c k200 1 200 75 21 4,911 15,186 805.2 7,951 16,320 218,853 149,153 379,810 211,013 163,348 113,244

bro c k200 2 200 50 12 26.72 149.7 3.833 74.22 158.4 1,790 3,018 2,594 3,593 3,018 2,965

bro c k200 3 200 61 15 230.1 573.6 38.50 281.0 815.9 15,354 7,818 24,113 10,113 12,717 8,155

bro c k200 4 200 66 17 568.2 1,926 92.95 931.5 1,530 31,751 25,105 52,332 33,693 19,316 25,705

c-fat200-1 200 8 12 0.283 2.200 0.017 0.150 2.133 8 1 8 4 1 1

c-fat200-2 200 16 24 0.317 0.183 0.017 0.183 0.167 7 1 7 1 1 1

c-fat200-5 200 43 58 0.683 3.467 0.133 2.217 3.284 27 27 27 27 27 29

c-fat500-1 500 4 14 0.534 0.616 0.017 0.617 2.217 13 1 13 1 1 1

c-fat500-2 500 7 26 1.417 0.700 0.083 0.700 0.750 23 1 23 1 1 1

c-fat500-5 500 19 64 1.450 0.984 0.166 0.950 0.983 23 1 23 1 1 1

c-fat500-10 500 37 126 0.017 1.400 0.033 1.400 1.450 1 1 1 1 1 1

hamming6-2 64 90 32 0.017 0.050 0.001 0.067 0.066 1 1 1 1 1 1

hamming6-4 64 35 4 0.133 0.850 0.067 0.300 0.800 81 29 81 58 29 48

hamming8-2 256 97 128 0.017 0.733 0.001 0.750 0.717 1 1 1 1 1 1

c ontinue d on next p age
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T able C.2: c ontinue d

CPU Time (seconds) Searc h T ree No des

DIMA CS

Graph

n d j M j

MC

G

MC

D

MC

0
G

MC

0
D

BXB MC

G

MC

D

MC

0
G

MC

0
D

BXB BX

hamming8-4 256 64 16 344.2 155.7 79.15 137.6 156.5 28,593 357 36,441 2,045 357 373

hamming10-2 1,024 99 512 0.050 10.57 0.066 10.47 12.28 1 1 1 1 1 1

johnson8-2-4 28 56 4 0.050 0.050 0.017 0.083 0.033 20 1 23 26 1 1

johnson8-4-4 70 77 14 0.533 0.300 0.183 0.534 0.300 115 1 115 19 1 1

johnson16-2-4 120 76 8 770.8 0.417 195.8 2,046 0.384 190,084 1 256,099 355,522 1 1

k eller4 171 65 11 113.1 256.5 18.45 137.5 256.7 6,543 3,700 12,829 5,195 3,700 4,164

MANN a9 45 93 16 0.617 1.033 0.100 0.384 1.017 46 19 60 20 19 23

MANN a27 378 99 126 23,286 26,524 704.3 9,753 25,549 39,087 8,704 47,264 9,874 8,714 14,145

p hat300-1 300 24 8 8.800 38.93 1.467 20.12 37.53 1,032 819 1,310 928 819 832

p hat300-2 300 49 25 75.05 225.6 10.05 129.2 225.5 1,888 1,304 2,801 1,579 1,304 1,613

p hat500-1 500 25 9 76.48 384.8 13.72 231.4 389.5 7,454 6,179 9,772 6,724 6,179 6,105

p hat500-2 500 50 36 2,695 9,790 267.1 5,796 6,320 35,657 27,182 59,393 34,787 17,019 31,746

p hat700-1 700 25 11 272.8 1,915 40.32 1,060 1,408 17,629 19,337 25,805 23,150 15,310 14,040

p hat1000-1 1,000 24 10 1,883 13,060 283.2 6,974 13,150 122,182 90,607 179,082 111,897 91,159 93,004

san200 0.7 1 200 70 30 6.617 36.37 0.917 18.85 95.73 53 231 206 348 645 635

c ontinue d on next p age
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T able C.2: c ontinue d

CPU Time (seconds) Searc h T ree No des

DIMA CS

Graph

n d j M j

MC

G

MC

D

MC

0
G

MC

0
D

BXB MC

G

MC

D

MC

0
G

MC

0
D

BXB BX

san200 0.7 2 200 70 18 3.700 20.80 0.466 10.65 36.53 110 154 195 182 363 852

san200 0.9 1 200 90 70 73.75 45.72 11.48 24.92 255.4 715 121 2,069 201 631 10

san200 0.9 2 200 90 60 5,988 612.6 1,052 348.0 2,036 71,114 1,553 211,889 2,365 5,655 1,825

san400 0.5 1 400 50 13 51.03 81.73 11.22 64.83 247.7 1,223 378 3,465 523 1,689 1,194

san400 0.7 1 400 70 40 1,681 2,455 198.7 1,430 10,263 15,903 5,604 38,989 8,507 30,707 20,913

san400 0.7 2 400 70 30 36,486 39,100 6,228 24,285 66,579 690,806 139,092 1,591,030 231,593 295,314 75,773

san1000 1,000 50 15 2,281 32,630 653.9 40,814 9,277 43,623 44,408 106,823 78,698 12,996 21,897

sanr200 0.7 200 70 18 1,711 4,608 338.2 2,372 4,076 87,012 51,610 150,861 71,799 44,278 40,496

sanr400 0.5 400 50 13 2,352 9,094 350.9 4,955 8,617 155,285 115,210 233,381 136,636 114,208 112,932
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Those algorithms whic h use the v ertex-colouring heuristic Greed y Ver tex

Colour , while generating the most searc h tree no des, are generally the fastest. In

particular, for the random graphs, MC

0

G

is the fastest of the tested algorithms, using

on a v erage only 18.41% of the CPU time used b y BXB. MC

0

G

is again the fastest for all

but four of the DIMA CS b enc hmark graphs (and for t w o of these the di�erence is only

a few microseconds). W e ha v e also implemen ted a v arian t MC2

G

of MC

0

G

whic h only

�nds a lo w er b ound at the ro ot no de of the searc h tree. F or the random graphs (DI-

MA CS b enc hmark graphs) this algorithm uses 0.65% (0.20%) more searc h tree no des

than MC

0

G

, y et is on a v erage 4.34% (12.04%) faster than MC

0

G

. This indicates that the

determination of lo w er b ounds at non-ro ot no des is not time-e�cien t.

W e ha v e observ ed that for graphs with �xed size and densit y the di�cult y of the

maxim um clique problem is generally in v ersely correlated to the size of a maxim um

clique in the graph. This is apparen t for the san graphs with equal n and d . Similar

results o ccur with the random graphs. F or example, the 10 uniform random graphs

(used in T able C.1) with n = 100 and d = 90% ha v e a maxim um clique of size 29(2),

30(3), 31(2), 32(2) or 33(1). F or eac h maxim um clique size, T able C.3 sho ws the

a v erage CPU time tak en, and the a v erage n um b er of searc h tree no des generated b y

eac h algorithm.

T able C.3: P erformance of Maxim um Clique Finding Algorithms on Uniform Random

Graphs with n = 100 and d = 90%

CPU Time (seconds) Searc h T ree No des

n d LB j M j

MC

G

MC

D

MC

0

G

MC

0

D

BXB MC

G

MC

D

MC

0

G

MC

0

D

BXB

100 10 3.7 3.9 0.222 0.428 0.160 0.280 0.432 24.3 18.7 24.8 18.7 23.1

100 20 4.7 5.1 0.363 0.755 0.277 0.523 0.752 38.1 33.9 40.6 34.7 39.2

100 30 5.6 6.3 0.959 1.590 0.422 0.883 1.390 53.4 45.6 79.2 52.9 50.3

100 40 6.9 7.6 1.325 3.148 0.613 1.508 3.020 109.8 82.4 165.6 102.8 89.1

100 50 8.1 9.1 2.515 6.894 1.478 3.780 6.458 254.1 198.7 344.5 234.9 201.9

100 60 10.4 11.6 5.497 14.18 1.932 6.860 14.87 468.4 328.7 707.5 405.8 365.4

100 70 12.8 14.8 14.31 36.85 3.445 18.08 38.38 1,048 672.7 1,705 893.4 698.1

100 80 18.0 20.0 35.43 92.84 6.525 46.46 88.62 1,786 1,253 2,961 1,696 1,160

100 90 28.0 30.7 73.84 150.1 12.12 71.30 134.1 2,126 1,109 4,043 1,523 974.3

200 10 4.0 4.3 1.013 2.498 0.962 1.715 2.705 92.3 83.5 98.2 83.7 91.2

200 20 5.1 5.9 2.708 5.810 1.548 4.217 5.965 140.3 120.7 202.2 137.6 126.9

200 30 6.1 7.3 7.030 17.71 3.187 9.095 18.56 519.9 396.2 699.5 476.8 386.0

200 40 7.6 9.0 16.04 47.64 5.510 26.04 49.85 1,539 1,162 2,011 1,279 1,317

200 50 10.0 11.1 57.49 161.5 12.68 81.31 168.1 4,295 2,810 6,846 3,622 2,889

200 60 12.1 14.0 249.9 755.6 45.66 380.4 820.4 17,461 11,704 26,857 14,712 13,109

200 70 15.3 18.1 1,993 5,830 341.9 2,945 5,829 102,122 64,430 173,810 88,354 63,972

CPU Time (seconds) Searc h T ree No des

j M j

MC

G

MC

D

MC

0

G

MC

0

D

BXB MC

G

MC

D

MC

0

G

MC

0

D

BXB

29 160.0 263.1 26.34 122.5 285.8 4,957 2,014 9,854 2,721 2,216

30 66.09 158.2 10.38 74.80 134.4 1,885 1,183 3,259 1,620 966

31 53.27 94.34 9.740 45.92 79.52 1,392 643.5 2,815 938.5 522

32 50.80 138.0 7.809 66.97 92.19 1,323 1,005 2,465 1,372 623

33 12.03 36.32 2.300 17.90 22.80 256 217 391 307 123
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