
Meta-programming With Built-in Type Equality

[Extended Abstract]

Tim Sheard
∗

OGI

sheard@cse.ogi.edu

Emir Pasalic
†

OGI

pasalic@cse.ogi.edu

ABSTRACT
We report our experience with exploring a new point in the
design space for formal reasoning systems: the development
of the programming language Ωmega. Ωmega is intended
as both a practical programming language and a logic. The
main goal of Ωmega is to allow programmers to describe and
reason about semantic properties of programs from within
the programming language itself, mainly by using a powerful
type system.

We illustrate the main features of Ωmega by developing an
interesting meta-programming example. First, we show how
to encode a set of well-typed simply typed λ-calculus terms
as an Ωmega data-type. Then, we show how to implement
a substitution operation on these terms that is guaranteed
by the Ωmega type system to preserve their well-typedness.

1. INTRODUCTION
There is a large semantic gap between what a programmer

knows about his program and the way he has to express this
knowledge to a formal system for reasoning about that pro-
gram. While many reasoning tools are built on the Curry-
Howard isomorphism, it is often hard for the programmers
to conceptualize how they can put this abstraction to work.
We propose the design of a language that makes this impor-
tant isomorphism concrete – proofs are real object that pro-
grammers can build and manipulate without leaving their
own programming language.

We have explored a new point in the design space of for-
mal reasoning systems and developed the programming lan-
guage Ωmega. Ωmega is both a practical programming lan-
guage and a logic. These sometimes irreconcilable goals are
made possible by embedding the Ωmega logic in a type sys-
tem based on equality qualified types[6]. This design sup-
ports the construction, maintenance, and propagation of
semantic properties of programs using powerful old ideas

∗ Supported by NSF CCR-0098126.
† Supported by NSF CCR-0098126.

LFM 2004 Cork, Ireland, July, 2004
.

about types in novel ways.
For what kind of programming would a language like

Ωmega be useful? The rest of this paper describes one pos-
sibility.

Meta-programming inΩmega.Meta-programs manipu-
late object-programs represented as data. Traditionally, object-
language programs are represented with algebraic data-types
as syntactic objects. This representation preserves syntactic
properties of object-language programs (i.e., it is impossi-
ble to represent syntactically incorrect object-language pro-
grams). In this paper, we explore the benefits of represent-
ing object-language programs as data in a manner that pre-
serve important semantic properties, in particular scoping
and typing. Representing typed object-languages in a way
which preserves semantic properties can lead to real bene-
fits. By preserving typing and scoping properties, we gain
assurance in the correctness of a particular language proces-
sor (e.g. compiler, interpreter, or program analysis). Such
semantics preserving representations statically catch errors
introduced by incorrect meta-language programs.

Contributions.The first contribution is an approach to
manipulating strongly typed object languages in a man-
ner which is semantics preserving. This approach encodes
well-typed and statically scoped object-language programs as
data-types which embed the type of the object-language pro-
gram in the type of its representation. While this can be
done using only the standard extensions to the Haskell 98
type system (using equality types), we use Ωmega, an ex-
tension to Haskell inspired by Cheney and Hinze’s work on
phantom types [6].

The second contribution is an implementation of Cheney
and Hinze’s ideas that makes programming with well-typed
object-language programs considerably less tedious than us-
ing equality types in Haskell alone. Our implementation of
Ωmega also supports several other features, such as extensi-
ble kinds and staging, which we shall not discuss in this pa-
per. This integration creates a powerful meta-programming
tool.

The third contribution is a demonstration that semantic
properties of meta-programs (i.e., preserving object-language
types) can be encoded in the type of the meta-program
itself – the programmer need not resort to using another
meta-logic to (formally) assure himself that his substitution
algorithm preserves typing. We demonstrate this by im-
plementing a type-preserving substitution operation on the
object-language of simply typed λ-calculus.

The last contribution is the demonstration that these tech-
niques support the embedding of logical frameworks style
judgments into a programming language such as Haskell.
This is important because it moves logical style reasoning
about programs from the meta-logical level into the pro-
gramming language.

2. ΩMEGA: A META-LANGUAGE WITH SUP-
PORT FOR TYPE EQUALITY

Type Equality in Haskell. A key technique that in-
spired the work described in this paper is the encoding of
equality between types as a Haskell type constructor (Equal a b).
Thus a non-bottom value (p::Equal a b), can be regarded
as a proof of the proposition that a equals b.

The technique of encoding the equality between types a

and b as a polymorphic function of type ∀ϕ. (ϕ a)→ (ϕ b)

was proposed by both Baars & Swierstra [2], and Cheney &
Hinze [6] at about the same time, and is described somewhat
earlier in a different setting by Weirich [20]. We illustrate
this by the data-type Equal : *→ *→ *

data Equal a b = Equal (∀ϕ. (ϕ a)→ (ϕ b))

cast :: Equal a b→ (ϕ a)→ (ϕ b)

cast (Equal f) = f

The logical intuition behind this definition (also known as
Leibniz equality [12]) is that two types are equal if, and only
if, they are interchangeable in any context. This context
is represented by the arbitrary Haskell type constructor ϕ.
Proofs are useful, since from a proof p :: Equal a b, we
can extract functions that cast values of type (C[a]) to type
(C[b]) for type contexts C[]. For example, we can construct
functions a2b::Equal a b→ a→ b and b2a::Equal a b→ b→ a

which allow us to cast between the two types a and b in the
identity context. Furthermore, it is possible to construct
combinators that manipulate equality proofs based on the
standard properties of equality (transitivity, reflexivity, con-
gruence, and so on).

Equality types are described elsewhere [2], and we shall
not belabor their explanation any further. The essential
characteristic of programming with type equality in Haskell
is the requirement that programmers manipulate proofs of
equalities between types using equality combinators. This
has two practical drawbacks. First, manipulation of proofs
using combinators is tedious. Second, while present through-
out a program, the equality proof manipulations have no
real computational content – they are used solely to lever-
age the power of the Haskell type system to accept certain
programs that are not typable when written without the
proofs. With all the clutter induced by proof manipulation,
it is sometimes difficult to discern the difference between the
truly important algorithmic part of the program and mere
equality proof manipulation. This, in turn, makes programs
brittle and rather difficult to change.

2.1 Type Equality in Ωmega
What if we could extend the type system of Haskell, in

a relatively minor way, to allow the type-checker itself to
manipulate and propagate equality proofs? Such a type sys-
tem was proposed by Cheney and Hinze [6], and is one of
the ideas behind Ωmega [17]. In the remainder of this pa-
per, we shall use Ωmega, rather than pure Haskell to write
our examples. We conjecture that, in principle, whatever
it is possible to do in Ωmega, it is also possible to do in

Haskell (plus the usual set of extensions), only in Ωmega it
is expressed more cleanly and succinctly.

The syntax and type-system of Ωmega has been designed
to closely resemble Haskell (with GHC extensions). For
practical purposes, we could consider (and use) it as a con-
servative extension to Haskell. In this section, we will briefly
outline the useful differences between Ωmega and Haskell.

In Ωmega, the equality between types is not encoded ex-
plicitly (as the type constructor Equal). Instead, it is built
into the type system, and is used implicitly by the type-
checker. Consider the following (fragmentary) data-type
definitions. (We adopt the GHC syntax for writing the ex-
istential types with a universal quantifier that appears to
the left of a data-constructor. We also replace the keyword
forall with the symbol ∀. We shall write explicitly univer-
sally or existentially quantified variables with Greek letters.
Arrow types (->) will be written as → , and so on.)

data Exp e t

= Lit Int where t=Int

| V (Var e t)

data Var e t

= ∀γ. Z where e = (γ,t)
| ∀γα. S (Var γ t) where e = (γ,α)

Each data-constructor in Ωmega may contain a where

clause which contains a list of equations between types in
the scope of the constructor definition. These equations play
the same role as the Haskell type Equal in Section 2, with
one important difference. The user is not required to pro-
vide any actual evidence of type equality – the Ωmega type
checker keeps track of equalities between types and proves
and propagates them automatically.

The mechanism Ωmega uses to keep track of equalities
between types is very similar to the constraints that the
Haskell type checker uses to resolve class-based overloading.
A special qualified type [9] is used to assert equality between
types, and a constraint solving system is used to simplify and
discharge these assertions. When assigning a type to a type
constructor, the equations specified in the where clause just
become predicates in a qualified type. Thus, the construc-
tor Lit is given the type ∀e t.(t=Int) => Int→ Exp e t.
The equation t=Int is just another form of predicate, sim-
ilar to the class membership predicate in the Haskell type
(for example, Eq a => a→ a→ Bool).

Tracking equality constraints. When type-checking
an expression, the Ωmega type checker keeps two sets of
equality constraints: obligations and assumptions.

Obligations. The first set of constraints is a set of obliga-
tions. Obligations are generated by the type-checker either
when (a) the program constructs data-values with construc-
tors that contain equality constraints; or (b) an explicit type
signature in a definition is encountered.

For example, consider type-checking the expression (Lit

5). The constructor Lit is assigned the type ∀e t.(t=Int)

=> Int→ Exp e t. Since Lit is polymorphic in e and t, the
type variable t can be instantiated to Int. Instantiating t to
Int also makes the equality constraint obligation Int=Int,
which can be trivially discharged by the type checker.

Lit 5 :: Exp e Int with obligation Int = Int

One practical thing to note is that in this context, the
data-constructors of Exp and Var are given the following
types:

Lit :: ∀e t.t=Int => Exp e t

Z :: ∀e e’ t.e=(e’,t) => Var e t

S :: ∀e t e’ t’. e=(e’,t’) => (Var e’ t)→ (Var e t)

It is important to note that the above qualified types can
be instantiated to the following types:

Lit :: Exp e Int

Z :: Var (e,t) t

S :: (Var e’ t)→ (Var (e’,t’) t)

We have already seen this for Lit. Consider the case for
Z. First, the type variable e can be instantiated to (e’,t).
After this instantiation, the obligation introduced by the
constructor becomes (e’,t)=(e’,t), which can be immedi-
ately discharged by the built-in equality solver. This leaves
the instantiated type (Var (e’,t) t).

Assumptions. The second set of constraints is a set of
assumptions or facts. Whenever, a constructor with a where

clause is pattern-matched, the type equalities in the where-
clause are added to the current set of assumptions in the
scope of the pattern. These assumptions can be used to
discharge obligations. For example, consider the following
partial definition:

evalList :: Exp e t→ e→ [t]

evalList exp env =

case exp of Lit n→ [n]

When the expression exp of type (Exp e t) is matched
against the pattern (Lit n), the equality t=Int from the
definition of Lit is introduced as an assumption. The type
signature of evalList induces the obligation that the body
of the definition has the type [t]. The right-hand side of the
case expression, [n], has the type [Int]. The type checker
now must discharge (prove) the obligation [t]=[Int], while
using the fact, introduced by the pattern (Lit n) that
t=Int. The Ωmega type-checker uses an algorithm based on
congruence-closure [11], to discharge equality obligations. It
automatically applies the laws of equality to solve such equa-
tions. In this case, the equation is discharged easily using
congruence.

3. Ωmega EXAMPLE: SUBSTITUTION
Now, we shall develop our main example, showcasing the

meta-programming facilities of Ωmega. First, we shall define
a sample object-language of simply typed λ-calculus judg-
ments, and then implement a type-preserving substitution
function on those terms. While this object-language is quite
simple, useful perhaps only for didactic purposes, we have
applied our techniques on a wider range of meta-programs
and object-languages (e.g., tagless staged interpreters for
typed imperative languages, object-languages with modal
type systems, and so on [13, 14]).

This example demonstrates type-preserving syntax-to-
syntax transformations between object-language programs.
Substitution, which we shall develop in the remainder of this
paper, is one such transformation. Furthermore, a correct
implementation of substitution can be used to build more
syntax-to-syntax transformations: we shall provide an im-
plementation of big-step semantics that uses substitution.

The substitution operation we present preserves object-
language typing. As a meta-program, it not only analyzes
object-language typing judgments, but also builds new judg-
ments based on the result of that analysis.

Expressions and types

τ ∈ T ::= b | τ1 → τ2

Γ ∈ G ::= 〈〉 | Γ, τ
e ∈ E ::= Var n | λτe | e1 e2

Γ, τ ⊢ 0 : τ
(Base)

Γ ⊢ n : τ

Γ, τ ′ ⊢ (n + 1) : τ
(Weak)

Γ ⊢ n : τ

Γ ⊢ Var n : τ
(Var)

Γ, τ1 ⊢ e : τ2

Γ ⊢ λτ1
.e : τ1 → τ2

(Abs)
Γ ⊢ e1 : τ1 → τ2 Γ ⊢ e2 : τ1

Γ ⊢ e1 e2 : τ2

(App)

Figure 1: The simply typed λ-calculus fragment.

Substitutions à la λυ [4]

σ ∈ S ::= e/ | ⇑ (σ) | ↑

Γ ⊢ e : τ

Γ ⊢ e/ : Γ, τ
(Slash)

Γ, τ ⊢↑: Γ
(Shift)

Γ ⊢ σ : Γ′

Γ, τ ⊢⇑ (σ) : Γ′, τ
(Lift)

Figure 2: Explicit substitutions fragment.

3.1 The Simply Typedλ-calculus with Typed
Substitutions

Figures 1 and 2 define two sets of typed expressions. The
first figure of expressions (Figure 1) is just the simply typed
λ-calculus. The second figure (Figure 2) defines a set of
typed substitutions. The substitution expressions are taken
from the λυ-calculus [4]. There are several of other ways
to represent substitutions explicitly as terms (see Kristoffer
Rose’s excellent paper [16] for a comprehensive survey), but
we have chosen the notation of λυ for its simplicity.

A substitution expression σ is intended to represent a
mapping from de-Bruijn indices to expressions (i.e., a sub-
stitution), the same way that λ-expressions are intended to
represent functions. As in λυ, we define three kinds of sub-
stitutions in Figure 2 (see Figure 3 for a graphical illustra-
tion):

1. Slash (e/). Intuitively, the slash substitution maps the
variable with the index 0 to e, and any variable with
the index n + 1 to Var n.

2. Shift (↑). The shift substitution adjusts all the variable
indices in a term by incrementing them by one. It
maps each variable n to the term Var (n + 1).

3. Lift (⇑ (σ)). The lift substitution (⇑ (σ)) is used to
mark the fact that the substitution σ is being applied
to a term in a context in which index 0 is bound and
should not be changed. Thus, it maps the variable
with the index 0 to Var 0. For any other variable index
n + 1, it maps it to the term that σ maps to n, with
the provision that the resulting term must be adjusted
with a shift: ((n + 1) 7→↑ (σ(n))).

Typing substitutions.The substitution expressions are typed.
The typing judgments of substitutions, written Γ1 ⊢ σ : Γ2,
indicate that the type of a substitution, in a given type as-
signment, is another type assignment. The intuition behind

e

0

==zzzzzzzz
Var 0

1

=={{{{{{{{
Var 1

2

=={{{{{{{{
Var 2

3

=={{{{{{{{
Var 3

.

.

.

??���������
.
.
.

0

!!C
CC

CC
CC

C Var 0

1

!!C
CC

CC
CC

C Var 1

2

!!C
CC

CC
CC

C Var 2

3

��@
@@

@@
@@

@@
Var 3

.

.

.
.
.
.

0 // Var 0

1 // ↑ (σ(0))

2 // ↑ (σ(1))

.

.

.
// ..
.

.

.

.
// ..
.

(a) Slash (e/) (b) Shift (↑) (c) Lift (⇑ (σ))

Figure 3: Substitutions

the substitution typing judgment is the following: given a
term whose variables are assigned types by Γ2, applying a
the substitution σ yields an expression whose variables are
assigned types by Γ1.

Example. We describe a couple of example substitutions.

1. Consider the substitution (True/). This substitution
maps the variable with the index 0 to the Boolean con-
stant True. The type of this substitution is Γ ⊢ True/
: Γ, Bool. In other words, given any type assignment,
the substitution (True/) can be applied in any context
where the variable 0 is assigned type Bool.

2. Consider the substitution σ = (⇑ (True/)). σ is the
substitution that replaces the variable with the index
1 with the constant True.

Recall that the type of any substitution θ under a type
assignment Γ, is a type assignment ∆ (written Γ ⊢
θ : ∆), such that for any expression e′ to which the
substitution θ is applied, the following must hold ∆ ⊢
e′ : τ and Γ ⊢ θ(e′) : τ .

So, what type should we assign to σ? When applied
to an expression, a lift substitution (σ =⇑ (True/))
does not change the variable with the index 0. Thus,
when typing σ as Γ ⊢ σ : ∆, we know something
about the shape of Γ and ∆. Namely, for some ∆′,
we know that ∆ = (∆′, τ), and for some Γ′, we know
that Γ = (Γ′, τ). The type assignments ∆′ and Γ′ are
determined by the sub-substitution True/, yielding the
following typing derivation:

Γ ⊢ True : Bool
Const

Γ ⊢ Bool/ : Γ, Bool
Slash

Γ, τ ⊢⇑ (Bool/) : Γ, Bool, τ
Lift

There are three typing rules for the substitutions (Fig-
ure 2):

1. Slash (e/). A slash substitution e/ replaces the 0-index
variable in an expression by e. Thus, in any context
Γ, where e can be given type τ , the typing rule re-
quires the substitution to work only on expressions in
the type assignment Γ, τ , where the 0-index variable
is assigned the type τ . Since the slash substitution
also decrements the indexes of the remaning variables,
they are all shifted to the right by one place, so that
the remaning free variables can be assigned their old
types in Γ after the substitution is applied.

Γ ⊢ e : τ

Γ ⊢ e/ : Γ, τ
(Slash)

2. Shift (↑). The shift substitution maps all variables n
to Var (n + 1). Thus, given a term whose variables
are assigned type a by Γ, after performing the shift
substitution, the types in the type assignment must for
each variable must “move” to the left by one position.
This is done by appending an arbitrary type τ for the
variable with the index 0, which cannot occur free in
the term after the substitution is performed.

Γ, τ ⊢↑: Γ
(Shift)

3. Lift (⇑ (σ)). For any variable index (n + 1) in a term,
the substitution ⇑ (σ) applies σ to n and then shifts the
resulting term. Thus, the 0-index term in the type as-
signment remains untouched, and the rest of the type
assignment is as specified by σ:

Γ ⊢ σ : Γ′

Γ, τ ⊢⇑ (σ) : Γ′, τ
(Lift)

Applying substitutions.In the remainder of this Section,
we show how to implement a function (we call it subst) that
takes a substitution expression σ, a λ-expression e, and re-
turns an expression such that all the indices in e have been
replaced according the substitution. In the simply typed
λ-calculus, substitution preserves typing, so we expect the
following property to be true of the substitution function
subst: if Γ ⊢ σ : ∆ and ∆ ⊢ e : τ , then Γ ⊢ subst σ e : τ .

How should subst work? Figure 4 presents two judgments,
(σ, e1) ⇒ e2 and (σ, n) ⇒ e, which describe the action
of substitutions on expressions and variables, respectively.
These judgments are derived from the reduction relations
of the λυ-calculus [4]. It is not difficult to show that this
reduction strategy indeed does implement capture avoiding
substitution sufficient to perform β reductions (see Benaissa,
Lescanne & al. [4] for proofs).

4. IMPLEMENTING SUBSTITUTION IN
ΩMEGA

Next, we show how to implement this substitution opera-
tion in Ωmega, using expression and substitution judgments
instead of expressions and substitution expressions.

4.1 Judgments
The expression and substitution judgments can be easily

encoded in Ωmega. The data-types Var and Exp encode
expression and variable judgments presented in Figure 1.

Substitution on expressions
(·, ·) ⇒ · ⊂ S × E × E

(σ, e1) ⇒ e′1
(σ, e2) ⇒ e′2

(σ, (e1 e2)) ⇒ e′
1

e′
2

(⇑ (σ), e) ⇒ e′

(σ, λ.e) ⇒ λe′
(σ, n) ⇒ e

(σ, Var n) ⇒ e

Substitution on variables
(·, ·) ⇒ · ⊂ S × N × E

(e/, 0) ⇒ e (e/, n + 1) ⇒ Var n (⇑ (σ), 0) ⇒ Var 0

(σ, n) ⇒ e (↑, e) ⇒ e′

(⇑ (σ), n + 1) ⇒ e′ (↑, n) ⇒ Var (n + 1)

Figure 4: Applying substitutions to terms

data Var e t = ∀d. Z where e = (d,t)

| ∀d t2. S (Var d t) where e = (d,t2)

data Exp e t = V (Var e t)

| ∀t1 t2. Abs (Exp (e,t1) t2)

where t = t1→ t2

| ∀t1. App (Exp e (t1→ t))

(Exp e t1)

The judgment Var implements the lookup and weakening
rules for variables. Just as in the judgment of Figure 1, there
are two cases:

1. First, there is the constructor Z. This constructor trans-
lates the definition of Figure 1 directly: the where-
clause requires the type system of Ωmega to prove that
there exists some environment γ such that the environ-
ment t is equal to γ extended by t.

2. The second constructor, S takes a judgment of type
(Var γ t), and a requirement that the environment e
is equal to the pair (γ, α), where both γ and α are
existentially quantified.

The names S and Z are chosen to show how the judg-
ments for variable are structurally the same as the natural
number indices. Finally, the sub-judgments for the variable
case are “plugged” into the definition of Exp e t using the
constructor V.

The type of expression judgments (Exp e t) is constructed
in a similar fashion. We shall only explain the abstraction
case in some detail. The constructor Abs takes as its argu-
ment a judgment of type (Exp (e,t1) t2): an expression
judgment of type t2 in the type assignment e, extended so
that it assigns the variable 0 the type t1. If this argument
can be supplied, then the result type of the Abs judgment
is the function type (t1→ t2), as indicated by the where-
clause.

Next, we define a data-constructor Subst gamma delta

that represents the typing judgments for substitutions . The
type constructor Subst gamma delta represents the typing
judgment Γ ⊢ σ : ∆ presented in Figure 2.

data Subst gamma delta =

∀t1. Shift

1 subst :: Subst gamma delta→
2 Exp delta t→ Exp gamma t

3 subst s (App e1 e2) = App (subst s e1) (subst s e2)

4 subst s (Abs e) = Abs (subst (Lift s) e)

5 subst (Slash e) (V Z) = e

6 subst (Slash e) (V (S n)) = V n

7 subst (Lift s) (V Z) = V Z

8 subst (Lift s) (V (S n)) = subst Shift (subst s (V n))

9 subst (Shift) (V n) = V (S n)

Figure 5: Substitution in simply typed λ-calculus.

where gamma = (delta,t1)

| ∀t1. Slash (Exp gamma t1)

where delta = (gamma,t1)

| ∀del1 gam1 t1. Lift (Subst gam1 del1)

where delta = (del1,t1),

gamma = (gam1,t1)

4.2 Substitution
Finally, we define the substitution function subst. It has

the following type:

subst :: Subst gamma delta→
Exp delta t→ Exp gamma t

It takes a substitution whose type is delta in some type
assignment gamma, an expression of type t that is typed in
the type assignment delta, and produces an expression of
type t typable in the type assignment gamma.

We will discuss the implementation of the function subst

(Figure 5) in more detail. In several relevant cases, we shall
describe the process by which the Ωmega type-checker makes
sure that the definitions are given correct types. Recall
that every pattern-match over one of the Exp or Subst judg-
ments may introduce zero or more equations between types,
which are then available to the type-checker in the body of
a case (or function definition). The type checker may use
these equations to prove that two types are equal. In the
text below, we sometimes use the type variables gamma and
delta for notational convenience, but also Skolem constants
like 1. These are an artifact of the Ωmega type-checker
(they appear when pattern-matching against values that
may contain existentially quantified variables) and should
be regarded as type constants.

1. The application case (line 3) simply applies the substi-
tution to the two sub-expression judgments and then
rebuilds the application judgment from the results.

2. The abstraction case (line 4) pushes the substitution
under the λ-abstraction. It may be interesting to ex-
amine the types of the various subexpressions in this
definition.

Abs e : Exp delta t, where t=t1→ t2

e : Exp (delta,t1) t2

s : Subst gamma delta

Lift s : Subst (gamma,t1) (delta,t1)

subst (Lift s) e : Exp (gamma,t1) t2

The body of the abstraction, e has the type (delta,t1),
where t1 is the type of the domain of the λ-abstraction.

In order to apply the substitution s to the body of
the abstraction (e), we need a substitution of type
(Subst (gamma,t1) (delta,t1)). This substitution
can be obtained by applying Lift to s. Then, recur-
sively applying subst with the lifted substitution to
the body e, we obtain an expression of type (Exp (gamma,t1) t2),
from which we can construct a λ-abstraction of the
(Exp gamma (t1→ t2)).

3. The variable-slash case (line 5-6). There are two cases
when applying the slash substitution to a variable ex-
pression:

(a) Variable 0. The substitution (Slash e) has the
type (Subst (gamma) (gamma,t)), and contains
the expression e :: Exp gamma t. The expres-
sion (V Z) has the type (Exp (delta,t) t). Pat-
tern matching introduces the equation gamma=delta,
and we can use e to replace (V Z).

Slash e :: (Subst (gamma) (gamma,t))

e :: Exp gamma t

(b) Variable n + 1. Pattern matching on the
substitution argument introduces the equation
delta=(gamma,t1). Pattern matching against
the expression (V (S n)) introduces the equa-
tion delta=(gamma’,t), for some gamma’. The
expression result expression (V n) has the type
(Exp gamma’ t). The type checker then uses
the two equalities to prove that it has the type
(Exp gamma t). It does this by first using con-
gruence to prove that gamma=gamma’, and then
by applying this equality to obtain Exp gamma’ t

= Exp gamma t.

Slash e :: Subst gamma (gamma,t)
(V (S n)) :: Exp delta t

4. The variable-lift case (lines 7-8). There are two cases
when applying the lift substitution to a variable ex-
pression.

(a) Variable 0. This case is easy because the lift sub-
stitution places makes no changes to the variable
with the index 0. We are able simply to return
(V Z) as a result.

(b) Variable n + 1. The first pattern (Lift s ::

Subst gamma delta), on the substitution, intro-
duces the following equations:

delta = (d’,_1),

gamma = (g’,_1)

The pattern on the variable (V(S n):: Var delta

t) introduces the equation

delta = (d2,_2)

The first step is to apply the substitution s of
type (Subst g’ d’) to a decremented variable
index (V n) which has the type n :: Var d2 t.
To do this, the type checker has to show that
g’=d2, which easily follows from the equations
introduced by the pattern, yielding a result of
type (Exp g’ t). Applying the Shift substitu-
tion to this result yields an expression of type
(Exp (g’,a) t) (where a is can be any type).

Now, equations above can be used to prove that
this expression has the type (Exp gamma t) using
the equation gamma=(g’, 1).

5. Variable-shift case (line 9). Pattern matching on the
Shift substitution introduces the equation gamma =

(delta, 1). The expression has the type (Exp delta t).
Applying the successor to the variable results in an ex-
pression (V (S n)) of type (Exp (delta,a) t). Im-
mediately, the type checker can use the equation intro-
duced by the pattern to prove that this type is equal
to (Exp gamma t).

We have defined type-preserving substitution simply typed
λ-calculus judgments. Recall, that since equality proofs can
be encoded in Haskell, it should be possible (with certain
caveats) to implement the function subst in Haskell (with a
couple of GHC extensions). It is worth noting that Ωmega
has proven very helpful in writing such complicated func-
tions: explicitly manipulating equality proofs for such a
function in Haskell, would result in code that is both verbose
and difficult to understand.

5. A BIG-STEP EVALUATOR
Finally, we implement a simple evaluator based on the

big-step semantics for the λ-calculus. The evaluation rela-
tion is given by the following judgment:

λe ⇒ λe x ⇒ x

e1 ⇒ λe′ (e2/, e′) ⇒ e3 e3 ⇒ e′′

e1 e2 ⇒ e′′

Note that in the application case, we first use the substi-
tution (e2/, e′) ⇒ e3 to substitute the argument e2 for the
variable with index 0 into the body of the λ-abstraction.

The big-step evaluator is implemented as the function
eval which takes a well-typed expression judgment of type
(Exp delta t), and returns judgments of the same type.
The evaluator reduces β-redices using a call-by-name strat-
egy, relying upon the substitution implemented above.

eval :: Exp delta t -> Exp delta t

eval (App e1 e2) =

case eval e1 of

Abs body -> eval (subst (Slash e2) body)

eval x = x

Note that the type of the function eval statically ensures
that it preserves the typing of the object language expres-
sions it evaluates, with the usual caveats that the Exps faith-
fully encode well-typed λ-expressions.

Finally, let us apply the big-step evaluator to a simple
example. Consider the expression, example.

example :: Exp gamma (a→ a)

example = (Abs (V Z)) ‘App‘ ((Abs (Abs (V Z)))

‘App‘ (Abs (V Z)))

-- example = (λ x.x) ((λ y. (λ z.z))) (λ x.x)

The expression example evaluates to the identity function.
Applying eval to it yields precisely that result:

evExample = eval example

-- evExample = (Abs (V Z)) : Exp gamma (a→ a)

6. RELATED WORK
Implementations of simple interpreters that use equality

proof objects implemented as Haskell datatypes, have been
given by Weirich [20] and Baars and Swierstra [2]. Baars and
Swierstra use an untyped syntax, but use equality proofs to
encode dynamically typed values. Hinze and Cheney [5,
6] have recently resurrected the notion of “phantom type,”
first introduced by Leijen and Meijer [10]. Hinze and Ch-
eney’s phantom types are designed to address some of the
problems that arise when using equality proofs to represent
type-indexed data. Their main motivation is to provide
a language in which polytypic programs, such as generic
traversal operations, can be more easily written. Cheney
and Hinze’s system bears a strong similarity to Xi et al.’s
guarded recursive datatypes [21], although it seems to be a
little more general.

We adapt Cheney and Hinze’s ideas to meta-programming
and language implementation. We incorporate their ideas
into a Haskell-like programming language. The value added
in our work is additional type system features (extensible
kinds and rank-N polymorphism, not used in this paper)
applying these techniques to a wide variety of applications,
including the use of typed syntax, the specification of seman-
tics for patterns, and its combination with staging to obtain
tagless interpreters, and the encoding of logical framework
style judgments as first class values within a programming
language.

Simonet and Pottier [18] proposed a system of guarded
algebraic data types, which seem equivalent in expressiveness
to phantom types, guarded recursive datatype constructors,
and Ωmega’s equality qualified (data)types. They present a
type system for guarded algebraic data types as an extension
to the HM(X) [19] type system, and describe a type inference
algorithm. They prove a number of important properties
about the type system and the inference algorithm (e.g.,
type soundness, correctness, and so on).

The technique of manipulating well-typedness judgments
has been used extensively in various logical frameworks [7,
15]. We see the advantage of our work here in translat-
ing this methodology into a more main-stream functional
programming idiom. Although our examples are given in
Ωmega, most of our techniques can be adapted to Haskell
with some fairly common extensions.

In previous work, we have used the techniques and pro-
gramming language extensions described above to address
the problem of tagless interpreters in meta-programming [14].
Tagless interpreters can easily be constructed in dependently
typed languages such as Coq [3] and Cayenne [1]. These
languages, however, do not support staging, nor have they
gained a wide audience in the functional programming com-
munity. Programming with well-typed object-language syn-
tax, applied to the problem of constructing tagless staged
interpreters, has been shown possible in a meta-language
(provisionally called MetaD) with staging and dependent
types [14]. The drawback of this approach is that there is
no “industrial strength” implementation for such a language.
In fact, the judgment encoding technique presented in this
paper is basically the same, except that instead of using a
dependently typed language, we encode the necessary ma-
chinery in a language which is arguably more recognizable
to Haskell programmers. By using explicit equality types,
everything can be encoded using the standard GHC exten-
sions to Haskell 98. Ωmega adds further ease of use to these

techniques, relieving the programmer of the responsibility of
explicitly manipulating equality proofs.

A technique using indexed type systems [22], a restricted
and disciplined form of dependent typing, has been used to
write interpreters and source-to-source transformations on
typed terms [21]. The meta-language with guarded recursive
datatype constructors, used by Xi & al., seems to be roughly
equivalent in expressive power to Ωmega. Ωmega, however,
is equipped with additional features, such as staging, which
may give it a wider range of useful applications.

7. DISCUSSION AND FUTURE WORK
Meta-language Implementation. The meta-language used

in this paper can be seen as a (conservative) extension of
Haskell, with built-in support for equality types. It was
largely inspired by the work of Cheney and Hinze. The
meta-language we have used in our examples in this papers
is the functional language Ωmega, a language designed to
be as similar to Haskell. We have implemented our own
Ωmega interpreter, similar in spirit and capabilities to the
Hugs interpreter for Haskell [8].

Theoretical work demonstrating the consistency of type
equality support in a functional language has been carried
out by Cheney and Hinze. We have implemented these
type system features into a type inference engine, combining
it with an equality decision procedure to manipulate type
equalities. The resulting implementation has seen a good
deal of use in practice, but more rigorous formal work on
this type inference engine is required.

Polymorphism and Binding Constructs in Types. The
object-language of the example presented in this paper (Fig-
ure 1), is simply typed: there are no binding constructs or
structures in any index arguments to Exp. If, however, we
want to represent object languages with universal or exis-
tential types, we will have to find a way of dealing with type
constructors or type functions as index arguments to judg-
ments, which is difficult to do in Haskell or Ωmega. We are
currently working on extending the Ωmega type system to
do just that. This would allow us to apply our techniques
to object languages with more complex type systems (e.g.,
polymorphism, dependent types, and so on).

Logical Framework in Ωmega. The examples presented in
this paper succeed because we manage to encode the usual
logical-framework-style inductive predicates into the type
system of Ωmega. We have acquired considerable experi-
ence in doing this for typing judgments, lists with length,
logical propositions, and so on. What is needed now is to
come up with a formal and general scheme of translating
such predicates into Ωmega type constructors, as well as to
explore the range of expressiveness and the limitations of
such an approach. We intend to work on this in the future.

8. REFERENCES
[1] Lennart Augustsson and Magnus Carlsson. An

exercise in dependent types: A well-typed interpreter.
In Workshop on Dependent Types in Programming,
Gothenburg, 1999. Available online from
www.cs.chalmers.se/~augustss/cayenne/interp.ps.

[2] Arthur I. Baars and S. Doaitse Swierstra. Typing
dynamic typing. In Proceedings of the Seventh ACM
SIGPLAN International Conference on Functional
Programming (ICFP ’02), Pittsburgh, Pennsylvania,

USA, October 4-6, 2002., SIGPLAN Notices 37(9).
ACM Press, October 2002.

[3] B. Barras, S. Boutin, C. Cornes, J. Courant, J.C.
Filliatre, E. Giménez, H. Herbelin, G. Huet,
C. Muñoz, C. Murthy, C. Parent, C. Paulin, A. Säıbi,
and B. Werner. The Coq Proof Assistant Reference
Manual – Version V6.1. Technical Report 0203,
INRIA, August 1997.

[4] Zine-El-Abidine Benaissa, Daniel Briaud, Pierre
Lescanne, and Jocelyne Rouyer-Degli. λν, a calculus
of explicit substitutions which preserves strong
normalisation. Journal of Functional Programming,
6(5):699–722, September 1996.

[5] J. Cheney and R. Hinze. A lightweight implementation
of generics and dynamics. In Proc. of the workshop on
Haskell, pages 90–104. ACM Press, 2002.

[6] James
Cheney and Ralf Hinze. Phantom types. Available from
http://www.informatik.uni-bonn.de/~ralf/publications/Phantom.pdf.,
2003.

[7] Robert Harper, Furio Honsell, and Gordon Plotkin. A
framework for defining logics. In Proceedings
Symposium on Logic in Computer Science, pages
194–204, Washington, June 1987. IEEE Computer
Society Press. The conference was held at Cornell
University, Ithaca, New York.

[8] M. P. Jones. The hugs 98 user manual, 200.

[9] Mark P. Jones. Qualified types :–theory and practice.
PhD thesis, Keble College, Oxford University, 1992.

[10] Daan Leijen and Erik Meijer. Domain-specific
embedded compilers. In Proceedings of the 2nd
Conference on Domain-Specific Languages, pages
109–122, Berkeley, CA, October 3–5 1999. USENIX
Association.

[11] Greg Nelson and Derek C. Oppen. Fast decision
procedures based on congruence closure. Journal of
the ACM, 27(2):356–364, April 1980.

[12] Bengt Nordström, Kent Peterson, and Jan M. Smith.
Programming in Martin-Lof ’s Type Theory, volume 7
of International Series of Monographs on Computer
Science. Oxford University Press, New York, NY,
1990. Currently available online from first authors
homepage.

[13] Emir Pašalić. Heterogeneous Meta-programming. PhD
thesis, Oregon Health and Sciences University, OGI
School of Science & Engineering, 2004. Forthcoming.

[14] Emir Pašalić, Walid Taha, and Tim Sheard. Tagless
staged interpreters for typed languages. In The
International Conference on Functional Programming
(ICFP ’02), Pittsburgh, USA, October 2002. ACM.

[15] Frank Pfenning and Carsten Schürmann. System
description: Twelf — A meta-logical framework for
deductive systems. In Harald Ganzinger, editor,
Proceedings of the 16th International Conference on
Automated Deduction (CADE-16), volume 1632 of
LNAI, pages 202–206, Berlin, July 7–10, 1999.
Springer-Verlag.

[16] Kristoffer H. Rose. Explicit substitution – tutorial &
survey. Technical Report LS-96-3, BRICS, Universitty
of Århus, october 1996. BRICS Lecture Series.

[17] Tim Sheard, Emir Pasalic, and R. Nathan Linger. The
ωmega implementation. Available on request from the

author., 2003.

[18] Vincent Simonet and François Pottier.
Constraint-based type inference for guarded algebraic
data types. Submitted for publication, July 2003.

[19] Martin Sulzmann, Martin Odersky, and Martin Wehr.
Type inference with constrained types. In FOOL4:
4th. Int. Workshop on Foundations of Object-oriented
programming Languages, January 1997.

[20] Stephanie Weirich. Type-safe cast: functional pearl. In
Proceedings of the ACM Sigplan International
Conference on Functional Programming (ICFP-00),
volume 35.9 of ACM Sigplan Notices, pages 58–67,
N.Y., September 18–21 2000. ACM Press.

[21] Hongwei Xi, Chiyan Chen, and Gang Chen. Guarded
recursive datatype constructors. In Cindy Norris and
Jr. James B. Fenwick, editors, Proceedings of the 30th
ACM SIGPLAN-SIGACT symposium on Principles of
programming languages (POPL-03), volume 38, 1 of
ACM SIGPLAN Notices, pages 224–235, New York,
January 15–17 2003. ACM Press.

[22] Howgwei Xi and Frank Pfenning. Dependent types in
practical programming. In Conference Record of
POPL 99: The 26th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages,
San Antonio, Texas, pages 214–227, New York, NY,
January 1999. ACM.

9. ACKNOWLEDGMENT
The work described in this paper is supported by the Na-

tional Science Foundation under the grant CCR-0098126.

