
Technische Universität Chemnitz
Sonderforschungsbereich 393

Numerische Simulation auf massiv parallelen Rechnern

Serguei Grosman

Robust local problem error
estimation for a singularly

perturbed reaction-diffusion
problem on anisotropic finite

element meshes

Preprint SFB393/02-07

Abstract

Singularly perturbed reaction-diffusion problems exhibit in general solutions
with anisotropic features, e.g. strong boundary and/or interior layers. This an-
isotropy is reflected in the discretization by using meshes with anisotropic ele-
ments. The quality of the numerical solution rests on the robustness of the a
posteriori error estimator with respect to both the perturbation parameters of
the problem and the anisotropy of the mesh. An estimator that has shown to be
one of the most reliable for reaction-diffusion problem is the equilibrated resid-
ual method and its modification done by Ainsworth and Babuška for singularly
perturbed problem. However, even the modified method is not robust in the case
of anisotropic meshes.

The present work modifies the equilibrated residual method for anisotropic
meshes. The resulting error estimator is equivalent to the equilibrated residual
method in the case of isotropic meshes and is proved to be robust on anisotropic
meshes as well. A numerical example confirms the theory.
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1 Introduction

Let
�������

be an open domain with polyhedral boundary � � . Consider the reaction-
diffusion problem with homogeneous Dirichlet boundary conditions

�
	���
�� � ����� in
��� ����� on � ��� (1.1)

where � is a nonnegative constant.
If ��� � , then we have a singularly perturbed problem. Many physical phe-

nomena lead to singularly perturbed problems. For instance boundary value prob-
lems formulated on thin domains [16], where � is proportional to the inverse of the
domain thickness. They also arise in mathematical models of physical problems,
where diffusion is small compared with reaction and convection.

Such problems yield solutions with local anisotropic behavior, e.g. boundary
and/or interior layers. In these cases special mesh adaptivity is desirable. Tri-
angles should not only adapt in size but also in shape, to better fit the function to be
approximated. While standard finite element meshes consist of isotropic elements,
in the current work so-called anisotropic elements are investigated. They are char-
acterized by a large aspect ratio (the ratio of the diameters of the circumscribed and
inscribed spheres). The singularly perturbed reaction diffusion problem typically
requires triangles stretched along the boundary or in the direction of the interior
layer [4, 5, 8].

An error estimator that has shown to be one of the most reliable for the sin-
gularly perturbed reaction-diffusion problem is the modified equilibrated residual
method [1]. The main purpose of the current work is to consider this estimator on
anisotropic meshes and to construct upper and lower error bounds. It turns out that
the equilibrated residual method fails on anisotropic meshes due to a (potentially
unbounded) factor appearing in the lower bound. This factor is equivalent to � on
isotropic meshes, but it can be arbitrarily large on anisotropic meshes.

A new modification for anisotropic elements leads to a robust error estimator.
The upper error bound of the modification contains the factor ������� �! �" which is in
accordance with the results by Kunert in [14].

The paper is organized as follows. After describing the model problem and its
discretization in # 2, the standard equilibrated residual method and its modification
for the singularly perturbed case are briefly overviewed in # 3. Moreover the upper
error bound is obtained. In # 4 some properties of the equilibrated residual method
on anisotropic meshes are proved. In # 5 one finds the lower error bound for the
standard estimator. Furthermore, in # 6 the modification of the equilibrated residual
method for the anisotropic case is introduced and the resulting estimator is proved
to be robust. A numerical example completes the discussion.
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2 The model problem, its discretization and some
notation

Let � be an open subset of
�

. Introduce the usual
� � scalar product � � ��� "����	� 
�� �
 
 � ����� and energy scalar product � 
 � � ��� " � 
 
��	��� � � � 
 � � � ������� , which lead to

the appropriate norms � � � ������ 
�� � � � � � "����	� 
�� and � � � � � �
 � � 
 � � � � " . When � � � the
subscript will be omitted. For an edge � and an element � , let � ��� �! �"$#&% � �'� " and
� �(� �) �"$#&% � �*� " denote its length and area, respectively. In what follows +� will
denote the patch of elements around � that satisfy such relation: �-, � +� iff �/. � ,
is nonempty. Analogously we define the patch + � of an edge � : � � + � iff � � �0� .

Consider the problem (1.1) and assume �21 � � � � " . The Sobolev space of functions
from 3 � � � " that vanish on � � is denoted by 3 �4 � � " as usual. The corresponding
variational formulation for (1.1) becomes:

Find �51 3 �4 � � "76 ��� � ��� " � � � ��� "98:� 1 3 �4 � � "<; (2.1)

We utilize a family = �?>  �@ of triangulations
 

of
�

. Let A � 3 �4 � � " be the space
of continuous, piecewise linear functions over

 
that vanish on � � . Then the finite

element solution �0BC1 A is uniquely defined by

��� �DB ��� B " � � � ��� B "98:� BC1 A ; (2.2)

Due to the Lax-Milgram Lemma both problems (2.1) and (2.2) admit unique solu-
tions.

Let E be the set of all the nodes in triangulation
 

, then we denote by E �*� " and
E �'� " the set of all vertices of a triangle � and an edge � respectively. Let

�:F 1 E be
any node and let G F be the Lagrange basis function associated with that node. Let
+�DF �H%JILKLK G F be the patch of elements around vertex

�MF
. Similarly, the set of edges N F

consists of those edges having a vertex at
�MF

.
We will require an extension operator OQP*RTS 6�U 4 �'� "WVXYU 4 �*� " defined by

OZP*RTS �\[ " � � "76 � []� ^`_badcfehgji ;

Now we introduce so-called bubble functions which are defined as usual, cf. [15].
They play an important role in deriving lower error bounds. Denote by kmlon � � k0lon � � k0lon p
the barycentric coordinates of an arbitrary triangle � . The element bubble functionq l is defined by q l 6 �sr�t k0lon �ouvk0lon � uvk0lon p on �
Let � �Cwyx�z � � �Z. � � " be an inner face (edge) of

 
. Enumerate the vertices of � � and

� � such that the vertices of � are numbered first. Define the face bubble function
q ^

by q ^ 6 �C{ k0lm|}n �Quvk0lm|}n � on ��~ �D� � � � r ;
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For boundary face the bubble function is defined analogously with the obvious mod-
ification. For simplicity assume that

q l and
q ^ are extended by zero outside their

original domain of definition. There holds ��� q l � � " � q ^ � � " � � and � q l � ����� l � �
� q ^ � ����� l � � � .

We use the abbreviation ��� q
for � ��� q , with a positive constant � independent

of � and
q
. We also write � �

q
when �	� q

and �	
 q
. We would like to mention that

all constants in this work are independent of � , � and the aspect ratio.

3 The equilibrated residual method
In this section a brief overview over the equilibrated residual method is done since
we require parts of this method for our subsequent analysis. The equilibrated resid-
ual method may be found in [3] and its modification for the singularly perturbed
case is in [1].

3.1 The equilibrated residual method
Consider the model problem of # 2. Then the error � 6 � ��� �MB belongs to the space
3 �4 � � " and satisfies the variational formulation

����� ��� " � ��� � ��� " � ��� �DB ��� " � � � ��� " � ��� �DB ��� " 8:� 1 3 �4 � � "<; (3.1)

For an element � with boundary �0� , let ehl be the outer normal vector. Next we
introduce a set of boundary fluxes >
� l 6 � 1  �@ that approximate the actual fluxes
of the true solution on the element boundaries � l�� eml u � � � l . Taking into account
that the trace of the true solution is continuous on the interelement boundaries, we
construct the approximate fluxes for which this condition holds true:� l 
�� l�� � ����x �0� . �0� , ; (3.2)

It is easy to show that the residual on the right hand side of (3.1) may be decom-
posed into contributions from the individual elements

� � ��� " � ��� �DB ��� " ���
l����

�
� � ��� " l � � l�� �DB ��� " 
���� l � l ��� g � ; (3.3)

The term in parentheses may be represented in terms of the solution !hl 1#" l of the
local residual problem

� l �$!Ml ��� " � � � ��� " l � � l�� �DB ��� " 
���� l � l � � g 8:� 1#" l (3.4)

where " l is the space of the locally admissible functions," l �?> � 1 3 � �*� "76�� ���%��x � � . �0� @ ;
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The solution !:l is treated as an approximation of the true error on the element
� . It yields the a posteriori error estimation � � � � � � ���l���� � ��!Ml � � � l .

Note that the local problem (3.4) is infinite dimensional. Here it is assumed
to have a solution !:l which always exists and is unique if the coefficient � is not
zero. If � vanishes then the problem will have a solution iff the collection of fluxes>
� l 6 � 1  @ satisfies the so-called equilibration condition

� � � � � � " l � � l � �DB � � " 
 � � l � l � g ; (3.5)

This condition means that the boundary flux � l is in equilibrium with the interior
load.

By substituting (3.4) into (3.3), it follows that for all
� 1#" ,

����� ��� " � � � ��� " � ��� �DB ��� " � �
l���� � l��$!Ml ��� "<;

One immediate consequence of this result is the upper bound on the true error.
It follows from the Cauchy-Schwarz inequality,

� ����� ��� " � � �
l���� � ��!Ml � �dl`� � � � �dl � � �

l���� � ��!Ml � � � l�� ���
�
� � � � � ;

Finally, it leads to the conclusion

� � � � � � %JILK� �	��
� ��
 ��� � � � � ��� � ����� ��� " � � �
l���� � ��!Ml � � � l�� ���

� ;

These developments lead to the following theorem:

Theorem 3.1. Upper error bound. Let >
� l 6 � 1  @ be any set of boundary fluxes
satisfying condition (3.2). Additionally, if � vanishes, then (3.5) is assumed to hold
on all elements that do not abut the boundary � � . Then, the global error in the finite
element approximation may be bounded by

� � � � � � � �
l���� � ��!Ml � � � l ;

Proof. For the proof see above.

3.2 Construction of the equilibrated fluxes
For the convenience of the reader we repeat now part of the theory developed in [3].

It will be assumed that the finite element subspace A is constructed using linear
elements on a partition

 
of the domain

�
into triangular elements. The key issue

of the lower bound of the error is the construction of the appropriate approximate
fluxes.
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3.2.1 First-order equilibration conditions

The procedure that will be developed produces sets of fluxes >
� l @ that satisfy the
first-order equilibration conditions:

� � � G F " l � � l � �DB � G F " 
 
 � l � l G FW� g � � 8 e 1 E �*� "� l 
�� l�� � ����x �0� . �0�5, ; � (3.6)

It is convenient to look for � l � ^ belonging to g�� � e > G F 6 e 1 E �'� "T@ on all edges. The
work of Ainsworth and Oden [3] provides the idea of choosing the degrees of freedom
for the fluxes to be the moments with respect to the FEM basis functions � ^ lon F �
 ^ � l G FW� g , where

�DF 1 E �'� " . This choice gives the possibility of avoiding a global
problem by reducing the construction of fluxes to computations of the moments over
local patches of elements.

Let E �'� " � > �����J���j@ , then it can be shown that the actual flux may be recon-
structed from its moments :

� l � ^ � r
� ���

� � r � ^ lon � � � ^ lon � " G � 
 � � � ^ lon � 
(r � ^ lon � " G �	�]; (3.7)

Note that (3.7) could be rewritten in the form� l � ^ � � ^ lon ��
 � 
 � ^ lon � 
 �
where 
 � and 
 � are the functions of the dual basis to G � and G � , i.e. � 
 ��� G � "������ ^ � �
� � � :


 � � r
� ��� � r G

� � G � " � 
 � � r
� ��� � � G

� 
(r G � "<;
So, in order to determine the boundary fluxes, it is sufficient to determine the

moments of the flux with respect to the basis functions. The first-order equilibration
conditions (3.6) for the flux � l may be rewritten in terms of the flux moments in the
form: � ^�� � l � ^ lon F � 	 l �*G F " 8 e 1 E �*� "� ^ lon F 
 � ^ l�� n F � � 8 e 1 E �'� " � � � �0� . �0�5, � (3.8)

where 	 l �*G F " � � l � �DB � G F " � � � � G F " l ; (3.9)
In (3.8) we used the convention that � ^ lon F � � if e��1 E �'� " .

The conditions (3.8) take one of two distinct structures depending on the location
of the node

�DF
. Here we omit the case of boundary vertex. See [3] for details. Assume�DF

to be an interior vertex. The elements and edges are labeled as shown in Figure
1. The moment equilibration conditions (3.8) for the elements � 1 +�MF associated
with the node

�0F
may be rewritten in the form

� ^ 
��n F 
 � ^ ���n F � 	 ���*G F "� ^ �� n F 
 � ^��� n F � 	 � �*G F "
...� ^��� n F 
 � ^ 
� n F � 	 � �*G F "

� ����
����
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�
�

r �
{

� �

� �

� � ��p

���

�DF

Figure 1: The patch of elements influenced by the basis function G F .

with constraints on the edges

� ^ 
��n F 
 � ^ 
� n F � �
� ^ �� n F 
 � ^ ���n F � �

...� ^��� n F 
 � ^����� ��n F � � ;

� ����
����

These conditions may be fulfilled as shown in [3]. However, they do not uniquely
define the moments. The next paragraph provides the selection of the solution from
the one-parametric family described by the conditions above.

3.2.2 Resolution of patch problems

The following procedure is described in [3] in details. Here we give only an overview.
The ideal situation would be to choose the flux moments >
� l @ satisfying � ^ lon F �
 ^ G F eml u � � � g . Since the true fluxes are unknown, the flux moments are selected

so that � ^ lon F � +� ^ lon F 6 � 
 ^ G F eml u � �DB � l � g . We seek flux moments that minimize the
objective �

r �
l����R	� �^�� � l � � ^ lon F � +� ^ lon F � � ; (3.10)

Introducing Lagrange multipliers we come to the optimality condition. The La-
grangian is given by
 � > +� ^ lon F @ � > k ^ @ � >�� l @ � � �� �l����R	� �^�� � l � � ^ lon F � +� ^ lon F � �


 �l����R	� � lon F 

	 l��*G F " � �^�� � l � ^ lon F�� 
 �^ � � l�� � l�� k ^ n F � � ^ lon F 
 � ^ l�� n F ��;
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Here we used the convention that k ^ n F � � on � � � � . We conclude that the con-
ditions for a stationary point consist of two parts; the first part is (3.8), the second
part is: � ^ lon F � +� ^ lon F � � lon F 
 k ^ n F ��� ; (3.11)

Using the second part of (3.8) we obtain:

k ^ n F �
� �� � � lon F 
 � l�� n F 
 +� ^ lon F 
 +� ^ l�� n F � � � �0� . �0�5,� � � �0� . � �

Using the last formula together with (3.11) the flux moments are expressed as:

� ^ lon F �
� �� � � lon F � � l�� n F 
 +� ^ lon F � +� ^ l�� n F � � � �0� . �0� , �� lon F 
 +� ^ lon F � � �0� . � � ; (3.12)

Substituting this into the first equation of (3.8) leads to the following conditions for>�� lon F 6 � 1 +�DF @ :�
r �^ � � l�� � l�� � � lon F � � l�� n F " 
 �^�� � l�� � 
 � lon F � +	 l �*G F "98 � 1 +�DF � (3.13)

where
+	 l �*G F "76 � � l�� �DB � G F " � � � � G F " l � ��� l � � �DB�Deml�� G FW� g � (3.14)� � �DB
�Deml�� 6 ���� � ��feml u > � � �DB " l 
 � � �DB " l�� @ ��x �0� . �0� ,

eml u � � �DB " l ��x �0� . � � ; (3.15)

The conditions (3.13) form a linear system of equations over the element patches
+�DF with unknowns >�� lon F 6 � 1 +�DF�@ corresponding to the elements in the patch. The
specific form for an interior vertex is

�
r

	




� r � � ;$;$; � �
� � r � � ;$;$; �

...
...� ;$;$; � � r � �

� � ;$;$; � � r

��




�
	




� � �� �

...� ��� �� �

��




� �
	




� +	 ���*G F "

+	 � �*G F "
...

+	 ��� ���*G F "
+	 � �*G F "

��




� ;
The kernel of this matrix is the vector � ��� � � � �$;$;$; � ��� � implying that a solution

exists if and only if the sum of the components of the right-hand data vanishes. This
may be easily verified thanks to the Galerkin property (see [3]).

Since the system (3.13) is singular the least square solution is selected. As a
consequence, there exists a constant � , depending only on the number of elements
in the patch surrounding a vertex +� , such that (for proof see for ex. [10])�

l����R	� � �lon F � �
l����R	� +	 l �*G F " � ; (3.16)
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3.3 Minimum energy extensions
Minimum energy extensions were first introduced in the work of Ainsworth and
Babuška [1]. These extensions play a key role in construction of estimator stable
with respect to the perturbation parameter � . The equilibrated residual method
has the following history. The original equilibrated residual method is described in
the work of Ainsworth and Oden [2]. However, as it is shown in [1], it is not stable
with respect to � . The work [1] proposes the following modification of the previous
method for the singularly perturbed case. The functions G F in (3.13) are replaced
by an approximate minimum energy extension G��F to G F � � l . The system (3.13) then is
solved in a least-square sense, since it has no solution in general. As in (3.16), one
gets the solution that depends continuously on the data:�

l����R	� � �lon F � �
l����R	� +	 l �*G �F " � ; (3.17)

The error estimator we propose is derived from the estimator of work [1] but differs
in two details. First, more attention is paid to the minimization of the appropriate
function energy norm and even the minimum is obtained. We will develop this here.
The second modification is described in # 6.

Let � be any element and let
� 1 3 ��� � ���0� " . The minimum energy extension N �

of
�

to the interior of the element is characterized by the conditions

N � 1 3 � �*� "76 N � � � on �0� � � l��'N � � � " ��� 8 � 1 3 �4 �*� "<;
The definition of the minimum energy extension has an advantageous property.

Let
� 1 3 ��� � ���0� " . The minimum energy extension N � of

�
to the interior of the element

has the minimal energy norm among all functions coinciding with
�

on the boundary
�0� . Indeed, consider the energy norm of the function N � 
 � :

� �TN � 
 � � � � � � �TN � � � � 
 � ��� � � � 
(r � l��'N � � � " � � �TN � � � � 
 � ��� � � ��� � �TN � � � � ; (3.18)

The proof easily follows from (3.18) observing that N � 
 � coincides with N � on the
boundary �0� .

For a one-dimensional case it is possible to find a minimum energy extension
explicitly (see [1]).

Consider now the two-dimensional case. We look for an approximation for the
minimum energy extension of the first-order basis function. Let element � � 	�� � �
be a triangle. Consider the basis function G corresponding to the vertex � . We seek
an approximation to the minimum energy extension NQG in the following class � of
functions. Set

� 6 � > � 1#� 4 �*� "76�� � G on �0� �0� � � in 	 ��� � ��
is linear in each triangle 	 �	�
� and 	 � �
� � � 1 	�� � � @ ;

We obtain now an approximation for the minimum energy extension of this basis
function. To this end we put an arbitrary point � in the triangle (see Figure 2).

8



�

�

��

Figure 2: Family of functions used to approximate the minimum energy extension
NQG .

Next we choose that function from the set � that minimizes energy norm. Our
developments here differs from the original paper [1]. There a point � � � � � � � � " is
introduced in the reference triangle and � is the image of this point after the cor-
responding affine transformation. The corresponding function does not necessarily
minimize the energy over � but it is shown to be sufficiently accurate. For us, how-
ever this is not sufficient and we instead consider the point � to be in the actual
triangle in order to obtain the optimal position of this point.

Introduce a local coordinate system such that the vertex � coincides with the
origin and the edge � � lies on the axis � � . Let � � � � � q " , ��� �$� � � � " and � � �$�Lp � � � "
(see Figure 3).

�

�

�

�

�
�q

� �

�Lp � � ��

Figure 3: Notations for the parameters of an arbitrary triangle.

Let � � � � q �J� � � " 1 � be an admissible function, see Figure 2. The squared energy

9



norm of this function is� � � � q " � � l�� � � � � q �J� � � " � � � � � q �J� � � " "
� � �

�fr � q �$� � � �Lp " 
 ��� � " 
 r � � � � �Lp � ��� � � � � q � � �Lp 
 q � �pr � � � �p

 �$� �� 
 � �p " � � � �Lp " �r � �p � ��� � � q �Lp " 
 � � � � � " �r � � q

For given parameters � � , � � , �Lp we want to minimize
� � � � q " with respect to � andq

. A number of calculations leads to a stationary point of this function������� ������ � � �
� � � � �$�Lp 
�� � �� 
 � �p "� �fr �Lp 
 �fr�� � �� 
 � �p 
 � � � �� � �

q � � �� � �Lp� � 
�	 
 �Lp� ��� � 
 ��
� � � ;
To prove that this solution is a minimum point it is sufficient to show convexity

of the function. Therefore consider the Hessian matrix � � � of the second-order
derivatives. By direct computations one obtains

� � �
� � � � �q � � 
 �$� �� 
 � �p " � q � � � " �

�$� � � � �Lp q " p � � �� "dz � � � � �$� �� 
 � �p " �$� � q � �Lp q 
 � � � � � � � � " �
�$� � � � �Lp q " p q p � � � � ;

Hence
� � � � q " is convex and � � � � q � " is the unique minimum.

We have found the function �	��� � � � q � �J� � � " which minimizes the energy norm over
the set � . However, in practice it is sufficient to take not the exact values of � � andq � , but some values � � , q � that are equivalent for � X��

, namely����� ���� � � �
� �
��� �Lp 
 � � �� 
 � �p��� �q � �
� �
� ;

Note that the corresponding point � � � � � � q � " lies on the bisector of the angle� � � � � 6 � and � �
� � � � ������ ��� � � . The analysis given neglects the fact that � � � q "
should be contained in � . Therefore, we construct the function G � as follows

G � 6 �
�

� � � � � q � �J� � � " � if � � � � q � " 1 � �
G � c i � �! #" � g�� ;
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Lemma 3.2. Under the above notations and assumptions the following holds

�dG � � ������ l � � � �(�  �wyx � � � � � �� ~ F n l � � � " �  �"$#&% ���0� "  �wyx �$� � ~ F n l � � � � " �
where � � ~ F n l is the height corresponding to the largest edge of the triangle � .

Proof. Consider � for which � � � � q � " 1 � . A short calculation yields � � � ��� � ~ F n l and �wyx �$� � ~ F n l � � � � " � � � � . Furthermore one obtains

�dG � � ������ l � �
� � � � � 
 � � �� 
 � �p��

�fr � �  �"$#&% ���0� " � � � �  �"$#&% ���0� "  �wyx �$� � ~ F n l � � � � "<;
It remains to consider the case � � � � � � ~ F n l . In this case  �wyx � � � � � �� ~ F n l � � � " � � and
G � coincides with G . The estimate

�dG � � ������ l � � �dG0� ������ l � � � �(� � � �(�  �wyx � � � � � �� ~ F n l � � � "
completes the proof.

4 Theoretical background of the equilibrated resid-
ual method in anisotropic case

4.1 Notation of the triangle
Let a triangulation

 
be given which satisfies the usual conformity condition (see

[9], Chapter 2). Following the notation of Kunert [12], the three vertices of an arbi-
trary triangle � 1  are denoted by

� 4 � � � � � � such that
� 4 � � is the longest edge of

� .
Additionally define two orthogonal vectors �0~ with lengths �L~yn l 6 � � �L~J� , see Figure

4. Observe that � ��n l�� � � n l and set � � ~ F n l 6 � � � n l , � ��� R$n l 6 � � ��n l .

� 4 � �

� �

� �
� �

Figure 4: Notation of a triangle � .

In addition to the usual conformity conditions of the mesh we assume that the
following two properties hold.

1. The number of triangles containing a node
�MF

is bounded uniformly.

11



2. The dimensions of adjacent triangles must not change rapidly, i.e.� ~yn l�� � � ~yn l 8 � � � , with � . � ,����� ��� � � � r ;

Define the matrices � l and � l 1 ����� � by

� l 6 � � � �
X

� 4 � � � � �
X

� 4 � � " and � l 6 � � � � � � � "
and introduce affine linear mappings

O�� � � " 6 � � l u � 
 �X � 4 and O�� � � " 6 ��� l u � 
 �X � 4 � � 1 � � ;
These mappings implicitly define the so-called standard triangle � 6 � O � �� �*� "

and the reference triangle 	� 6 � O � �� �*� " .
Variables that are related to the standard triangle � and to the reference trian-

gle 	� are referred to with a double bar and a hat, respectively (e.g. � � 	� ).

4.2 Some basic inequalities
This paragraph provides some facts which will be useful in the subsequent analysis
for obtaining the lower error bound. The following two lemmata are extracted from
[14].

Lemma 4.1. (Inverse inequalities for bubble functions). Assume that [�l 1U 4 �*� " and [ ^ 1 U 4 �'� " . Then

� q ��� �l uv[ol � ����� l � � �j[ol � ����� l � (4.1)
� � � q l uv[ol " � ����� l � � � � �� ~ F n l uL�j[ol � ����� l � (4.2)

� q ��� �^ uf[ ^ � ����� ^ � � �j[ ^ � ����� ^ ��; (4.3)

Lemma 4.2. (Anisotropic trace inequality). Let � be an arbitrary triangle and
� be an edge of it. For

� 1 3 � � � " the following trace inequality holds:

� � � ������ ^ � � � ���
� �(� �

� � ����� l � � � � � ����� l � 
 � � �l � � � ����� l �'��;
Again following [14], we define special face bubble functions and state the corre-

sponding inverse inequalities. The definition is given first for the standard triangle
� and then for the actual triangle � .

Consider the standard triangle � and a face � thereof. Without loss of generality,
assume that it lies on the axis � � . By � we denote the corresponding face on the

12



boundary of actual triangle � . For a real number ��1 � � � ��� define a linear mapping
O�� 6 ��� X ���

by

O������ "76 � � � u � � � " � � ���Wu�� with ��� � � w}#��L> � � � @ 1 � � � � ;
Obviously this yields

� � "dz ���v� �
� and �d� � �� �	� ��
j� � � � � ;
Set ��� 6 � O���� � " , i.e it is the triangle with the face � and a vertex at � u�
�� (see Figure
5).

�

�

�

�

� ���

� �

� �
� �

Figure 5: Special face bubble functions definition.

Let
q ^ be the usual face bubble function of � on � . Define the special bubble

function
q ^ n � by

q ^ n � 6 � q ^�� O � �� , i.e.
q ^ n � is the usual face bubble function of � on the

triangle ��� . For clarity we recall that
q ^ n � ��� on ��� ��� .

Consider now an actual triangle � . The special face bubble function
q ^ n � 1 3 � �*� "

of a face � of � is defined by
q ^ n � 6 � q ^ n � � O � �� . The actual value of parameter � will

be specified later.

Lemma 4.3. (Inverse inequalities for special bubble functions). Let � be an
arbitrary face of � . Assume that [ ^ 1 U 4 �'� " . Then the following inverse inequalities
hold:

�dOZP*RTS �\[ ^ " u q �\n ^ � ����� l � � 
 � �(�� ��� � ��� � u � ��� � uL�j[ ^ � ����� ^ � (4.4)

� � �*OZP*RTS �\[ ^ " u q �\n ^ " � ����� l � � 
 � �(�� ��� � ��� � u � ��� � u  �wyx � � u � �(�� ���
� � � ~ F n l � � � uL�j[ ^ � ����� ^ ��;(4.5)

Proof. See [14].

Further we will need some more facts concerning approximation properties on
an anisotropic triangle.

13



Lemma 4.4. (Anisotropic approximation properties I). Let � be any triangle
and

� 1 3 � �*� " . Denote by
� � �� l � 
 l � the mean value of

�
over an element � . Then

1. � � � � � ����� l � � � � � ����� l �
2. � � � � � ����� l � � � � �l � � � ����� l �
3. Let � � �0� be one of the faces of K. Then for each

� 1 3 � �*� " the following
inequality holds:

� � � � � ����� ^ � � 
 � ���� �(� � ��� � � � �l � � � ����� l � ;
Proof. Estimate 1 is obvious. For the estimate 2 see for instance [13]. Estimate 3
follows from Lemma 4.2 and the estimate 1 of the current lemma observing that the
following inequality holds: � � � ����� l � � � �l � � � ����� l � � � � � ������ l � 
 � � �l � � � ������ l � .

From a heuristic point of view one should stretch the triangle in that direction
where the (directional) derivative of the function shows little change. The better
the anisotropic mesh

 
is aligned with the anisotropic function

�
, the more accurate

one would expect the error estimates to be. In order to measure the alignement of 
with

�
, Kunert [12, 13] has introduced the matching function ����� � �! �" which is

defined as follows.

Definition 4.5. (Matching function � � ). Let
� 1 3 � � � " be an arbitrary non-

constant function, and = be a family of triangulations of
�

. Define the matching
function � � ��u � u " 6 3 � � � "�� = VX �

by

� ��� � �! �" 6 �

 �l���� � � �� ~ F n l u � � �l � � � ������ l � � ��� �

� � � �
;

(4.6)

Furthermore the local matching function ��� ��u � u "�6 3 � � � "��  VX �
is obviously de-

fined by

� ��� � � � " 6 � � � �� ~ F n l � � �l � � � ����� l �� � � � ����� l �
�

The matching function satisfies the following property:

� � � ��� � �! �" � �  #��l���� � ��� R$n l� � ~ F n l
The definition implies that a mesh

 
which is well aligned with an anisotropic func-

tion
�
, results in a small matching number � � � � �! �" . The crude upper bound of � �

confirms that (4.6) is a natural extension of isotropic meshes.
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Lemma 4.6. (Anisotropic approximation properties II). Let � be any triangle
and

� 1 3 � �*� " . Let � � �0� be one of the faces of K. Then for each
� 1 3 � �*� " the

following inequalities hold:

� � � � � ����� ^ � � 
 � ���� �(� � ��� � � ��� �� ~ F n l  �wyx �$� � ~ F n l � � � � " ��� � � � � �� ~ F n l � � �l � � � ������ l � 
 � � � � � ������ l � � ��� �
� 
 � ���� �(� � ��� � � ��� �� ~ F n l  �wyx �$� � ~ F n l � � � � " ��� � � ��� � � � " � � � � �dl �

� � � �� ~ F n l 
 � � � � � � � ����� l � � � � � �� ~ F n l � � �l � � � ������ l � 
 � � � � � ������ l � � ��� �� � ��� � � � " � � � � �dl ;

Proof. Using Lemma 4.4 (3) we obtain

� � � � � ������ ^ � � � ���
� �(� � � �l � � � ������ l �� � ���
� �(� � �� ~ F n l � � � �� ~ F n l � � �l � � � ������ l � 
 � � � � � ������ l � ��;

Furthermore, with the aid of Lemma 4.2 and Lemma 4.4 (1,2) we get the following

� � � � � ������ ^ � � � ���
� �(� �

� � � � ����� l � � � � � � � ����� l � 
 � � �l � � � ����� l � �
� � ���

� �(� �
� � � � � � � � ������ l � � � ~ F n l � � � �� ~ F n l � � �l � � � ������ l �

� � ���
� �(� � � ~ F n l � � � � � � �� ~ F n l � � �l � � � ������ l � 
 � � � � � ������ l � ��;

Combining the two previous estimates we get the result claimed.
The second statement of the current lemma can be verified using Lemma 4.4

(1,2) and the definition of the matching function.

4.3 Estimates for element and face residuals in the anisotropic
case

In this section we prove two lemmas which we will need later. Namely, we derive
the upper bounds for interior and face residuals. The jump discontinuity in the
approximation of the normal flux at an interelement boundary is defined by� � �DB

�De�� 6 � eml u � � �DB " l 
 eml��Lu � � �DB " l�� �
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and the usual interior and boundary residuals  and � are given by 6 ��� 
 	��DB � � � �DB
and

� 6 � � ��� ������ F�� on �0� . �0�5,� on �0� . � �
Lemma 4.7. (Interior residual). Let � 1  . Then

�  0� ����� l � ��� � �� ~ F n l � � � � �dl 
 �  �  0� ����� l �
Proof. Let

� 1 3 �4 � � " . Integrating by parts on each element yields

����� ��� " ���
l���� � l  ����� � �^ � � � � ^ � � � g � (4.7)

where �  denotes the collection of interelement faces. Hence for any
� 1 3 �4 � � "

����� ��� " ���
l���� � l  � ��� � �^ � � � � ^ � � � g 
 �

l���� � l �  �  "������ ;
Now, choosing

� 6 � q l  in the previous equality gives� l q l  � ��� � � l ��� � q l  " � � l �  �  " q l  ��� ;
Using (4.1), with the aid of Cauchy-Schwarz inequality we obtain

�  D� ������ l � � � � � � �dl`� � q l  D� �dl 
 �  �  D� ����� l � � q l  D� ����� l � ;
Now we use (4.2) for � � q l  D� �dl as follows

� � q l  D� � � l � � � � q l  " � ������ l � 
 � � � q l  D� ������ l � ��� � �� ~ F n l � q l  0� ������ l � ��� � �� ~ F n l �  0� ������ l �
Hence,

�  0� ����� l � ��� � �� ~ F n l � � � � �dl 
 �  �  0� ����� l � �
and the claimed result follows from the triangle inequality

�  0� ����� l � � �  0� ����� l � 
 �  �  D� ����� l � ��� � �� ~ F n l � � � � �dl 
 �  �  0� ����� l � ;
We are now in a position to specify our parameter � used in the definition of the

special bubble function. From now on

� 6 � �
r � ���� �(�  �wyx �$� � ~ F n l � � � � "<;
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Lemma 4.8. (Face residual). Let � be any interior interface. Then,

� � � ����� ^ � � �
l�� � � ^

� 
 � �5,\�� ��� � ��� � � � ��� �� ~ F n l��  �wyx �$� � ~ F n l�� � � � � " � ��� � � � � � �dl��

 
 � �5,\�� ��� � ��� � � ��� � �  �  D� ����� l�� � � ;

Proof. Let � 1 �  . Suppose that � � � � . � � . Then + � �Cwyx�z � � � � � � " . Choosing� 6 � OZP*RTS � � " q �\n ^ 1 3 �4 � � " in (4.7) implies

� ^ q �\n ^ � � � g � �
l � � ^ � l  &OZP*RTS � � " q �\n ^ ��� � � � ^ ��� � OZP*RTS � � " q �\n ^ "<;

Furthermore, applying the Cauchy-Schwarz inequality, one obtains

� � l���� � OZP*RTS � � " q �\n ^ " � � � � � � �dl`� �dOZP*RTS � � " q �\n ^ � �dl ;
Using (4.4) and (4.5) one estimates the second factor as follows:

� �dOZP*RTS � � " q �\n ^ � � � l � � � �*OZP*RTS � � " q �\n ^ " � ������ l � 
 � � �dOZP*RTS � � " q �\n ^ � ������ l �
� 


 �wyx � � u � �(�� ���
� � � ~ F n l � � � � � �(�� ��� 
 �

� � � �(�� ���
� � � � ������ ^ � ;

Thus, we have

� � l���� � OZP*RTS � � " q �\n ^ " � � 
 � �(�� ��� � ��� � 
  �wyx � � u � �(�� ���
� � � ~ F n l � � � � ��� � 
 ��� ��� � � � � � � �dl � � � ����� ^ �	;

Applying the Cauchy-Schwarz inequality, Lemma 4.7 and (4.4) to the second term
we have

�
�
�
�
� l  &OZP*RTS � � " q �\n ^ ��� �

�
�
�

� �  0� ����� l � �dOZP*RTS � � " q �\n ^ � ����� l �
� � � � � �� ~ F n l 
 � � � � � � �dl 
 �  �  0� ����� l � � � ��� � 
 � �(�� ��� � ��� � � � � ����� ^ � ;

Combining (4.3) and two previous estimates we get

� � � ����� ^ � � �
l�� � � ^

� 
 � �5,\�� ��� � ��� � 
  �wyx � � u � �(�� ���
� � � ~ F n l � � � � ��� � 
 � � �� ~ F n l � ��� � 
 ��� ��� � � � � � � �dl��


 
 � �5,\�� ��� � ��� � � ��� � �  �  0� ����� l�� � � ;
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It only remains to note that

 �wyx � � u � �(�� ���
� � � ~ F n l � � � � ��� � 
 � � �� ~ F n l � ��� � 
 ��� ��� � � { � � ��� �� ~ F n l  �wyx �$� � ~ F n l � � � � " � ��� � �

with � from (4.3). By simple manipulations we get,

 �wyx � � u � �(�� ���
� � � ~ F n l � � � � ��� � 
 � � �� ~ F n l � ��� � 
 ��� ��� � � { � ��� �  �wyx �$� � ~ F n l � � � � " � � ;

Noting that
�
r � ���� �(� � � � �� ~ F n l we finish the proof.

4.4 Stability of the approximate fluxes in the anisotropic sin-
gularly perturbed case

Recall that we use the procedure for finding approximate fluxes described in # 3.2
with the functions G F replaced by G �F in the system (3.13). In the singularly perturbed
case and using anisotropic elements we have the following theorem.

Theorem 4.9. Suppose that the finite element subspace A is constructed using first-
order (linear) elements on a partition

 
(not necessary isotropic) of the domain

�
into triangular elements. Let >
� l @ be the set of approximate fluxes, produced by the
algorithm described in # 3.2 with the functions G F replaced by G �F , e 1 E . Then, for
each edge � of any element � ,

�
�
�
�
� l � � � �DB�Deml�� �

�
�
� ����� ^ � � �

l � � �l
� 
 � �5, �� ��� � ��� � � � ��� �� ~ F n l �  �wyx �$� � ~ F n l�� � � � � " � ��� � � � � � �dl��


 
 � �5,\�� ��� � ��� � � ��� � �  �  D� ����� l�� � � ;
Proof. Let � 1  be a fixed element and � � � be an edge thereof. Then
 � l � � � �DB�Deml�� � �

�
�
� ^ 1

U � �'� "<;

Following # 3.2.1 the moments of this quantity are

�� ^ lon F � � ^ 
 � l � � � �DB�Deml�� � G FW� g ;
By analogy with (3.7), 
 � l � � � �DB�Deml�� � �

�
�
� ^ � ��

^
lon � 
 � 
 �� ^ lon � 
 �$;
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Therefore, �
�
�
�
� l � � � �DB�Deml � �

�
�
� ����� ^ � � �

�
�
�� ^ lon � �

�
� � 
 � � ����� ^ � 
 �

�
�
�� ^ lon � �

�
� � 
 � � ����� ^ �

and since
� 
 � � ������ ^ � � � 
 � � ������ ^ � ��� � ��� � � �

it follows that �
�
�
�
� l � � � �DB�Deml � �

�
�
�

�
����� ^ � � � ��� � � �F ��� � ^ � �

�
�
�� ^ lon F �

�
�

� ;
(4.8)

With the aid of (3.15), we conclude that� ^ � � �DB�Deml�� G FW� g � � �� � +� ^ lon F � +� ^ l�� n F � on � � �0� . �0�5,
+� ^ lon F on � � �0� . � �

and hence, thanks to (3.12),

�� ^ lon F �
� �� � � lon F � � l�� n F " on � � �0� . �0�5,� lon F on � � �0� . � �

where the unknowns >�� lon F @ are determined from conditions (3.13) and satisfy (3.16).
It follows that �

�
�
�� ^ lon F �

�
�

� � �
l�� ���R	� � �l�� n F � �

l�� ���R	� +	 l�� �*G �F " � ; (4.9)

The terms appearing on the right-hand side may be bounded by first recalling (3.14),

+	 l�� �*G �F " � � l�� � �DB � G �F " � � � � G �F " l�� � � � l�� � � �DB�Deml�� � G �F � g��
then, integrating by parts reveals that

+	 l�� �*G �F " � � �  � G �F " l�� � � � l�� �`G �F � g ;
Applying the Cauchy-Schwarz inequality and using Lemma 4.7, Lemma 4.8 and
Lemma 3.2, it follows that

�
�
� +	 l�� �*G �F " �

�
� � �� 0� ����� l�� � �dG �F � ����� l�� � 
 �^ � � � l�� ��� � � � � ����� ^ � � �dG �F � ����� ^ � �� � � � � �� ~ F n l�� 
 � � � � � � �dl�� 
 �  �  0� ����� l�� � � uL� �5,\� ��� � � ��� �

 �^ � � � l � ��� � �

l�� � � �^ �
� 
 � �5, ,\�� � , � � ��� � � � ��� �� ~ F n l�� �  �wyx �$� � ~ F n l�� � � � � � " � ��� � � � � � �dl�� �


 
 � � , , �� � , � � ��� � � ��� � �  �  0� ����� l�� � ��� uL� �0,\� ��� �
� �l�� � ���R	� � � �5, ,\� ��� � � � ��� �� ~ F n l�� �  �wyx �$� � ~ F n l�� � � � � � " � ��� � � � � � �dl��

 � � , , � ��� � � ��� � �  �  D� ����� l�� � � � �
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where the inequality

� ��� � � � � �� ~ F n l 
 � � ��� � ��� �� ~ F n l  �wyx �$� � ~ F n l � � � � " � ��� �
has been used. Hence,�
l�� ���R	� �

�
� +	 l�� �*G �F " �

�
�

� � �
l�� ���R	� � � � , � � � �� ~ F n l�� �  �wyx �$� � ~ F n l�� � � � � " � � � � � � � � l�� 
 � � , � � �  �  D� ������ l�� � �

(4.10)
Combining (4.8), (4.9) and (4.10) leads to the result claimed.

5 Lower error bound of the original Ainsworth-Babuška
estimator in the anisotropic singularly perturbed
case

Describing in # 3 the equilibrated residual method, we derived the upper error bound.
The original analysis of the lower error bound for isotropic triangle dates back to the
work by Ainsworth and Babuška [1]. Here we analyse the anisotropic case. It turns
out that the original error estimator described in [1] has degenerating lower error
bound.

The next lemma states some stability properties of the estimator.

Lemma 5.1. Let !Ml denote the solution of the local residual problem (3.4) for the
error estimator on element � . Then, for any

� 1 3 � �*� " ,
� � l��$!Ml ��� � � " � � � ��� � � � "�� � � � � � �l 
  �wyx �$� � ~ F n l � � � � " �  �  D� ����� �l ��� � � � � �dl ;

Furthermore, if � 
�� � �l , then

� ! l � l �$!Ml � � " � � � � �$!Ml � � " � � � � � � �l 
 � � � �  �  D� ����� �l ��� � ��!Ml � �dl ;
Proof. 1. Integrating by parts yields

� l �$!Ml ��� � � " � � l  � � � � " ��� 
 �r � � l � � � � � " � g

 ��� l 
 � l � � � �DB�Deml�� � � � � � " � g ;

and it therefore follows that

� � l��$!Ml ��� � � " � � �  0� ����� l � � � � � � ����� l � 
 �r �^ � � l � � � ����� ^ � � � � � � ����� ^ �

 �^ � � l �

�
�
�
� l � � � �DB�Deml�� �

�
�
� ����� ^ � �

� � � � ����� ^ ��;
(5.1)
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Combining results from Lemma 4.7, Lemma 4.8, Theorem 4.9 and Lemma 4.6
we get

� � l��$!Ml ��� � � " � � �f� � � �� ~ F n l 
 � � � � � � �dl 
 �  �  0� ����� l � � � � � � � ����� l �

 �^�� � l �l�� � � ^ 
 
 � �5,\�� ��� � ��� � � � ��� �� ~ F n l �  �wyx �$� � ~ F n l�� � � � � " � ��� � � � � � �dl�� 
 
 � �5,\�� ��� � ��� � � ��� � �  �  0� ����� l�� � �
�


 
 � ���� �(� � ��� � � ��� �� ~ F n l  �wyx �$� � ~ F n l � � � � " ��� � � ��� � � � " � � � � �dl �

 �^�� � l �

l�� � �l

 
 � � , �� ��� � ��� � � � ��� �� ~ F n l��  �wyx �$� � ~ F n l�� � � � � " � ��� � � � � � �dl�� 
 
 � � , �� ��� � ��� � � ��� � �  �  0� ����� l�� � �

�

 
 � ���� �(� � ��� � � ��� �� ~ F n l  �wyx �$� � ~ F n l � � � � " ��� � � ��� � � � " � � � � �dl �� � � � � � � " � � � � �dl � � � � � � �l 
  �wyx �$� � ~ F n l � � � � " �  �  0� ����� �l � � �

where the inequalities

� ��� � u � ��� �� ~ F n l  �wyx �$� � ~ F n l � � � � " ��� � �  �wyx �$� � ~ F n l � � � � " �� � �� ~ F n l 
 � � �  �wyx �$� � ~ F n l � � � � " � �
have been used.

2. Suppose that � 
�� � �� ~ F n l . Then

� l �$!Ml � � " � � � � � " l � � l � �DB � � " 
���� l � l � g ;
Integrating by parts, applying the Cauchy-Schwarz inequality, and estimating each
term using Lemmas 4.7, 4.8 and Theorem 4.9 yield

� � l �$!Ml � � " � � � �(� ��� � �  0� ����� l � 
 �r �^ � � l � ��� ��� � � � � ����� ^ � 
 �^ � � l � ��� ��� � �
�
�
�
� l � � � �DB�Deml�� �

�
�
� ����� ^ �� � � �(� ��� � � � � � � � �l 
 � � � �  �  0� ����� �l ��� �

where the inequality  �wyx �$� � ~ F n l � � � � " � � � � has been used. The result now can be
easily obtained

� ! l � l��$!Ml � � " � � � � �(� ��� � � ! l � � � � � � � �l 
 � � � �  �  D� ����� �l ���� � ��!Ml � ����� l � � � � � � � �l 
 � � � �  �  0� ����� �l � �� � � � � � � �l 
 � � � �  �  0� ����� �l � � � ��!Ml � �dl ;
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For the lower bound we have the following result.

Theorem 5.2. (Lower error bound). Let � l be the set of fluxes produced by the
algorithm described in Section 3.2 with the functions G F replaced by G �F , and let !Ml 1" l denote the solution of the local residual problem (3.4). Then,

� ��!Ml`� �dl � � ���$!Ml � � " � � � � � � �l 
  �wyx �$� � ~ F n l � � � � " �  �  D� ����� �l � � ;
If � vanishes, then  �wyx �$� � ~ F n l � � � � " is replaced by � � ~ F n l .

Proof. Observe that for any
� 1#" l ,

� l �$!Ml ��� " � � l �$!Ml ��� � � " 
 � � l��$!Ml � � "<; (5.2)

First, suppose � � � ~ F n l 
 � so that, in particular, � is positive and  �wyx �$� � ~ F n l � � � � " � � �

� . Therefore, with the aid of Lemma 5.1,

� � l��$!Ml � !Ml � ! l " � � � ���$!Ml � � "�� � � � � � �l 
  �wyx �$� � ~ F n l � � � � " �  �  0� ����� �l � � � ��!Ml � �dl ;
Choosing

�
to be equal to !:l in (5.2), together with the above estimate, proves that

the result holds for all elements � satisfying � � � ~ F n l 
 � .
The remaining elements satisfy � � � ~ F n l � � . Thanks to the assumptions on the

partition, the condition � �0l�� � � is satisfied by all elements �2, contained in the
patch +� . Therefore, Lemma 3.2 reveals that the modified basis functions reduce to
the standard basis functions on the patch. Consequently, the approximate fluxes
will actually satisfy the equilibration conditions (3.6) exactly. Moreover, since

� l �$!Ml � � " � � � � � " l � � l � �DB � � " 
���� l � l � g ��� �
the second term in (5.2) vanishes. The first estimate in Lemma 5.1 then completes
the proof.

Theorem 5.2 gives the lower error bound of the true error. The main danger for
reliability of the estimator is the function �����$!Ml � � " presented on the right hand
side. One cannot guarantee that the approximation for the error !hl is aligned as
well as the true error � . Unfortunately, it may happen so that the alignment of the
approximation !:l on the element � is much worse then � : �����$!Ml � � " � � � ��� � � " .
To avoid this problem a modification is proposed in the next paragraph.

6 Modified equilibrated residual method
For finding the equilibrated fluxes we use again the equilibrated residual method
described in Section 3.2. In this paragraph, we propose an alternative method by
changing the local problem, namely, instead of (3.4) we use

� � l �$!Ml ��� " � � � ��� " l � � l � �DB ��� " 
���� l � l � � g 8:� 1#" l (6.1)
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This local problem differs from the original local problem (3.4) only in the scalar
product � � l � � ��� " on the left hand side. It is defined as follows.

Definition 6.1. (Mesh dependent energy scalar product). Let � 1  be any
triangle, �(1 3 �4 � � " and

� 1 3 � �*� " , then we define mesh-dependent energy scalar
product and norms by

� � l � � ��� "�6 � � � �� ~ F n l � � �l � � � � �l � ��� l 
 � � � � ��� " l �
� � � � � �dl 6 � � � � l � � � � " " ��� � �
� � � � � � 6 �


 �
l���� � � � � � � � l �

��� � ;
�

The local mesh-dependent energy norm satisfies the following property

� � � � �dl � � � � � � � l � � ��� R$n l� � ~ F n l � � � � �dl ;
Note that it is equivalent to the standard energy norm in the case of isotropic ele-
ment.

The quantity !Ml is then not equivalent to the error � , but we will show that
the � � ��!Ml`� � l is related to � � � � �jl . The following two theorems give upper and lower
bounds for the error.

Theorem 6.2. (Reliability). Let >
� l 6 � 1  �@ be any set of boundary fluxes satis-
fying condition (3.2). In addition, if the absolute term � vanishes, then it is assumed
that the fluxes satisfy the equilibration condition (3.5) on all elements that do not
abut the boundary � � . Then, the global error residual may be decomposed into local
contributions

����� ��� " � � � � " � ��� �DB ��� " ���
l���� � � l �$!Ml ��� " � 1 3 � �*� "

where !Ml 1#" l is the solution of the local problem (6.1). The global error in the finite
element approximation may be bounded by

� � � � � � � � � ��� �! " � �l���� � � ��!Ml � � � l �
where � ����� �! �" is the matching function introduced by (4.6), page 14.
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Proof. Using the representation of ����� ��� " in the local terms and subsequently ap-
plying the Cauchy-Schwarz inequality and the definition of the matching function,
we have:

� ����� ��� " � �
�
�
�
�
�l���� > � � ��� " l � � l�� �DB ��� "T@ �

�
�
�

�
�
�
�
�
�l���� � � � ��� " l � � l�� �DB ��� " 
 
 � l � l ��� g � �

�
�
�

�
�
�
�
�
�l���� � � l �$!Ml ��� " �

�
�
�� �l���� � � ��!Ml � � l � � � � � � l� � �l���� � � ��!Ml � � � l u � �l���� � � � �� ~ F n l � � �l � � � ������ l � 
 � � � � � ������ l � �� � �l���� � � ��!Ml � � � l u � � ��� � �! �" � � � � � �������
 � 
 � � � � � �������
 �� � ��� � �! �" � � � � �

� �l���� � � ��!Ml � � � l ;
Substitution

� 6 � � completes the proof.

The theorem 6.2 gives the usual result for anisotropic error estimators. See for
instance [14, 13].

Theorem 6.3. (Efficiency). Let � l be the set of approximate fluxes produced by
the algorithm described in Section 3.2 with the functions G replaced by G�� , and let!Ml 1#" l denote the solution of the local residual problem (6.1). Then,

� � ��!Ml � � l � � � � � � �l 
  �wyx �$� � ~ F n l � � � � " �  �  D� ����� �l � ;
Proof. The proof follows the same lines as the proof of the Theorem 5.2.

These two theorems are the main results of this work and guarantee the relia-
bility and efficiency of the estimator.

7 Numerical experiments
One should note that up to this time we considered the infinite dimensional local
problems (3.4) and (6.1). However, we have good experience in solving this problem
with a finite element method, by dividing the triangles into e � parts as one can see
in Figure 6.

Let us consider the 2D model problem

�
	�� 
 � � � � � in
�s6 � � � � ��� � � � � � 4 on � � ;
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Figure 6: Triangle subdivisions. e �sr and e � �
respectively.

Prescribe the exact solution
��� � � � R 
 � � ���

which displays typical boundary layers along the sides
� ��� and � ��� . The Dirich-

let boundary data � 4 are chosen accordingly.
We use a sequence of finite element meshes generated by the algorithm described

in [7]. The idea of adaptive procedure is that the choice of a refinement direction is
done according to the components of energy norm of an error

�
�

� P� R �
� ����� l � ,

�
�
�

� P�
�

�
�
� ����� l � ,

and � � � � � ����� l � . One of the resulting meshes of this program is displayed in Figure
7.

Figure 7: Mesh refinement.

The two tables below show the behavior of the estimators in the singularly per-
turbed case on anisotropic meshes. We observe that the new error estimator is
robust while the original one overestimates the true error when the aspect ratio is
large enough.
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Iteration N Unknowns N Maximal aspect ratio AB error
exact err

AB er(mod)
exact err� r�� t � � ; ��� r � ; ����r

r � � t � � ; � � � � ; � � �� � t t � � ; � � � � ; � � r
{ � � � �${ r � ; � � � � ; � � r
� ����t r � � r ; {���t � ; � � {� r �ft ��t � � ; ��� � � ; ��� �
t � � r � �${ r { ; r � { � ; � � �
� t �${ r�r � { � ; � ��� � ; � � t
� �${ � � {�� � � � ; � � � � ; ����t
��� � r�tv{ � � � t �${ ; { t�� � ; � � �
� � � � { t � � r�t � r � ; � � t � ; � �fr
�fr ��� � � t � � �v{ t {�{ ; � � � � ; � � �
� � � ��� � � t � � � � � � ; r � t � ; � � r
�${ ��� � � � � �${ � � � � � � � ; t � � � ; � ���

Table 1: Results for e �H{ , � ����� � � . The fourth column represents the ratio between
the Ainsworth and Babuška estimator and the energy norm of the true solution,
while the fifth column represents the similar ratio for the estimator defined in the
current work.

Iteration N Unknowns N Maximal aspect ratio AB error
exact err

AB er(mod)
exact err� r�� �v{ � r ; � � � r ; ��� �

r � � �v{ � r ; �ft�t � ; � � t� �fr � �v{ � � ; � ��r � ; � � �
{ �${ � �v{ � � ; ��� � � ; � � t
� � � r ��� � � r ; { ��� � ; rv{ �� r �ft r � � t � ; � � r � ; � ��r
t r � � { � � � { ; r�t � � ; ��� r
� {�{ � � � � � � ; r ��t � ; { � �
� � �${ �ft � ��� � ; tv{ � � ; { ���
��� ����� � � { � t � � � ; � { � � ; { � �
� � � ��� � � � � � � � � ; �${ � � ; { � �
�fr � � � � � � � t � � �v{ ; � � � � ; { r �
� � � � � ��t r�t�tv{ � � ��� � ; { t � ; { r �
�${ r � � t � ���v{ � t � r � � ; ��r � ; { ��t
��� ���&{ � � � � ��� � tv{�� { r � ; ��� � ; � � �

Table 2: Results for e �C{ , � � ��� � � � .
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8 Summary and additional remarks
We consider the singularly perturbed reaction-diffusion equation �
	�� 
 � � � � � .
This work has been aiming at a posteriori equilibrated residual-like error estimators
suitable for anisotropic triangular grids.

The Ainsworth-Babuška estimator is shown to be reliable in the anisotropic case.
Unfortunately, the lower error bound fails on anisotropic meshes.

The introduced modification leads to an estimator which is robust with respect
to the anisotropy of the mesh as well as to the singular perturbation. Upper and
lower error bounds are proved. The factor which made the original error esimator
fail does not appear in the lower bound any more, which leads to the efficiency of
the modified estimator. The upper error bound of the modified estimator contains
the factor � ����� �! " which is in accordance with the results made by Kunert in [14].

The numerical experiments verify the theory. The modified estimator yields a
useful and reliable error bound not only in an asymptotic sense but also for meshes
with moderate number of elements.

Remark 8.1. All the proofs are suitable for 3D case. The only two questions we
should answer are about the topology matrices and the minimum energy extension
of the first-order basis function. For the minimum energy extension of the first-
order basis function we construct the approximation by analogy with Section 3.3. A
point � in this case may be chosen on the intersection line of the bisection planes
of the corresponding cone with the distance � � � from each face. The topology ma-
trices are constructed in the way analogous to Section 3, but seem to be much more
complicated.

�

Remark 8.2. Neumann boundary conditions can be also considered as well as quadri-
lateral elements. In both cases an additional term corresponding to the face residual
appears in the lower bound for the error:

� ��!Ml � �dl � � � � � � �l 
  �wyx �$� � ~ F n l � � � � " �  �  0� ����� �l � 
 �
^�� �l  �wyx �$� � ~ F n l � � � � " ��� � � � � � � ����� ^ �

�

Remark 8.3. If we solve our FEM problem with polynomials of � -th order then we
have to talk about the � -th order equilibration. For details see [3].

�

Remark 8.4. Consider the problem in another formulation used by some authors
(see [6, 8, 11, 14] ), namely

��� � 	���
 ����� in
� ��� � � ����� on � � ;

The estimator remains the same as well as its upper error bound:

� � � � � � � � � ��� �! " � �l���� � � ��!Ml � � � l �
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The lower error bound changes to the following:

� � ��!Ml � �dl �/� � � � � �l 
  �wyx �$� � ~ F n l � � � � � " �  �  0� ����� �l � ;
We should note that this is exactly the same estimate as for another error estimator
introduced by Kunert in [14]. �
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