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Abstract

This paper explores the use of entropy for visualizing database structure. In particular, we show
how visualizing the entropy of a relation provides a global perspective on the distribution of values
and helps to identify areas within the relation where interesting relationships may be discovered.
The type of structure we are interested in discovering is related to functional dependencies. Our
approach is not dependent on the underlying domain of the data, providing a view of the dependency
landscape within a relation. Using these techniques we described comparative results for a wide
variety of synthetic and real data.

1 Introduction

Developing visualizations of database content is of extreme interest to the research community.
There are numerous examples of applications developed around a graphical display of database
content, including relationship discovery, outlier detection, and trend analysis.

Our approach to visualizing the structural, information content (which is distinct from the data
content) of databases is motivated by the discipline of information theory. In particular, we utilize
entropy as the basis for our visualizations. Within the field of information theory, entropy is the
central concept, related to the encoding of messages. As such, entropy is a statistic that provides
a global description of the information content of data. We defer to Section 2 for the definition of
entropy, as well as other formal notions. This research utilizes entropy to visualize the structure of
a database relation, independent of the underlying domain datatype.

When developing effective visualizations of database content there are three significant chal-
lenges that must be addressed. First, we are often faced with high-dimensional data. Second,
databases are awash with categorical data, which are often totally lack any meaningful order or
scale. Thirdly, the sheer mass of data in even a moderately sized database may overwhelm the user
when trying to simply display a two-dimensional scatter plot.

There has, of course, been a great deal of research effort aimed at addressing these challenges.
For example, a number of techniques have been applied to high dimensional data, such as parallel
coordinate displays, worlds within worlds, dimensional stacking, and grand tour methods.[10, 11, 16,
8] Likewise, the field of information visualization has many techniques for dealing with abstract,
categorical data.[3] For techniques dealing with visualizing the contents of large databases see
[14, 12, 13].
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Whereas the goal of almost all other visualization techniques is to facilitate understanding of
particular values, our approach specifically remains aloof from those values in two distinct ways.
First, we are interested in large-scale properties of instances — properties that are related to at-
tributes rather than values. For example, a relation with 10 attributes requires 45 different 2D
scatter plots to provide the same amount of information our technique provides in a single 2D
scatter plot. Indeed, the axes for many of the visualizations we present are the collection of at-
tributes in the relation, or characteristics of those attributes, rather than the values in a particular
attribute. Second, even within a particular attribute, it is the distribution of values rather than
the actual presented values that matter. Indeed, we typically code values as integers to simplify
processing.

This second item is a consequence of the notion that the structure of data is independent
of data values. Formally, structure is generic, in that it is invariant under 1-1 substitution of
data values (hence the encoding with integers). For example, functional dependencies describe a
particular type of structure - independent of the actual values. The definition of the functional
dependency X — Y, namely “Vt; € r,Vty € r(t1[X] = t2[X] = 61[Y] = £2[Y])”, exhibits this formal
genericity. Information theory, which uses only probabilities associated with values and not the
values themselves, therefore provides techniques that allow us to view structure. As a result, we
are able to develop visualizations of database structure that are applicable to any context.

Because entropy-based visualizations show global properties, they are more in tune with natural
uses of visualization, where global structure and detail through drill-down are most effective. Figure
1 illustrates how our natural perception - a glance suggests that the left pane is more “function-
like”, while in fact the right pane exhibits the functional dependency A — B while the left does
not. While the presence or absence of these functional dependencies is easy to evaluate in Figure
1, with only eight data points, this task becomes increasingly difficult as the number of data points
increases. In addition, determining when the data contains an approximate dependency [15], in
which a functional dependency holds except for a small number of violations, is equally difficult.
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Figure 1: On the left, a scatter plot of data where the functional dependency A — B does not
hold. On the right, a scatter plot where the functional dependency does hold. The dashed lines
have been added to show the alignment of the points along the vertical dimension.

This paper is structured as follows. Section 2 provides the formal notation and definitions used
throughout the paper. Section 3 explores the use of entropy to visualize frequency distributions
of attribute values in database relations. Section 4 demonstrates the use of entropy for visualizing
dependencies, or relationships between attributes. Section 5 provides examples of these these
techniques for making broad comparisons of different datasets. Lastly, Section 6 provides future



directions and concluding remarks.

1.1 TUser Interaction

In order to visualize database structure we have developed a system to support interactive displays
of database visualizations. Based on an architecture we proposed in [9], the system supports the
specification of database queries and the mapping of the query results to a graphical representation.
These mappings are entirely under the control of the user.

The system is implemented in Java, using JDBC for query processing. The visualizations are
implemented using Java 3D, allowing the user to manipulate the display for standard actions such
as rotating, scaling and translating. In addition, the user is able to drill down at any data point to
see the raw data values, as well as identifying datapoints that are particularly interesting to them.
These selected points can be utilized in subsequent visualizations for comparative purposes.

2 Definitions

In this section we provide the formal notation and definitions used in this paper. Our focus is
on visualizing database information, so we begin with the basics of the relational model. Let
R ={A,B,C,...} be a relation schema for instance r. For attribute A € R, A denotes {A}. Sets
of attributes are denoted by X,Y,Z C R. For X and Y C R, XY denotes X UY. The notation
we use for tuples is ¢ € r, with ¢.A representing the value for attribute A in tuple ¢.

With its genesis in message theory, entropy is defined over a set of messages M = {m1,... ,my},
with associated probabilities Pyy = {p1,...,pn}. The entropy of M is Hy = Y7, pilog p%"
Entropy provides us with an average cost (in bits) for each message. The upper bound on the
entropy of M is log n, which occurs when each message has equal probability. Additional details
on entropy, as well as other information theory topics is covered in [4].

For databases, the message set we are interested in is taken from the relation instance r. When
projecting attributes from R, we do not eliminate duplicate values, which allows us to compute
the probabilities using the counts of each value in the active domain. For example, the probability
P(4 = o) = 2lzieale),

For any set of attributes X C R, we can compute Hx using an SQL aggregate query. The
query is shown in Figure 2 for the case of A € R. For the purposes of the visualizations generated
for this research, we pre-compute H 4 for each A € R, as well as H s for each A, B € R. Note that
Ha < log |adom(A)|, where adom(A) is the active domain of A. When H4 = log |r|, A is a key.

Select  SUM((R1.frequency/R2.rowcount) *
L0G(2,1/(Rl.frequency/R2.rowcount)))
From (Select A, COUNT(*) as frequency
From R
Group By A) as R1,
(Select COUNT(*) as rowcount
From R) as R2

Figure 2: SQL query to calculate the entropy of A



2.1 Information Dependencies

Within the database research field, the concept of functional dependencies is well understood.
The functional dependency A — B holds in instance r, when for any two tuples ¢1,t3 € r,t1.A =
t3.A = t1.B = t3.B. Functional dependencies always hold for an instance, a particular functional
dependency may be specified as a constraint in a database management system.

As is often the case, however, large, complex data rarely exhibits many functional dependencies
beyond those specified as constraints. As shown in [6], an Information Dependency Measure is
defined using entropy. The information dependency measure Hx_,y provides a measure indicating
the average number of bits we need to use to determine Y if we know a value for X. Another way
to look at this measure is in terms of surprise. In other words, how surprising is a particular value
for Y when we know X.

The information dependency Hx_.y can be calculated by Hxy — Hx. For more details on
information dependencies, as well as the proof for this calculation, see [5]. When Hx_y = 0, the
functional dependency X — Y holds. The upper bound on Hx_,y is Hx + Hy, which is the case
of independence of X and Y. Another weakness of using a traditional approach for identifying
dependencies is shown in the right pane. We can verify by checking across the display that there
are no violations of the dependency A — B. However, as the number of datapoints increase the task
becomes increasingly difficult. In addition, determining when the data contains an approximate
dependency [15], in which a functional dependency holds except for a small number of violations, is
equally difficult. Figure 1 may be used to illustrate the applicability if the information dependency
measure: Ha_,p is 0.25 in the left pane and 0 in the right. Whereas a visual estimation of
approximate functional dependencies does not scale, estimation via H4_.p does.

3 Visualizing Distributions

Using the measures defined in Section 2, we turn to the visualization problem addressed in this
research. The data we use in our visualization is drawn from a variety of sources, including the
U.S. Census [1], the U.C.I. Machine Learning Repository [2], and the Wisconsin Benchmark [7].
The specific dataset we used for the Census was the 1990 Indiana Public Use Microdata Sample
(PUMS), which has 125 attributes.

Our first application is the visualization of frequency distributions. An obvious technique for
visualizing frequency distributions is to use histograms, with the height of each bar representing
the frequency. Figure 3 shows the log of the size of the active domain for each attribute in the
U.S. Census (Left) compared to the calculated entropy value for each attribute value (Right). The
leftmost bar in each display corresponds to a key in the relation; otherwise, the attributes are
arbitrarily ordered.

Note that the height of the bars varies according to the probabilities associated with each value
in the active domain, resulting in differences in the heights for the same attribute in each display.
To highlight these differences, consider Figure 4, which shows the same information for a subset of
the attribute space. The attributes displayed include: Hours Worked Per Week, Immigration Year,
Income, Non-farm Income, Farm Income, Interest and Dividend Income, Social Security Income,
Public Assistance Income, and Retirement Income. In this case, we can see that certain attributes
that have dominant values have their corresponding entropy values change in a dramatic way.

In order to gain an overall view of the attribute space, we can compare H 4 to log |adom(A)]
using a two-dimensional scatterplot. This visualization is shown in Figure 5, in which the attribute
that is a key has been omitted. In the visualization, points that lie on the diagonal have an
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Figure 3: Comparing the size of the active domain for each attribute (Left) to the entropy of each

attribute (Right) in the U.S. Census dataset.

Figure 4: A view of the differences between the size of the active domain for (Left) compared to
the entropy values for the same attributes (Right).

(approximately) uniform distribution. The further a point is from the diagonal, the less uniform is
the associated distribution.
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Figure 5: Comparing the entropy of each attribute in the census data to the log of the size of the
corresponding active domain.



4 Visualizing Relationships

While the previous section demonstrated the use of entropy to gain insight into frequency dis-
tributions within database relations. In this section we extend the technique in order to explore
relationships between attributes. In particular we utilize the information dependency measure
described earlier to visualize these relationships.

While we have formally described the concept of an information dependency, we have not yet
discussed visualizing them. Figure 6 characterizes the space of H(AB) x H(A), which is encountered
when visualizing the values in a 2D scatter plot. This type of visualization allows us to get an overall
view of all possible attribute pairs in a compact space. A critical advantage of this approach is that
the visualizations do not depend on the actual values or types of data.

H(A)

H(AB)

Figure 6: Characterizing the space H(AB) x H(A).

The dark, diagonal line in the figure represents functional dependencies in the relation. Above
the diagonal the space is empty, since the lower bound of H(AB) is H(A). As you move away
and below the diagonal, the structure becomes less like a functional dependency. There is an area
of potential interest close to the diagonal, in which the space represents approximate functional
dependencies that are almost a pure functional dependency. The space furthest from the diagonal
contains attribute pairs that are independent of a dependency.

Figure 7 shows a scatter plot comparing Hap to H4 for the census data. Recall that the
information dependency Ha_.p = Hap — Ha. We can easily see that there are certain attributes
that behave relatively consistently as ranges of functional dependencies (the “B” position); these
are the origin of the diagonal bands. Similarly, many attributes behave consistently as domains
(“A” position), corresponding to horizontal bands.

This suggests a more detailed examination using three dimensions, comparing H4p, H4 and
‘Hp. In this case, the shape of the space is constrained in the Z-dimension by Hp. Points of
particular interest are those that have H4_,p = 0 (or, very near 0), and Hp is interestingly large.
The determination of what is interesting in this context is dependent on the application. However,
when Hp is large and H 4. g = 0, the relation may be decompose losslessly into smaller subrelations,
which saves space and may dramatically improve query performance. As seen in Figure 8 (Left), we
can see the space does contain points that are very near the diagonal (approximate dependencies)
and that have somewhat large H p values. The same data with the key attribute filter out is shown
on the right.

In this case, we find some points along the line bisecting the space. These points indicate
attributes that are functionally co-dependent. In addition, In the upper right hand corner are
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Figure 7: Scatter plot comparing H(AB) to H(A).
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Figure 8: 3D surface plot comparing Hap, Ha and Hp. The right plot factors out the attribute
that is a key.

points related to a key within the relation. Notice that H 4 is fixed for these points, with Hp
determining the position.

In addition to identifying potentially interesting relationships between attributes, the visualiza-
tions also highlight additional information. For example, when H 4 is low and Hap — Ha = 0, it
is possible to decompose the original relation into smaller sub-relations, taking advantage of space
savings. When the difference is very near to zero, you may decide to ignore the noise entirely and
clean the data by removing the noisy data.

4.1 Drilling Down

The discussion thus far has involved global characterizations of attributes, but information-based
visualization can also drill-down to reveal local structures. This makes use of the fact that the
functional dependency A — B holds iff H4_.p = 0 and thus the quantity H4_.p is a measure
of how close A — B is to holding in an instance. The characterization of Ha_.p as Y ,c4 p(a) x
Hp(0a=q(r)) suggests that the “landscape” of p(a) and Hp(o 4= (r)) might reveal something about
local structure related to A — B. Indeed this is the case, as we see in examples from the census
data.

The first example examines AGE — DEPART (with AGE as A and DEPART as B). The plot of p(a)
versus Hp(oa=q(r)), shown in the first panel of Figure 9, has several interesting features:



1. AGE values with low probability have low diversity of associated DEPART, and this holds uni-
formly

2. the relationship of Hp(oa—q(r)) versus p(a) is essentially a smooth function for low p(a)
values

3. when p(a) exceeds a certain value, the corresponding Hp(oa—q(7)) is typically close to the
maximum; this cutoff is surprisingly sharp

4. there are a few higher probability AGEs which differ from the typical by having Hp(c4—4(7))
values that are lower or 0; these AGEs are interesting in themselves. Indeed, further investi-
gation of these values seems to indicate anomalies in the way the census data was collected.
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Figure 9: Comparing p(a) to Hp(ca—q(r)) for census data. In this example, A is AGE and B is
DEPART.

5 Visual Comparisons Of Datasets

In previous sections we have demonstrated the use of entropy to visualize the information content
of database relations. In this section we show how multiple, diverse datasets can be compared
within the same display in order to understand the degree to which the datasets might be similar
in terms of their structure.

We have used this particular technique to compare various benchmark datasets in order to
evaluate their structure. Although benchmark datasets are used for a variety of applications, a
primary use is the performance evaluation of new algorithms. For example, the Wisconsin bench-
mark [7] has been used to test various join algorithms. Within the machine learning community
a large number of benchmark datasets are available.[2] Many of these datasets have been used for
evaluating various data mining techniques.

Figure 10 (Left) shows H 4 compared to log |adom(A)| for the Wisconsin benchmark data. The
Wisconsin data can be seen to have a nearly perfect uniform distribution within each attribute.
When compared on the census data, seen in Figure 10 (Right), it is clear that this synthetically
generated data demonstrates significant differences from real data, which has much more complexity
to its structure.

As another example, Figure 11 shows a number of datasets from the machine learning repository
displayed for comparison. We can see in this visualization that these datasets have different struc-
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Figure 10: H4 compared to log |[adom(A)| for the Wisconsin benchmark data (Left). The same

comparison from the census data (Right).

ture as well, although the sparseness of the data does have an effect. In addition, these datasets
tend to have a large number of boolean valued attributes.

Figure 11: H4 compared to log |adom(A)| for datasets taken from the machine learning repository.
Clockwise from top left - Hepatitis, Tic Tac Toe, Agaricus, SetQ.



6 Conclusion

In this paper we have shown how entropy, a central concept in information theory, can be used
for visualizing the structure of information within database relations. The technique simplifies the
display of complex relationships, allowing for dependencies to be spotted. Our use of entropy is
independent of the underlying datatypes, handling all in a consistent fashion. Furthermore, we
have demonstrated the technique on a wide variety of data, some of which are quite large. The
census dataset, for instance, contains 125 attributes and approximately 300,000 rows of data.

While this particular research is reported in terms of database visualization problems, the tech-
niques we have employed are applicable to several areas. Within data mining we envision that these
techniques can be used to assist an expert in exploring their particular problem space. In addition,
database designers can use the visualization to assist in the construction of decompositions, either
for OLTP systems, or for OLAP data warehouses.
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