
Towards Trie-based Indexing of Mobile Clients in
Large Mobile Information Systems1

Hagen Höpfner†

hoepfner@iti.cs.uni-magdeburg.de
Stephan Schosser†

schosser78@arcor.de

Kai-Uwe Sattler‡

kus@tu-ilmenau.de

†Otto-von-Guericke University of Magdeburg
Department of Computer Science

Institute of Technical and Business Information Systems
P.O.Box 4120, D-39016 Magdeburg, Germany

‡Technical University of Ilmenau
Computer Science and Automation Faculty

P.O.Box 10 0565, D-98684 Ilmenau, Germany

January 22, 2004

1This research is supported by the DFG under grant SA 782/3-2.

Abstract

Due to the increasing usage of small and low footprinted devices like mobile phones
as clients of mobile information systems a new problem arises: “How to determine the
relevance of updates for a large number of mobile clients?” In this paper we present
an indexing scheme that represents conjunctive queries posed by the mobile clients in
a trie. So, IDs of the clients are referenced by their queries and checking the relevance
of an update is done by traversing the trie.

Chapter 1

Introduction and Motivation

Most mobile information system are designed as an add-on to existing classical, fixed
network based information systems. The mobile clients have to connect to the fixed
network via a base station. But, normally such systems do not consider the extremely
increasing number of mobile devices that are usable for accessing the data. Mobile
phones, smart phones or networked PDAs will be used as information system clients
“like a duck takes to water”. So, a new central challenge for supporting mobile devices
on the server site arises: How to handle interest of a large number of mobile clients
efficiently?

In this paper we discuss this question referring to our Scalable Mobility Server
(SMoS) [HS03c]. SMoS integrates information from various heterogeneous data sour-
ces (web sites, databases etc.) and provides them to the mobile clients. The light-
weightiness of the mobile clients and the classical view update problem [DB82] pro-
hibit to transfer all updates directly to the mobile clients. So, client queries have to be
stored and evaluated on the server.

Let us assume a mobile information system which provides information to 10.000
or more mobile clients. Let us furthermore assume that the data on the server is fre-
quently updated. Such a system may be e.g. an extended driver information system
that provides information about the current traffic situation as well as additional ser-
vices like opening hours of public utilities, etc. to car drivers. Now, if an update
appears it is obviously inefficient to check the preferences of all 10.000 mobile clients
sequentially.

The novelty, which is focused in this paper, is a query index based update evaluation
approach that allows to look up such mobile devices which are potentially interested in
updated information. At this, queries are represented as paths in a trie [Fre59] whereby
each path references a set of mobile client IDs.

The remainder of the paper is structures as follows. In Section 2 we take a look at
related work and point out the differences between our work and overlapping research
areas. Section 3 describes the query index and how it is used to look up mobile clients
efficiently. The evaluation of our approach can be found in Section 3.3. Finally, the
paper closes with conclusions and an outlook on following researches in Section 4.

1

Chapter 2

Related Work

Our paper is embedded into the context of mobile databases and information systems.
We do not support completely wireless systems but systems that allow mobile clients to
connect via a base station to a fixed network as discussed in [PS98]. Furthermore, sev-
eral work regarding the replication and synchronization of data between a static server
and mobile clients is done. But these approaches, that can be classified as data centric
(e.g. [PB99a]) and transaction centric (e.g. [GHOS96, PB99b]), consider the integra-
tion of offline done update operations from the mobile clients to the server. However,
we currently do not take the synchronization of updates from mobile clients into ac-
count but concentrate on the performance aspects of delivering updates to them.

Beside this, our research can be interpreted as profile handling. That means that
the registered queries describe the profiles of mobile users as it is done in [FD92] or
[ÇFG00]. But profiles are based on a more semantic base selection of needed data. We
plan to support also semantic queries regarding user contexts but this is future work.

Another related research area concerns the query containment problem that is con-
sidered in a lot of publications as [SKN89, GSW96]. [Tür99] comprises the com-
plexity issues of various kinds of queries that are represented as conjunctively linked
predicates. However, we have to deal with query containment only when we use se-
mantic information for query indexing. In this paper, we focus on an approach using
syntactical information which could be exented to use semantic information.

Last but not least we have to point out, that there exist relationships between the
problems that are focused in our work and the common view update problem that is
described, e.g. in [DB82]. If we consider registered queries as view definitions we have
also to decide which “view” is affected by an update. But we do not have to materialize
the update on the mobile clients as yet.

2

Chapter 3

Indexing mobile clients using a
trie

As already mentioned, a sequential check of all registered queries is inefficient. There-
fore, we introduced in [HS03c] first ideas on a trie-based indexing of mobile clients.
This approach depends on our semantic caching approach that was presented in [HS03b].
Database queries are represented as conjunctively connected predicates that are or-
dered in an alpha-numerical predicate order. We currently support three1 different
kinds: of predicates relation predicates, join predicates and selection predicates. A
relation predicate r is comparable to the projection operator of the relational alge-
bra. A projection πX (r(R)) with X ⊆ R can be written as the relation predicate
r(R)(x1, . . . , xn) with {x1, . . . , xn} = X . In a similar manner, join predicates jn

are comparable to the equijoin operator of the relational algebra. That means that a
equijoin r1(R1) ona=b r2(R2) with R1, R2 ⊆ R, a ∈ R1 and b ∈ R2 can be writ-
ten as the join predicate r1(R).a = r2(R).b. Finally, selection predicate po represent
the selection operator of the relational algebra. A selection σF (r(R)) with the selec-
tion condition F is written as the selection predicate r(R).F . The selection condition
F is restricted to selections of constants of the form attributeγconstant with
γ ∈ {≤, <, =, 6=,≥, >}.

Thus, database queries are given in a standardized calculus notation, i.e. in con-
junctive normal form. Predicates are ordered in a lexicographic manner: at first relation
predicates ri, then the join predicates jk and then the selection predicates pl.

Definition 1: Database Query
A database query Q = {r1 ∧ . . . ∧ rm ∧ j1 ∧ . . . ∧ jn ∧ p1 ∧ . . . ∧ po} can

be represented as a sequence of predicates 〈r1, . . . , rm, j1, . . . , jn, p1, . . . po〉,
where

• ∀i, k ∈ 1 . . .m, i < k ⇒ ri / rk and

• ∀i, k ∈ 1 . . . n, i < k ⇒ ji / jk as well as

• ∀i, k ∈ 1 . . . o, i < k ⇒ pi / pk

holds. Here, / means “lexicographically smaller”.

1The context predicates that where introduced in [HS03c] are not considered in this paper but will become
included in our approach in the future.

3

PSfrag replacements

root

border_crossing(∗)

border_crossing.steet_id = street.id

street.id = 32

institution(∗)

institution.street_id = street.id

street.name =′ a4′

caption:
relation predicate

selection predicate
join predicate

link to the ID-list

mc 23
mc 42
mc 13

mc 666
mc 512

Figure 3.1: logical trie representation of queries

Obviously, this query language is not strong relational complete, but is restricted to a
subset of calculi which is sufficient for the realization of typical applications of mobile
information systems.

Now, the trie can be described as follows: Each query predicate is represented as
an edge and nodes represent links to mobile device ID-lists. Thus a database query
QP = {r1 ∧ r2 ∧ . . .∧ rm ∧ j1 ∧ j2 ∧ . . .∧ jn ∧ p1 ∧ p2 ∧ . . .∧ po} is included in the
trie in form of the complete path P = r1r2 · · · rmj1j2 · · · jnp1p2 · · · po from the root
of the trie.A mobile device ID-list contains all IDs of mobile devices having registered
the query represented by the corresponding path.

3.1 Physical transformation of database queries into trie-
paths

Due to some optimization issues regarding the implementation of this index approach,
we have to refine the theoretical description given above.

Relation predicates ri consist of the name of considered relation r(R) and a set
of projected attributes (x1, . . . , xn). Because the relation name can be used by vari-
ous queries that project different sets of attributes, we store the relation name and the
attribute set separated as kri

=̂r(R) and kpi
=̂(x1, . . . , xn), respectively.

Join predicates ji are stored undivided as kji
=̂r1(R1).a = r2(R2).b, but we have

to add relation nodes for relations, that are used in the join predicates but not in the
projection predicates.

Selection predicates pi consist of an attribute name attribute, a comparison
operator γ ∈ {≤, <, =, 6=,≥, >} and a comparative value constant. Obviously, an
attribute name can be used in different selection predicates with various comparison
operators and various comparative values. So, we represent selection predicates as two
separated parts kai

=̂attributeγ and kvi
=̂constant.

Furthermore, implementing a trie requires to encapsulate the information logically
represented by the edges into the nodes2. So we have six different kinds of nodes: the
root of the trie, relation nodes kr, projection nodes kp, join nodes kj , attribute nodes
ka and attribute value nodes kv . Figure 3.2 illustrates the physical implementation of

2Nodes are implemented in form of Java classes.

4

the example shown in Figure 3.1. Furthermore, the last join node contains a list of
all attributes that are used in selection predicates. This is necessary for minimizing
the space consumptions while checking their relevance (see Section 3.2). In order to
minimize the number of nodes that are checked per update, the node order is based on
the following restrictions:

• Most of all relation nodes restrict the search space for an incoming update. If
an update is based on relation R1 we do not have to check projections, joins and
selections of registered queries that do not use R1. So, relation nodes are stored
directly below the root.

• As mentioned above, join predicates are used similar to the equijoin operator.
So, if a registered query uses join predicates it is inevitable to compute the join
in order to check the relevance of an update. Surely, this operation is quite ex-
pensive but without executing the join, a correct check of selection predicates is
impossible. So, the join nodes follow the relation nodes in a path.

• The position of the projection nodes at the bottom is motivated by the fact, that
the relevance of a projection can be reduced to update operation. If we first check
join predicates and selection predicates we can fully check the relevance of insert
and delete operations, at this. Now, projection predicates are only relevant if the
projected attribute is neither used as join attribute nor is included in the selection
predicates. But, to check this we first need to look at the join nodes as well as at
the attribute and attribute value nodes.

Definition 2: Node Order
The node order in a trie path is given as

kr1
, . . . , krm

, kj1 , . . . , kjn
, ka1

, kv1
, . . . , kao

, kvo
, kp1

, . . . , kpq
,

where

• ∀i, l ∈ 1 . . .m, i < l ⇒ kri
/ krl

• ∀i, l ∈ 1 . . . n, i < l ⇒ kji
/ kjl

• ∀i, l ∈ 1 . . . o, i < l ⇒ kai
/ kal

• ∀i, l ∈ 1 . . . q, i < l ⇒ kpi
/ kpl

holds. At this, / means lexicographically smaller.

3.2 Looking up the trie

A trie look-up is performed for each incoming update before this update is performed
on the database. The aim is to compute a list of client IDs of the mobile clients that
had registered a query which is affected by this update. We distinguish between three
different kinds of updates: (1) insert, (2) update and (3) delete operations. All these
can only be relevant for registered queries that use the same relation as the update.
So, we first compare recursively the relation nodes with the given relation name (see
Algorithm 1). At this, we benefit from the lexicographical order of the relation nodes
(see line 11). The result is a set of pointers to the found relation nodes. These pointers
are used as starting points for the following steps.

5

Algorithm 1: Checking relation predicates

01 OUTPUT: RN // a set of pointers to the found relation nodes in the path
02 INPUT: r // name of the relation affected by this update
03 trie with root node
04
05 RN = {}
06
07 checking_relation_predicates(node, r, RN)
08 for each child ci of node do
09 if ci.value = r and ci.type = kr then RN = RN ∪ {ci}; return
10 else
11 if ci.type 6= kr or r / ci.value then return
12 else call checking_relation_predicates(ci, r, RN)

Because of the physical structure of the trie, this step also checks the “hidden”
relations that are used for join-predicates only.

Relation predicates can be followed in a path by a join node, by an attribute node or
by a projection node. After calling Algorithm 1 we have to find out the kind of the next
node. We skip a detailed description of the according algorithm here but assume that
this algorithms returns the following three sets: (1) FJ is a set of the first join nodes
in paths that are represented in RN , (2) FA is a set of the first attribute nodes in paths

caption:

projection nodeattribute value nodejoin noderelation node attribute node

PSfrag replacements root

border_crossing

street

border_crossing.street_id = street.id
(street.id)

street.id =

32

boarder_cross(∗)

institution

street

institution.street_id = street.id
(street.name)

street.name =

′a2′

institution(∗)

mc 23
mc 42
mc 13

mc 666
mc 512

Figure 3.2: physical trie representation of queries

6

that are represented in RN but not in FJ and (3) FP is a set of the first predicate
nodes in paths that are represented in RN but not in FJ and not in FA.

Unfortunately, checking the join predicates in a uniform way, similar to the relation
predicates, is not efficiently possible because updates, deletes and inserts modify join
results in various ways. Furthermore, we have to compute the joins on the database
because the relevance of the selection predicates, that is checked later on, depends on
the join results. But, we do not have to consider all attributes. In fact, this tempo-
rary join result contains only the join attributes and the attributes used in the selection
predicates.

3.2.1 Checking join nodes

Checking the relevance of an update operation regarding join nodes is done for each
element of the set FJ . The return values of each call is a set AJi of pointers to the
nodes below the join nodes and PRi a set of temporary join results, that are needed for
checking selection predicates. All paths that are not represented in the union of all AJi

are not considered in the following steps. As mentioned above join nodes contain join
predicates of the form r1(R1) ona=b r2(R2) with R1, R2 ⊆ R, a ∈ R1 and b ∈ R2.
The Algorithm first collects all join nodes of a path. So, we get a join-statement for
each path of the form:

r1(R1) ona1=a2
r2(R2) ona3=a4

r3(R3) · · · rj(Rj) ona2j−1=a2j
rj+1(Rj+1)

with j ∈ N and a2j−1 ∈ Rj . Checking the relevance of such a statement for the update
is done in the following way:

Insert Operation: We assume, that inserts are in standard SQL-notationINSERT
INTO table_name (column_list) VALUES (value[,...]).

A = (ai
1, . . . , a

i
n) is the attribute list of relation used for inserting data. V =

(xi
1, . . . , x

i
n) is the tuple of inserted values. Furthermore, rj+1(Rj+1) is the re-

lation that is used for inserting the data, ai
1 = a2j is the according join attribute

and xi
1 is the inserted value of ai

1. So the join predicates are affected by the up-
date if πa1

(r1(R1)) ona1=a2
πa2

(r2(R2)) . . . (σ2j−1=xi
1

(rj(Rj)) is not empty.

Deletion Operation: Delete operation effect a join predicate if the tuples that have
to be deleted are included in the join result. We assume delete operations in
SQL-notation3 as DELETE FROM table_name WHERE clause. Because
this can affect more than one tuple in the database we first have to look up the
according values of the join predicate. With the updated relation rj+1(Rj+1),
we can use the clause that was given by the statement:

ja = π2j(σclause(rj+1(Rj+1)).

Now, the join is affected by the update if πa1
(r1(R1)) ona1=a2

πa2
(r2(R2)) · · ·

πaj
(rj(Rj)) ∩ ja is not empty.

Update Operation: Currently we handle update operation as combination of delete
and insert operation.

3Currently we forbid the usage of cascading delete operations.

7

As aforementioned, we need the result of the joins to check the selection predicates.
Therefore, attributes that are not used as join attributes may be required. So, we have
to guarantee that these attributes are included into the temporary result. In fact, we do
not use the minimal join presented above but add all attributes of selection predicates,
that are included in the last join node, to the projections.

3.2.2 Checking attribute nodes and attribute value nodes

First we look up the selection predicates with an recursive algorithm. This algorithm
returns for each relevant path a set of selection predicates PQ. An insert operation
effect a query Q if it satisfies at least one selection predicate. Formally that means
for an inserted tuple A = (ai

1, . . . , a
i
n) with the values V = (xi

1, . . . , x
i
n) that ∃p ∈

PQ|σp(rA(RA)) 6= ∅ must hold. In order to check the relevance of delete operations
we have to distinguish between queries, that use join nodes and queries without join
nodes. In the first case, we have to check whether the delete effect this part of the
according temporary join result that is covered by the selection predicates. Therefore,
with an SQL-notated delete, the temporary join result TJ ∈ PRi and the disjunction
D = p1 ∨ p2 ∨ . . . ∨ po with o = |PQ|, pi ∈ PQ and 1 ≤ i ≤ o that means, that
σclause(σD(TJ)) 6= ∅ must hold. In the second case we have to use the base
relation instead of TJ . Therewith, the selection predicates of queries without join
predicates is affected by a deletion operation if

σclause(σD(table_name(Rtable_name))) 6= ∅

holds. Updates are handled as combination of delete and select operation, again.

3.2.3 Checking projection nodes

We do not have to check projection nodes or projection attributes, respectively, if the
update operation is an insert or an delete because these operation increase or decrease
the cardinality of the query result. So, the relevance of such updates is already recog-
nized by checking the selection predicates and/or join predicates. But, in the case of
updates it can happen, that the update modifies join attributes and a selection attributes
but not the projected attributes. Such updates are not relevant for a registered query if
the projected attributes are not contained in the list of updated attributes.

3.2.4 Fetching the IDs of the mobile clients

If all checks result in a relevance of an update operation we fetch the IDs of the mobile
clients and notify them about the update. However, we do not consider the actualization
of the data that is managed on the mobile clients but will do this in future work.

3.3 Evaluation

To evaluate our approach we implemented a small driver support systems that provides
traffic information about road works, traffic jams as well as additional information
about public utilities in a location depended manner. Therefore, we assume that cars
are equipped with GPS-hardware to compute their current position. In this paper we
do not consider updating the trie by fast moving cars but approximate journeys by
locating cars on a street. That means, that streets are implemented as a line between

8

two coordinates. In fact, the benefit of our approach is not the complete realization of
such a system but we use it in order to evaluate the update-propagation. Here, typical
queries are:

• Where is the next parking block with available parking lots?

• Is there a road block on my current road?

• Where is the next drugstore?

The corresponding database which is illustrated by Figure 3.3 is realized using Post-
greSQL and contains three cities and about 200 fictitious streets. Some streets cross
cities. Furthermore we inserted about 9000 public utilities distributed among the cities.
We assume a permanent traffic jam number of 20 and five border crossings that hamper
the traffic.

PSfrag replacements

TOWN

STREET

BORDER_CROSSING

INSTITUTION

R_WORKS__T_JAMS

INSTITUTION_TYPE

STREET_TYPE

id

id

id

id

id

gps_start_x

gps_start_x

gps_start_x

gps_start_y

gps_start_y

gps_start_y

gps_end_x

gps_end_x

gps_end_x

gps_end_y

gps_end_y

gps_end_y

w_t_passenger_cars
w_t_freight_vehicles

name

name

name

name

name

name
phone

charge
seats
opening_time
closing_time

price level gps_x
gps_x gps_y
gps_y

CITY

has

has

is located atis located at

is located in

hampers

*

*

*

*

*

*

1

1

1

1

1

[0..2]

Figure 3.3: UML diagramm of the evaluation database

Queries are generated automatically and contain one to three projection predicates,
up to two join predicates and up to three selection predicates. Two simple examples for
such queries are:

• 〈border_crossing(*), border_crossing.street_id = street.id, street.id = 32〉

• 〈institution(id), institution.street_id = street.id, street.name =′ A4′〉

Furthermore, update operations are allowed only to update the relationsINSTITUTES,
BORDER_CROSSING and R_WORKS__T_JAMS. As already mentioned in Section 3.2
we use updates in standard SQL notation, like:

9

• DELETE FROM R_WORKS__T_JAMS WHERE street_id=22 AND
gps_start_y=1700

• UPDATE BORDER_CROSSING SET
w_t_freight_vehicles=’03:54’
WHERE name=’Mittenwald’

Figure 3.4 illustrates hight and width of an example trie that represents 15.000
queries whereby 12.766 queries are different from each other. At this, we also included
the values for a compressed representation that utilizes the fact, that values of nodes
with only one child node can be stored in one node. While processing our algorithms
on such a compressed trie that only means, that checks regarding this two values use
the same node pointer but the space consumptions are much better.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 2 4 6 8 10 12 14 16

PSfrag replacements

uncompressed
compressed

N
um

be
r

of
no

de
s

Level

Figure 3.4: Number of trie-nodes per trie-level (15.0000 queries; 12.766 different
queries)

At first we compare our approach to the naive approach that represents the queries
in a profile manner. That means, that the naive algorithm sequentially scans the regis-
tered profiles and decides which profile and therewith which clients are affected by the
update. The result of this comparison is shown in Figure 3.5. The predicable large num-
ber of nodes checked in the naive approach depends on the fact, that such approaches
typically do not consider predicate overlapping between the profiles of different users.
The result of our approach for this test depends on the trie-representation used for stor-
ing the queries. So, we can point out that - in this test - our approach performs better
than the naive approach.

The trie and its algorithms are implemented under Windows XP in Java (JDK
1.4.2). The communication between Java and PostgreSQL is realized with the stan-
dard PostgreSQL-JDBC-driver. On the hardware side we use a standard PC with an
AMD Athlon(tm) XP 2100+ processor and 768 MB Ram. The duration of handling an
update on this configuration is illustrated in the Figures 3.6 and 3.7. At this, Figure 3.6
shows, that insert and delete operation are not as expensive as update operation. But

10

 0

 500

 1000

 1500

 2000

 2500

 0 2000 4000 6000 8000 10000 12000

PSfrag replacements

trie based approach
naive approach

N
um

be
r

of
ch

ec
ke

d
no

de
s

Number of registered queries

Figure 3.5: Comparison between naive approach and the trie based approach

 0

 100

 200

 300

 400

 500

 600

 0 2000 4000 6000 8000 10000 12000

PSfrag replacements M
ill

is
ec

on
ds

Number of registered queries

INSERT

UPDATE

DELETE

Figure 3.6: up to 12.000 registered queries

in Figure 3.7 we see that the curves of insert and update operation converge with an
increasing number of registered queries.

Figure 3.8 illustrates the correlation between number of additional queries aq, that
have to be used in order to check the join predicates, and the number of queries nq that
are stored in the trie. Here, we can recognize, that 100∗aq

nq
converge to approximately

50%. For large mobile information systems, which need a large trie for representing
the different queries, this means, that the costs for checking the relevance of an update
does not increase above 50%.

11

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 20000 40000 60000 80000 100000 120000

PSfrag replacements

M
ill

is
ec

on
ds

Number of registered queries

INSERT

UPDATE

DELETE

Figure 3.7: up to 120.000 registered queries

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2000 4000 6000 8000 10000 12000

PSfrag replacements

trie based approach N
um

be
r

of
ad

di
tio

na
lh

el
p

qu
er

ie
s

Number of registered queries

Figure 3.8: Proportion between number of registered queries and number of additional
help queries

12

Chapter 4

Conclusions and Outlook

In this paper we presented an indexing scheme for update propagation in large mobile
information systems. At this, queries that were posed by mobile clients are represented
as paths in a trie at the server. We first discussed the used query language that represents
queries as conjunctively linked relation, selection and join predicates. Afterwards, the
implementation and the physical representation of the trie was introduced. We illus-
trated how nodes are fetched and how the relevance of an update is checked regarding
the different predicates. Furthermore, we presented and evaluated our approach and
pointed out its benefit.

In spite of the acquired good results, there is a lot of future work. First of all, the
used query language is not relational complete. We currently do not support unions. In
addition to this, aggregation functions are not supported because of the used calculus.
We also skipped the context predicates that are mentioned in [HS03c]. In fact, first steps
to support large context based mobile information are done. In [HS03a] we introduced
a general model that is not limited to location based queries but allows to specify more
context elements like time relevance, task dependency, et cetera. Moreover, we plan to
optimize the query index. For example, selection predicates are currently represented
in a redundant manner, so we hopefully benefit from storing them in a clustered way
or as intervals similar to 1-dimensional R-Trees.

13

Bibliography

[DB82] Umeshwar Dayal and Philip A. Bernstein. On the Correct Translation of
Update Operations on Relational Views. ACM Transactions on Database
Syststems, 7(3):381–416, September 1982.

[FD92] Peter W. Foltz and Susan T. Dumais. Personalized Information Delivery:
An Analysis of Information Filtering Methods. Communications of the
ACM (CACM), 35(12):51–60, December 1992.

[Fre59] E. Fredkin. Trie memory. Information Memorandum, Bolt Beranek and
NewMan Inc., Cambridge, MA, 1959.

[GHOS96] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The Dangers of Replication
and a Solution. SIGMOD Record, 25(2):173–182, 1996.

[GSW96] Sha Guo, Wei Sun, and Mark Allen Weiss. Solving Satisfiability and Im-
plication Problems in Database Systems. ACM Transactions on Database
Systems (TODS), 21(2):270–293, 1996.

[HS03a] H. Höpfner and K.-U. Sattler. Semantic Replication in Mobile Federated
Information Systems. In A. James, S. Conrad, and W. Hasselbring, editors,
Proceedings of the Fifth International Workshop on Engineering Federated
Information Systems (EFIS), Coventry, UK 17th - 18th July, 2003, pages
36–41. Akademische Verlagsgesellschaft Aka GmbH, Berlin, July 2003.

[HS03b] H. Höpfner and K.-U. Sattler. Towards Trie-Based Query Caching in
Mobile DBS. In B. König-Ries, M. Klein, and P. Obreiter, editors,
Post-Proceedings of the Workshop Scalability, Persistence, Transactions
- Database Mechanisms for Mobile Applications, Lecture Notes in Infor-
matics (LNI), pages 106–121, 2003.

[HS03c] Hagen Höpfner and Kai-Uwe Sattler. SMoS: A Scalable Mobility Server.
In Anne James and Muhammad Younas, editors, Poster Proceedings of the
Twentieth British National Conference on Databases (BNCOD20), Coven-
try, UK 15th - 17th July, 2003, pages 49–52. School of Mathematical and
Informational Sciences; Coventry University, jul 2003.

[PB99a] S. H. Phatak and B. R. Badrinath. Multiversion Reconciliation for Mobile
Databases. In Proceedings of the 15th International Conference on Data
Engineering, 23-26 March 1999, Sydney, Austrialia, pages 582–589. IEEE
Computer Society, March 1999.

14

[PB99b] Shirish H. Phatak and B.R. Badrinath. Transaction-centric Reconciliation
in Disconnected Databases. ACM Monet Journal, 53, 1999.

[PS98] Evaggelia Pitoura and George Samaras. Data Management for Mobile
Computing. Kluwer Academic Publishers, Dordrecht, 1998.

[SKN89] X-H. Sun, N. N. Kamel, and L. M. Ni. Processing Implications on Queries.
IEEE Transactions on Software Engineering (SE), 15(10), October 1989.

[Tür99] C. Türker. Semantic Integrity Constraints in Federated Database
Schemata. Akademische Verlagsgesellschaft Aka GmbH, Berlin, 1999.

[ÇFG00] Ugur Çetintemel, Michael J. Franklin, and C. Lee Giles:. Self-Adaptive
User Profiles for Large-Scale Data Delivery. In Proceedings of the 16th
International Conference on Data Engineering (ICDE), 28 February - 3
March, 2000, San Diego, California, USA, pages 622–633. IEEE Com-
puter Society, March 2000.

15

