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Abstract

An unknown transient heat source in a three-dimensional participating medium is reconstructed from temperature measurements using a

Bayesian inference method. The heat source is modeled as a stochastic process. The joint posterior probability density function (PPDF) of

heat source values at consecutive time points is computed using the Bayes’ formula. The errors in thermocouple readings are modeled as

independent identically distributed (i.i.d.) Gauss random variables. ‘Maximum A Posteriori’ (MAP) and posterior mean estimates of the

heat source are then computed using a Markov chain Monte Carlo (MCMC) simulation method. The designed MCMC sampler is composed

of a cycle of symmetric MCMC kernels. To improve the sampling speed, a model-reduction technique is used in the direct computation of

temperatures at thermocouple locations given a guessed heat source, i.e. in the likelihood computation. Two typical heat source profiles are

reconstructed using simulated data to demonstrate the presented methodologies. The results indicate that the Bayesian inference method

can provide accurate point estimates as well as uncertainty quantification to the solution of the inverse radiation problem.

1 Introduction

Study of thermal radiation has been stimulated by a
wide range of applications including thermal control in
space technology, combustion, high temperature forming
and coating technology, solar energy utilization, high tem-
perature engine, furnace technology and other [1].

In participating media, radiation is accompanied by
heat conduction and convection. To simulate such pro-
cesses, a coupled system of partial differential equations
(PDEs) governing temperature and radiation intensity
evolution needs to be solved iteratively. Difficulties arise
in the solution of such systems because the heat flux con-
tributed by radiation varies nonlinearly with the temper-
ature, the radiation intensity varies in space and in direc-
tion, and the radiation intensity equation is an integro-
differential equation [2]. The direct radiation problem,
in which the temperature distribution is computed with
prescribed thermal properties, source generation and ini-
tial/boundary conditions, is often solved using a combina-
tion of spatial discretization methods such as finite volume
or finite element methods (FEM) and ordinate approxima-
tion such as PN and SN methods [2]. The inverse radiation
problem in a participating medium that is of interest here
is defined as the identification of the heat source given
temperature measurements within the domain. Distinctly
different from the well-posed direct problem, this inverse
problem is in general ill-posed, i.e., its solution may not
be unique and/or may be unstable to small errors in the
given data [3, 4]. Special techniques are thus required to
compute solutions to such inverse problems.

The usual solution approaches restate the inverse prob-
lem as a least-squares minimization problem [5, 6]. The
objective function is formulated by minimizing the error
between the computed temperatures with guessed inverse
solution (in this work, a heat source) and the temperature
measurements at given thermocouple locations. The er-
ror can be defined using various norms in either finite- or
infinite-dimensional spaces [7, 8]. Gradient optimization
techniques are introduced, and appropriate continuum or
discrete sensitivity and/or adjoint problems are required
[9, 10]. Other methods, such as Monte Carlo method, have
also been developed for solving inverse radiation problems

[11]. For review of inverse techniques for heat transfer
problems, one can consult Alifanov [12] and Beck et al.
[13]. The ill-posedness of these inverse problems can be
addressed using appropriate regularization techniques in-
cluding Tikhonov regularization [14, 15], the function spec-
ification method by Beck et al. [13], Zabaras and Liu [16]
or the iterative regularization technique by Alifanov [12].

A new stochastic outlook to inverse thermal prob-
lems has recently been introduced using spectral stochastic
methods [17] and Bayesian inference [18]. Stochastic in-
verse methods can account for uncertainties and are able to
provide point estimates to the inverse solution with prob-
ability bounds [18]. In this work, we emphasize the use of
Bayesian statistical inference [18, 19]. In Bayesian infer-
ence, a prior distribution model is combined with the like-
lihood to formulate the posterior probability density func-
tion (PPDF) [20, 21]. A Bayesian inference approach pro-
vides a complete probabilistic description of the unknown
quantities given all related observations. The method reg-
ularizes the ill-posed inverse problem through prior dis-
tribution modeling (Emery [22]) and in addition provides
means to estimate the statistics of uncertainties.

With the recent propagation of Markov chain Monte
Carlo (MCMC) simulation methods [23], the application
of Bayesian inference to engineering inverse problems be-
comes tractable. MCMC provides large sample data set
drawn from the PPDF. These samples can be used to
approximate the expectation of any function of the heat
source. Running a Markov chain usually involves repeti-
tive solution of the direct problem, which is not feasible
for most nonlinear transient problems. In such situations,
reduced-order models are needed [24, 25]. One widely used
approach of model-reduction is the computation of the
proper orthogonal decomposition (POD) basis using the
method of snapshots [26, 27].

In this work, a Bayesian inference method is used to
identify the strength of a transient heat source in partici-
pating media in three-dimensions (3D) through tempera-
ture measurements. A MCMC sampler is designed to ex-
plore the posterior state space. The kernel of the MCMC
sampler is composed of a cycle of symmetric MCMC ker-
nels.
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Nomenclature

A acceptance probability of MCMC w direction weight in S4 method
Cp thermal capacity W covariance matrix of MRF
E expectation test function in Galerkin formulation

F direct simulation solver W̃ test function in SUPG formulation
g heat source Y temperature measurement vector
ĝ estimate of heat source
G(·) spatial approximation of point Greek symbols

heat source δ(·) Dirac delta function
h linear finite element basis function ε emissivity
I radiation intensity θ parameter form of unknown heat source

Ih homogeneous part of I θ̂ estimate of θ
II inhomogeneous part of I κ absorption coefficient
Ib black body radiation intensity λ scaling constant of Gauss MRF
k thermal conductivity µ eigenvalue in POD expansion
L number of MCMC samples ρ mass density
m dimension of θ σ scattering coefficient
M number of thermocouples σb Stefan-Boltzmann constant
n total number of measurements σq standard deviation of proposal distribution
~n unit normal to the boundary vector σT standard deviation of ω
N number of measurement steps ω measurement noise
Ne number of snapshots Ω solid angle
p(·) probability density function Φ kernel function of MRF
~qr radiative thermal flux Ψ eigenfunction of POD expansion
~r position vector
~s direction vector
S surface of 3D domain Superscripts

t time (i) ith iteration or ith time step
t̂ time of measurement T transpose
δt thermocouple sampling interval * candidate
dt time interval in the discretization of g
∆t time step size in direct simulation
T temperature Subscripts

Th homogeneous part of T i ith component
TI inhomogeneous part of T i ∼ j site neighborhood
u random number max maximum
U standard uniform distribution post posterior mean
U (i) ith snapshot MAP maximum a posteriori
V 3D domain

In each computation of the likelihood, the direct problem is
solved using model-reduction. The remaining of this paper
is organized in the following sequence. Section 2 introduces
the inverse radiation problem. Section 3 briefly describes
the full- and reduced-order finite element models used for
the direct analysis. The formulation of the likelihood is
presented in Section 4 together with the prior distribution
model and the PPDF under a Bayesian inference frame-
work. The design of the MCMC sampler is discussed in
Section 5 including the exploration of the posterior state
space. In Section 6, two examples of reconstruction of step
and triangular heat source profiles are provided. Finally,
Section 7 summarizes the observations of this numerical
study and some related issues.

2 Heat source reconstruction in

3D participating media

In many high-temperature applications such as in-
dustrial combustion chambers and nuclear reactors, the
strength of the heat source cannot be determined explic-
itly. The development of inverse techniques, however,
makes it possible to reconstruct the heat source through
temperature measurements at a few locations within the
domain. In this work, the situation where thermal conduc-
tion and radiation occur simultaneously in participating
media with diffusively reflecting boundaries is considered.
The schematic of the problem of interest is given in Fig.
1. Inside the 3D domain V , heat conduction occurs si-
multaneously with absorption, scattering and emission of
the electromagnetic waves. On the boundary surface S,
the temperature is known and the electromagnetic waves
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Figure 1: Schematic of the inverse radiation problem. The
objective is to compute the point heat source g(t) given initial
conditions, boundary conditions on the surface and tempera-
ture measurements at a number of points within the domain.

are diffusively reflected. The transient heat source will be
estimated through temperature measurements at sensor
(thermocouple) sites within the domain. The governing
equations for the temperature and radiation intensity evo-
lution in the domain V are as follows:

ρCp
∂T

∂t
= k∇2T −∇·~qr +g(t)G(x−x∗, y−y∗, z−z∗) (1)

~s · ∇I + (κ + σ)I − σ

4π

∫
4π

I(~r,~s
′

)dΩ
′

= κIb (2)

where Ib is the black body radiation intensity governed by
Planck function,

Ib =
σbT

4

π
(3)

and ~qr is the heat flux contributed by radiation:

∇ · ~qr = 4πκ(Ib −
1

4π

∫
4π

I(~r,~s)dΩ) (4)

On the boundary S, the following holds:

I(~r,~s) = εIb +
1 − ε

π

∫
~n·~s′<0

|~n ·~s′ |I(~r,~s
′

)dΩ
′

~n ·~s > 0 (5)

T = Tw (6)

In the above equations, T and I denote the temperature
and radiation intensity, respectively, ~r is the position vec-
tor and ~s is the direction vector. G(x− x∗, y − y∗, z − z∗)
is the spatial approximation of a point heat source located
at (x∗, y∗, z∗). In this work, a 3D normal density func-
tion is used for G. Ω stands for the solid angle over the
entire space. ρ is the density of the medium, Cp is the
thermal capacity, k is the thermal conductivity, and κ, σ,
ε are the absorption coefficient, scattering coefficient and
boundary wall emissivity, respectively. Finally, σb is the
Stefan-Boltzmann constant and ~n is the unit normal vector
on S pointing into the domain.

In the inverse problem of interest, the heat source
g(t) is the main unknown. Its calculation becomes fea-
sible by providing the values of the temperature at a
given number of locations within the domain as shown
in Fig. 1. Let Y denote the measured tempera-

ture data, i.e. Y = [Y
(1)
1 , Y

(1)
2 , ..., Y

(1)
M , Y

(2)
1 , Y

(2)
2 , ...,

Y
(2)
M , ..., ..., Y

(N)
1 , Y

(N)
2 , ..., Y

(N)
M ]T , where

Y
(j)
i = T (~ri, t̂j) + ω (7)

where i = 1, . . . ,M , j = 1, . . . , N and t̂N = tmax. M
and N are the number of thermocouples and number of
measurements at each site, respectively. ω is the random
measurement noise. The inverse problem is then stated
as follows: find an estimate ĝ(t) of the real heat source
g(t) such that the computed temperatures with this op-
timal source estimate can match Y in some sense. For
instance, most deterministic approaches will solve for ĝ(t)
by minimizing the least-squares error between Y and the
computed temperatures.

3 Direct simulation and reduced-

order modeling

The direct problem can be solved using a combination
of the finite element method (FEM) in space discretization
and the S4 method in ordinate discretization. It is seen
that Eq. (1) is a nonlinear partial differential equation
(PDE) and Eq. (2) has an integral term. They are coupled
by the expressions in Eqs. (3) and (4). The iterative
process at each time step to solve the coupled Eqs. (1)
and (2) is summarized next:

1. Set T
(i)
guess = T (i−1);

2. Substitute T
(i)
guess into Eq. (3) to compute Ib;

3. Solve Eq. (2) for I(i);

4. Use Eq. (4) to compute ∇ · ~qr;

5. Solve Eq. (1) and update T
(i)
guess with the solution;

6. If the solutions converged, set T
(i)
guess as T (i) and save I(i);

otherwise, go to step 2.

7. Go to the next time step.

Here T (i) denotes the temperature solution at the ith time
step (note that T (0) is a known initial temperature field)

and T
(i)
guess is the guessed temperature solution. In each

iteration of the above procedure, the integro-differential
Eq. (2) is solved using the S4 method [2]. In this approach,
the intensity I at each spatial point is discretized into 24
directions. The integration over solid angles (directions)
is approximated as weighted sum in these 24 directions.
The direction vectors and associated weights are specified
in [2]. In each direction, the governing equation for I can
be written as follows:

~si · ∇Ii + (κ + σ)Ii −
σ

4π

24∑
j=1

Ij(~r)wj = κIb (8)

The associated boundary condition takes the following
form:

Ii = εIb +
1 − ε

π

∑
{j: ~n·~sj<0}

|~n · ~sj |wjIj , ~n · ~si > 0 (9)

where wj is the weight associated with the jth direction.
For any given temperature field, 24 equations as Eq. (8)
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with fixed direction vectors, ~si’s, need to be solved itera-
tively to obtain I. It is noticed that Eq. (8) contains an ad-
vection term ~si ·∇Ii, hence the streamline-upwind/Petrov-
Galerkin (SUPG) formulation [28] is used to derive stabi-
lized FEM equations. In summary, the weak formulations
of temperature Eq. (1) and intensity Eq. (8) can be writ-
ten as follows:∫

V

ρCpT
(i)Wdv + ∆t

∫
V

k∇T (i) · ∇Wdv =

∆t

∫
V

(−∇ · ~qr + g(t)G(x − x∗, y − y∗, z − z∗))Wdv+

∫
V

ρCpT
(i−1)Wdv, (10)

and ∫
V

~si · ∇IiW̃dv +

∫
V

(κ + σ)IiW̃dv =

∫
V

κIbW̃dv +

∫
V

σ

4π

24∑
j=1

IjwjW̃dv, (11)

where W and W̃ are the test (basis) functions for classical
Galerkin and SUPG formulations, respectively.

Using the above direct simulation framework, the to-
tal number of degrees-of-freedom for the system becomes
N3

n × 25, where Nn is the number of nodes in each coordi-
nate. Also note that there are two iteration loops in each
time step. Thus, it is expected that the above full-order
direct model solver will be computationally intensive. To
solve the stochastic inverse problem, a large number of
direct simulations is required. Therefore, reduced-order
modeling needs to be introduced for the direct simulation.

For the convenience of implementation, the direct prob-
lem is separated into a homogeneous part and an inhomo-
geneous part, i.e. T = T I + T h and I = II + Ih. These
fields are defined as follows:

For the inhomogeneous fields T I and Ih:

k∇2T I = 0 (12)

~s · ∇II + (κ + σ)II − σ

4π

∫
4π

II(~r,~s
′

)dΩ
′

= κII
b (13)

II
b =

σb(T
I)4

π
(14)

II = εII
b +

1 − ε

π

∫
~n·~s′<0

|~n·~s′ |II(~r,~s
′

)dΩ
′

, ~n·~s > 0 (15)

T I = Tw, on S (16)

For the homogeneous fields T h and Ih:

ρCp
∂Th

∂t
= k∇2Th −∇ · ~qr + g(t)G(x− x∗, y − y∗, z − z∗)

(17)

~s ·∇Ih +(κ+σ)Ih− σ

4π

∫
4π

Ih(~r,~s
′

)dΩ
′

= κIb−κII
b (18)

Ih =
1 − ε

π

∫
~n·~s′<0

|~n · ~s′ |Ih(~r,~s
′

)dΩ
′

, ~n · ~s > 0 (19)

Th = 0, on S (20)

The reduced-order models are constructed for homoge-
neous T h and Ih only since the steady state Eqs. (12)-(16)
only need to be solved once in the inverse procedure.

The POD method is considered in the current work for
the reduced-order modeling. In this approach, the direct
simulation result at each time step is expressed as a lin-
ear combination of a set of orthonormal basis functions.
The coefficients associated with each basis function are
computed from the solution of ordinary differential equa-
tions (ODEs) derived by Galerkin projection. The basis
functions can be extracted from computational or experi-
mental snapshots available in a database through solving
the following eigenvalue problem [26]:

1

Ne

Ne∑
i=1

∫
V

U (i)U (i)(~r
′

)Ψ(~r
′

)dv
′

= µΨ (21)

where U (i) is the ith field function (temperature or in-
tensity field) from the database, Ne is the number of
snapshots used, µ is the eigenvalue of operator KΨ =
1

Ne

∑Ne

i=1

∫
V

U (i)U (i)(~r
′

)Ψ(~r
′

)dv
′

and Ψ is the correspond-
ing eigenfunction. In this study, the basis functions are
obtained using ‘the method of snapshots’ as follows:

• Take an ensemble set {U (1), U (2), ..., U (Ne)}, where
U (i) is the full-model solution of the PDEs at the ith

time step. For temperature, U (i) is in fact T h(t =
i∆t). For intensity, U (i) is Ih(t = i∆t).

• Solve the eigenvalue problem CV = V µ, where C is a
Ne × Ne matrix with Cij = 1

Ne

∫
V

U (i)U (j)dv, µ is a

Ne × Ne diagonal matrix with the ith diagonal entry
µi is the ith eigenvalue of C, and the corresponding
eigenvector Vi is the ith column of Ne ×Ne matrix V.

• Compute the basis functions as Ψi =∑Ne

j=1 Vi(j)U
(j)/(Neµi).

The set {Ψ1,Ψ2, . . . ,ΨNe
} is orthonormal [26]. Note

that the intensity Ih is a function of both space and orien-
tation, therefore, the volume integration in Eq. (21) and
the followed eigenvalue analysis should be replaced with∫

V

∫
4π

dvdΩ for model reduction of Ih. Finally note that
the beauty of the POD-based model-reduction is that in
most situations, it is sufficient to take only a small num-
ber of basis functions (those corresponding to the larger
eigenvalues). Convergence and optimality properties of
POD expansions can be found in [25].

Let {ΨT
1 ,ΨT

2 , ...,ΨT
KT

} denote the basis functions of

Th and {ΨI
1,Ψ

I
2, ...,Ψ

I
KI

} denote the basis functions of

Ih, where KT and KI are the number of basis functions
used for expanding temperature and intensity fields, re-
spectively. The solutions of the reduced-order model are
written as follows:

Th(t, ~r) =

KT∑
i=1

ai(t)Ψ
T
i (~r) (22)

Ih(t, ~r, ~s) =

KI∑
i=1

bi(t)Ψ
I
i (~r,~s) (23)
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Substituting the above expressions into Eqs. (17) and (18),
the following ODEs are obtained:

Mj
daj

dt
+

KT∑
i=1

Hjiai = −Sj + Qjg(t), j = 1 : KT (24)

KI∑
i=1

Ajibi −
KI∑
i=1

Bjibi = Dj , j = 1 : KI (25)

where the following definitions have been introduced:

Mj = ρCp

∫
V

(ΨT
j )2dv (26)

Hji = k

∫
V

∇ΨT
j · ∇ΨT

i dv (27)

Sj =

∫
V

(∇ · ~qr)Ψ
T
j dv (28)

Qj =

∫
V

ΨT
j G(x − x∗, y − y∗, z − z∗)dv (29)

Aji =

∫
V

∫
4π

{(~s · ∇ΨI
i )Ψ

I
j + (κ + σ)ΨI

i Ψ
I
j}dΩdv (30)

Bji =

∫
V

∫
4π

{(
∫

4π

ΨI
i dΩ

′

)ΨI
j}dΩdv (31)

Dj =

∫
V

∫
4π

(κIb − κII
b )ΨI

jdΩdv (32)

Solving Eqs. (24) and (25), the reduced-order solution can
be obtained as follows:

T = T I +

KT∑
i=1

aiΨ
T
i (33)

I = II +

KI∑
i=1

biΨ
I
i (34)

It is seen that the total number of degree-of-freedom is
reduced to KT + KI , which is extremely small compared
to the full-order model simulation. Using this reduced-
order solver for the direct analysis, we are now ready to
investigate the inverse problem of interest.

4 Bayesian inverse formulation

From a Bayesian point of view, the inverse solution is
not solely a point estimate ĝ but the probability density
function of ĝ given the observation Y. To introduce the
Bayesian formulation, the unknown heat source function is
first discretized using linear finite element basis functions
in time as follows:

ĝ(t) =

m∑
i=1

hi(t)θi (35)

where hi’s are as shown in Fig. 2, θi’s are the correspond-
ing nodal values of ĝ and m is the number of basis func-
tions used. The inverse problem is then transformed to

�i-1

dt

neighbors of �i

t

g
hi

�i �i+1

Figure 2: Basis functions and neighbor sites in the dis-
cretization of ĝ.

the estimation of the joint distribution of a stochastic pro-
cess {θi, i = 1 : m}. The probability density function of
θ (vector form of {θi, i = 1 : m}) given Y can be written
according the Bayes’s formula as:

p(θ|Y ) =
p(Y |θ)p(θ)

p(Y )
(36)

where p(θ|Y ) is called the posterior probability density
function (PPDF), p(Y |θ) is the likelihood function and
p(θ) is the prior distribution. Once the PPDF is known,
various point estimates can be computed such as the ‘Max-
imum A Posteriori’ (MAP) estimate:

θ̂MAP = augmaxθ p(θ|Y ) (37)

and the posterior mean estimate:

θ̂postmean = E θ|Y (38)

In general, the probability p(Y ) is not explicit and is
rather difficult to compute. However, as a normalizing
constant, the knowledge of p(Y ) can be avoided if the pos-
terior state space can be explored up to the normalizing
constant. This is actually true for the numerical sampling
strategies adopted in the current work. Therefore, the
PPDF can be evaluated as,

p(θ|Y ) ∝ p(Y |θ)p(θ) (39)

The likelihood function can be obtained from the fol-
lowing relationship,

Y = F (θ) + ω (40)

where F is the a numerical solver that computes the tem-
peratures at thermocouple locations given the heat source
using the reduced-order model introduced in the previous
section. Fi represents the temperature at the same loca-
tion and time as Yi does. In this work, we regard mea-
surement errors (ω) as independent identically distributed
(i.i.d.) Gauss random variables with zero mean and stan-
dard deviation (std) σT . It is assumed that the numerical
errors are much less in magnitude than measurement er-
rors. Subsequently, the likelihood can be written as,

p(Y |θ) =
1

(2π)n/2σn
T

exp{− (Y − F (θ))T (Y − F (θ))

2σ2
T

}
(41)
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The prior distribution reflects the knowledge, if there is
any, of the heat source, before Y is gathered. For instance,
it can be the estimate of p(θ) resulting from previous ex-
periments or simulations. From an inverse point of view,
the prior distribution model provides regularization to the
ill-posed inverse problem [18]. In the current study, a spe-
cific form of Markov random fields (MRF) [29] is adopted
for the prior modeling of θ. In general, the MRF can be
mathematically expressed as follows:

p(θ) ∝ exp{−
∑
i∼j

WijΦ(γ(θi − θj))} (42)

where γ is a scaling parameter, Φ is an even function that
determines the specific form of the MRF, the summation is
over all pairs of sites i ∼ j that are defined as neighbors as
shown in Fig. 2, and W ′

ijs are specified non-zero weights

[21]. Let Φ(u) = 1
2u2, the MRF can then be rewritten as:

p(θ) ∝ λm/2 exp{−1

2
λθT Wθ} (43)

In the one-parameter model of Eq. (43), the entries of
the m × m matrix W are determined as, Wij = ni if i=j,
Wij = −1 if i and j are adjacent, and as 0 otherwise. ni is
the number of neighbors adjacent to site i. λ is a scaling
constant. This MRF model is equivalent to Tikhonov reg-
ularization provided the measurement errors are Gaussian
and the objective is to maximize the posterior probability
(MAP) [18].

With the specified likelihood function in Eq. (41) and
prior distribution in Eq. (43), the PPDF for the inverse
problem can then be formulated as,

p(θ|Y ) ∝ exp{− 1

2σ2
T

[F (θ) − Y ]T [F (θ) − Y ]}

· exp{−1

2
λθT Wθ} (44)

In the above formulation, all the normalizing constants
are neglected because the numerical algorithm introduced
in later section allows to explore the posterior state space
without knowing these constants. Eq. (44) is the Bayesian
formulation investigated for the inverse radiation problem
of interest. Both point estimates of MAP (Eq. (37)) and
posterior mean (Eq. (38)) and probability bounds of the
posterior distributions are computed based on this formu-
lation.

5 MCMC sampler

For point estimates like MAP, deterministic optimiza-
tion algorithms such as the conjugate gradient method can
be used to find the approximate solutions. However, for
obtaining the posterior mean estimate, or for estimating
higher order statistics of the random unknown, statistical
sampling algorithms such as Markov chain Monte Carlo
(MCMC) simulation must be introduced to explore the
posterior state space.

The idea of general Monte Carlo simulation is to ap-
proximate the expectation or higher order statistics of any

function f(θ) by the sample mean and sample statistics
from a large set of i.i.d. samples {θ(i), i = 1 : L} drawn
from a target distribution p(θ) (PPDF in the current ex-
ample), where L is the size of the sample set. Then by
the strong law of large numbers, the following convergence
holds:

ELf(θ) =
1

L

L∑
i=1

f(θ(i)) 7−→L→∞ Ef(θ) =

∫
f(θ)p(θ)dθ

(45)
Obviously, the posterior mean estimate of Eq. (44) can
be obtained through the above approximation. The MAP
estimate can be approximated as:

θ̂MAP = argmaxθ(i) p(θ(i)) (46)

For Eq. (44), the key step in Monte Carlo simulation
is to draw the sample set from this high dimensional and
implicit distribution function. MCMC provides such sam-
pling strategy using the Markov chain mechanism [23, 30].
Only the basic form of MCMC, the Metropolis-Hastings
(MH) algorithm [31], is reviewed here.

1. Initialize θ(0)

2. For i = 0 : Nmcmc − 1

— sample u ∼ U(0, 1)

— sample θ(∗) ∼ q(θ(∗)|θ(i))

— if u < A(θ(∗), θ(i)) = min{1,
p(θ(∗))q(θ(i)|θ(∗))

p(θ(i))q(θ(∗)|θ(i))
}

θ(i+1) = θ(∗)

— else

θ(i+1) = θ(i)

In the above algorithm, Nmcmc is the total number of
runs, u is a random number generated from standard uni-
form distribution U(0, 1), p(θ) is the target distribution
(PPDF here) and q(∗|i) is a proposal distribution that
has standard form and generates candidate sample condi-
tional on the previous sample. By its design, the algorithm
guarantees that the samples will converge to the target dis-
tribution for any proposal distribution. However, careful
design of q(∗|i) can accelerate convergence. Once conver-
gence of the chain is achieved, the samples obtained can
be regarded to belong to the target distribution. In princi-
ple, if the full conditional distribution of each component
θi is available and in a standard form, it is advantageous
to use the Gibbs sampler, which uses the full conditional
distribution as the proposal distribution. However, this is
not feasible for Eq. (44) since F (θ) is implicit.

In this study, a modified MH sampler is designed which
takes advantage of the idea of Gibbs sampler, namely, to
update the vector θ one component at each time. The
following notation is introduced:

θ
(i+1)
−j = {θ(i+1)

1 , θ
(i+1)
2 , ..., θ

(i+1)
j−1 , θ

(i)
j+1, ..., θ

(i)
m }

in which, the superscript (i) refers to the ith sample and
the subscript j refers to the jth component. The sampler
is designed as follows:
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Figure 5: Homogeneous intensity fields on y = 0.5 along directions [0.9082483 0.2958759 0.2958759] and
[−0.9082483 0.2958759 0.2958759] for step heat source.
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Figure 8: Eigenfunctions of T h on y = 0.5.
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Figure 9: Homogeneous temperature field computed using
the POD method on y = 0.5 for step heat source.
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Figure 10: Temperature evolution at thermocouple loca-
tions for step heat source.

data are generated by adding Gauss random noise with
zero mean and standard deviation σT to the full-order di-
rect model solution at the thermocouple locations. For all
following cases, the temperature is assumed to be mea-
sured from t = 0 to t = 0.05s with a sampling interval
δt = 0.001s, hence, there are totally 150 measurements for
each case. 26 basis functions are used in the discretization
of ĝ(t) with equal step size of dt = 0.002s.

To obtain a good starting point for the MH sampling,
an initialization step is first conducted by running the sam-
pling algorithm while solely increasing the likelihood. A
few hundred runs of this procedure is enough to provide a
good initial guess of θ.

Fig. 11 plots the MAP estimates of the step heat source
using MCMC samples when σT has different values. It is
seen that the MAP estimates are stable to various magni-
tudes of errors. In Fig. 12, the posterior mean estimate
when σT = 0.01 is plotted. The estimates are achieved
using 10000 converged MCMC samples. The upper and
lower bounds plotted in the same figure are the values
at 3 standard deviations from the sample mean, which is
an indication of the highest density region of the poste-
rior state space. The σqj used in the proposal distribu-

tion is 1% of the magnitude of θ
(i)
j . This is to guarantee

that the proposal distribution can fully explore the pos-
terior state space while concentrating on the highest den-
sity region. The regularization constant, λ is chosen to be
8.0e − 9, 5.0e − 9 and 2.0e − 9, respectively for the above
three cases by using the method described in [18] (select-
ing the range of regularization parameter within which the
computed point estimate remains practically unchanged).
The regularization parameter λ can be treated as a hyper-
parameter in a hierarchical augmented Bayesian formula-
tion thus avoiding any need for its priori selection. This
approach, however, was not followed here to limit the dis-
cussion to the fundamental aspects of Bayesian inference.
The overall acceptance ratio for the chain used in Fig. 12
is around 77.5%.

A triangular profile of heat source as shown in Fig. 13 is
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Figure 11: MAP estimates for the step heat source.
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σT = 0.01.

o t

g(t)

0.02s 0.04s 0.05s

160kW/m3

80kW/m3

Figure 13: Profile of the triangular heat source.
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Figure 14: MAP estimates for the triangular heat source
case.

also reconstructed following the same procedures. Fig. 14
plots the MAP estimates of triangular heat source when σT

has different values. It is again seen that the estimates are
relatively stable to the change of magnitude of noise. Fig.
15 plots the posterior mean estimate when σT = 0.01. The
same proposal distribution as in the previous cases is used
for this run. The overall acceptance of the Markov chain
is around 77.4%. It is seen that with simulated noise, the
posterior mean estimate approximates the true heat flux
quite well.

7 Discussion and Conclusion

An inverse radiation problem is solved using a Bayesian
statistical inference method. The posterior distribution of
an unknown heat source strength is computed from tem-
perature measurements by modeling the measurement er-
rors as i.i.d. Gauss random variables. The Metropolis-
Hastings algorithm was used to explore the posterior state
space and the POD method to reduce the computational
cost. A Markov random fields model was used to regular-
ize the ill-posed inverse problem. The simulation results
indicate that the method can provide accurate point es-
timates of the unknown heat source as well as complete
statistical information. Although the study is devoted to-
ward point heat source estimation, the methodologies can
be extended to reconstruction of distributed heat sources
as well by using multiscale Markov random fields models in
the prior distribution modeling, where the inherent length
scales in temporal and spatial directions are explored. Fi-
nally, in the situation where thermal properties are depen-
dent on the temperature and large temperature variation
is observed, the Bayesian computation is still applicable.
However, a general methodology for proper selection of
snapshots in the POD modeling that can capture the dy-
namics of the temperature and intensity fields needs to be
developed.
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Figure 15: Posterior mean estimate of the triangular heat
source and probability bounds of the posterior distribution
when σ = 0.01.
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