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Abstract. Very few countermeasures are known to protect an exponen-
tiation against simple side-channel analyses. Moreover, all of them are
heuristic.
This paper presents a universal exponentiation algorithm. By tying the
exponent to a corresponding addition chain, our algorithm can virtually
execute any exponentiation method.
Our aim is to transfer the security of the exponentiation method being
implemented to the exponent itself. As a result, we hopefully tend to
reconcile the provable security notions of modern cryptography with real-
world implementations of exponentiation-based cryptosystems.
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1 Introduction

The security of a cryptosystem is evaluated as the latter’s ability to resist at-
tacks in a given adversarial model. It is very challenging to guess the strategy
the adversary will follow in an attempt to break the system. So, the only as-
sumptions made by modern cryptography refer to the computational abilities of
the adversary [6]. Loosely speaking, a cryptosystem is then said secure if there
is no polynomial-time adversary able to gain more “useful” information than a
honest user by deviating from the “prescribed” behavior.

In [9, 11], Kocher et al. launched a new class of attacks: the so-called side-

channel attacks. In such a scenario, an adversary monitors some side-channel in-
formation (e.g., power consumption) during the execution of a crypto-algorithm
and thereby may foil the security of the corresponding “provably secure” cryp-
tosystem. So what does provable security mean? The security is usually proven
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by reduction: one shows that the only way to break the cryptosystem is to break
the underlying cryptographic primitive (e.g., the rsa function). Since this is
assumed to be computationally infeasible, the cryptosystem is declared secure.
A side-channel attack does not violate this assumption, it just considers other
directions to break the cryptographic primitive. Consequently, we stress that the
notions of provable security, or more exactly provable computational security, are
very useful and must be part of the analysis of any cryptosystem.

Unfortunately, there is no counterpart to side-channel attacks. Defining a
security model for this class of attacks seems unrealistic since we do not see how
to limit the power of the adversary. The best we can hope to prove is the security
relative to one particular attack.

This paper focuses on modular exponentiation (e.g., the rsa function or the
discrete logarithm function) as a cryptographic primitive. Using a representation
with addition chains, we “transfer” the security of the exponentiation method ac-
tually implemented in the exponent itself (which is the secret data). The resulting
algorithm, which we call universal exponentiation algorithm, works with virtually
all exponentiation methods. It simply reads triplets of values (γ(i) : α(i), β(i)),
meaning that the content of register R[α(i)] must be multiplied by the content
of register R[β(i)] and that the result must be written into register R[γ(i)]. We
provide in this way a kind of reduction. Instead of carefully analyzing a specific
exponentiation method, the implementor simply verifies that the atomic opera-
tion R[γ(i)]← R[α(i)] · R[β(i)] does not leak any “useful” information through
a given side-channel attack. This methodology is reminiscent of the traditional
security proofs. In the traditional case, the security of a cryptographic primitive
is conjectured (e.g., inverting the rsa function is infeasible) whereas in our case
the security of an atomic operation is assessed through experiments (e.g., I can-
not “break” a multiplication by spa). The main difference is that the security
assumption is scrutinized by fewer people and hence is more controversial.

The rest of this paper is organized as follows. The next section recalls the
definition of an addition chain. Based on it, we then present our universal expo-
nentiation algorithm. In Section 3, we discuss the merits of our approach from a
security viewpoint. Section 4 suggests some modifications to our basic algorithm.
Finally, we conclude in Section 5.

2 Universal Exponentiation Algorithm

2.1 Addition chains

We start by a brief introduction to addition chains. For further details, we refer
the reader to [8].

Definition 1. An addition chain for a positive integer d is a sequence C(d) =
{d(0), d(1), . . . , d(ℓ)} satisfying

1. d(0) = 1, d(ℓ) = d, and

2. for all 1 ≤ i ≤ ℓ, there exist j(i), k(i) < i such that d(i) = d(j(i)) + d(k(i)).
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Integer ℓ defines the length of chain C. An addition chain is called a star-chain

if for all 1 ≤ i ≤ ℓ there exists k(i) < i such that d(i) = d(i−1) + d(k(i)).
A slightly more general notion is that of addition-subtraction chains.

Definition 2. An addition-subtraction chain for an integer d is a sequence

C(d) = {d(0), d(1), . . . , d(ℓ)} satisfying

1. d(0) = 1, d(ℓ) = d, and

2. for all 1 ≤ i ≤ ℓ there exist j(i), k(i) < i such that d(i) = ±d(j(i)) ± d(k(i)).

2.2 A universal algorithm

Let C(d) = {d(0), d(1), . . . , d(ℓ)} be an addition chain for exponent d. So for all
1 ≤ i ≤ ℓ, we have d(i) = d(j(i))+d(k(i)). This provides an easy means to evaluate
y = xd: For i = 1 to ℓ compute

xd(i)

= xd(j(i))

· xd(k(i))

and then set y = xd(ℓ)

. So, from an addition chain of length ℓ, ℓ multiplications
are required to compute y.

Example 1. An addition chain for 5 is C(5) = {1, 2, 3, 5} and so x1 = x, x2 =
x1 · x1, x3 = x2 · x1, and finally x5 = x3 · x2.

At step i, xd(i)

is evaluated as xd(i)

= xd(j(i))

· xd(k(i))

. Assuming that xd(j(i))

and xd(k(i))

respectively belong to registers R[α(i)] and R[β(i)] and that the

result, xd(i)

, is written in register R[γ(i)], exponent d can be represented by the
register sequence

Γ (d) =
{(

γ(i) : α(i), β(i)
)}

1≤i≤ℓ
, (1)

meaning that R[γ(i)] = R[α(i)] · R[β(i)]. (By convention, the value d = 1 is
represented by Γ (1) = ∅.)

From this, we obtain the following exponentiation algorithm (for d > 1):

Input: x,Γ (d)

Output: y = xd

R[α(1)]← x; R[β(1)]← x

for i = 1 to ℓ do

R[γ(i)]← R[α(i)] ·R[β(i)]

return R[γ(ℓ)]

Algorithm 1. Universal exponentiation algorithm.

Note that R[α(1)] and R[β(1)] are initialized to x because the second item of
each addition chain is always d(1) = 2. Note also that one may have α(1) = β(1).
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For star chains, we have d(i) = d(i−1) + d(k(i)). Therefore pairs are sufficient
to represent d: α(i) = γ(i − 1) for all 1 ≤ i ≤ ℓ and can be omitted from the
representation. Hence, we have the star register sequence

Γ ∗(d) =
{(

γ(i) : β(i)
)}

1≤i≤ℓ
. (2)

The corresponding exponentiation algorithm is:

Input: x,Γ ∗(d)

Output: y = xd

R[γ(0)]← x; R[β(1)]← x

for i = 1 to ℓ do

R[γ(i)]← R[γ(i− 1)] · R[β(i)]

return R[γ(ℓ)]

Algorithm 2. Universal star exponentiation algorithm.

3 Towards Provable SPA-resistance

The ultimate goal of smart-card manufacturers is a proof that their implementa-
tions are resistant to side-channel analysis. In this paper, we adopt the method-
ology of modern cryptography towards this goal.

Take for example the encryption scheme rsa-oaep [3]. The minimal secu-
rity requirement for an encryption scheme is one-wayness (OW). This captures
the property that an adversary cannot recover the whole plaintext from a given
ciphertext. In some cases, partial information about a plaintext may have disas-
trous consequences. This notion is captured by semantic security or the equiva-
lent notion of indistinguishability [7]. Basically, indistinguishability means that
the only strategy for an adversary to distinguish between the encryptions of any
two plaintexts is to guess at random. The strongest attacks one can imagine (at
the protocol level) are the so-called adaptive chosen-ciphertext attacks (CCA2).
Those attacks consider an active adversary who can obtain the decryption of any
ciphertext of her/his choice. From the pair of adversarial goal (IND) and adver-
sarial model (CCA2), we derive the security notion of IND-CCA2. In an IND-CCA2

scenario, an adversary has access to a decryption oracle. S/he first outputs a pair
of plaintexts m0 and m1. Then, given a challenge ciphertext cb which is either
the encryption of m0 or m1, the adversary has to guess with a probability non-
negligibly better than 1/2 if cb encrypts m0 or m1. The attack is called adaptive,
if after receiving the challenge cb, the adversary may still obtain decryptions of
chosen ciphertexts, the only restriction being not to probe on cb.

In [3], Bellare and Rogaway remarkably proved that if an adversary is able
to break the IND-CCA2 security of rsa-oaep then the same adversary is able
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to break the OW security of the rsa function, that is, to compute an eth root
modulo a large composite number N = pq (where typically p and q are 512-bit
primes). Since the latter is assumed infeasible, rsa-oaep is declared provably
secure. We note that their proof only holds in the random oracle model [2], i.e., an
ideal world where hash functions behave like random functions. To summarize,
the security of rsa-oaep is proven by

1. identifying the security goal and the adversarial model (i.e., IND-CCA2);

2. defining the working hypotheses (i.e., random oracle model);

3. exhibiting a reduction (i.e., breaking the IND-CCA2 of rsa-oaep⇒ breaking
the OW of the rsa function);

4. assuming that the reduced problem is intractable (i.e., inverting rsa is in-
feasible);

5. deducing the security notion (i.e., IND-CCA2 security of rsa-oaep in the
random oracle model).

The security of rsa-oaep is at the protocol level. To break the IND-CCA2

security, the adversary has a black-box access to a decryption oracle: s/he knows
the input and obtains the corresponding output. In the case of side-channel
attacks, the adversary is more powerful: s/he gets access to some internal states
of the computation.

So, by monitoring the power consumption of an rsa exponentiation, an at-
tacker is even sometimes able to recover the secret decryption exponent d used
in the computation of y = xd mod N and the OW assumption of the rsa func-
tion is no longer valid. Suppose for example that the rsa function is naively
implemented with the square-and-multiply method. As shown in the next fig-
ure, the exponent can then be recovered very easily: a lower consumption level
corresponds to a squaring and a higher consumption level corresponds to a mul-
tiplication.

Fig. 1. Power trace of a square-and-multiply exponentiation.
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In our simplified model, we consider the fundamental security goal of un-

breakability (UB). A cryptosystem is said unbreakable if it is infeasible to recover
the secret key. This kind of attack is usually referred to as a total breaking.
We also consider an attacker who has access to some side-channel information.
Depending on the side-channel information and the way it is treated, we de-
fine several adversarial models. In the simple power analysis (SPA) model, an
attacker acquires the power trace of a single execution of the crypto-algorithm.
From this, we derive the security notion of UB-SPA. Likewise, one can define the
UB-DPA (dpa stands for differential power analysis [11]) and so on; one can also
consider other security goals and derive security notions like OW-SPA or IND-SPA.
It is worth noting here that, contrary to modern cryptography, the definition of
an adversarial model is not absolute: in a CCA2 attack, an adversary obtains
the plaintext corresponding to a chosen ciphertext whereas in an attack like a
SPA, the “quality” of the returned information depends on the acquisition tools
among other things.

Concentrating on the exponentiation function and more particularly on the
rsa function, one can show that if an adversary is able to break the UB-SPA

security of the universal exponentiation algorithm, s/he is also able to invert the
rsa function. (We note that the main threat for an rsa exponentiation is the
spa; for dpa, efficient counter-measures are known.) In order to break the UB-

SPA, an adversary must be able to gain some secret information from the basic
operation R[γ(i)] ← R[α(i)] · R[β(i)] by spa, that is, s/he must be able to, at
least, differentiate among the triplets (γ(i) : α(i), β(i)) and to recover all their
values to break the UB property. Assuming that the latter is infeasible (this can
be verified experimentally), one has strong evidence1 that the universal expo-
nentiation algorithm resists to spa. As a conclusion, if rsa-oaep is implemented
with the universal exponentiation algorithm, we have strong evidence that it re-
sists spa attacks. Note here that the security is assessed at the implementation
level.

From a security viewpoint, the advantage of our method is evident. It reduces
the problem of scrutinizing any exponentiation algorithm to that of the simpler
operation R[γ(i)] ← R[α(i)] · R[β(i)]. This makes the job of the implementor
a lot easier since s/he has a better knowledge of the sensitive parts of her/his
algorithm. Moreover, the security passes from a macroscopic level (a software
exponentiation) to a microscopic level (a hardware multiplication). Finally, the
analysis must be done once for all and remains valid whatever the exponentiation
algorithm underlying a given Γ -representation.

Remark 1. In some ways, to relax the assumption the universal exponentiation
algorithm is UB-SPA, one can always randomly add dummy operations at the
expense of a longer running time (e.g., to add to a Γ representation, a triplet
that does not affect the final result). One can also exploit the property that
R[γ(i)]← R[α(i)] ·R[β(i)] and R[γ(i)]← R[β(i)] ·R[α(i)] both lead to the same

1 In contrast with modern cryptography, we cannot say that we have a proof of security
because as aforementioned this depends on the quality of the experiments.
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result. Another solution consists to randomly permute the order of the registers
and their values during the course of the exponentiation.

In addition to simplifying the security analysis, our universal exponentiation
algorithm has the following features:

– it is simple: its implementation is straightforward and so programming errors
are likely avoided;

– it is flexible: owing to the genericity of the Γ -representation, it can virtually
execute all exponentiation algorithms;

– it is fast : contrary to the protected square-and-multiply method (a.k.a.
square-and-multiply-always method) which requires 2 log2 d multiplications
for computing y = xd, our algorithm may require as few as 1.25 log2 d mul-
tiplications (cf. § 4.1);

– it is economic: if the exponentiation algorithm underlying a Γ -representation
happens to be flawed, it is enough to correct the Γ -representation: a complete
re-programming is unnecessary.

The last property is especially interesting for a smart-card implementation.
The program code is usually stored in rom memory via an expensive process
called masking and the secret key (e.g., the rsa decryption exponent d) is stored
in eeprom memory at the personalization stage. So in case of secret leakage or
mis-programming, one has just to change or correct the Γ -representation of the
secret exponent.

4 Practical Considerations

If we want to realize a smart-card implementation of the proposed algorithms
(Algorithms 1 and 2), we face some constraints. A smart-card has a limited
number of registers and so we need a way to produce Γ -representations with
a predetermined number of registers. Moreover, a Γ -representation with fewer
registers requires fewer memory for its storage. Another difficulty may occur
when the secret exponent is generated outside the card by a third party because
it is given in its binary representation.

In this section, we suggest two different approaches that alleviate the above
limitations.

4.1 On-line generation

A straightforward solution is to produce a Γ -representation on-line, i.e., by the
smart-card itself. Several good heuristics are known for producing relatively short
addition chains. In [12], Walter suggests the following method to compute y = xd

(see also [4]).
Define d0 = d, x0 = x, and y0 = 1. Next, at each step, write di = mi di+1 +ri

for appropriately chosen values for (mi, ri). Hence, letting xi+1 = xi
mi and
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yi+1 = xi
riyi, we get

y = x0
d0 y0 = (x0

m0)d1 (x0
r0 y0)

= x1
d1 y1 = (x1

m1)d2 (x1
r1 y1)

= x2
d2 y2 = (x2

m2)d3 (x2
r2 y2)

= x3
d3 y3 = · · ·

The idea behind Walter’s method is to find pairs (mi, ri) so that the evaluations
of both xi

mi and xi
ri are inexpensive. This is the case when ri lies in the addition

chain used to evaluate xi
mi .

Such a method is very well suited to a smart-card implementation. It is easy
to implement and the corresponding register sequence, Γ (d), requires only one
more register than the standard square-and-multiply method. Furthermore, the
average length of Γ (d) is only 1.25 log2 d, with a very small deviation. See [12]
for details.

Note that the computation of Γ (d) must be performed in a secured environ-
ment since its disclosure reveals the value of secret exponent d. For example,
this can performed at the personalization of the card.

4.2 Exponent splitting

The second solution we propose relies on the simple observation that

xd = xa · xd−a (3)

for some a. The idea of splitting the data was already abstracted in [5] as a
general countermeasure against differential power analysis attacks. We note that
the values of both a and (d − a) are required to recover the value of d. In other
words, only one exponentiation, xa or xd−a, needs to be secured.

Given a register sequence for a, Γ (a) or Γ ∗(a), we can compute y′ = xa

and d′ = d − a, and so xd = y′ · xd′

. There are two possible alternatives. The
first one is, for a given a, to store a chosen (and thus fixed) register sequence,
Γ (a), during the personalization of the card. (In this case a star representation,
Γ ∗(a), may be preferred since it requires fewer memory.) The advantage of this
approach is that this imposes the underlying methods for computing y′ = xa

and d′ = d− a.
Another alternative consists in randomly computing a register sequence, Γ (a)

or Γ ∗(a), for a “on the fly”. The advantages of this second approach are twofold.
First, no register sequence needs to be stored in non-volatile memory and so this
results in some memory savings. Second, the methods for evaluating y′ = xa and
d′ = d− a differ at each execution. Independently, this randomization also helps
to prevent differential attacks like the dpa.

5 Conclusion

In this paper, we presented an universal exponentiation algorithm. Through
the notion of register sequence, Γ (d) = {(γ(i) : α(i), β(i))}1≤i≤ℓ, built from
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addition chains, we explained how this helps to protect an exponentiation-based
cryptosystem against simple side-channel attacks like spa. Assuming that a more
atomic operation (i.e., the multiplication of registers R[γ(i)]← R[α(i)] ·R[β(i)])
does not leak secret information, we “proved” the security of our implementation.
There is no secret at all involved in our universal exponentiation algorithm: the
secret exponent d is intimately tied to Γ (d) and recovering the value of d supposes
the recovery of the whole sequence Γ (d), which is a contradiction. Furthermore,
our algorithm can be trivially implemented and it greatly simplifies the security
analysis since the critical (i.e., sensitive) parts are better understood.

As a final conclusion, we hope that this first step towards provable security
of real-world implementations will be a motivating starting-point for further
research in this very important subject.
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