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and?2) the distance function used for clustering images in that
feature space can accurately model perceptual similarity.

Abstract We perform our mining operation in two stages. In the first
stage, we isolate the distance function factor (we use the Eu-
. lidean distance) to find a reasonable feature set. In the second
Eg; r::ll;nnosatczvge::jsdezrcchor;trir:-I?/Z?eodmlen}iggal;eégfgla:):‘%%gg, we freeze the features to Qisc_:ove_r a perc_eptual distance
i ' {nction that can better cluster similar images in the feature
lem remains largely unsolved: how to measure perceé@pace. In other words, our goal is to find a function that can
tual similarity. To measure perceptual similarity, most regeep similar images close together in the feature space, and at
searchers employ the Minkowski-type metric. Our extenthe same time, keep dissimilar images away. We call the dis-
sive data-mining experiments on visual data show that, ugevered functiomlynamic partial distance functioi®PF). We
fortunately, the Minkowski metric is not very effective in empirically compare DPF to Minkowski-type distance func-
modeling perceptual similarity. Our experiments also shoWons and show that DPF performs remarkably better.

that the traditional “static” feature weighting approaches Briefly, the contributions of this paper are as follows:

are not sufficient for retneymg various similar Images. In. We construct a mining dataset to find a feature set that can
this paper, we report our discovery of a perceptual distance, yeqy ately represent images. In that feature space, we find
function through mining a large set of visual data. We call gjstinct patterns of similar and dissimilar images, which lead
the discovered functiodynamic partial distance function o the discovery of DPF.

(DPF). When we empirically compare DPF to Minkowski-g through empirical study, we demonstrate that DPF is very
type distance functions, DPF performs significantly better effective in finding images that have been transformed by ro-
in finding similar images. The effectiveness of DPF can betation, scaling, downsampling, and cropping, as well as im-
well explained bysimilarity theoriesin cognitive psychol-  ages that are perceptually similar to the query image (e.g.,
ogy. images belonging to the same video shot). Our testbed shows

) ) o that DPF outperforms Minkowski-type functions By per-
Keywords: content-based image retrieval, data mining, pekentiles in recall.

ceptual distance function, similarity search.

2 Discovering DPF
1 Introduction

To ensure that sound inferences can be drawn from our min-
Research in content-based image retrieval has steadily gaimgdesults, we carefully construct the training dataset. First,
momentum in recent years as a result of the dramatic increes@repare for a dataset that is comprehensive enough to cover
in the volume of digital images. To achieve effective retrievaldiversified set of images. To achieve this goal, we collect
an image system must be able to accurately characterize68ndo0 JPEG images from Corel CDs and from the Internet.
guantify perceptual similarity. However, a fundamental ch8kecond, we define “similarity” in a slightly restrictive way so
lenge — how to measure perceptual similarity — remathst individuals’ subjectivity can be safely excluded. (We ad-
largely unanswered. Various distance functions, such asditess the problem of learning subjective perception in [1, 6].)
Minkowski metri¢ earth mover distancgb], andfuzzy logi¢c For each image in thg0, 000-image set, we perfori?4 trans-
have been used to measure similarity between feature vedtorsations including scaling, downsamping, cropping, rota-
representing images. Unfortunately, our experiments show tieatt, and format transformation. (Details of these transforma-
they frequently overlook obviously similar images and hertans are explained in the extended version of this paper [4].)
are not adequate for measuring perceptual similarity. The total number of images in the testbed.&million.

Quantifying perceptual similarity is a difficult problem. In- Our experimental results (see Section 3) show that the per-
deed, we may be decades away from fully understanding leeptual distance function discovered during the mining process
human perception works. In this project, we mine visual this training dataset, which has a slightly restrictive defini-
data extensively teeverse-engineexr good perceptual distancgon of similarity, can be used effectively to find other percep-
function for measuring image similarity. Our mining hypothasally similar images. In other words, our testbed consists of
sis is this: Suppose most of the similarimages can be clustereglasonable representation of similar images, and the mining
in a feature space. We can then claim with high confidence tieatilts (i.e., training results) can be generalized to testing data
1) the feature space can adequately capture visual perceptmmsisting of perceptually similar images produced by other
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Figure 1: The Distributions of Feature Distances.
methods (e.g., changing camera parameters). We questioned the above assumptions upon observing how
From each image, we extrabt4 features including color,SiMilar objects are located in the feature space. For this pur-
texture, and shape as its representation. We discuss what we carried out extensive data mining work onithi-
features are, and why they are chosen in [4]. In the remair]g9€ dataset. To better discuss our findings, we introduce a
of this section, we focus on examining the Minkowski metffd ™ We have found useful in our data mining work. We define
and its family. We explain why these functions are ineffectiii§ feature distancen thei™ feature as); = |z; — yil,i =

for measuring image similarity, and present our DPF solution. " ¥
i ; ; Lo In our mining work, we first tallied the feature distances be-
2.1 Minkowski Metric and Its Limitations tween similar images (denoted is), and also those between

dissimilar images (denoted &@s). Since we normalized fea-

The Minkowski metric is widely used for measuring similarityre values to be between zero and one, the range ofdjoth
between objects (e.g., images). Suppose two objéasdY g44ds5— are between zero and one. Figure 1 presents the dis-

are represented by twodimensional vector&r:, z», -+, ) tributions ofé+ andé—. Thez-axis shows the possible value
and (y1,y»,---,yp), respectively. The Minkowski metricyt 5 from zero to one, The-axis (in logarithmic scale) shows
d(X,Y) is defined as the percentage of the features at differ&malues.
p . . . . .
d(X,Y) = D= ul")E, 1 The figure shows thatt andd— have different distribution
( ) (2 s = yil") @ patterns. The distribution & is much skewed toward small

wherer is the Minkowski factor for the norm. Particularly’@ues (Figure 1(a)), whereas the distributionjof is more
whenr is set a2, it is the well known Euclidean distanceVenly distributed (Figure 1(b)). We can also see from Fig-
whenr is 1, it is the Manhattan distance (& distance). An Ure 1(a) thata moderate portion®f is in the high value range
object located a smaller distance from a query object is deeﬁ?egl'a'.v"hmh indicates that similar images may be quite dis-
more similar to the query object. Measuring similarity by tgénIar in many features. This observation suggests that the
Minkowski metric is based on one assumption: the similar GgSUmption of the Minkowski metric is inaccurate. Similar im-
jects should be close to the query object in all dimensions. 29€S are not necessarily similar in all features.

A variant of the Minkowski function, the weighted Next, we examined whether similar images resemble the
Minkowski distance function, has also been applied to m@4€Y images in the same way. We tallied the feature distance
sure image similarity. The basic idea is to introduce weight- ) Of the 144 features for different kinds of image transfor-
ing to identify important features. By assigning each featur@ations. Figure 2 presents four representative transformations:

weighting coefficientu; (i = 1 - - - p), the weighted Minkowski |, cropped, rotated, and scaled. Thaxis (_)f the figure de-
distance function is defined as picts the feature numbers, frolo 144. The first108 features

are various color features, and the 138tare texture features.
Ld L The figure shows that various similar images can resemble the
do(X,Y) = () wilz; — i)™ (2) query images in very different ways. GIF images have larger
i=1 5+ in color features (the first08 features) than in texture fea-

By applying a static weighting vector for measuring sinfHres (the las86 features). In contrast, cropped images have
larity, the weighted Minkowski distance function assumes thggerd™ in texture features than in color features. For rotated
similar images resemble the query image(s) in the same f@&ges, thé* in colors comes close to zero, although its tex-
tures. For example, the weighted Minkowski function implitire feature distance is much greater. A similar pattern appears
itly assumes that the important features for finding a scaled iinthe scaled and the rotated images. However, the magnitude
age are the same as the important features for finding a cro@p&ed " of scaled images is very different from that of rotated
image_ ImageS.

We can summarize the assumptions of the Minkowski met-We summarize our observations as follows:

ric as follows: e Similar feature distancés distributed differently frondis-
e Minkowski function: All similar images must be similar in Similar feature distanceSimilar feature distancekews to-
all features. ward small values, whilgissimilar feature distancehows

¢ Weighted Minkowski function: All similar images are simi- m_org ev_en distribution. _ )
lar in the same way (e.g., in the same set of features) [7].® Similar images do not resemble the query images in all fea-
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Figure 2: The Average Feature Distances.
tures. to the Minkowski metric. Whenn < p, it counts only the
« Images similar to the query images can be similar in difféfallestn feature distances between two objects, and the in-

ing features. For example, some images resemble the gffé@pce of thep — m) largest feature distances is eliminated.
image in texture, others in color. DPF dynamically selects features to be considered for different

. . ai;s of objects. This is achieved by the introductionof,,
The above observations not only refute the assumptiongfichy changes dynamically for different pairs of objects. In

Minkowski-type distance functions, but also provide hints &ction 3, we will show that DPF makes similar images ag-
to how a good distance function would work. The first pointdgegate more compactly and locate closer to the query images,
that a distance function does not need to consider all featdy; ltaneously keeping the dissimilar images away from the

equally, since similar images may match only some fealgsry images. In other words, similar and dissimilar images
of the query images. The second point is that a distance fupg-petter separated by DPF.

tion should weight features dynamically, since various similar
images may resemble the query image in differing ways. Tsa-
ditional relevance feedback methods [3] learn a set “optimal”
feature weights for a query. For instance, if the user is m%rl?

interested in color than in texture, color features are weighteg training part, we used the sarhéM-image dataset to
higher when similarity is computed. What we have discove eddict the optimain value. In the testing part, we used a

here is that this "static” weighting is insufficient. An effectl K-image dataset to examine the effectiveness of DPF.
distance function must weight features differently when com-

paring the query image to different images. These points 18akl Predictingm Through Training
to the design of theynamic partialdistance function.

Empirical Study

empirical study consists of two parts: training and testing.

We used th&0, 000 original images to perform queries. Ap-
2.2 Dynamic Partial Distance Function plying DPF of differentm values to thel.5M-image dataset,
we tallied the distances from the&@ 000 queries to their sim-
Based on the observations explained above, we designed adlaiismages, and their dissimilar images, respectively. We then
tance function to better represent the perceptual similarity. t@ihputed the average and the standard deviation of these dis-
d; = |z; —yg|, fori = 1,---,p. We first define setd,, as tances. We denote the average distance of the similarimages to
, their queries ag}, of the dissimilar images as; . We denote
Am = {The smallest m 6's of (d1,...,0)}. the standard deviation of the similar images’ distancesas

. . . . . of the dissimilar images as, .
Then we define thddynamic Partial Distance Function

(DPF) as Figure 3 depicts the effect of (in the z-axis) onuj{, My
aj{, ando; . Figure 3(a) shows that as becomes smaller,
d(m,r) = ( Z 5. (3) both pt andp,; decrease. The average distance of similar
PN images @), however, decreases at a faster pace than that of

DPF has two adjustable parameters: and r. Parame- dissimilar images(,). For instance, when we decrease
ter m can range froml to p. Whenm = p, it degeneratesfrom 144 to 130, uj{ decreases fronh.0 to about0.3, a 70%
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Figure 4: Search Performance of Differentatr = 3.

decrease, whereas decreases fror8.2 to about2.0, a38% nificantly for finding similar images.
decrease. This gap indicatpg is more sensitive to then
value tharyu; . Figure 3(b) shows that the standard deviatiozllis

+ — .
o, ando, observe the same trend as the average distangegis work we tackled one fundamental problem in im-

Whenm decreases, similar images become more compagida etrieval—how to measure perceptual similarity between
the feature space at a faster pace than dissimilar image ges—using data mining techniques. We discoveredyhe

Our training result indicates that whemnis set asl 14, similar namic partial distance functiofDPF) through mining a large

Conclusion

images are best clustered. set of visual data, and showed that DPF outperformed the tra-
. ) ) ditional functions by significant margins. The effectivenese of
3.2 Testing New Distance Functions DPF can be explained tsimilarity theoriesin cognitive psy-

. o chology [2, 4].
The test dataset consists t0 similar-image sets, each set
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