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Abstract

Connectionist networks have been used extensively in the domain of visual word

recognition and reading. This paper presents a connectionist model that builds on the

split-fovea model (Shillcock and Monaghan, 2003). The split-fovea model integrates

into its architecture the facts that the brain and the fovea are both split. To simulate

the split fovea, the model has 2 input layers. This allows for words to be presented to

the network at different fixation positions. The paper compares two networks: 1. A

control net for which words are presented with the same frequency at all fixation posi-

tions during training. 2. A fixation net for which the frequencies for words at different

fixation positions are determined by actual data of people while reading. The aim of

the paper is to establish any differences occuring in the fixation net due to the different

fixation positions.
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Chapter 1

Introduction and Background

The first section of this chapter will provide a brief introduction and overview of the

current paper, while the second section will give the background needed for the current

work.

1.1 Introduction

Connectionist networks have been used extensively in the domain of visual word

recognition and reading. There have been a number of connectionist networks in re-

cent years which model the reading behaviour of people. An interesting model is the

split-fovea model (Shillcock and Monaghan, 2003). This model integrates the facts

that the brain and the fovea are both split into its architecture by having two separate

inputs for the right and left visual fields and two separate hidden layers for the two

hemispheres. Doing this allows one to present words to the network at different fixa-

tion positions. Because of this possibility the network is well suited for experimenting

with words being presented at different fixation positions. The current work involves

comparing two networks. The first one is a control network similar to the network used

by Shillcock and Monaghan (2003). The second network (the fixation net) on the other

1



Chapter 1. Introduction and Background 2

hand involves using real fixation data obtained by people reading newspaper articles.

The frequency with which words are fixated at each position is entered into the second

network. The aim of the paper is to establish any differences occurring in the fixation

net due to the different fixation positions.

The next section will give a brief overview of both the Dual-Route model of reading

and some connectionist models. In particular it will concentrate on the Seidenberg and

McClelland (1989) and Harm and Seidenberg (1999) models since the former was a

very influential model in the domain and the latter is an improvement of it. This will

be followed by a brief description of the split-fovea model (Shillcock and Monaghan,

2003). Another important part of this paper is the reading behaviour of people, namely

at which position they fixate words while reading. This is described in the last section

of this chapter.

The next chapter will then present the architecture of the networks used for the current

work. Additionally it will explain the training regimes used before going on to give

the results of the networks after training. Finally, in chapter 3, there will be a brief

discussion of the the results and a presentation of possible future work.

1.2 Background

1.2.1 Models

A lot of research has been done on visual word recognition (for an overview see for ex-

ample Seidenberg (1995)). There are two main types of models of visual word recog-

nition and reading. The more traditional Dual Route model (Coltheart et al., 1993;

Weekes and Coltheart, 1996) and the Connectionist models (Seidenberg and McClel-

land, 1989; Harm and Seidenberg, 1999; Plaut, 1999; Shillcock and Monaghan, 2003).

Both of these types of models are concerned with the processes by which the visual
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Figure 1.1: Basic Dual Route Model: Words can either be read using the lexicon or by

the rules mapping from orthography to phonology

form of words (or graphemes) is translated into the corresponding phonological form

(or phonemes). However they differ considerably in their approach to the problem.

First, in the next section, the Dual Route model will be briefly reviewed in order to set

the connectionist models into context. After that, the next section will present a review

of current connectionist models and their applications.

Dual-Route Model

The Dual-Route model is the more traditional model of reading(Coltheart et al., 1993;

Weekes and Coltheart, 1996). The model relies on the assumption that words are stored

in a lexicon. According to the model, there are two such lexicons, an orthographic

one which stores the orthographic forms of all the words known and a phonological

one, which stores the phonological forms. The name of this model comes from the

assumption that there are two distinct routes by which words can be recognised and

read out aloud. The first of these routes, called thelexical routemakes use of the

lexicons to read words. If a word is read, its orthographic form is looked up in the

orthographic lexicon and if a matching word is found, this is used to look up how to
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pronounce the word in the corresponding phonological lexicon. The second route on

the other hand, uses a set ofrules to map from the orthographic to the phonological

form, without having to refer to the lexicon at all (see Fig. 1.1). The rules are used to

convert the letters of the written word to the associated phonetic sounds.

From this, it is clear that exception words can only be read using the lexical route, since

their spelling-to-sound correspondence is highly irregular. Since exception words do

not obey any rules for mapping orthography to phonology, they must be looked up in

the lexicon. If the non-lexical route would be used for these words, the result would be

regularisation errors, where the word would be read according to the rules for regular

words. On the other hand, new words that have never been seen before, and non-

words, can only be read using the non-lexical route, since they are not present in the

lexicon. These words are read according to the rules for mapping regular words from

orthography to phonology. Defendants of the Dual-Route theory often maintain that it

is not possible for any single route model to correctly read both words and non-words

(or novel words).

One of the tests of this model that is often cited are the two main forms of dyslexia.

In surface dyslexia, patients have problems reading exception words, whereas perfor-

mance on non-words is normal (see for example Coltheart et al. (1983)). On the other

hand, phonological dyslexia is characterised by difficulties in non-word reading but

normal exception word reading (see for example Howard and Best (1996)). In the

Dual Route model, surface dyslexia can be explained as being caused by an impair-

ment of the lexical route, whereas phonological dyslexia is caused by an impairment

of the rule-based route. A number of studies have been done with dyslexic patients to

test the dual-route model (Castles and Coltheart, 1993; Coltheart et al., 1993; Weekes

and Coltheart, 1996).
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Connectionist Models

Connectionist models are an alternative to the Dual-Route model for visual word

recognition and reading. Connectionist networks are computational models that try

to be more brain-like than the more traditional box-and-arrow models (e.g. the Dual-

Route model). The most basic components of these networks are abstract models of

neurons calledunits. The connections between neurons are modelled byweighted

connectionsbetween the units. The units are usually grouped into different layers. A

typical feed-forward network generally has an input layer, a hidden layer and an output

layer. Each unit in the input layer is connected to each unit in the hidden layer, which

in turn is connected to each unit in the output layer (see Fig. 1.2). Activation from

the input units spreads to the hidden and then to the output units. For an overview of

connectionist modelling see for example O’Reilly and Munakata (2000).

A lot of research has been done in using connectionist networks for visual word recog-

nition (for an overview see Christiansen and Chater (1999). The networks for reading

are generally structured as that in figure 1.2 with an input, an output and a hidden layer.

It is important to note that unlike the Dual-Route model of reading, the connectionist

models have to use the same mechanism to read novel words and exception words.The

models show that it ispossibleto have a reading system that uses the same system

for all words, which is contrary to the claim made by Coltheart, who says that there

haveto be two routes. One of the big challenges for early connectionist models was

to prove that the networks could replicate the behaviours of surface and phonological

dyslexia if they were damaged in different ways. One of the first successfull connec-

tionist models of reading was the one by Seidenberg and McClelland (1989), which

was subsequently improved (Plaut et al., 1996; Harm and Seidenberg, 1999). These

connectionist networks were not only able to correctly pronounce normal, exception

and even non-words, but they also managed to simulate dyslexic behaviour. The fact

that they manage to replicate surface and phonological dyslexia is an important part in
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Figure 1.2: Basic Feed-Forward Connectionist Network: Wach unit in the input layer is

connected to each unit in the hidden layer, which in turn is connected to each unit in the

output layer. The network has to learn to map from given input patterns to the correct

output patterns.
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Figure 1.3: The Seidenberg and McClelland (1989) Model: Triangle model with lay-

ers representing orthography, phonology, meaning and context. Activation spreads be-

tween layers via the hidden layer between them

the success of connectionist models, since every serious reading model should be able

to simulate the two different forms of dyslexia.

The Seidenberg and McClelland (1989) Model The Seidenberg and McClelland

(1989) model was one of the first successfull connectionist networks used to model

reading processes. The whole model (also called ’triangle model’) consists of four

different layers (excluding the hidden layers) as shown in figure 1.3:

• Orthography: The orthographic form the words.

• Phonology: The phonological form of the words.

• Meaning: The semantics of the words.

• Context: The context in which the word appears.

Only the bottom part of the whole model, i.e. the mapping between orthography and

phonology was implemented computationally. The model was implemented as a feed-

forward connectionist networks, which did not include feedback from the phonological
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to the hidden units as in figure 1.3. The assumption here was that a feed-forward archi-

tecture was enough for a net that only has to learn how to pronounce words and which

does not have to worry about the semantics and the context in which the words appear.

For the orthographic as well as the phonological representations in the network, Sei-

denberg and McClelland (1989) chose a Wickelfeature scheme (Wickelgren, 1969). In

this scheme the representation is of a word is made in terms oftriples. For example the

orthographic form of the word PINT would be represented byPI, PIN, INT, NT . This

representation was necessary in order to avoid the problem that words like TUB and

BUT would have the same representation since the same letters are activated for both of

them. Note that these orthographic and phonological representations of the words are

distributed activation patterns of the orthographic units and as such are fundamentally

different from the orthographic lexicon as employed in Coltheart’s Dual-Route model.

There is no such lexicon in this model but rather the orthographic representation of

a word isdistributedover several units. When a word is presented to the network,

activation spreads to the hidden layer and from there to the phonological layer. For

example the activation of a hidden unit is determined by the activation and weights of

all the input units connected to it.

The network was trained on 2897 monosyllabic English words for 250 runs, with

words being presented at random to the network at each run. The words were ran-

domly selected according to the frequency with which they appear in the English lan-

guage. However, rather than using the actual frequencies, logarithmic frequencies were

used to reduce the time of training1. Learning was done by the standarderror back-

propagationalgorithm (Rumelhart et al., 1986; O’Reilly and Munakata, 2000). This

algorithm compares the computed output to the the correct target output and uses the

distance between the two as an error score.
1For further details on logarithmic frequency see chapter 2
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Figure 1.4: This figure (taken from Harm and Seidenberg (1999)) shows the basic

architecture of the model.

After training, the network computed the correct output for 97,3% of the words in the

training corpus. In total there were 77 errors, 14 of which arose from wrong coding

by the experimenter. Errors made were mostly on low-frequency words, and 14 of the

errors were regularisation errors, where an irregular word is pronounced in a regular

way. However, an important criticism of this model was that it performed much less

well on non-words than human subjects (Coltheart et al., 1993). For example on one

set of nonwords, the networks performance was 59% correct whereas humans typically

get 94% correct. The problem is that Seidenberg and McClelland (1989) claimed that

it was meant to read regular, exception words and non-words at a level comparable to

human subjects.

The Harm and Seidenberg (1999) Model Harm and Seidenberg (1999)’s model

builds directly on the previous model. There are several improvements to the pre-

vious model, with the main difference being the phonological output component (see

figure 1.4).

As the previous net, this one has a phonological output layer. The difference now is that

the whole phonological output component is made up of the phonological units and a

layer of so-calledclean-upunits. These clean-up units can be thought of as a second set
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of hidden units with connectionsfrom andto the phonological units. Networks using

this architecture are calledattractornetworks. The advantage is that the clean-up units

help the phonological output layer to settle into the correct pattern. Attractor networks

have an important property. They can form so-calledattractor basins. This means that

if the network is in state that it has not encountered before but that is close to a known

legal state, then the current state will be attracted to the legal state and the network

will eventually settle in that legal state. Figure 1.5 is an example of this. Note that the

figure is simplified, using only 2 phonetic features. An attractor basin in this net has in

reality 11 dimensions since it has 11 phonetic features. This enables the network for

example to repair noisy representations since a particular noisy output will always be

attracted to a valid state.

Another key difference between the two models it that Harm and Seidenberg (1999)

used a phonological representation that is much closer to actual phonetic features. A

single phoneme was represented by 11 units, each of which corresponded to a specific

phonetic feature (e.g. voice, nasal, round...) and whose activation could vary between

-1 and 1 (see figure 2.2 in chapter 2).

This model was trained on 7839 monosyllabic words. Performance on words included

in the training set was high, scoring 99% of words correctly. For nonwords, the net-

work’s performance was significantly better than the older network’s, scoring 84% of

words correctly. In this respect, the model achieved to eliminate one of the major crit-

icisms of the older model, namely the low scores on nonword reading.

It has to be noted that the non-implemented parts of the complete triangle model as

shown in figure 1.3 nontheless constitute an important part of the reading process. For

example Plaut et al. (1996) suggest that there are two different ways in figure 1.3 to

pronounce words. The first one is the direct route from orthography to phonology used

by the Seidenberg and McClelland (1989) model and the second one is the indirect
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Figure 1.5: This figure (taken from Harm and Seidenberg (1999)) shows an attractor

basin.
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Figure 1.6: Side-view of the Corpus Callosum

route from orthography via meaning to phonology. Note that this is different from

the Dual-Route model discussed before. In the present case, activation always spreads

across both routes, whereas in the Dual-Route model, words are read using either one

or the other route. With two routes providing the input to the final phonological output,

Plaut et al. (1996) assumed that exception words would rely more heavily on the route

via meaning whereas the direct route was dominant for regular words.

1.2.2 The Split-Fovea Model

The Corpus Callosum and the Split Fovea. It is a well-known fact that the brain

is divided into two hemispheres which are joined together by the Corpus Callosum

(see figure 1.6 for a side-view and 1.7 for a top-view). For an overview of the Cor-

pus Callosum see for example Gazzaniga (2000). An often ignored fact but equally
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Figure 1.7: Top-view of the Corpus Callosum. It can clearly be seen that the Corpus

Callosum connects the two halves of the brain.
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important in the area of visual word recognition is that the fovea in the eye is also

precisely vertically split (Leff, in press). Thus a fixated picture is vertically divided,

with the left part being sent to the right hemisphere (and the right half of the fovea)

and vice-versa. In the case of reading and visual word recognition, this means that the

word is divided into the two hemispheres. Everythin left of where the word is fixated

is sent to the right hemisphere and everything right of the fixation point is sent to the

left hemisphere. In order to be able to recognise the word and read it out aloud, it is

necessary for the information in the two halves of the brain to be recombined. This is

done via the Corpus Callosum. Only after the information about the word in the two

hemispheres is recombined can the word be recognised.

Split-Fovea Model Shillcock and Monaghan (2003) use the fact that both the fovea

and the brain are divided and integrate it into a connectionist model which they call

the split-fovea model. The model is similar to the Harm and Seidenberg (1999) model

with some crucial differences. Most notably, the input as well as the hidden layer is

split into two, reflecting the division in the fovea and in the brain respectively. The

input representing the right visual field is connected to the hidden layer representing

the left hemisphere and vice-versa. Both hidden layers are connected to each other.

These connections represent the communication between the two halves of the brain

via the Corpus Callosum (see figure 1.8). It has to be noted however that this is only a

very abstract model and cannot be seen as an accurate model of the Corpus Callosum.

One important difference for example is that in the model each unit in the left hidden

layer is connected to all units in the right hidden layer and vice-versa. This is contrary

to what happens in the Corpus Callosum, which constitutes a connection between the

same areas in both hemispheres. However, this connection between the hidden layer is

a crucial part of the model since it allows the model to compute a single correct output

pattern from two input patterns as shown in figure 1.8.

Because of the two input layers, the model allows for words to be presented to the
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Figure 1.8: The split-fovea-model. Here the word clam is presented with a fixation point

in-between the letters ’l’ and ’a’. Activation spreads into the hidden layers and from

there to the output layer which produces the correct output /klaem/.

network in different fixation points. For example Figure 1.9 shows the different inputs

for the word clam. The network has to learn to map all the different possible inputs

for a word to the same correct output target. To be able to do this task correctly for

all the words and non-words presented to it, the network has to learn ashift-invariant

mapping from the input to the output, so that shifting the input across the viewing

positions doesn’t make a difference to the final computed output.

1.2.3 The Viewing Position Effect

The fact that words can be fixated at many different positions (once or more than once)

during reading is an important aspect of visual word recognition. There is evidence

that the probability of recognising a word depends on where it is fixated (O’Reagan

and Javobs, 1992; Montant et al., 1998; Nazir, 2000). Words were presented to people

while controlling the exact position at which the word was fixated by the person. This

is done for words with different lengths and the words that were recognised correctly
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Figure 1.9: Possible fixation positions for the word clam in the split fovea model.

Figure 1.10: Different fixation positions for the word table.
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Figure 1.11: Probability vs. fixation position for seven letter words.

at the different fixation positions are recorded. All words of different length were

divided into five zones into which a fixation could fall (see for example figure 1.10).

By comparing the probability that a word was recognised to the location at which it

was fixated, it can be seen that there is a preferred viewing position slightly left of

the centre of the word (figure 1.11. This effect is fairly small for short words (i.e.

four letter words), but increases with the length of the word. Figure 1.11 shows a

curve of the probability of correct pronunciation against the fixation position for seven

letter words. It can clearly be seen that words are more easily recognised if they are

fixated left of centre and the probability drops sharply on both sides of this optimal

viewing position. Note that for a four letter word, their is only a very slight difference

in the recognition probability. This might at first look counterintuitive because if the

word were presented exclusively to one hemisphere, it could be processed immediately

since all the information would be present. But according to Shillcock et al. (2000)

the division of labour between the two hemispheres due to the Corpus Callosum is

beneficial for the task of visual word recognition rather than hindering it. They show
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Fixation Position Example Frequency

1 -WORD 0.177

2 W-ORD 0.196

3 WO-RD 0.206

4 WOR-D 0.221

5 WORD- 0.200

Table 1.1: Frequencies with which four-letter words are fixated at different fixation posi-

tions during reading. In the example, ’-’ indicates the fixation position. The data is taken

from McDonald and Shillcock (submitted).

that the optimal viewing position slightly left of centre allows each hemisphere to

receive the same amount of information about the word.

The finding that there is a preferred viewing position is interesting for the split-fovea

connectionist model. What will happen to the model if this fact is incorporated into

the network and will this network behave differently from a normal control network?

The network presented in the next chapter integrates the findings about the fixation

positions during reading with the split-fovea connectionist network. Table 1.1 shows

the data used for frequency of fixations at different positions for four-letter words. The

frequency data is taken from McDonald and Shillcock (submitted) and the frequency

of the fixations was evaluated with data from the EMBRA corpus which has eye move-

ment data from people reading newspaper articles. Note that in table 1.1, the words

are fixated slightly right of centre, which is contrary to the claim made before about

the preferred viewing location. This is due to the fact that the data in this table is col-

lected during reading and not with single word presentations. However, this is only the

case for short words. For longer words the highest frequency of fixations will again

be slightly left of centre (McDonald and Shillcock, submitted). One explanation for

this behaviour is that while reading, the next word (the one after the currently fixated

word) will already be in parafoveal vision. Because of this, the first few letters of the
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next word will already been known and the next saccade will be made so as to fixate

the word slightly right of where it would have been fixated otherwise. For small let-

ter words, like four letter words, this means that they will be fixated slightly right of

centre.

This chapter provided an overview over connectionist models of visual word recogni-

tion as well and the viewing position effect. The next chapter contains details about

the networks used in the current work and the results of the current simulation.



Chapter 2

The Simulations

This chapter starts off with an overview of the networks used in this simulation. It will

then go on to describe the training regime and will finally present the results of the

simulations.

2.1 The networks

Two networks are used in the current simulation. The first one is a control network,

similar to Shillcock and Monaghan (2003) where the words have the same frequency

at each fixation position. The second one, the ’fixation’ network, has different fre-

quencies for the different fixation positions as in table 1.1 from previous chapter. The

control network is essential in order to be able to compare the performance of the fixa-

tion network and to see if there is any difference in the behaviour of the two networks.

2.1.1 Network Structure

The networks both have two input layers, one corresponding to the right visual field

and the other one to the left visual field. Both of these are connected to separate

20
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Figure 2.1: A graphical overview of the PDP++ network used. The two input layers are

connected to the two hidden layers which are connected to the output. The two hidden

layers are connected to each other. This example is for the word desk fixated between

the letters ’e’ and ’s’. A unit with an activation of 1 is yellow and a unit with an activation

of -1 is blue. Any other colors are somewhere in-between this range.

hidden layers corresponding to the left and right hemisphere respectively. The two

hidden layers are connected to each other and both are connected to the output layer

(see figure 1.8 in chapter 2).

Like in Shillcock and Monaghan (2003), both the orthographic input and the phono-

logical output representations ared slot-based representations. For the orthographic

input, this means that there are four slots per input layer, one for each letter (since we

are dealing with four letter words). Each slot has twenty-six units, so that each unit in

a slot corresponds to a single letter. Thus, the two input layers each have 104 units.

When a word is presented to the network, the unit corresponding to the letter in each

slot is activated. For those slots where no letter is presented, no unit is active. Both

hidden layers have 100 units, which is enough for them to solve the task (Shillcock and

Monaghan, 2003). The network was implemented in PDP++ (Dawson et al., 2001) and

figure 2.1 shows the graphical ’display’ of the network. The figure shows a presenta-

tion of the word ’desk’ after training was completed. The network is able to ’read’ the
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word correctly and produces the correct output. Yellow units stand for an activation of

+1, whereas blue units stand for an activation of -1. Any other colors are somewhere

in-between1.

Phonological Representation. The phonological output layer consists of 66 units in

total. The layer is made up of six slots containing eleven units each. These eleven units

correspond to the eleven different phonemic features which were used by Shillcock and

Monaghan (2003) (see figure 2.2). As can be seen from the figure, each phoneme has

a very specific set of features associated with it. In the output layer, these features are

represented by the activation values of the different units, ranging between -1 and 1.

Some more special English phonemes (for example ’x’ as in the Scottish ’loch’) are

not represented in this table and words containing these were discarded. The phono-

logical representation was of the onset-nucleus-coda (CCVVCC) form (e.g. Plaut et al.

(1996)). The first two slots are reserved for the onset consonants, the middle two for

the nucleus vowels and the last two for the coda consonants. For words that have less

than 6 features (e.g. back→ b&k) the remaining empty slots have all their features set

to -1. The network’s task therefore is to map the slot-based orthographic input into the

just described phonological representations at the output.

Training The training corpus for both networks consisted of English four letter words

taken from the CELEX corpus (Baayen et al., 1995). The words were taken from the

CELEX word form corpus rather than the word lemma corpus since the word forms

are what is actually read and the fixation position data used thus applies to the word

forms rather than the word lemmas. After eliminating the words that did not fit the

ONSET-NUCLEUS-CODA structure, there were 1988 words left. Since there are five

different positions in which the words can be presented to the net, the total number of

events presented to the network is 9940.

1Note there are no clean-up units in this architecture. This network does not need clean-up units to
learn its task
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Figure 2.2: Phonological features used by Harm and Seidenberg (1999)
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For the control net, the frequency with which the words appear in text was also taken

from the CELEX database. However, using the actual frequencies as found in the

CELEX database would require too long a training time until every word present in

the training corpus has been presented to the net at least once. This is because there

is a very large difference between very high and very low frequency words (e.g. ’that’

appears 217376 times and ’thaw’ only 45 times in the CELEX corpus). For this reason,

the frequencies were compressed into log-frequencies according to the formula:

pi =
log(( fi/100)+1)

log(m/100)
(2.1)

where pi is the log frequency of word i,fi is the CELEX frequency of word i and

m if the frequency of the most frequent word in the training corpus (see Harm and

Seidenberg (1999) for the formula and Plaut et al. (1996) for a discussion of the log

frequency). Essentially this expresses the frequencies in terms of the most frequent

word. The most frequent word in the corpus gets a frequency of one, all the other

words have frequencies between zero and one. Words with a final log-frequency less

than 0.05 were given a frequency of 0.05 in order that they appear in the training corpus

enough times for the network to learn. Thus the frequency of the most frequent word

is 20 times the frequency of the least frequent words. It also means that in the training

regime, the most frequent word will appear on each epoch and the least frequent words

should appear once every 20 epochs. Note that in the control network, each one of

the five different possible positions has the same frequency. Note also that during

training the network selects events at random (according to the frequency) from the

9940 possible events, so that it is not the case that a word is presented in all its possible

fixation points one after the other.

For the second net, each one of the possible fixation positions has a different fre-

quency according to table 1.1. The original frequencies from the CELEX database

were changed according to the table and then the log-frequency was taken. Thus every
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fixation position has a slightly different frequency.

Training was done using the recurrent back-propagation algorithm supplied by the

PDP++ software. The software allows the user to specify the exact timesteps that the

simulation goes through when an event is presented. The total number of timesteps

per presented event was set to seven. At timestep one, only the input is presented to

the network. Activation is then allowed to spread through the network until at timestep

four, the correct output target is also presented to the network. This is used for error-

backpropagation. The network essentially compares its output to the target output and

changes the weights in such a way as to reduce the error (see e.g. Dawson et al. (2001)).

Training was ended after 2750 epochs, corresponding to about 4 million words pre-

sented to the network. An important thing to note is that both networks started with

the exactly same initial small random weights. This is important in so far as that it can

be excluded that any observed effects can be explained by different random weights of

the two networks at the start of the training process. The only differences between the

two training regimes are that different events are presented at random for each epoch

according to their frequency.

Testing After training finished, the networks were tested to see what they have learned

and which words they were unable to learn. Testing was done in the following way.

PDP++ produces a text file containing the activation of the output units that it produced

for any given event. That is, it produces a string of numbers between -1 and 1. To be

able to analise the networks behaviour, this string of numbers has to be converted into

the phonetic form of the word. To do this, each individual feature was converted into

the corresponding phonetic feature by calculating to which of the possible 11 features

in figure 2.2 it had the shortest distance. After doing this for each of the 6 different

slots, the phoneme that the network calculated emerged.
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Control Network Fixation Network

Total Events 9800 9800

Correct 9661 9664

Errors 139 136

Percentage Correct 98.58 98.61

Total Words 1960 1960

Correct 1894 1886

Errors 66 74

Percentage Correct 96.63 96.22

Table 2.1: Overall results of the two networks after 2750 epochs (or about 4 million

words) of training. The upper table is for all the events so that each word is represented

five times: once per fixation position. The lower table is only for individual words.

2.2 Results

This section presents the results of the networks after training for 2750 epochs. It will

start off by discussing the overall results about of the networks’ performance and then

go on to list more detailed results in order to compare the two networks.

2.2.1 General

In this section some general results about both networks will be discussed, showing that

there is virtually no difference in the general overall performance of both networks. A

more detailed analysis will follow in subsequent sections. Note that all of the following

results only include non-homographic words. An analysis of the 14 homographs (70

events) in the training corpus follows in a separate section. The homographs were left

out from the current (and subsequent) analysis because the networks will inevitable

get one of the possible pronunciations wrong. This is because there is nothing in the
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model that could differentiate between two different contexts or meanings and so the

network is unable to learn which pronunciation to apply.

The overall results for both networks can be seen in table 2.1. The table shows the

networks’ performance after 2750 epochs (∼4 million words). The upper part of the

table shows the statistics relating to the number ofeventsthat the network was trained

on. In overall performance, both networks are very similar, with the control network

getting 98.58 percent of the events in the training corpus correct and the fixation net-

work getting 98.61 percent correct. This very slight difference of 0.03 percent (or three

words) between the networks is so small that it is negligible and one can say that both

networks performed the task equally well. The fact that the control network only made

three errors more than the fixation network can not be considered as evidence that the

fixation network performed better than the control. This first result is not surprising as

both networks were trained on exactly the same training corpus and with exactly the

same initial conditions, with only a very small difference in fixation position frequen-

cies.

The bottom part of table 2.1 shows how many words the networks got correct inevery

position. The statistics in the upper part of the table relates to the individual events

and so includes each word five times, once in each of the different possible fixation

positions. The bottom part on the other hand only considers a word to be correct

if the network computed the right output for each of the fixation positions. Hence,

for example the control network only made a mistake on the word ’lewd’ when it was

fixated at the second position (network: ’lUUd’ - Correct: ljUUd). So ’lewd’ is counted

as an error in the bottom part of the table since it has not been learned correctly at all

of the fixation positions. Again, it can be seen from the table that both networks are

closely matched in their overall performance. However there is a small difference in

that the fixation network gets 8 words more wrong here than the control.

To test if the network was able to learn both regular and exception words, it was tested
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a. Regular

Control Network Fixation Network

Total Events 460 460

Correct 460 458

Errors 0 2

Percentage Correct 100 99.6

b. Irregular

Control Network Fixation Network

Total Words 305 305

Correct 304 301

Errors 1 4

Percentage Correct 99.7 98.7

c. Ambiguous

Control Network Fixation Network

Total Words 95 95

Correct 95 95

Errors 0 0

Percentage Correct 100 100

Table 2.2: Overview of both networks’ performance on the regular, irregular and am-

biguous word list (see appendix A).
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a. Regular

Word Frequency Fixation Position Computed Output Correct Output

dots 0.074 5 /dVts/ /dOts/

toad 0.062 2 /s@Ud/ /t@Ud/

b. Irregular

Word Frequency Fixation Position Computed Output Correct Output

chic 0.080 5 /Jiik/ /Siik/

chic 0,080 1 /Tiik/ /Siik/

hind 0.113 4 /h&Vnd/ /h&Ind/

mule 0.083 3 /mjUIl/ /mjUUl/

Table 2.3: Errors on the regular and irregular words for the fixation net.

on a list of regular, ambiguous and exception words taken from Plaut et al. (1996). Note

that for this test only words that appeared in the training corpus were taken. The lists of

the words can be found in appendix A. The list of regular words contains 92 elements

(corresponding to 460 events) , the list of irregular words contains 61 elements (305

events) and the list of ambiguous words contains 19 elements (95 events). Table 2.2

shows the results of these tests. The control network only made one error on the

irregular word list, getting all the regular and ambiguous words correct. The error

was made on the 0.08 frequency word chic, pronouncing it as /Jiik/ instead of /Siik/

at fixation position 5. The fixation net made 2 errors on the regular words, 4 on the

irregular words and none on the ambiguous words. The details of the errors can be

found in table 2.3. All but one of the errors are made on low frequency words with a

frequency less than 0.1. These tests show that both networks have learned to pronounce

both regular and exception words.



Chapter 2. The Simulations 30

Control Network Fixation Network

Total errors 139 136

Errors with frequency≤ 0.1 129 116

Errors with higher frequency 10 20

Average Frequency 0.056 0.066

Table 2.4: Errors by frequency.

2.2.2 Frequency

Table 2.4 shows the network’s performance in relation to the frequency of the incorrect

words. Not surprisingly, for both networks, most errors were made on low frequency

words. The control network made 129 of its 139 errors on words with a frequency

lower than 0.1 and he fixation network 116 of 136. The average frequency of the

errors was 0.056 for the control and 0.066 for the fixation model. The error with the

highest frequencies were ’coup’ at all positions for the control with a frequency of

0.110 and ’shed’ at position 1 for the fixation net with a frequency of 0.223 (see table

2.5 and 2.6. This result also means that the networks have correctly learnedall the

higher frequency irregular words that were in the training corpus.

Tables of the errors with a frequency≥ 0.1 have been included (2.5 for the control

network and 2.6 for the fixation network). Note that a complete list of the errors made

by each network can be found in appendix B and C respectively. As can be seen

from the tables, most pronunciations computed by the networks, even though they

are wrong, are nevertheless pretty close to the actual output. Thus, for example both

networks pronounce the word ’dose’ as /d@Uz/ instead of /d@Us/ in most positions.

Clearly this error is only a very slight error in the sharpness with which the coda of

’dose is pronounced. In fact, looking through the errors in the appendix, this error of

the network substituting an /z/ instead of an /s/ is very common. Although this seems

not to be a very big error, the pronunciation /d@Uz/ would correspond to the word
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’doze’ (which also appears in the training corpus) and hence will have a completely

different meaning than the original input word ’dose’. Thus the network does not

make a difference between the words ’dose’ and ’doze’.

Word Frequency Fixation Position Computed Output Correct Output

coup 0.110 all kUUk kUU

dose 0.109 1,3,4 d@Uz d@Us

dose 0.109 2 dEUz d@Us

khan 0.107 1 JVrn kVrn

Table 2.5: Errors with frequency ≥ 0.1 for the control network.

Word Frequency Fixation Position Computed Output Correct Output

coup 0.110 all kUUJ kUU

dose 0.109 1,2,3 d@Uz d@Us

heir 0.110 all I@r E@r

hind 0.113 4 h&Vnd h&Ind

hymn 0.106 1 gIm hIm

khan 0.107 1 gVrn kVrn

nude 0.104 4 njUUz njUUd

shed 0.223 1 SVd SEd

sigh 0.161 1,4 T&I s&I

Table 2.6: Errors with frequency ≥ 0.1 for the fixation network. Note that here the

frequencies are the log frequencies as calculated from the CELEX database. Hence

there is a slight difference between the frequency shown and the actual frequency at

the different fixation positions.
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2.2.3 Errors by Phoneme Length

Table 2.7 shows the errors by phoneme length for both networks. This table is included

in the report because it is interesting to see for which target length the network has the

most problems. Intuitively one would imagine that the most errors would occur with

long phonemes since the there are more phonetic features to be learned and hence more

possibilities to make a mistake. To be able to compare the networks’ performance at

different phoneme length, the table contains a column labelled percentage, which gives

the percentage of errors of a particular length. For example for the control network

there are 1775 events of phoneme length 3. The number of errors is 41 which is 2.31%

of the total number of events for length 3.

However, the results indicate that learning words which have a larger feature bun-

dle associated with them is not necessarily harder than learning words with a shorter

phoneme. Thus, for both networks the highest percentage of errors (2.31% for control

and 2.99% for fixation) were made on words with three phonetic features, whereas the

4 and 5 letter words have comparably low error percentages.

2.2.4 Different Output Positions

Table 2.8 show the errors the network made at the different output slot positions. As

described before, the phonological output of the network is divided into six slots in

total with an onset-nucleus-coda structure. The onset consists of two consonants, the

nucleus of two vowels and finally the coda of two consonants again. For a word that

has only one phonetic feature in:

• the onset position, the first slot is occupied (i.e. the onset is left aligned)

• the nucleus position, the first slot is occupied (i.e. the nucleus is left aligned)

• the coda position, the second slot is occupied (i.e. the coda is right aligned.
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a. Control Net

Phoneme Length Number of Words Number of Events ErrorsPercentage

2 3 15 0 0%

3 355 1775 41 2.31%

4 1502 7510 92 1.22%

5 100 500 6 1.2%

b.Fixation Net

2 3 15 0 0%

3 355 1775 53 2.99%

4 1502 7510 73 0.97%

5 100 500 10 2%

Table 2.7: Errors by phoneme length for both networks. The percentage column gives

the percentage of errors of the events of that length. This ensures that the performance

of the networks on words with different phoneme length can be compared.
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Phonetic Feature Control Network Fixation Network

Onset 1 53 51

2 0 0

Total 53 51

Nucleus 1 29 29

2 14 12

Total 43 41

Coda 1 2 3

2 31 37

Total 33 40

Table 2.8: Errors made by the network in the different slots of the output pattern. The

output is subdivided into the onset, nucleus and coda positions. Each of these positions

has two slots associated with it.

So a word like ’back’, whose phoneme is ’b&k’ will have a target output b.|&.|.k,

where ’.’ indicates an empty slot and ’|’ separates onset|nucleus|coda. The reason for

left aligning the the onset but right aligning the coda is to have a clear mapping be-

tween the exterior letters and the exterior phonetic features. In this way, the first letter

of the word (if it is a consonant) will always correspond to the first phonetic feature and

the last letter (if it is a consonant) will always correspond to the last phonetic feature.

Right aligning the coda in this way gives more structure to the input-output mapping.

If for example the coda was left aligned the last letter would sometimes be mapped to

the first coda slot (when there are two consonants in the coda) and sometimes to the

second coda slot (when there is only one consonant in the coda).

Again, the results are not conclusive as to a difference between the two networks.

The fact that the fixation network was trained on more words fixated to the right of

centre and hence with most of the word in the left visual field and the right hemisphere
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does not seem to have an effect on the performance in the different output regions.

The only noticeable difference is in the coda slot, where the fixation network makes

7 more errors than the control network. This can be explained by the fact that the

fixation net receives proportionally more words in the input that are fixated at the third

position. This means that the last letter of the word is the only letter in the right field

(left hemisphere). This makes the task faced by the left hemisphere of getting the

right pronunciation for the letter more difficult because it does not have information

about the previous letters. For the network to compute the correct sound nevertheless,

the connections between the two hidden layers are crucial. Because the net sees the

last letter of a word proportionally more often alone in the right visual field, the exact

pronunciation of this letter is harder to learn, which is reflected in table 2.8.

Table 2.8 also shows that both network make the most errors for phonetic features

occurring in the onset. An obvious difference between the onset/coda slots and the

nucleus slot is that the nucleus slot consits entirely of vowels whereas the other two

consist entirely of consonants. Since there are only 8 different phonetic features for

the vowels compared to 24 for the consonants (see figure 2.2). It should therefore be

easier to for the network to learn the vowels since they appear at a much higher fre-

quency. In this case the expected results should clearly be noticeably less errors in the

nucleus position versus the other two positions. The reason for the high error rate in the

nucleus slot lies in the unpredictability of the pronunciation of vowels in the English

language (e.g. hint, mintbut: pint). This makes it a very difficult task for the network

to learn the correct pronunciation of the vowels in a word, especially since their pro-

nunciation depends on the preceding and the following letters, Thus the hidden layers

of the networks have to encode bigrams and trigrams to correctly compute the output

for the vowels. The pronunciation of the consonants on the other hand is much more

predictable. The difficulty for the consonants lies in the fact that there are so many

different ones (24). The difference between errors in the onset slot (53 for control; 51

for fixation) and the coda slot (33 for control; 40 for fixation) arise the fact that the
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Fixation Position Control Network Fixation Network Change

1 29 24 -4

2 23 27 +4

3 24 27 +3

4 30 25 -5

5 33 33 +0

Table 2.9: Errors by fixation position. The last column, labelled ’change’ gives the

difference in errors between the control and the fixation network (errors of fixation -

errors of control).

Fixation Position Control Network Fixation Network Change

1 0.177 0.199 +0.022

2 0.166 0.212 +0.046

3 0.177 0.202 +0.025

4 0.179 0.187 +0.008

5 0.170 0.190 +0.020

Table 2.10: Mean Sum Squared Error for the whole training set by fixation position.

Again the last column gives the difference in mse between the two networks.

beginning of English words are less predictable and thus harder to learn than the more

predictable ending of words. Thus the higher error rate for the onset versus the coda.

2.2.5 Errors by Fixation Position

An interesting statistic for comparing the two different networks to be able to tell if

they actually behave differently is to look at how the networks behave at the different

fixation positions. This has been tested in two different ways: table 2.9 shows the

number of errors the networks made at the different fixation positions while table 2.10
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gives the mean sum-squared error for the whole training set at each of the fixation

positions.

Control Network As can be seen from table 2.9, the control network makes less

errors if the word is fixated slightly left of centre than it does when the word is fixated

right of centre. According to this table, the best fixation positions at which to present

the word to the network would be positions 2 or 3 - fixated before the 2nd and 3rd letter

respectively. Comparing this to the mean sum-square errors given in table 2.10 one can

see that once again, the error score for fixation position 2 is lowest of all. However, for

example fixation position 5 has the 2nd lowest mse, although the network makes the

most errors at this position.

Taken together, these results (lowest error score and lowest mse at fixation position

2) point to a preferred viewing location on or slightly left of centre. At a first glance

this is surprising since the words were presented with the same frequency at each

of the positions. If there is a preferred position, one would rather expect that it is

easier for the network to learn words that are entirely in one of the two hemispheres.

This is because in such a case all of the information needed to identify the word is

transmitted to the corresponding hidden layer. Thus in theory there would not need to

be a correspondence with the other hidden layer. One would expect that if the word

is divided into the two layers, the process of ’re-uniting’ the word would be a harder

process.

However, a preferred viewing position slightly left of centre corresponds exactly to

Nazir (2000) and Shillcock et al. (2000) as described in section 2.3. It is interesting

that this preferred viewing position should emerge from the network without any initial

conditions that would bias it towards this behaviour. It suggests that, at least in the

network, this behaviour emerges solely from the structure of English words and seems

to support Shillcock et al. (2000) in that a fixation position slightly left of centre is
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Fixation Position Example Frequency

1 -WORD 0.177

2 W-ORD 0.196

3 WO-RD 0.206

4 WOR-D 0.221

5 WORD- 0.200

Table 2.11: Frequencies with which four-letter words are fixated at different fixation

positions. In the example, ’-’ indicates the fixation position (same as table 1.1).

beneficial for visual word recognition since it allows equal amounts of information

about the word to go into each hemisphere.

Fixation Network For the fixation network, the situation is slightly different than for

the control network. Compared to the control, it comits less errors at fixation positions

1 and 4, more errors at fixation positions 2 and 3 and the same number of errors at

position 5. Similarly, the mean sum-square error given in table 2.10 for the fixation

network has the lowest score at position 4 with 0.187 and the highest at position 2 with

0.212. Note that, overall, the average mse for the fixation postions is higher in this

network (0.198) than in the control (0.174). This seems to suggest that it was harder for

this network to learn when a condition on the fixation positions is imposed. However

in total the fixation network has 3 errors less than the control (see table 2.1). Hence

the added condition resulted in basically the same number of words being learned,

however with less ’certainty’.

In order to be able to compare this data to the frequency used for each fixation position

in this network, table 1.1 from section 2 is reproduced here as table 2.11. Looking at

table 2.11, most of the changed statistics in the fixation network make sense. In this

network, words have been presented with the highest frequency slightly right of centre

at position 4. Consequently, this position has the lowest mse and less errors than in the
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control network whereas for example positions 2 and 3 have higher mse’s and higher

error rates. Lookin at the change in the errors as well as in the mse, the degree of

change between the networks mostly matches the relative fixation frequency at these

positions. The only position which is clearly contrary to what would be expected

from the fixation data is position 1. This position has been the least frequent to be

presented to the network. Nevertheless, the fixation network makes less errors and the

mse change is less than would be expected for this position.

2.2.6 Homographs

The training corpus contained 14 homographs (70 events since there are 5 different fix-

ation positions for each word). Homographs are words with the same orthography but

a different phonology (e.g. read in ’to read’→ /riid/ or ’to have read’→ /rEd/). These

have not been included in the discussion so far. The reason for treating the homographs

separately is the following. Since the network has no way of knowing in which con-

text the homographs appear, it is impossible for it to learn the correct pronunciation

for both the phonemes of the word. For this reason these words were excluded from

the previous analysis because they would inevitably introduce some errors because the

network simply could not learn both pronunciations. However, it is interesting to look

at the homographs on their own. More precisely, the question is whether the network

is able at all to learn at least one of the possible pronunciations correctly since the two

different possibilities will compete and interfere with each other during training. For

words where one of the pronunciation has a much higher frequency than the other one

this shouldn’t be a problem and the network is expected to learn the pronunciation with

the higher frequency since that is the one that will dominate during training with little

interference from the low frequency one. On the other hand, when both frequencies

are similar, both possibilities will be presented roughly the same number of times dur-

ing training and it will be hard for the model to settle for one of the two at the end of
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Homographs

Control Network Fixation Network

Total Events 70 70

Correct 67 60

Errors 3 10

Percentage Correct 95.7 85.7

Table 2.12: Results for the homographs in the training corpus for both networks.

training.

Results The results in table 2.12 show that the networks have been able to learn one

of the pronunciations for most of the homographs. The control network gets 95.7%

correct, whereas the fixation net gets only 85.7%, making 7 errors more. The details of

the errors made can be found in table 2.13. As expected almost all of the errors made

on the homographs were made for words where the frequencies of the two different

possible pronunciations are similar, with only a few exceptions (e.g. ’lead’ where /liid/

has a frequency of 0.408 and /lEd/ has one of 0.235). It can also be seen from the

tables that errors occurred because the two possible target outputs interfered with each

other. Thus for example the control net pronounces the word ’dove’ as /d@Vv/ at

fixation position 1. The two possible correct phonemes for ’dove’ are either /dVv/ with

a frequency of 0.054 or /d@Uv/ with a frequency of 0.050. Clearly, the computed

output is a combination of both the correct outputs, having the /@/ from the second

and the /V/ from the first output. Similarly the fixation net pronounces for example the

word ’used’ as /jUUzd/ at fixation positions 4 and 5. Again this is a combination of the

two possible correct phonemes for this word: /jUUst/ with a frequency of 0.585 and

/jUUzd/ with a frequency of 0.457.

An point to make is that the networks are able to learn homographs which have similar

frequencies. Thus for example the two phonemes for the word ’read’ are /riid/ and
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a. Control Net

Word Possible Targets (Freq) Fixation Position(s) Output

dove /dVv/ (0.054); /d@Uv/ (0.050) 1 /d@Vv/

2 /dOv/

lead /liid/ (0.408); /lEd/ (0.235) 2 /lEd/

b. Fixation Net

Word Possible Targets (Freq) Fixation Position(s) Output

bass /bEIs/ (0.078); /b&s/ (0.070) 1,2,4,5 /bEVs/

dove /dVv/ (0.054); /d@Uv/ (0.050) 2,4 /dEUv/

poll /p@Ul/ (0.128); /pOl/ (0.050) 3 /pOVl/

5 /pOUl/

used /jUUzd/ (0.585); /jUUst/ (0.457) 4,5 /jUUsd/

Table 2.13: Errors on homographs for both nets. The upper table is for the control net

and the lower table is for the fixation net. The second column gives both possible pro-

nunciations for the networks with their respective frequencies. The two pronunciation

are separated by a line. The third column gives the fixation position at which the error

occurred and finally the last column gives the network’s output.
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/rEd/ with frequencies 0.443 and 0.473 respectively. Although these frequency values

suggest that it would be hard for the models to learn the word because of the competi-

tion, both networks mangaged to learn it correctly. Interestingly however, the control

learned the word as /rEd/ at all positions whereas the fixation net learned it as /riid/,

also at all positions. The reason that it was possible for both nets to learn a different

pronunciation for the same word might be the following. The bigram ’ea’ appears with

different phonemes in the training corpus, with the most frequent phonetic feature be-

ing /ii/ (e.g. neat). This explains the /riid/ output of the fixation net. The combination

’ead’ however appears most often and in higher frequencies as /Ed/ (e.g. dead). Thus

the output /rEd/ from the control net.

This is an interesting example that demonstrates a possible difference between the two

networks. The control net has seen the word in each position an equal number of times

whereas the fixation net has seen it most often at position 4 (rea - d). This would cause

a preference in the network to learn the combination ’ea’ in ’read’ as a bigram rather

than the trigram ’ead’ and pronounce it as such. This is because when the word is

fixated at position 4, ’rea’ will be sent to the left hemisphere and only ’d’ to the right

hemisphere. Note that this network is still able to learn words like ’dead’ (/dEd/) where

there is only one possible phoneme. But when there are two different possibilities, the

pronunciation ’ii’ is easier.

2.2.7 Nonwords

Background. An important part of connectionist modelling of visual word regoni-

tion has traditionally been to test the network on a series of nonwords. This is impor-

tant in order to show that the network has actually learned how to pronounce words

rather than having merely stored the correct outputs for the words in the training cor-

pus without having learned anything more general about the words. A connection-

ist model needs to be able to read nonwords in order to justify the central claim of
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connectionist visual word recognition, namely that a single system can learn to pro-

nounce both exception and nonwords at a level comparable to human subjects. If the

networks were not able to pronounce nonwords, this would validate the claim of the

Dual-Route model whereby there have to be two separate processes, one rule-based

one that can pronounce nonwords but not exception words and one lexicon-based one

that can pronounce exception words but not nonwords (Coltheart et al., 1993; Weekes

and Coltheart, 1996). Thus for example the poor nonword performance of the Seiden-

berg and McClelland (1989) network was one of the major criticisms for that model

because the network was far below the average performance of human subjects. This

model was subsequently improved and achieved levels of nonword reading compara-

ble to humans (Plaut et al., 1996; Harm and Seidenberg, 1999), showing that it was not

a problem inherent of the architecture of this connectionist model. One of the prob-

lems of the earlier model which contributed to the poor nonword reading was the use

of Wichelfeatures as input and output representations. Since, for both the current net-

works, a slot-based representation was used, it is expected that the networks will not

suffer from the same problem regarding the nonword reading.

As testing corpus, Glushko’s nonwords were used (Glushko, 1979) as seen in Plaut

et al. (1996). All nonwords used with their acceptable pronunciations can be seen in

appendix D. The non-words are divided into two types: consistent and inconsistent

nonwords. A consistent word is a word whose orthography-to-phonology correspon-

dence is consistent with the one of its orthographic neighbours. If this is not the case,

then the word is inconsistent. Note that in the present study this difference has not

been made for the words in the original training corpus. However, since the nonwords

were already subdivided in this way in Plaut et al. (1996), this division was kept for

the nonwords. For testing, a nonword was deemed to be correct if the output of the

network matched one of the possible pronunciations of the nonword.
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a. Consistent Nonwords

Control Network Fixation Network

Total Events 155 155

Correct 132 130

Errors 23 25

Percentage Correct 85.2 83.9

b. Inconsistent Nonwords

Control Network Fixation Network

Total Events 175 175

Correct 149 143

Errors 26 32

Percentage Correct 85.1 81.7

Table 2.14: Results for the nonword test on both networks. The nonwords have been

subdivided into consistent and inconsistent nonwords. The complete set of the non-

words is listed in appendix D.
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a. Consistent Nonwords

Fixation Position Control Network Fixation Network Change

1 4 6 +2

2 6 4 -2

3 4 4 +0

4 3 4 +1

5 6 7 +1

b. Inconsistent Nonwords

Fixation Position Control Network Fixation Network Change

1 4 7 +3

2 5 8 +3

3 2 7 +4

4 10 4 -6

5 5 6 +1

Table 2.15: Nonword errors by fixation position for both consistent and inconsistent

nonwords. The last column indicates the difference between the control and the fixation

network.

Results The overall results of the nonword testing can be seen in table 2.14. The

upper part of the table shows the errors made on the consistent nonwords for both net-

works and the lower part shows the errors made on the inconsistent nonwords. Both

networks were able to pronounce most of the presented nonwords, both consistent and

inconsistent, with the control scoring 85.2% on consistent and 85.1% on the inconsis-

tent nonwords. The fixation net scored 83.9% and 81.7% respectively on the consistent

and inconsistent nonwords. Again both networks are quite evenly matched with the fix-

ation network getting only slightly more words wrong on both accounts (2 and 6 errors

more on the consistent and inconsistent nonwords respectively).
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Fixation Position Example Real Frequency New Frequency

1 -WORD 0.177 0.177

2 W-ORD 0.196 0.367

3 WO-RD 0.206 0.467

4 WOR-D 0.221 0.617

5 WORD- 0.200 0.407

Table 2.16: Changed fixation frequencies. The 3rd column shows the real fixation fre-

quencies as used in the previous nets and the 4th column shows the new enhanced

frequencies.

Table 2.15 shows the errors made by the networks on nonwords at different fixation

positions, with the last column giving the difference between the two networks. As

the upper table shows, there is no real difference between the two networks as far as

the consistent nonwords are concerned. More interesting for the current paper is the

bottom table. There is clearly a tendency for the fixation network to get about 3 or

4 more words wrong at the first three fixation positions. However on position 4 the

network makes 6 errors less than the control. Compared to the positive difference

at the previous three positions, this can be considered a significant fact. Position 4

is exactly the position where the fixation network was the most exposed to due to

the highest fixation position frequency, confirming the results from the words in the

training corpus. Even nonwords are easier to pronounce slightly right of centre since

the networks was exposed to more words at that position.

2.3 Two additional networks.

From the previous analysis of the two networks, it is clear that the difference between

the two networks is very small. To try and get a more significant difference, two more

networks were trained for which the differences in the fixation position frequencies
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were enhanced by 10 (see table 2.16). To calculate the new frequencies, the following

formula was used:

fi = xi +10∗ (xi −m), (2.2)

where fi is the new frequency,xi is the old frequency andm is the lowest old frequency

value (0.177 in position 1). Note that these new frequencies have no relationship to

any real data of fixation positions while people are reading. It is purely introduced

to enhance and examine possible difference between the two networks. To reduce

training times, the training corpus consisted of 200 words (1000 events) taken from the

original corpus chosen at random, corresponding to about 10% of the original corpus.

Again training was stopped after 2750 epochs, although tests on the models were done

throughout the training to monitor the progress of the networks.

2.3.1 Results

Overall results. After training was complete at 2750 epochs, the control network

only made errors on 10 events, pronouncing ’boor’ as /bUrr/ instead of /bU@r/ at all

positions and ’chic’ as /SiIk/ instead of /Siik/ at all positions. Both are low frequency

words having a frequency of 0.050 and 0.080 respectively. The control network thus

got 99% of the events correct.

The fixation net made errors on the same two words, pronouncing ’boor’ as /bUOr/ and

’chic’ as /SIIk/ at all positions. Furthermore the fixation net makes one more error on

one other word, the word ’pint’ (freq 0.145) pronouncing it as /pEInt/ instead of /p&Int/

in all positions. Thus, in total, the network had 15 events wrong, which corresponds

to 98.5% correct. The reason why the fixation net gets ’pint’ wrong might be the

same as the reason why it got the homograph ’read’ wrong (see section 3.2.6). Similar

words in the smaller corpus all pronounce /pin/ as ’pIn’ (e.g. pins). The end letter ’t’
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Figure 2.3: Overall results for the two networks. The first measurement was taken at

epoch 100 and the last at epoch 2750.
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is therfor important for the pronunciation of the word. Since the fixation net sees the

word most often as ’pin-t’ it might develop a preference to treat ’in’ as the bigram it has

previously learned which would make it more difficult to eventually learn the correct

pronunciation. Figure 2.3 shows the evolution of both networks during training. As can

be seen from this graph, both networks train fairly quick due to the small size of their

training corpus. Also, the control network learns slightly faster than the fixation net.

This might be due to the errors introduced in the fixation net by position 1. Position 1

has such a low frequency compared to the other position that it will inevitably lead to

more errors at that position than in the control network.

Mean Sum-Square Error The evolution of the mean sum-square error over time at

all fixation positions can be seen in tables 2.4, 2.6 and 2.8 for the control net and in

figures 2.5, 2.7 and 2.9. Tables 2.4 and 2.5 show the MSE for the respective nets. Both

curves tend to zero quite fast, which is expected from the general results of the nets

(table 2.3). It can be seen that the MSE curves for the fixation positions are all very

similar for the control network. This comes from the fact that there is no preferred

fixation position for this net and all the positions have the same frequency. However,

for the fixation net, there is a noticeable difference in the MSE curves of the different

positions.

To make it easier to analyse the graphs, figures 2.6 and 2.9 show a part of the whole

curve for the control network, from epoch 300 to 500 and 2000 to 2750 respectively.

The same portion of the curve is shown by figures 2.7 and 2.9 for the fixation network.

On these magnified curves, it can be clearly seen that the differences in the curves are

larger for the fixation net. In figure 2.7 it can also be seen that the shape of the curves

matches their respective frequencies. For example position 4 has the lowest MSE and

the highest frequency and position 1 has the highest MSE and the lowest frequency.

In the corresponding figure for the control net, there is a slight difference in MSE at

epoch 300 but the curves move much closer together at epoch 500. As previously
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Figure 2.4: Control net: MSE at every fixation position

Figure 2.5: Fixation net: MSE at every fixation position

noted, fixations slightly left of centre seem to be easier for the control to learn. This

can again be seen at epoch 300 where positions 3 and 2 have the lowest MSEs (in that

order). A similar picture can again be seen at the end of training in figures 2.8 and

2.9. The fixation net has the lowest MSEs at positions 4 and 3 which corresponds to

its fixation position frequencies and the control net has the lowest MSE’s for positions

3 and 2 confirming the finding of the previous model with the complete training set.

Furthermore, the curves are further apart for the fixation net, with position 1 being

much worse than the rest because it has the lowest frequency.
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Figure 2.6: Control net: MSE at every fixation position at epochs 300-500

Figure 2.7: Fixation net: MSE at every fixation position at epochs 300-500



Chapter 2. The Simulations 52

Figure 2.8: Control net: MSE at every fixation position at epochs 2000-2750

Figure 2.9: Fixation net: MSE at every fixation position at epochs 2000-2750

Note that similar graphs can be drawn for the number of errors made by the networks

at the different fixation positions. These graphs would show a similar pictures as the

MSE graphs, with the positions having a low MSE also making a low number of errors

and vice-versa. To conclude this section it can be said that these networks confirm

the findings of the previous networks. There is no noticeable difference in the overall

performance of the networks with both getting similar percentages of words correct.

However, there is a difference in the more detailed analysis of the networks, namely

the performance at the different fixation positions.
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Discussion and Conclusion

This chapter gives an overview and a brief discussion of the results obtained in the

previous chapter and it will also present possibilities for future research in this area.

3.1 Discussion

The first part of the discussion involves general results of both networks which do not

depend on the different fixation frequencies. The second part of it will look in more

detail at the differences and similarities between the control and the fixation net.

General From the two simulations (i.e. the one with a full training corpus and the one

with a smaller training corpus), it can be concluded that both the control and the fixa-

tion network have accomplished the general task of learning the grapheme-to-phoneme

mappings of most of the words in the training corpus. Both networks get around 98.6%

of all the words in the training corpus correct. The overwhelming majority of errors

were made on low frequency words, which is as expected since the networks have seen

these words only a very limited number of times. The tests with different word lists

(i.e. regular, irregular and ambiguous words) showed that both networks have success-

53
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fully learned both regular and exception words. The learning of the exception words

is an important test for any connectionist model. Since adherents of the Dual-Route

theories claim that it is impossible for a single system to learn both exception and

nonwords (e.g. Coltheart et al. (1993)), the fact that the model was able to learn the

exception words is a first step to validate the model. The networks were also able to

learn most homographs correctly, although the control network was slightly better at

this. The difficulty in pronouncing these words comes from the fact that they have two

different pronunciations associated with them. This makes them difficult to learn since

both pronunciations will interfere with each other during training. Nevertheless the

networks were able to learn one of the pronunciation for almost all of the homographs

in the training corpus.

The second important test with respect to the claims of the Dual-Route theory is the

test on nonwords. The networks were tested on two sets of nonwords, consistent and

inconsistent. Both networks scored between 81% and 85% of the nonwords correctly

for both sets, with the control net being slightly better than the fixation net. This

score is good enough to conclude that both networks have successfully managed to

pronounce nonwords. It has to be noted that most connectionist networks are trained

on more word presentations. Thus for example the Shillcock and Monaghan (2003)

model was trained on 10 million words, whereas the current models were only trained

on 4 million words to reduce training times. It is expected that a longer training time

would improve the nonword performance of the network since a lot more of the low

frequency words especially would be presented more often than in the current simu-

lations. Additionally this would also improve the overall performance of the network

on the words in the training corpus, since the majority of errors were made on low

frequency words to which the network was not often exposed.

To conclude, it can be said that both networks were able to learn both exception words

and nonwords. A single system is responsible for learning both of these types of words.
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This validates the networks as models of visual word recognition. Having established

this, the next step is to look at the differences between the two networks that were

trained.

Differences in the networks. The main part of this paper was to investigate whether

there was a significant difference between the control network and the fixation network.

Several tests were made to detect any such differences. In both simulations, there was

no significant difference found in the overall performance of both networks. The main

finding of these tests were that the performance (as measured by the number of errors

as well as the mean sum-square error over all the words in the corpus) of the control

network was best when the words presented were fixated slightly left of centre. For the

fixation net, this tendency was turned around and performance was better for words

presented slightly right of centre.

The behaviour of the control network corresponds to the optimal viewing location

during single word recognition, where a word at a time is presented to human subjects

and the fixation positions are measured (e.g. Nazir (2000)). This is quite interesting

since there was no initial bias for the network to evolve in this way. It seems to arise

simply out of the structure of English words, where the beginning of a word is usually

more informative than the end of the word. A fixation position slightly left of centre

will thus ensure that an equal amount of information will be sent into both of the

hidden layers, agreeing with Shillcock et al. (2000)’s claim that the optimal viewing

location is beneficial to word reading. Note that the same result was obtained in the

second simulation with less words in the training corpus, which helps to establish that

the previous result was not just a random occurrence.

The preferred fixation position for the fixation net on the other hand is slightly right of

centre. This is not surprising since in this network the fixation position with the highest

frequency was position 4, just right of the word centre. Thus, during training, the net-
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work was presented comparatively more words at position 4 than at any other position.

This corresponds to the reading behaviour of humans for 4-letter words when they

read words in a text. Note that the differences in the fixation position frequencies were

very small. The difference between the highest frequency position (position 4 with a

frequency of 0.221) and the lowest frequency position (position 1 with a frequency of

0.177) was only 0.044. Another interesting fact is that the difference between the pre-

ferred position of the control network (position 2) and position 4 was only 0.024. Even

though these differences are very small, they nevertheless managed to induce a change

in the networks behaviour and counter the natural preference of the network for words

fixated slightly left of centre. Thus even these very small differences in the initial con-

ditions of the networks manage to change their behaviour. For the second simulation

the differences between the frequencies of the fixation positions was enhanced. This

simulation confirmed the previous findings. Whereas before, the fixation position right

of centre was only slightly preferred, there now was a much bigger preference for a

fixation right of centre reflecting the initial conditions of this network.

Another interesting aspect of this simulation was the fact that for the homographs,

the control network pronounced the word ’read’ as /rEd/ whereas the simulation net

pronounced the word as /riid/ (in all fixation positions). This hints at a difference in

the two networks in how information is stored in the hidden layers. Both of these

possibilities appeared roughly the same number of times during training. Nevertheless

both networks pronounced the word differently. This might come from the fact that the

fixation net sees the word more often as ’rea-d’ and thus would use what it has learned

about ’ea’, namely that ’ea’ appears most often as /ii/ in the corpus. The control net on

the other hand will have a preference to encode the ’ead’ in read as /Ed/ since that is

most frequently the case for words ending in ’ead’ (e.g. ’dead’). Note that there would

be no problem for either of the nets to learn either of the pronunciations if ’read’ was

not a homograph. Since the network here has two possibilities, what it has learned

before about other similar words will influence the final result on ’read’. This was the
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only homograph in the corpus for which this comparison can be made. For all the

other homographs, either one of the possibilities had a much higher frequency (and

was thus learned) or both had a very low frequency (e.g. both 0.05) and so wouldn’t

have appeared often enough during training. A similar argument can be applied as to

why the fixation network made an error on the word ’pint’ in the second simulation

with less words.

To conclude it can be said that there is indeed a difference in how both networks evolve

during training. The difference was small for the first simulation. However, the second

simulation confirmed the differences in the networks by having bigger differences in

the fixation positions. The effect is also expected to be bigger for larger words, since

the fixation position frequencies for larger words are naturally larger.

3.2 Future Work

The present work can be considered a feasibility study to see if it is worth pursuing

this research of combining real fixation data with the split-fovea model of reading.

The conclusion drawn before suggests that there are indeed possibilities for future

research. An interesting test, which has not been done in the current simulation due

to time constraints, would be to lesion the network. More precisely, by cutting the

connections between the two hidden layers (i.e. removing the Corpus Callosum), it

would be possible to further examine in how far the two networks have encoded the

mappings between orthography and phonology differently.

Another direction in which future research could go is to build networks that admit

longer words as inputs. Longer words have larger differences in the frequencies of

the different fixation positions. Also, the preferred viewing postions for longer words

during reading is left of centre as opposed to right of centre for 4-letter words. It

would be interesting to see what would come out of a full-scale model including words
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of different lengths, rather than having a network that is only capable to have 4 letter

words as its input.



Appendix A

Regular, Irregular and Ambiguous
Word Lists

Word List from Plaut et al. (1996)
Regular Irregular AmbiguousRegular Irregular Ambiguous
beam both cone came bowl dead
cask bush dive coal chic four
cook comb gear cool come glow
cord cost gone cove dead good
crag deaf head cuff does hood
dank does know dare doll lone
dark done love days door near
dear foot pour deed four show
desk full year dole give your
dolt gone zone dots gong
fact good fade have
five head flat hind
flew hook form limb
fret lose glum lost
goes love goon most
grow move gull mule
hark none harm once
here pear home pint

hump poor lash pull
leaf said lisp says
lobe shoe loom show
loss some main swap
meat tomb mend wand
moan want mole warm
moth warp mush wart
page wash paid wasp
peel were pest what

Continued on next page
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Word List from Plaut et al. (1996)
Regular Irregular AmbiguousRegular Irregular Ambiguous

pine whom plod wolf
pork womb pose wool
pump word rave work
ripe worm roam your
roll root
rune sand
sank slam
slip sole
soon stop
swig tell
tint toad
tote wade

wake wane
wean week
weep weld
when wick
will wilt
wing wink
wipe with

Word List (split into two to save space)
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Errors of the control network

Errors of the control network.
Word Frequency Fixation Position Computed Output Target Output
adze 0.050 5 Odz &dz
airs 0.050 3 EOz E@z
aped 0.050 4 EVpt EIpt
arse 0.054 5 Vrz Vrs
arse 0.054 4 Vrz Vrs
arse 0.054 2 Vrz Vrs
auks 0.050 5 Orz Orks
bead 0.050 4 biId biid
buys 0.095 4 b&Id b&Iz
chef 0.054 5 JEf SEf
chef 0.054 4 JEf SEf
chef 0.054 3 JEf SEf
chic 0.080 5 Jiik Siik
chid 0.050 2 SId JId
chis 0.050 4 k&Id k&Iz
chis 0.050 3 J&Iz k&Iz
chis 0.050 1 J&Iz k&Iz
chit 0.050 2 SIt JIt
chit 0.050 1 SIt JIt
chug 0.050 4 JVk JVg
cite 0.051 5 t&It s&It
coax 0.050 1 kiUks k@Uks
coup 0.110 5 kUUk kUU
coup 0.110 4 kUUk kUU
coup 0.110 3 kUUk kUU
coup 0.110 2 kUUk kUU
coup 0.110 1 kUUk kUU
czar 0.050 5 sVrr zVrr
czar 0.050 4 sVrr zVrr

Continued on next page
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Errors of the control network.
Word Frequency Fixation Position Computed Output Target Output
czar 0.050 3 sVrr zVrr
czar 0.050 2 sVrr zVrr
czar 0.050 1 sVrr zVrr
delf 0.050 4 zElf dElf
dose 0.109 4 d@Uz d@Us
dose 0.109 3 d@Uz d@Us
dose 0.109 2 dEUz d@Us
dose 0.109 1 d@Uz d@Us
dost 0.050 5 dOst dVst
dost 0.050 4 dOst dVst
dost 0.050 3 dOst dVst
dost 0.050 2 dOst dVst
dost 0.050 1 dOst dVst
doth 0.055 5 dVs dVT
ewes 0.050 5 NUUz jUUz
eyot 0.050 3 VIt EIt
eyot 0.050 2 VIt EIt
fete 0.050 5 fiIt fEIt
fete 0.050 4 fiIt fEIt
fete 0.050 3 fiIt fEIt
gels 0.050 5 gElz Elz
gels 0.050 4 gElz Elz
gels 0.050 3 gElz Elz
gels 0.050 2 gElz Elz
gels 0.050 1 gElz Elz
gems 0.050 5 gEmz Emz
gems 0.050 4 gEmz Emz
gems 0.050 1 gEmz Emz
germ 0.055 5 g@rm @rm
germ 0.055 4 g@rm @rm
germ 0.055 3 g@rm @rm
germ 0.055 2 g@rm @rm
germ 0.055 1 g@rm @rm
gibe 0.050 1 g&Ib &Ib
gins 0.050 5 gInz Inz
gins 0.050 2 gInz Inz
gins 0.050 1 gInz Inz
gist 0.050 5 gIst Ist
gist 0.050 4 gIst Ist
gnus 0.050 1 nVz nUUz
gush 0.050 3 gVJ gVS
gyms 0.050 1 gImz Imz
hush 0.088 3 hVJ hVS
iced 0.061 4 &Izt &Ist

Continued on next page
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Errors of the control network.
Word Frequency Fixation Position Computed Output Target Output
john 0.050 5 gOn On
john 0.050 4 gOn On
khan 0.107 1 JVrn kVrn
kris 0.050 3 kriiz kriis
kris 0.050 2 kriiz kriis
kris 0.050 1 Jriiz kriis
lewd 0.050 2 lUUd ljUUd
lien 0.050 5 lIin lI@n
lien 0.050 4 lIin lI@n
lien 0.050 3 lIin lI@n
lien 0.050 2 lIin lI@n
lien 0.050 1 lEin lI@n
lieu 0.050 1 ljEI ljUU
luge 0.050 5 lUUD lUUZ
luge 0.050 3 lUUD lUUZ
luge 0.050 2 lUU lUUZ
luge 0.050 1 lUU lUUZ
oast 0.050 4 @Uts @Ust
ooze 0.050 5 UUs UUz
pals 0.050 1 p&ls p&lz
pooh 0.050 5 pUU phUU
pooh 0.050 4 pUU phUU
pooh 0.050 3 pUU phUU
quay 0.063 5 kEi kii
quay 0.063 4 kEi kii
quay 0.063 3 kEi kii
quay 0.063 2 kEi kii
quay 0.063 1 kEi kii
rhea 0.050 5 rE@ rI@
rhea 0.050 4 rE@ rI@
rhea 0.050 3 rE@ rI@
rhea 0.050 2 rE@ rI@
roux 0.050 5 rUUS rUU
roux 0.050 4 rUUS rUU
roux 0.050 3 rUUk rUU
sear 0.050 5 sE@r sI@r
sohs 0.050 1 s@Us s@Uz
spiv 0.050 1 spIf spIv
suet 0.050 5 sUUt sUIt
suet 0.050 4 sUUt sUIt
suet 0.050 3 sUUt sUIt
suet 0.050 2 sUUt sUIt
suet 0.050 1 sUUt sUIt
swab 0.050 5 sw&b swOb

Continued on next page
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Errors of the control network.
Word Frequency Fixation Position Computed Output Target Output
swiz 0.050 5 swId swIz
talc 0.050 5 t&Vlk t&lk
thaw 0.052 2 DOr TOr
thru 0.050 1 srUU TrUU
thud 0.054 5 DVd TVd
thud 0.054 4 DVd TVd
thud 0.054 3 DVd TVd
tows 0.050 1 s@Uz t@Uz
tsar 0.050 5 sVrr zVrr
tsar 0.050 4 sVrr zVrr
tsar 0.050 3 sVrr zVrr
tsar 0.050 2 sVrr zVrr
tsar 0.050 1 sVrr zVrr
veld 0.050 5 vEld vElt
veld 0.050 4 vEld vElt
veld 0.050 3 vEld vElt
veld 0.050 2 vEld vElt
veld 0.050 1 vEld vElt
waft 0.050 2 wOrft wVrft
wend 0.050 1 wVnd wEnd
wops 0.050 2 wVps wOps
zoom 0.050 4 dUUm zUUm
Errors of the control network.
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Errors of the fixation network

Errors of the fixation network.
Word Frequency Fixation Position Computed Output Target Output
ache 0.086 4 EIJ EIk
ache 0.086 3 EIJ EIk
ache 0.086 2 EVk EIk
ache 0.086 1 EIJ EIk
aide 0.096 1 OId EId
alms 0.050 2 Omz Vrmz
arse 0.054 5 Vrz Vrs
arse 0.054 4 Vrz Vrs
arse 0.054 3 Vrz Vrs
arse 0.054 2 Vrz Vrs
arse 0.054 1 Vrz Vrs
bade 0.050 5 bEd b&d
beau 0.050 5 biU b@U
beau 0.050 3 biU b@U
beau 0.050 2 biU b@U
beau 0.050 1 biU b@U
boor 0.050 5 bOOr bU@r
boor 0.050 1 bOrr bU@r
char 0.050 1 SVrr JVrr
chef 0.054 5 JEf SEf
chef 0.054 4 JEf SEf
chef 0.054 3 JEf SEf
chef 0.054 2 JEf SEf
chew 0.093 3 SUU JUU
chew 0.093 2 SUU JUU
chic 0.080 5 Jiik Siik
chic 0.080 1 Tiik Siik
chid 0.050 2 SId JId
chid 0.050 1 SId JId

Continued on next page
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Errors of the fixation network.
Word Frequency Fixation Position Computed Output Target Output
chis 0.050 5 J&Iz k&Iz
chis 0.050 4 J&Iz k&Iz
chis 0.050 3 J&Iz k&Iz
choc 0.050 4 SOk JOk
choc 0.050 3 SOk JOk
choc 0.050 2 SOk JOk
chum 0.063 1 SVm JVm
cons 0.050 1 kVnz kOnz
coup 0.110 5 kUUJ kUU
coup 0.110 4 kUUJ kUU
coup 0.110 3 kUUJ kUU
coup 0.110 2 kUUJ kUU
coup 0.110 1 kUUJ kUU
cyst 0.050 3 tIst sIst
czar 0.050 5 sVrr zVrr
czar 0.050 3 sVrr zVrr
doge 0.050 4 d@Ug d@U
dons 0.074 4 dVnz dOnz
dose 0.109 3 d@Uz d@Us
dose 0.109 2 d@Uz d@Us
dose 0.109 1 d@Uz d@Us
dots 0.074 5 dVts dOts
duct 0.050 5 dVJt dVkt
duds 0.050 5 dVds dVdz
fete 0.050 5 fIIt fEIt
flex 0.063 1 plEks flEks
gash 0.050 2 k&S g&S
gist 0.050 3 gIst Ist
gist 0.050 2 gIst Ist
gist 0.050 1 gIst Ist
heir 0.110 5 I@r E@r
heir 0.110 4 I@r E@r
heir 0.110 3 I@r E@r
heir 0.110 2 I@r E@r
heir 0.110 1 I@r E@r
hind 0.113 4 h&Vnd h&Ind
hymn 0.106 5 gIm hIm
iced 0.061 5 &Isd &Ist
iced 0.061 4 &Isd &Ist
iced 0.061 3 &Isd &Ist
iced 0.061 2 &Isd &Ist
josh 0.050 3 dOS OS
joss 0.050 5 JOs Os
khan 0.107 3 gVrn kVrn

Continued on next page
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Errors of the fixation network.
Word Frequency Fixation Position Computed Output Target Output
knob 0.069 4 nOp nOb
kris 0.050 5 kriiz kriis
kris 0.050 4 kriiz kriis
kris 0.050 3 kriiz kriis
kris 0.050 2 kriiz kriis
kris 0.050 1 kriiz kriis
leys 0.050 2 liIz lEIz
lien 0.050 5 lIin lI@n
lien 0.050 4 lIin lI@n
lien 0.050 3 lIin lI@n
lien 0.050 2 lIin lI@n
lien 0.050 1 lEin lI@n
luge 0.050 5 lUU lUUZ
luge 0.050 4 lUU lUUZ
luge 0.050 2 lUU lUUZ
lute 0.050 5 liUUt lUUt
mule 0.083 3 mjUIl mjUUl
niff 0.050 5 mIf nIf
nude 0.104 4 njUUz njUUd
oast 0.050 4 @Utt @Ust
oath 0.092 4 @Us @UT
ooze 0.050 5 UUs UUz
phew 0.050 1 sjUU fjUU
phiz 0.050 2 fEz fIz
pooh 0.050 4 pUU phUU
quay 0.063 5 kEi kii
rasp 0.050 3 rVrtp rVrsp
rein 0.051 4 rVIn rEIn
rend 0.050 3 rVnd rEnd
sass 0.050 1 s&z s&s
shed 0.223 5 SVd SEd
sigh 0.161 5 T&I s&I
sigh 0.161 4 T&I s&I
smog 0.050 2 tmOg smOg
sohs 0.050 3 s@Us s@Uz
spiv 0.050 1 spIf spIv
thew 0.050 5 DjUU TjUU
thru 0.050 4 DrUU TrUU
thru 0.050 3 DrUU TrUU
thru 0.050 1 DrUU TrUU
thug 0.050 5 DVg TVg
thug 0.050 3 sVg TVg
toad 0.062 2 s@Ud t@Ud
tsar 0.050 5 sVrr zVrr

Continued on next page
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Errors of the fixation network.
Word Frequency Fixation Position Computed Output Target Output
tsar 0.050 4 tVrr zVrr
tsar 0.050 3 sVrr zVrr
tsar 0.050 2 sVrr zVrr
tsar 0.050 1 sVrr zVrr
urns 0.050 5 Ornz @rnz
vacs 0.050 5 f&ks v&ks
vase 0.074 5 vEUz vVrz
vase 0.074 4 vErz vVrz
vase 0.074 3 vErz vVrz
vase 0.074 2 vErz vVrz
veld 0.050 5 vEld vElt
veld 0.050 4 vEld vElt
veld 0.050 3 vEld vElt
veld 0.050 2 vEld vElt
veld 0.050 1 vEld vElt
void 0.096 2 fOId vOId
yeas 0.050 2 jEiz jEIz
zoom 0.050 2 sUUm zUUm
zoom 0.050 1 sUUm zUUm
Errors of the fixation network.



Appendix D

Nonword List

Glushko (1979)’s nonwords with their pronunciation.
Inconsistent Nonwords Consistent Nonwords

BILD /b&Ild/; /bIld/ BEED /biid/
BINT /b&Int/; /bInt/ BELD /bEld/
BLEAD /bliid/; /blEd/ BINK /bINk/
BOOD /bUUd/; /bVd/; /bUd/ BLEAM /bliim/
BOST /b&Ust/; /bVst/; /bost/ BORT /b&Urt/
BROVE /br&Uv/; /brUUv/; /brVv/ BROBE /br&Ub/
COSE /k&Us/; /k&Uz/; /kUUz/ CATH /k&T/; /kOT/
COTH /k&UT/; /koT/ COBE /k&Ub/
DERE /dEIr/; /diir/; /dUr/ DOLD /d&Uld/; /dOld/
DOMB /d&Um/; /dUUm/; /dOm/; /dOmb/ DOON /dUUn/
DOOT /dUUt/; /dUt/ DORE /d&Ur/
DROOD /drUUd/; /drVd/; /drUd/ DREED /driid/
FEAD /fiid/; /fEd/ FEAL /fiil/
GOME /g&Um/; /gVm/ GODE /g&Ud/
GROOK /grUUk/; /grUk/ GROOL /grUUl/; /grUl/
HAID /h&d/; /hEId/; /hEd/ HEAN /hiin/
HEAF /hiif/; /hEf/ HEEF /hiif/
HEEN /hiin/; /hIn/ HODE /h&Ud/
HOVE /h&Uv/; /hUUv/; /hVv/ HOIL /hOIl/
LOME /l&Um/; /lVm/ LAIL /lEIl/
LOOL /lUUl/; /lUl/ LOLE /l&Ul/
MEAR /mEIr/; /miir/ MEAK /mEIk/; /miik/
MONE /m&Un/; /mVnmon/ MOOP /mUUp/
MOOF /mUUf/; /mUf/ MUNE /mUUn/; /mjUUn/
NUSH /nVS/; /nUS/ NUST /nVst/
PILD /p&Ild/; /pIld/ PEET /piit/
PLOVE /pl&Uv/; /plUUv/; /plVv/ PILT /pIlt/
POMB /p&Um/; /pUUm/; /pOm/; /pOmb/ PLORE /pl&Ur/
PODE /p&Ud/ PRAIN /prEIn/
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Glushko (1979)’s nonwords with their pronunciation.
Inconsistent Nonwords Consistent Nonwords

POOT /pUUt/; /pUt/ SHEED /Siid/
POLD /p&Uld/; /pOld/ SOAD /s&Ud/; /sod/
POVE /p&Uv/; /pUUv/; /pVv/ SPEET /spiit/
PRAID /pr&d/; /prEId/; /prEd/ STEET /stiit/
SHEAD /Siid/; /SEd/ SUFF /sVf/
SOOD /sUUd/; /sVd/; /sUd/ SUST /sVst/
SOST /s&Ust/; /sVst/; /sost/ SWEAL /swiil/
SPEAT /spEIt/; /spiit/; /spEt/ TAZE /tEIz/
STEAT /stEIt/; /stiit/; /stEt/ WEAT /wEIt/; /wiit/; /wEt/
SULL /sVl/; /sUl/ WOSH /wOS/
SWEAK /swEIk/; /swiik/ WOTE /w&Ut/
TAVE /t&v/; /tEIv/; /tOv/ WUFF /wVf/
WEAD /wiid/; /wEd/
WONE /w&UnwVn/; /won/
WULL /wVl/; /wUl/
WUSH /wVS/; /wUS/
Nonwords with their pronunciation.
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