
1

A Firewall Network System for Worm Defense
in Enterprise Networks

Cliff C. Zou, Don Towsley, Weibo Gong
{czou,gong}@ecs.umass.edu, towsley@cs.umass.edu

Univ. Massachusetts, Amherst
Technical Report: TR-04-CSE-01

February 4, 2004

Abstract— From a security point of view, the Internet
is too open. The central idea of a traditional “firewall” is
to constrain service requests from the Internet to a local
network. As an enterprise network becomes larger and
more flexible, an Internet worm can easily find a way
to enter it. Based on the “defense-in-depth” principle, we
present a “Firewall Network System” for worm defense in
enterprise networks, which uses internal firewalls to divide
an enterprise network into many isolated subnetworks.
Computers in an enterprise network are classified as either
clients or servers: all service requests sent to internal
IP addresses of an enterprise network will be blocked
by internal firewalls if they target non-server computers
or servers that do not provide the corresponding service.
In this way, the Firewall Network System removes most
worm infection paths in an enterprise network and makes
worm detection much easier. All internal firewalls are
designed to have the same set of firewall rules, which
means the Firewall Network System is scalable and easily
managed. In addition, we propose a five-level feedback
worm defense strategy based on the US homeland defense
“color” system [11] and present models of several worm
defense techniques including active patching and individ-
ual quarantine.

I. INTRODUCTION

Computer “worms” are programs that self-propagate
across a network exploiting security or policy flaws in
widely-used services [24]. From a security point of view,
the Internet is too open: without the presence of security
devices such as firewalls, any computer in the Internet
can directly contact any other computer so long as the
target computer has a global routable IP address. Because
of this openness, computer worms have become one of
the major threats to the Internet. Since 2001, several
widely-spread worms, Code Red [6], Nimda [13], SQL
Slammer [17], and Blaster [7], have repeatedly spread
across the Internet and caused substantial damage.

Computer worms can spread throughout the Internet
within hours, even minutes. For example, the SQL

Slammer infected 90% of all vulnerable computers in
the Internet within 10 minutes [17]. Such fast spreading
worms motivate the need for an automatic worm defense
system. However, building such a system in the global
Internet is tremendously difficult due to the complexity
of the Internet, the security and privacy issues in data
sharing, and the cooperation required among all Internet
communities. Hence, before we can build up such a
global Internet worm defense system, there is a great
need by organizations, especially enterprises, to first
build up a worm defense system for their computer
networks. In the following, we refer to the computer
network of an organization as an “enterprise network”.

Suppose a worm exploits a vulnerability on port
x. When an infected host (source) attempts to infect
a vulnerable host (target), the source needs to send
corresponding TCP/UDP packets to the target on port
x. If port x is a TCP port, then the source needs to first
send a TCP SYN packet to the target on TCP port x
to set up TCP connection, which is the case for Code
Red and Blaster [6][7]; if port x is a UDP port, the
source can directly send the exploiting code to the target
on port x, as in the case of SQL Slammer [17]. We
refer to such a network connection from the source to
the target as a “service request” on TCP/UDP port x. A
successful worm infection from an infected host (source)
to a vulnerable host (target) requires that the source and
target computers satisfy two conditions:

• The target computer accepts service requests on the
vulnerable service port.

• The source computer can directly send attacking
service requests to the target computer.

A “firewall” explicitly permits certain incoming ser-
vice requests from the Internet to a local network. It
defends against a worm by ensuring that the second
condition is never satisfied. However, traditional firewalls
are not sufficient nowadays to protect an enterprise net-

2

work from worm attacks. As more enterprises implement
wireless networking, Virtual Private Networks (VPN)
and allow employees to work at home, it becomes harder
to define the boundary of an enterprise network. At the
same time, Internet worms become more complex and
intelligent — they can easily find a way to go around a
traditional firewall to infect computers in an enterprise
network. For example, the Nimda worm [13] could
traverse an enterprise traditional firewall by sending
infectious emails. Therefore, boundary firewalls may not
be able to block all worm infection attempts from the
global Internet.

Traditional firewalls place a tight security check at the
boundary of an enterprise network, while usually there
is no such check for internal traffic. Thus they cannot
defend an enterprise network once a worm finds a way
to infect an internal computer. What is required is a
“defense in depth”: in addition to traditional firewalls at
the boundary of an enterprise network, firewalls should
be distributed inside the enterprise network to restrict
access among internal computers as well.

Briefly speaking, our idea is to introduce firewalls to
prevent the second condition of a successful worm infec-
tion from being satisfied within an enterprise network.
We refer to such a worm defense system as a Firewall
Network System. We place firewalls on physical links of
an enterprise network, dividing the network into isolated
subnetworks. Henceforth, the traditional firewall found
at the boundary of an enterprise network is referred to
as the boundary firewall; firewalls within an enterprise
network as internal firewalls.

The most important theme of our defense system is
that we classify all computers in the enterprise network
using the “client/server” networking mode (computers in
a peer-to-peer system are both clients and servers). All
internal firewalls in the Firewall Network System de-
ploy explicit access policies to allow predefined service
requests (defined by source IP, destination IP, destination
port) to pass through. Under this defense, all service
requests sent to internal IP addresses of an enterprise
network are blocked by internal firewalls if they target
non-server computers or servers that do not provide the
corresponding service to the sources. In this way, the
Firewall Network System removes most worm infection
paths in an enterprise network and also makes worm
detection much easier.

Another important theme of our defense system is that
we solve the system management issue by having the
same set of firewall rules on all internal firewalls. This
makes the Firewall Network System scalable to large
enterprise networks and easily managed by a central
firewall management console. In addition, we propose a

five-level feedback worm defense strategy based on the
“feedback quarantine” principle from epidemic disease
control [27] and the five-level US “Homeland Secu-
rity Advisory System” [11]. In this way, the Firewall
Network System can take appropriate (cost-effective)
defense actions under different situations.

The Firewall Network System is designed for defense
against “worms”, not mass-mailing “email viruses” such
as recent “SoBig” [3] and “MyDoom” [4]. An email
virus compromises computers when their email users
executes the virus attachment — no vulnerability is
required on these computers; On the other hand, a worm
does not need human interference to propagate and com-
promises computers only if they have the corresponding
vulnerability. Email viruses are different from worms in
their propagation behaviors and infection mechanisms.
However, as described in Section V-D, the Firewall
Network System can prevent internal infected computers
from sending out virus emails if the email virus uses its
own SMTP engine. In addition, the Firewall Network
System helps in defending against “inside attacks” since
an internal computer in an enterprise network cannot
arbitrarily connect to and compromise another computer
in the network.

The rest of this paper is organized as follows. Sec-
tion II surveys related work. Section III presents the
architecture of the Firewall Network System. The major
principles in designing the Firewall Network System are
introduced in Section IV. Section V discusses worm
detection and defense issues and proposes a five-level
feedback defense strategy. Section VI presents three
worm propagation models based on different defense
strategies and the corresponding experiments are pre-
sented in Section VII. In the end, Section VIII concludes
this paper.

II. RELATED WORK

The “defense in depth” is not a new concept; the
NSA presented the concept of “defense in depth” in
its security recommendation guides [10] in the con-
text of a three-layer defense: “people, technology, and
operations”. People have thought about using multiple
layers of firewalls to protect an enterprise network for
a long time. Currently many enterprises have set up
additional firewalls to protect important servers inside
their networks. J. Snyder studied the issues of “defense in
depth” by pushing firewalls inside an enterprise network
[20][21]. However, his studies did not present any new
technology and concentrated mainly on user authenti-
cation and protection of servers. In addition, he did

3

Fig. 1. Architecture of the Firewall Network System for worm defense in an enterprise network

not answer the important issue of how to reduce the
complexity of firewall management.

A close work to ours is the “CounterMalice” presented
by Staniford [22] for worm defense in enterprise net-
works. The basic idea is to use CounterMalice boxes to
separate an enterprise network into many isolated subnet-
works. In a normal situation, these CounterMalice boxes,
unlike internal firewalls in our proposed system, impose
no constraint on network traffic. They will quarantine an
internal infected computer and prevent it from spreading
out to other subnetworks once they detect this infected
computer.

Nojiri et al. [19] presented a “cooperative response”
worm defense model in which compromised sites warn
“friends” of the presence of a worm, resulting in the
friends blocking the worm. Williamson [25] studied
worm containment by constraining the outgoing scan
rate from infected hosts, which has the effect of de-
creasing the worm’s propagation speed dramatically. To
be effective, however, both approaches require global
implementation and thus are not suitable for worm
defense in an enterprise network.

For early worm detection, Moore et al. [16] presented
the concept of “network telescope” by using a small
fraction of IP space to observe security incidents on the
global Internet. Based on a similar monitoring system,
Zou et al. [26] presented a non-threshold based worm
detection method for detecting the exponential growth
trend of a worm’s propagation. For automatic mitigation
of worm attacks, Zou et al. [27] presented a feedback
dynamic quarantine system that borrows two principles
used in epidemic disease control: preemptive quarantine
and feedback adjustment. David Nicol [18] studied how

various “good” worms could help in worm defense.
Friedman et al. [9] proposed embedding the firewall

and other network functionality in an “intelligent net-
work interface card” (iNIC) to filter inbound/outbound
traffic for each host in a network. Ioannidis et al.
[14] presented the concept of “distributed firewalls” for
security enforcement inside a network and discussed im-
plementation issue by using “KeyNote trust management
system” to specify, distribute, and resolve firewall policy.
The proposed “Firewall Network System” in this paper
can use the management system presented in [14] for
secure communication and management.

III. FIREWALL NETWORK SYSTEM ARCHITECTURE

Fig. 1 illustrates the generic architecture of the Fire-
wall Network System. The Firewall Network System
includes several components: (1). Boundary firewall;
(2). Internal firewalls; (3). Vulnerability assessment and
active patching system; (4). Central firewall management
console; and (5). Worm detection systems.

“Boundary firewall” is the traditional firewall cur-
rently used in most enterprise networks. It constrains
access from the outside Internet to the internal enterprise
network. The Firewall Network System does not make
any change to the configuration of the boundary firewall.
Inside an enterprise network, “internal firewalls” divide
the network into many isolated subnetworks. Fig. 1
shows the case where an enterprise network is partitioned
into four separated subnetworks referred to as “Subnet
A”, “Subnet B”, etc. These internal firewalls are denoted
as “F1”, “F2”, etc.

A vulnerability assessment system is an indispensable
security defense to an enterprise [1]. It helps adminis-

4

trators of an enterprise network identify and eliminate
vulnerable computers in the network as early as possible.
Besides warning users of the vulnerabilities in their
computers, administrators can forcedly compromise and
patch vulnerable hosts in an enterprise network, espe-
cially when a worm is spreading rapidly in the Internet.
For these two reasons, the Firewall Network System
contains a “vulnerability assessment and active patching
system”.

For the management of all internal firewalls, the
Firewall Network System has a “central firewall man-
agement console”. Through this console, administrators
of an enterprise can easily update firewall rules in all
internal firewalls, send command to internal firewalls
to quarantine individual host or subnetworks, or collect
monitored data from internal firewalls.

To defend against a worm, it must be detected as
quickly as possible. Two worm detection systems exist
in an enterprise network: the “Internet worm detection
system” detects the propagation of worms in the global
Internet; the “internal worm detection system” detects
infected hosts within an enterprise network. The “In-
ternet worm detection system” detects a worm based
on monitored incoming traffic from the outside Internet
to an enterprise network. It can use the monitoring
methods presented in [16][26] to detect a worm (by
using, for example, the early detection method presented
in [26]). The “internal worm detection system” is on the
“central firewall management console”. It detects internal
infected hosts based on monitored data from all internal
firewalls.

Fig. 2. Low-level Firewall Network System for the Subnet A shown
in Fig. 1 (“F1” in this figure is Firewall F1 shown in Fig. 1)

For a large enterprise consisting of tens of thousands
of computers around the world, we can implement a
“two-level hierarchical Firewall Network System”. The
high-level Firewall Network System partitions the enter-
prise network into many isolated but still large subnet-
works. For example, each subnetwork could correspond

to a branch of the enterprise in one country. Within
each large subnetwork, the local administrators of this
subnetwork implement a low-level Firewall Network
System to further partition this subnetwork into many
smaller subnetworks. For example, Fig. 1 shows the
high-level Firewall Network System of a large enterprise
network and Fig. 2 shows the low-level Firewall Network
System for Subnet A (“F1” in this figure is Firewall F1
shown in Fig. 1). The administrators of the enterprise do
not need to pay attention to the network traffic within
Subnet A — such traffic can be controlled by local
administrators. In this way, if a server in Subnetwork A1

shown in Fig. 2 only provides service to Subnetworks A1

and A2, it is treated as a server in the low-level Firewall
Network System, but as a client in the high-level Firewall
Network System.

For secure communication between different com-
ponents in the Firewall Network System, we can use
IPsec key management protocol or any other secure
communication protocol.

IV. SYSTEM DESIGN FOR THE FIREWALL NETWORK

SYSTEM

A. Explicit client/server networking mode

We require that computers in an enterprise network
work in the “client/server” networking mode. A “client”
can send out service requests, but cannot provide any
service to others. The advantage of the “client/server”
networking mode is that only servers provide services
and thus no computer is expected to send a service
request to any client computer. After clients and servers
are clearly defined, we can implement the access policy
in all internal firewalls to simply block all client-to-client
and server-to-client service requests without affecting the
normal usage of the network. Any infected computer in
one subnetwork will not be able to infect any other client
computer in other subnetworks. Furthermore, the Fire-
wall Network System can very easily detect an infected
computer: a service request sent out by a computer is
judged abnormal and blocked immediately if it is sent
to an IP address (within the enterprise network) other
than those predefined servers.

Note that the list of “predefined servers” in internal
firewalls does not include servers that only provide
services to their own subnetworks — normal service
requests to such servers do not pass through any inter-
nal firewall. For example, network printers for printing
service within one subnetwork, Windows or Samba file
sharing computers within one subnetwork, they are all
local servers that are not affected by the “client/server”

5

networking mode requirement. In this way, the “prede-
fined server” list in internal firewalls can also be kept
short and manageable.

The constraint imposed by the client/server network-
ing mode is that employees of an enterprise cannot
arbitrarily set up servers without notifying administrators
(if a server is used only within its subnetwork, then
employees can set up such this server whenever they
want). For an open environment organization such as
a university or an ISP, this constraint may not be ac-
ceptable. For such organizations, the Firewall Network
System is not a suitable solution. Many other enterprises,
however, have such a company policy that employees
cannot set up servers arbitrarily. For these enterprises,
this constraint will not impose much of a burden.

Currently, many enterprises introduce additional fire-
walls to protect their important servers. With the
“client/server” networking mode, the Firewall Network
System places more emphasis on protecting client com-
puters — servers are inherently more vulnerable than
clients to worm attacks because servers have to accept
service requests. For this reason, the current firewalls
for protecting servers are still useful when an enterprise
implements the Firewall Network System.

Peer-to-peer networking violates the client/server net-
working mode and hence needs special consideration.
We will discuss peer-to-peer system in detail later in
Section IV-F.

B. Explicit firewall access rules with default dropping
policy

Internal firewalls restrict network traffic to internal
computers and IP addresses. We refer to service requests
targeting internal IP addresses of an enterprise network
as “internal service requests”.

The default policy of internal firewalls is to drop
any undefined internal service request. We explicitly
define firewall rules to allow computers in the predefined
subnetworks to access the predefined internal servers.
For example, in the network shown in Fig. 1, suppose a
new SQL database server is set up in Subnet A to provide
database service to all client computers in Subnets A and
B. Administrators of the enterprise network then place
one firewall rule in Firewall F1 (or all internal firewalls)
to allow clients in Subnets A and B to send and only
send database service requests to the server. With explicit
firewall rules and a default dropping policy, no computer
in Subnets C and D is allowed to send service requests
to this database server.

With such a firewall access policy, if a client or
a server is somehow infected by a worm that needs

to compromise a vulnerable host through port x, then
the infected host can only possibly infect all vulner-
able computers within the same subnetwork and all
vulnerable connectable servers (servers that provide the
infected host the corresponding service on port x) in the
enterprise network.

C. Demilitarized Zone (DMZ) for servers

A flaw in the above design arises if we do not
separate servers from clients within subnetworks. For
example, if each subnetwork contains a vulnerable server
and all vulnerable servers in the enterprise network
are infected, then each infected server can still infect
computers within its own subnetwork. Through this way,
the worm can still infect all vulnerable computers within
an enterprise network.

For this reason, we separate servers from clients in
each subnetwork by internal firewalls. We place all
servers of each subnetwork into one or several Demili-
tarized Zone (DMZ) and connect each zone directly to a
nearby internal firewall. One subnetwork could have sev-
eral DMZs; since a subnetwork could be separated from
others by several internal firewalls, each DMZ could
connect to its nearest internal firewall for deployment
convenience. Because many enterprise networks have a
small number of servers compared to the overall number
of computers, such an approach is feasible and does not
add too much cost.

With such an approach, an infected server will not be
able to infect any client computer, even within its own
subnetwork. The infected server can only possibly infect
vulnerable servers that accept the service requests on the
vulnerable port from this server.

D. Same configuration for all internal firewalls

The Firewall Network System for a large enterprise
network may include hundreds of internal firewalls. If
different internal firewalls have different firewall rules,
the firewall configuration will have to consider the po-
sitions of internal firewalls, the distribution of servers,
and network topology. These considerations will greatly
complicate system management and make it not scalable.

This problem is solved by requiring all internal fire-
walls to have the same configuration — every internal
firewall has the same set of firewall rules. With this de-
sign, the task of the central firewall management console
is very simple: to receive the input of firewall rules from
administrators and then duplicate these firewall rules in
every internal firewall. Increasing the number of internal
firewalls does not add any more complexity to the central

6

firewall management console. This makes the Firewall
Network System scalable to large enterprise networks.

Based on the complexity of firewall configuration, we
design three types of Firewall Network Systems. From
the simplest configuration to the most complicated one,
these three types of Firewall Network Systems are:

“Type-1 Firewall Network System”: For internal ser-
vice requests, only one firewall rule is used in every
internal firewall. We collect the IP addresses (or domain
names) of all servers in an enterprise network and place
them on one server list. This firewall rule is: allow
any computer in the enterprise network to send any
internal service request to any computer on the server
list. This configuration simply classifies the network into
one client group and one server group.

“Type-2 Firewall Network System”: For internal ser-
vice requests, one firewall rule is used for one class
of servers. Thus if servers in an enterprise network
provide n types of services, n firewall rules are used
in every internal firewall. For the i-th type of service
(i = 1, 2, · · · , n), the corresponding firewall rule is:
allow any computer in the enterprise network to send and
only send the i-th type of service request to any server
providing this type of service. For example, Windows
SQL database servers provide database service by ac-
cepting service requests to them on TCP/UDP port 1433
and 1434. For this type of service, one firewall rule is
used in every internal firewall to allow any computer
in the enterprise network to send the database service
requests (with destination port as TCP/UDP port 1433
or 1434) to any internal Windows SQL database server
defined in the server list.

“Type-3 Firewall Network System”: For internal ser-
vice requests, one firewall rule is used for each server.
Thus if an enterprise network has n servers, n firewall
rules are deployed at every internal firewall. The firewall
rule for each server is: allow any computer in the prede-
fined subnetworks that are allowed to use this server to
send and only send the corresponding service requests
to this server. For example, for the enterprise network
shown in Fig. 1, suppose a Web server is set up in Subnet
A providing web service to Subnets A and D. Then we
place a firewall rule on all internal firewalls (F1 to F4)
to allow HTTP service requests on TCP port 80 and 443
passing to this Web server from any IP addresses within
Subnets A and D — any computer in Subnets B or C
cannot send HTTP service requests to the Web server. In
this way, if one computer in Subnets B or C is infected
by Code Red, the worm cannot infect this Web server.

E. Other special-purpose firewall access rules

The firewall access policies described above are con-
cerned with internal service requests to internal servers.
In this section, we introduce three additional firewall
rules that should be placed on every internal firewall.

First, we do not add restrictions to any service request
initiated from internal computers to the outside Internet
— such a restriction would greatly add complexity to
firewall rules and does not help in protecting computers
inside an enterprise network (although it might help in
protecting the global Internet community). Therefore, in
every internal firewall we add the firewall rule: allow any
internal computer of an enterprise to send any service
request to the outside Internet.

Second, the central firewall management console
should be able to connect to all internal firewalls. There-
fore, in every internal firewall we add the firewall rule:
allow the central firewall management console to send
firewall management service requests to any internal
firewall in the Firewall Network System.

Third, computers in the vulnerability assessment and
active patching system should be able to send any ser-
vice request to any computer in the enterprise network.
Therefore, in every internal firewall we add the firewall
rule: allow computers in the vulnerability assessment and
active patching system to send any service request to any
IP address in an enterprise network.

Considering the above firewall rule, we notice that a
UDP-based worm, such as the SQL Slammer, can easily
spoof its source IP address. When a UDP-based worm
infects an internal computer in an enterprise network, if
this computer happens to use an IP address belonging to
one of the computers within the vulnerability assessment
system as its source IP, then its scans would be able
to pass through internal firewalls. Such an event has
a very small chance of occurrence because the several
IP addresses of the vulnerability assessment system will
be kept secret and it is difficult to spoof them blindly.
However, this security hole in the Firewall Network
System can be avoided by placing one UDP scanning
computer in each subnetwork for the purpose of scanning
its subnetwork for possible UDP vulnerabilities — these
UDP scanning computers communicate with the vulner-
ability assessment system through TCP communication.
In this way, the correct firewall rule for the vulnerability
assessment and active patching system is: allow comput-
ers in the vulnerability assessment and active patching
system to send any TCP service request to any IP address
in an enterprise network.

For the same reason, the firewall rules in internal
firewalls should not rely on source IP addresses for

7

UDP service requests. Thus “type-3 Firewall Network
System” discussed previously is only suitable for TCP
but not UDP service requests. Fortunately, “type-1” and
“type-2” Firewall Network System are suitable for both
TCP and UDP service requests because they do not use
source IP address in their firewall rules.

F. Peer-to-peer networking

Peer-to-peer (P2P) networking has become a popular
research topic in recent years. In a P2P system, every
computer acts as both a server and a client. If an
enterprise network deploys P2P systems that contain a
large number of computers, the server list in every in-
ternal firewall will become large and need to be updated
frequently as computers join and leave P2P systems. For
this reason, we recommend against using peer-to-peer
networking in an enterprise network. (A P2P system can
still be used in an enterprise network deployed with the
Firewall Network System.)

Since the Firewall Network System does not control
traffic within each subnetwork, users can freely set up
a P2P system for local usage within a subnetwork. In
this way, from the perspective of the Firewall Network
System, all computers in the P2P system are treated
as clients and need not to be considered in the system
design. For example, “my network places” file sharing in
Windows computers is a simple peer-to-peer application.
We should restrict the computers that share files with
each other to be in one subnetwork — if users want to
share files across the boundary of a subnetwork, they
should use a Network File Server.

Most P2P systems can be transformed into
client/server systems by using one or several relay
servers (at the cost of speed and storage). For example,
if users in different subnetworks want to set up a
video conference, the enterprise could provide a video
conference relay server — users’ client computers
directly connect to the relay server without setting up a
peer relationship.

If an enterprise heavily relies on P2P systems and
cannot transform them to client/server systems, then
the Firewall Network System is not suitable for such
enterprises.

V. WORM DEFENSE BY THE FIREWALL NETWORK

SYSTEM

A. Worm detection

The “Internet worm detection system” detects the
presence of a worm in the global Internet by monitoring
incoming worm scan traffic to an enterprise network. It
can use the monitoring methods presented in [16][26] to

detect a worm (by using, for example, the early detection
method presented in [26]).

Once the Firewall Network System is set up, the
“internal worm detection system” can easily detect an in-
fected host within an enterprise network. Since we have
explicitly defined what service requests are allowed in an
enterprise network, any worm scan sent from an infected
host targeting an IP address in other subnetworks will
trigger an alarm so long as the scan does not happen to
target a server that allows such a service request from this
infected host. In addition, traditional detection methods
can still be used to detect the presence of a worm by
checking worm scan traffic to the outside Internet.

Staniford [22] introduced a similar system, called
“CounterMalice”. Compared with the Firewall Network
System presented here, CounterMalice has greater dif-
ficulty detecting an internal infected host: prior to the
detection of an internal infected host, worm scans sent
from this infected host to other IP addresses within
the enterprise network cannot easily be identified as
abnormal since such traffic is allowed by CounterMalice.
More importantly, before an infected host in an enterprise
network is detected and then blocked by the CounterMal-
ice device, worm scans from this host could possibly
have reached vulnerable hosts in other subnetworks and
caused infections.

If the Firewall Network System encounters a single
abnormal internal service request from a computer, it
does not mean that this computer is infected by a worm.
This may occur accidentally say if a user installs a server
or peer-to-peer software on the computer, or if a user
tries to connect to a server that does not provide services
to the computer. Therefore, the system should collect a
number of abnormal service requests from a host prior
to classifying it as infected. The major advantage of
the Firewall Network System is that it stops all worm
infection attempts sent out from an infected computer
to the enterprise network prior to the detection of this
infected computer (except infection attempts to internal
servers that accept the corresponding service request
from the source).

The worm detection results from these two detection
systems will be used in our feedback defense as de-
scribed in Section V-C.

B. Vulnerability assessment and active patching system

As mentioned previously, an enterprise requires a
vulnerability assessment system [1] to help administra-
tors identifying vulnerable computers in the network.
However, users may still not install patches even after
administrators warn them. To prevent serious damage

8

caused by a worm, administrators may want to take
aggressive actions, such as actively patching vulnerable
computers within their enterprise network. Active patch-
ing may have some negative effects such as interrupting
operations on vulnerable computers. However, it is a
necessary countermeasure so long as its cost is less than
the damage caused by a worm.

The active patching system consists of several com-
puters to scan the enterprise network and several servers
to provide patches. The scanning computers scan and
compromise vulnerable hosts in an enterprise network
with exploiting code programmed by security staffs.
After compromising a vulnerable host, the exploiting
code issues a command to download and install the
patch from the patch servers in the patching system. The
scanning computers in the active patching system can
coordinate to scan the entire IP space of an enterprise
network without wasting scanning resources.

One might expect the scanning process to take a long
time. This is not the case. For example, if an enterprise
has two Class B network space (217 IP addresses)
[22], five scanning computers in its active patching
system and each scanning computer has a scan rate 100
scans/second, then the active patching system only takes
t = 217/(5 × 100) = 4.37 minutes to complete the
scanning task.

The scanning time can be further reduced by ignoring
unallocated portions of the address space assigned to an
enterprise network. In addition, the vulnerability assess-
ment system knows the IP addresses of most vulnerable
hosts in an enterprise network from its vulnerability
scans. Therefore, the active patching system can first
scan and install patches on these known vulnerable
computers before scan the remaining IP space of the
enterprise network. In this way, the active patching
system can patch most vulnerable hosts very quickly.

The recent Nachi worm [15] is a “good” patching
worm that attempts to remove Blaster from infected
hosts and install patches on them. Within an enterprise
network, when many vulnerable hosts are patched and
“infected” by a patching worm, the patching worm will
consume considerable resources on these patched hosts
and generate a large amount of worm traffic. Therefore,
we believe that “patching worm” is a bad defense idea,
even for an enterprise that has the right to deploy such
a worm in its own network.

C. Feedback defense based on security alert level

To defend against worm attacks, Zou et al. [27]
presented a feedback dynamic quarantine framework that
borrows two principles from epidemic disease control:

“preemptive quarantine” and “feedback adjustment”.
However, it did not discuss how to quantitatively design
the optimal feedback control theme. If the feedback con-
trol system uses continuous state, to design the feedback
system we have to know the accurate dynamic model
of the worm propagation system and the quarantine cost
function — both the model and the cost function are
very hard to derive quantitatively and accurately.

It is more feasible to design a feedback defense system
with a finite number of states and a finite number of
quarantine control actions. In dealing with terrorism
after the 9/11 terrorists’ attack, the US Department of
Homeland Security introduced a “five-level homeland
security advisory system” [11]. This system describes
“green”, “blue”, “yellow”, “orange”, and “red” security
levels along with corresponding protective measures that
should be taken under these levels — such an advisory
system is an example of a finite-state, finite-control
feedback defense system.

In the Firewall Network System, we borrow the idea
of the five-level security advisory system of Homeland
Security [11] and the “feedback adjustment” principle
[27] to design a feedback defense system with five secu-
rity alert levels and five corresponding defense actions.

The choice of security alert level of an enterprise net-
work depends on several factors. These factors include
not only the worm detection results from both worm
detection systems, but also the answers to the following
questions: how serious is a vulnerability? How easy is it
to program the worm code? Do there exist any proof-of-
concept codes or real testing codes in the Internet? The
answers to these questions provide an understanding of
the potential security problem before the worm detection
systems actually detect a worm.

In the real world, most critical vulnerabilities are first
discovered by security researchers; patches are usually
made available weeks or months before a worm appears
exploiting the corresponding vulnerability. Therefore, in
most cases there are a clear time line and a series of
development symptoms before a worm propagates in
the Internet. Consider Blaster [7] as an example. [2]
and [8] summarize the evolution of Blaster: Microsoft
provided the patch and publicized the security vulnera-
bility on July 16th, 2003; several days later people began
to discuss it and provided proof-of-concept codes in
various mailing lists; On July 25 and 26, several groups
published ready-to-run version of exploiting codes; and
on July 31, attackers tested their worm codes in several
universities. Finally ten days later, Blaster appeared and
spread across the Internet on August 11.

From our studies of previous worms, we present one
possible design of the five-level feedback defense with

9

the Firewall Network System:

Green: Neither worm detection system has detected a
worm, and no critical vulnerability has been disclosed
recently — In this case, if an internal computer sends
out forbidden internal service requests, the Firewall
Network System sends out a warning message, such as
an email, to the user of this computer. No quarantine is
implemented at this security level.
Blue: Neither worm detection system has detected a
worm, but a critical vulnerability (one that affects many
computers) has been disclosed recently — In this case, if
an internal computer sends out forbidden internal service
requests on the vulnerable port, a warning message will
be sent to the computer’s user stating that this computer
will be quarantined after, for example, one week, if it
continues to send out such illegal service requests.
Yellow: Neither worm detection system has detected
a worm, but a proof-of-concept code is available for
compromising a critical vulnerability and people have
observed some testing codes in the Internet — In this
case, if an internal computer sends out forbidden internal
service requests on the vulnerable port, a warning mes-
sage will be sent to both this computer’s user and its local
administrator. The computer will be quarantined after a
short time if it continues to send out such illegal service
requests. According to the feedback principle explained
in [27], the time to quarantine decreases accordingly as
the threat from a potential worm becomes imminent.
Orange: The “Internet worm detection system” detects
a worm spreading in the global Internet, but the “internal
worm detection system” has not detected a worm inside
the enterprise network — In this case, if an internal
computer sends out forbidden internal service requests
on the vulnerable port, this computer will be quarantined
immediately. In addition, the active patching system can
be activated to patch vulnerable hosts in the subnetwork
that contains the quarantined computer (not on the scale
of the entire enterprise network) to prevent further in-
fection by the infected host in its own subnetwork.
Red: The “internal worm detection system” has detected
a worm — It means that the worm is present within
the enterprise network and some internal computers have
already been infected. In this case, the active patching
system is activated to patch all vulnerable hosts in the
entire enterprise network to prevent further infection by
the worm. If an internal computer sends out forbidden
internal service requests on the vulnerable port, this
computer and its entire subnetwork will be quarantined
immediately.

As described above, in normal situation, most enter-
prise networks are in either “green” or “blue” security

status. An enterprise network is in “yellow” status only
when the proof-of-concept code of a critical vulnerability
appears in the Internet; and it is in “orange” or “red” sta-
tus only when its worm detection systems have actually
detected the presence of a worm.

The feedback defense actions, especially the quaran-
tine and possible active patching in the “orange” and
“red” security alert levels, can be issued automatically by
the Firewall Network System. In this case, the Firewall
Network System becomes a feedback automatic defense
system, which has the capability to defend against fast
spreading worms.

D. Firewall Network System in Email Virus Defense

The Firewall Network System is designed to defend
against worms. However, it can help to some extend in
defense against mass-mailing email viruses. Specifically,
it is effective to prevent infected computers from sending
out virus emails if the email virus uses its own SMTP
engine to send out emails.

The email protocol, Simple Mail Transfer Protocol
(SMTP), is used for email exchange between email
servers. It is also used by email agent software on an
email user’s computer, such as Netscape or Outlook, to
transmit outgoing emails to one of the user’s “outgoing
email servers”. Then outgoing email servers take the
responsibility to reliably transmit such emails to their
destination receiving email servers.

An enterprise network deploys some “outgoing email
servers” to provide email sending service to all email
users in the network. From the email sending procedure
described above, we can see that firewalls in the Fire-
wall Network System should allow and only allow the
following two classes of SMTP service requests:

• Outgoing email servers initiate SMTP service re-
quests to incoming email servers of the enterprise
network and to outside Internet.

• Any computer in the enterprise network initiates
SMTP service requests to outgoing email servers
in the network.

Most mass-mailing email viruses, such as recent So-
Big [3] and MyDoom [4], use their own SMTP engine
to send virus emails directly to destination email servers
from compromised computers. In this case, the Firewall
Network System can prevent internal infected computers
from sending out any virus emails, even to email account
within the enterprise network if the network uses differ-
ent computers for incoming and outgoing email servers
— internal virus emails are more dangerous than outside
ones because users are more likely to trust emails from
their colleagues.

10

When many enterprise networks have implemented the
Firewall Network System, attackers have to change their
email viruses to send out emails through the default out-
going email servers in enterprise networks. Such email
viruses are easier to control as we can stop outgoing
virus emails at outgoing email servers instead of every
infected email user’s computer.

The Firewall Network System is also effective in
defending “inside attacks”: it prohibits an internal com-
puter from arbitrarily connecting to another computer
in an enterprise network. In this way, it prevents or
decreases the damage caused by the inside attacks from
a malicious employee or from a hacker compromised
internal computer in an enterprise network.

VI. WORM PROPAGATION MODELING

Under the defense of the Firewall Network System,
if one internal computer in an enterprise network is
infected by a worm, the worm cannot spread out to other
subnetworks through scanning. In this section, we model
worm propagation in one subnetwork that initially con-
tains one or several initially infected computers. Without
any active defense, all vulnerable computers in this
subnetwork will eventually be infected by the worm. To
prevent such an infection, the Firewall Network System
will take active defense actions for a subnetwork once it
detects the presence of infected hosts in the subnetwork
(the network is in either “orange” or “red” security alert
level).

We model worm propagation under three different
active defenses by the Firewall Network System. The
first two defenses use the active patching system on
the subnetwork under consideration; the third defense
does not use the active patching system, but assumes
that individually infected hosts in the subnetwork can be
quarantined.

Suppose an enterprise network has Ω IP addresses
and is divided into m subnetworks by internal firewalls.
Without loss of generality, assume that the subnetwork
under consideration is the first subnetwork, which has
Ω1 IP addresses and N1 vulnerable hosts before a worm
infects one or several hosts in it. Denote I(t) as the
number of infectious hosts in the subnetwork at time t,
I(0) = I0; S(t) as the number of susceptible hosts in
the subnetwork at time t, S(0) = N1−I0. An infectious
host sends out η scans per unit time targeting the entire
enterprise network, among which η1 scans target its own
subnetwork.

For the active patching system defense, denote Q(t) as
the number of patched hosts that are immune to the worm
in the subnetwork, Q(0) = 0. The scanning computers

in the active patching system scan κ IP addresses per
unit time. For the quarantine defense, denote R(t) as the
number of quarantined hosts at time t in the subnetwork,
R(0) = 0.

Define infection density α as the fraction of vulnerable
hosts eventually infected by a worm in the subnetwork
under consideration. The primary objective of active
worm defenses implemented on the subnetwork is to
decrease a worm’s infection density, which is

α = [N1 − S(∞)]/N1 (1)

TABLE I

NOTATIONS IN THIS PAPER

Symbol Definition
Ω Number of IP addresses in an enterprise network
η Worm scan rate within an enterprise network
m Number of subnetworks in an enterprise network
N1 Number of vulnerable hosts in the

subnetwork under consideration
Ω1 Number of IP addresses in the subnetwork
η1 Worm scan rate within the subnetwork
I(t) Number of infectious hosts in the subnetwork
S(t) Number of susceptible hosts in the subnetwork
Q(t) Number of patched hosts in the subnetwork
κ Patching system scan rate within the subnetwork
T Time to quarantine an infected host

after it is infected
T1 Time to finish scanning the subnetwork by

active patching-I system
T2 Time to finish scan by active patching-II system
C Number of scans observed before quarantine
R(t) Number of quarantined hosts in the subnetwork
α Fraction of vulnerable hosts in the subnetwork

that are eventually infected by the worm
v Density of vulnerable hosts in the subnetwork

under consideration, v = N1/Ω1

p Fraction of vulnerable hosts whose IP addresses
are known to active patching-II system

A. Active patching-I: not knowing IP addresses of vul-
nerable hosts

In the “orange” and “red” security alert levels, the
subnetwork that contains an infected host will be quar-
antined by internal firewalls and patched by the active
patching system (beginning at time t = 0). First, we
analyze the situation when the active patching system
does not know IP addresses of vulnerable hosts and scans
the whole IP space of the subnetwork. We refer to such
an active patching system as “active patching-I” system.

Because the patching system does not waste scans on
already scanned IP addresses, it completes its scan of
the subnetwork at time

T1 = Ω1/κ (2)

11

At any time t (t < T1), “active patching-I” system has
scanned κt IP addresses and the remaining Ω1 − κt IP
addresses have not yet been scanned. In the remaining IP
space, the density of vulnerable hosts is S(t)

Ω1−κt . Thus on
average, the number of vulnerable hosts to be patched
in a unit time at time t is κ S(t)

Ω1−κt — this is accurate
when the worm randomly infects vulnerable hosts in
the subnetwork, or when the patching system randomly
scans not-scanned IP space in the subnetwork.

Under the “active patching-I” defense, a worm’s prop-
agation in one subnetwork follows (based on the simple
epidemic model in [5][23] and the worm model in [28]):

dS(t)
dt

= − η1

Ω1
S(t)I(t) − dQ(t)

dt
dQ(t)

dt
= κ

S(t)
Ω1 − κt

(3)

N1 = Q(t) + S(t) + I(t)

0 ≤ t < Ω1/κ

At time T1 = Ω1/κ, all initially vulnerable hosts
are either infected or patched. Thus S(t) = 0, ∀t ∈
[Ω1/κ,∞).

B. Active patching-II: known IP addresses of vulnerable
hosts

Because the vulnerability assessment system of an
enterprise network frequently scans the network to find
vulnerable computers, we analyze the situation where
the active patching system knows the IP addresses of all
vulnerable hosts within the network. We refer to such
an active patching system as “active patching-II” system,
which only needs to scan IP addresses of all vulnerable
hosts in the subnetwork.

Hence the number of IP addresses to be scanned is N1

instead of Ω1. “Active patching-II” system can complete
its scan of the subnetwork at time

T2 = N1/κ (4)

On the other hand, the worm still has the original
scanning space Ω1 because it does not know the IP
addresses of vulnerable hosts.

Under the “active patching-II” defense, a worm’s
propagation in one subnetwork follows:

dS(t)
dt

= − η1

Ω1
S(t)I(t) − dQ(t)

dt
dQ(t)

dt
= κ

S(t)
N1 − κt

(5)

N1 = Q(t) + S(t) + I(t)

0 ≤ t < N1/κ

At time T2 = N1/κ, all initially vulnerable hosts
are either infected or patched. Thus S(t) = 0, ∀t ∈
[N1/κ,∞).

During the time interval from the vulnerability scan
issued by the vulnerability assessment system to the
activation of active patching-II system, some vulnerable
hosts may change their IP addresses and some new vul-
nerable hosts may appear. Therefore, it is more realistic
to assume that active patching-II system knows the IP
addresses of only a fraction of vulnerable hosts in the
subnetwork. Denote p as the fraction of vulnerable hosts
that active patching-II system knows (0 ≤ p ≤ 1). Active
patching-II system first scans and patches those known
pN1 vulnerable hosts, then the system continues to scan
the remaining Ω1 − pN1 IP space in the subnetwork
attempting to patch the other (1−p)N1 vulnerable hosts.

Under such an “active patching-II” defense, a worm’s
propagation in one subnetwork follows:

dS(t)
dt

= − η1

Ω1
S(t)I(t) − dQ(t)

dt

dQ(t)
dt

=

{
κ S(t)

N1−κt , 0 ≤ t < pN1

κ

κ S(t)
Ω1−κt , pN1

κ ≤ t
(6)

N1 = Q(t) + S(t) + I(t)

0 ≤ t < Ω1/κ

Note that (6) reduces to (3) when p = 0 and (5) when
p = 1.

C. Worm propagation model based on individual quar-
antine

The active patching system can patch vulnerable hosts
before they are infected by a worm. However, in most
cases remotely patching a computer without notifying
the computer’s user can interfere with operations on this
computer, which will introduce a cost to an enterprise.
Not all enterprises can afford the cost of such an ag-
gressive active patching system for worm defense. In
addition, in order to remotely patch vulnerable hosts,
security staffs in an enterprise need to first program the
exploiting code by themselves and test the code carefully
before using it in the active patching system, which
requires an enterprise to have experienced security staffs.

In the future, an enterprise may have the hardware
and software support to enable the quarantine of each
infected host. For example, ethernet hubs can be replaced
by ethernet switches that are able to receive command
to shut down individual ethernet port interface; wireless
access devices can be upgraded to be able to receive
command to cut off individual connected client.

12

Now we analyze a defense where the Firewall Net-
work System can quarantine individual infected hosts.
Suppose the Firewall Network System will quarantine
a suspicious host when internal firewalls have received
C illegitimate internal service requests from it. Hence
an infected host is quarantined after it sends C scans to
other subnetworks in the enterprise network. Denote T
as the time for an infected host to be quarantined after
it is infected. From the definition of η and η1, we have:

T =
C

η − η1
(7)

Under such a quarantine defense, the worm propaga-
tion in one subnetwork follows:

dI(t)
dt

=
η1

Ω1
S(t)I(t) − dR(t)

dt
dR(t)

dt
=

η1

Ω1
S(t − T)I(t − T) (8)

N1 = R(t) + S(t) + I(t)

where dR(t)/dt = 0, t ∈ [0, T). Since all those initially
infected hosts I(0) = I0 will be quarantined at time T ,
R(T) = I0 and I(T+) = I(T−) − I0.

VII. WORM DEFENSE SIMULATION STUDIES

In this section, we study the performance of the three
worm defenses discussed above. Given the parameters in
the model (3), (5), (6), and (8), we use Matlab Simulink
[12] to derive the numerical solutions of these models.

A. Active patching defense system

Suppose an enterprise has been allocated Ω = 217 IP
addresses as used in [22]. A worm’s scan rate η1 within
a subnetwork is expected to be small. For example, the
uniform-scan worm, Slammer, has 4000/second scan rate
[17]. If the subnetwork we consider has 212 IP addresses,
then the scan rate of a Slammer infected host targeting
within its own subnetwork is only η1 = 4000/232−12 =
0.0038/second. Of course, if the worm conducts a local
preference scan like the Code Red II and Nimda [22],
its scan rate η1 within its own subnetwork will be much
larger.

In our first experiment, we assume that the enterprise
network is equally divided into m = 32 subnetworks,
i.e., Ω1 = Ω/m = 4096; the other parameters are
η1 = 1/second, κ = 10/second, and N1 = 600. The
scan rate κ is larger than η1 because those scanning
computers in the active patching system use all their
scanning power on this subnetwork that has infected
hosts; on the other hand, an infected host only uses a

0 20 40 60 80 100 120
0

100

200

300

400

500

600

Time t (second)

of

 in
fe

ct
ed

 h
os

ts
 I(

t)

Without patching
Active patching−I
Active patching−II

Fig. 3. Worm propagation comparison under the defense of the active
patching system (Ω1 = 212, N1 = 600, η1 = 1/sec, κ = 10/sec,
I0 = 1)

small part of its scanning power in this subnetwork —
a worm does not know what IP addresses are contained
in one subnetwork because the subnetworks are defined
logically by internal firewalls, not by IP prefixes.

Fig. 3 shows the worm propagation under the de-
fense of the “active patching-I” system and the “active
patching-II” system (5), respectively. In this experiment
and the following ones, active patching-II system always
means the system described by the model (5) if not
mentioned explicitly. We also show in Fig. 3 the original
worm propagation without any defense.

In this experiment, because the IP space of the subnet-
work is large and active patching-I system requires time
T1 = Ω1/κ = 410 seconds to finish scanning the whole
subnetwork, it does not perform well. On the other hand,
active patching-II system finishes the patching job by the
time T2 = N1/κ = 60 seconds, and hence patches most
vulnerable hosts before the worm infects them.

Denote v = N1/Ω1 as the density of vulnerable hosts
in the subnetwork we consider. In the experiment shown
in Fig. 3, the density is v = 0.15. The active patching-II
system will be more effective when the vulnerable hosts
density v decreases because the time for the system to
finish patching is T2 = vΩ1/κ. In order to study the
effect of the vulnerable hosts density v, we vary the
value of v from 0.04 to 0.5 in steps of 0.02 in our next
experiment where the other parameters are the same as
used in Fig. 3.

The experiment results are shown in Fig. 4. This figure
shows that active patching-II system works best when the
density of vulnerable hosts v is low. Fortunately, because
an enterprise usually only uses a part of its allocated IP
space and because not all computers are vulnerable to a
particular worm, in practice the density v is usually very
small [22].

Until now we have studied the active patching systems

13

0.04 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Density of vulnerable hosts v

In
fe

ct
io

n
de

ns
ity

 α

Active patching−I
Active patching−II

Fig. 4. Infection density α under different density of vulnerable
hosts v (Ω1 = 212, η1 = 1/sec, κ = 10/sec, I0 = 1, N1 = vΩ1)

described by model (3) and (5). The more realistic patch-
ing system is described by model (6) where we know
the IP addresses of part of vulnerable hosts. Intuitively,
when we know more vulnerable hosts’ IP addresses (i.e.,
increasing p), we can patch faster and prevent more
vulnerable hosts from being infected. As we increase
p from 0 to 1, the worm’s infection density α should lie
between the two curves in Fig. 4. In Fig. 5, we show the
infection density α as a function of the value p under
three different densities of vulnerable hosts v. This figure
is consistent with Fig. 4: as the density of vulnerable
hosts v decreases, it is more effective to know vulnerable
hosts’ IP addresses. If the density v is as high as 0.4,
Fig. 5 shows that there will be no difference whether
we know only 20% or the complete 100% of vulnerable
hosts’ IP addresses.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Known vulnerable hosts p

In
fe

ct
io

n
de

ns
ity

 α

v = 0.1
v = 0.2
v = 0.4

Fig. 5. Infection density α when we know different fraction of
vulnerable hosts’ IP addresses (Ω1 = 212, η1 = 1/sec, κ = 10/sec,
I0 = 1)

One should not interpret our results to mean that active
patching-I system is not effective. If scanning computers
in the active patching system have a large scan rate and
the subnetwork defined by internal firewalls is small,

then active patching-I system can finish patching quickly
before most vulnerable hosts are infected. Suppose the
subnetwork has Ω1 = 1024 and N1 = 500. We still
use η1 = 1/second, I0 = 1 but vary κ from 5/sec to
100/sec in steps of 5. The experiment results are shown
in Fig. 6. This figure shows that active patching-I system
is effective when the scan rate of the active patching
system is higher compared with the worm’s subnetwork
scan rate η1.

5 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

κ/η
1

In
fe

ct
io

n
de

ns
ity

 α

Active patching−I
Active patching−II

Fig. 6. Infection density α under different patching scan rate κ
(Ω1 = 210, N1 = 500, η1 = 1/sec, I0 = 1)

B. Individual quarantine defense system

Now we study the individual quarantine defense sys-
tem described by (8). In the subnetwork described in Fig.
4 (Ω = 212, N1 = 600, I0 = 1), suppose an infected host
has a scan rate η = 2/sec to the entire enterprise network
and η1 = 1/sec to its own subnetwork; and the Firewall
Network System will quarantine an infected host after
observing C = 10 scans on internal firewalls. According
to (7), in this system an infected host will be quarantined
after T = 10 seconds.

0 50 100 150 200
0

100

200

300

400

500

600

Time t (second)

of infectious hosts I(t)
of susceptible hosts S(t)

Fig. 7. Worm propagation under the quarantine defense system
described by Equation (8) (Ω1 = 212, N1 = 600, η1 = 1/sec, I0 =
1, T = 10/sec)

14

Fig. 7 shows the worm propagation under this quar-
antine defense system. After reaching a peak at time
t = 64 seconds, the number of infectious hosts, I(t),
drops down gradually to zero. In the end there are
S(∞) = 263 uncompromised susceptible hosts, thus the
infection density α = 0.56.

1 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Quarantine time T

In
fe

ct
io

n
de

ns
ity

 α

I
0
=1

I
0
=20

Fig. 8. Worm infection density α under the quarantine defense with
different quarantine time T (Ω1 = 212, N1 = 600, η1 = 1/sec)

In reality, the quarantine defense system usually can
do much a better job than what shown in Fig. 7. First,
since internal firewalls have explicit access rules, we do
not need to wait to receive C = 10 scans to quarantine
an infected host. Second, the subnetworks are defined by
internal firewalls, not by IP prefixes. Thus a worm does
not know what IP addresses are within its own subnet-
work, which makes it difficult for an infected host to send
most of its scans within its own subnetwork. For these
two reasons, the time to quarantine T usually is very
short. For example, suppose the worm in the experiment
shown in Fig. 7 uniformly scans the enterprise network,
then its time to quarantine is T = 10/(32 − 1) = 0.32
seconds (m = 32 thus η = 32/sec). To study how T
affects the quarantine defense system, we conduct an
experiment with the same parameters used in Fig. 7
(Ω1 = 212, N1 = 600, η1 = 1/sec) but varying T (we
also consider two situations where the number of initially
infected hosts is I0 = 1 and I0 = 20, respectively).
The worm’s infection density v under different T is
shown in Fig. 8. This figure shows that the quarantine
defense system works best when the time needed to
quarantine infectious hosts is short compared with the
worm’s subnetwork scan rate η1.

VIII. CONCLUSIONS

In this paper, we present a “Firewall Network System”
for worm defense in enterprise networks. The Firewall
Network System uses firewalls to divide an enterprise
network into many isolated subnetworks. All computers

in an enterprise network are classified as either clients or
servers: all service requests sent to internal IP addresses
of an enterprise network will be blocked by internal
firewalls if they target non-server computers, or servers
that do not provide the corresponding service. In this
way, the Firewall Network System removes most worm
infection paths in an enterprise network, making worm
detection much easier.

In our design, all internal firewalls in the Firewall
Network System have the same set of firewall rules,
which means the Firewall Network System is scalable
to large enterprise networks and easily managed by a
central firewall management console. We also propose a
five-level feedback worm defense strategy based on the
“feedback quarantine” principle from epidemic disease
control [27] and the idea of the five-level color US
“Homeland Security Advisory System” [11]. The system
takes active defense actions, either active patching or
individual quarantine, when it is in “orange” or “red”
security level based on worm detection results. Finally,
we model and analyze the defense effect of active
patching or quarantine on a worm’s propagation.

Even without any active defense from the Firewall
Network System, no matter how fast a worm can propa-
gate (through scanning and direct compromising), it can
infect at most all vulnerable hosts in its subnetwork and
vulnerable servers in the enterprise network that accept
service requests on the vulnerable port from the infected
subnetwork. In addition, the Firewall Network System
help in defending mass-mailing email viruses and inside
attacks.

The Firewall Network System is not an omnipotent
worm defense solution for all enterprises. The major con-
straint of the Firewall Network System is that employees
of an enterprise cannot set up servers arbitrarily without
notifying administrators. For an open environment orga-
nization such as a university or an ISP, this constraint
may not be acceptable. Because of the client/server
networking requirement, the Firewall Network System is
not suitable for enterprises that heavily rely on peer-to-
peer networking and cannot transform their P2P systems
to client/server systems.

However, many enterprises do not depend on peer-
to-peer networking and have the company policy that
employees cannot set up servers arbitrarily. For these
enterprises, the Firewall Network System is suitable and
worth to be deployed considering its security benefit.

From the firewall rules explained in this paper, we
can see that internal firewalls in the Firewall Network
System only need to check the packet header for the first
packet in a new connection request — the first TCP/SYN
packet in a TCP connection or the first packet in a UDP

15

connection. Internal firewalls do not need to check packet
content, nor do they need to check any packet in an
already accepted network connection. For such a simple
and light-weighted firewall functionality, we can use very
cheap computer products for most internal firewalls, or
even build the firewall functionality into network routers
or switches. Of course, many detailed technical issues
need to be discussed before the Firewall Network System
is deployed in practice.

IX. ACKNOWLEDGEMENT

This work is supported in part by ARO contract
DAAD19-01-1-061, the National Science Foundation
Grants ANI9980552, and by DARPA contract F30602-
00-0554.

REFERENCES

[1] M. Andress. Buyer’s guide: Vulnerability-assessment tools.
http://nwfusion.com/reviews/2002/0204bgtoc.html, February
2002.

[2] 2003 evolution of dcom-rpc exploit.
http://www.sbslinks.com/timeline.htm, 2003.

[3] CERT. Cert incident note in-2003-03: W32/sobig.f worm.
http://www.cert.org/incident notes/IN-2003-03.html, 2003.

[4] CERT. Cert incident note in-2004-01: W32/novarg.a virus.
http://www.cert.org/incident notes/IN-2004-01.html, January
2004.

[5] D.J. Daley and J. Gani. Epidemic Modeling: An Introduction.
Cambridge University Press, 1999.

[6] eEye Digital Security. .ida “code red” worm.
http://www.eeye.com/html/Research/Advisories/AL20010717.html,
2001.

[7] eEye Digital Security. Blaster worm analysis.
http://www.eeye.com/html/Research/Advisories/AL20030811.html,
2003.

[8] Farm9.com. Timeline to cybercrime.
http://farm9.com/pdf/CyberCrime Timeline.pdf, 2003.

[9] D. Friedman and D. Nagle. Building firewalls with intelligent
network interface cards. Technical Report CMU-CS-00-173,
Carnegie Mellon University, School of Computer Science, May
2001.

[10] NSA Security Recommendation Guides. Defense in depth: A
practical strategy for achieving information assurance in todays
highly networked environments.
http://nsa2.www.conxion.com/support/guides/sd-1.pdf, 2003.

[11] Us homeland security advisory system.
http://www.dhs.gov/dhspublic/display?theme=29.

[12] Mathworks Inc. Simulink.
http://www.mathworks.com/products/simulink.

[13] Incidents.org. Nimda worm/virus report.
http://www.incidents.org/react/nimda.pdf.

[14] S. Ioannidis, A.D. Keromytis, S.M. Bellovin, and J.M. Smith.
Implementing a distributed firewall. In Proceedings of 7th
ACM Conference on Computer and Communications Security
(CCS’00), November 2000.

[15] Microsoft. What you should know about the nachi worm.
http://www.microsoft.com/security/antivirus/nachi.asp, August
2003.

[16] D. Moore. Network telescopes: Observing small or distant
security events.
http://www.caida.org/outreach/presentations/2002/usenix sec,
2002.

[17] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and
N. Weaver. Inside the slammer worm. IEEE Magazine on
Security and Privacy, 1(4), July 2003.

[18] D. Nicol. Models of internet worm defense. IMA Workshop 4:
Measurement, Modeling and Analysis of the Internet, January
2004.

[19] D. Nojiri, J. Rowe, and K. Levitt. Cooperative response
strategies for large scale attack mitigation. In Proceedings of 3rd
DARPA Information Survivability Conference and Exhibition,
April 2003.

[20] J. Snyder. Roadblocks to defense-in-depth. Information Security
Magazine, June 2003.

[21] J. Snyder. Turning the network inside out. Information Security
Magazine, June 2003.

[22] S. Staniford. Containment of scanning worms in enterprise
networks. Journal of Computer Security, 2003.

[23] S. Staniford, V. Paxson, and N.Weaver. How to own the
internet in your spare time. In Proceedings of Usenix Security
Symposium, 2002.

[24] N. Weaver, V. Paxson, S. Staniford, and R. Cunningham. A
taxonomy of computer worms. In Proceedings of ACM CCS
Workshop on Rapid Malcode (WORM’03), October 2003.

[25] M. M. Williamson. Throttling viruses: Restricting propagation
to defeat mobile malicious code. In 18th Annual Computer
Security Applications Conference, December 2002.

[26] C. C. Zou, L. Gao, W. Gong, and D. Towsley. Monitoring
and early warning for internet worms. In Proceedings of 10th
ACM Conference on Computer and Communications Security
(CCS’03), October 2003.

[27] C. C. Zou, W. Gong, and D. Towsley. Worm propagation
modeling and analysis under dynamic quarantine defense.
In Proceedings of ACM CCS Workshop on Rapid Malcode
(WORM’03), October 2003.

[28] C.C. Zou, D. Towsley, and W. Gong. On the performance of
internet worm scanning strategies. Technical Report TR-03-
CSE-07, Umass ECE Dept., November 2003.

