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Abstract

To take advantage of recent architectural improve-
ments in microprocessors, advanced compiler opti-
mizations such as software pipelining have been de-
veloped [1, 2, 3, 4]. Unfortunately, not all loops have
enough parallelism in the innermost loop body to take
advantage of all of the resources a machine provides.
Unroll-and-jam is a transformation that can be used
to increase the amount of parallelism in the innermost
loop body by making better use of resources and limit-
ing the e�ects of recurrences [5, 6].

In this paper, we demonstrate how unroll-and-jam
can signi�cantly improve the initiation interval in a
software-pipelined loop. Improvements in the initia-
tion interval of greater than 40% are common, while
dramatic improvements of a factor of 5 are possible.

1 Introduction

Over the past decade, the computer industry has
realized dramatic improvements in the power of mi-
croprocessors. These gains have been achieved both
by cycle-time improvements and by architectural in-
novations like multiple instruction issue and pipelined
functional units. As a result of these improvements,
today's microprocessors can perform more operations
per machine cycle than their predecessors.

To take advantage of these architectural improve-
ments, advanced compiler optimizations such as soft-
ware pipelining have been developed [1, 2, 3, 4]. Soft-
ware pipelining allows iterations of a loop to be over-
lapped with one another in order to take advantage
of the maximum parallelism in a loop body. Unfor-
tunately, not all loops have enough parallelism in the
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innermost loop body to take advantage of all of the
resources a machine provides. Parallelism is normally
inhibited by either inner-loop recurrences, or by a mis-
match between the resource requirements of a loop and
the resources provided by the target architecture.

Unroll-and-jam is a transformation that can be
used to increase the parallelism in the innermost loop
body [5, 6]. Unroll-and-jam can reduce the num-
ber of memory operations that need to be issued per

oating-point operation in order to alleviate resource
constraint problems. In addition, unroll-and-jam cre-
ates copies of inner-loop recurrences that are parallel
with all other copies [5]. These two e�ects increase
the parallelism available to a software pipelining algo-
rithm.

This paper measures the e�ectiveness of unroll-and-
jam at improving the initiation interval for software-
pipelined loops. In our experiments, unroll-and-jam
is performed by a Fortran source-to-source trans-
former called Memoria [7] that is based upon the
Para-Scope programming environment [8]. Software
pipelining is performed by a retargetable compiler for
ILP (Instruction-Level Parallel) architectures, called
Rocket [9]. We present experimental evidence that
suggests that Memoria can be quite e�ective at im-
proving the initiation interval generated by Rocket.

2 Software Pipelining

While local and global instruction scheduling can,
together, exploit considerable parallelism for non-
loop code, to best exploit instruction-level parallelism
within loops requires software pipelining. Software
pipelining can generate e�cient schedules for loops by
overlapping execution of operations from di�erent it-
erations of the loop. This overlapping of operations
is analogous to hardware pipelines where speed-up
is achieved by overlapping execution of di�erent op-



erations. In this section, we �rst motivate software
pipelining with an example and then look at the soft-
ware pipelining technique used in Rocket .

2.1 Software Pipelining Example

To illustrate the potential of software pipelining,
we'll investigate the problem of computing 4x4 matrix
products on a machine that has separate add and mul-
tiply units that operate concurrently. Assume that in
our simple machine an add requires a single instruc-
tion to produce a result while the multiplier produces
a result with a two-cycle pipe. Figure 1 shows the C
code for our 4x4 product example.

If we simply count the additions and multiplica-
tions, we see that the innermost loop of the program
in Figure 1 contains one add and one multiply, each of
which are executed 43, or 64, times. A simple sched-
ule (that abstracts the memory accesses, initialization
of variables, etc.) would contain the following three
instructions.

1. t = a[i,k] * b[k,j]

2. nop

3. c[i,j] = t + c[i,j];

Note that instruction \3" must follow instruction \1"
by two instructions because of the 2-instruction exe-
cution time for a multiply, coupled with the fact that
\1" computes something (\t") used in \3". The result
is 3 � 43 = 192 instruction cycles to perform these
arithmetic operations.

If the program was compiled with local scheduling
only (that is, the instructions were not moved around
control block boundaries), we would end up with the
code as shown above. An opportunity to improve the
e�ciency of the program becomes evident when one
sees that the next scalar multiply can begin as soon
as the addition at the bottom of the loop completes.
Software pipelining would \fold" the innermost loop
body to allow the adds to overlap with the multiplies.
The result is shown below. The \#" delimiter sepa-
rates operations that are executed in parallel.

PRELUDE (INNERMOST LOOP):

1. t[O]=a[i,O]*b[O,j]

2.

INNERMOST L00P BODY

(executed for k=l ... 3):

1. c[i,j]=t[k-1]+c[i,j] # t[k]=a[i,k]*b[k,j]

2. nop

POSTLUDE (INNERMOST LOOP):

1. c[i,j]=t[3]+c[i,j]

The result is now (2+(2)x3+1)�42= 144 instruction
cycles to perform these arithmetic operations, repre-
senting a savings of 25% over local scheduling.1 Note
that the loop body now contains operations from what
would have been two di�erent iterations of the origi-
nal loop, as indicated by reading t[k � 1] while de�n-
ing t[k]. This overlapping of loop iterations is exactly
what allows the more e�cient code, but just as hard-
ware pipelines need to be initialized before the �rst re-
sult is available and then drained after the last result
has begun execution, software pipelining requires that
the steady-state loop body be prefaced with initial-
ization code, typically called the prelude and su�xed
with a postlude to �nish o� the loop results.

To improve the code e�ciency further, we can
pipeline the middle loop. The result is shown below.
The optimized loop produced using software pipelin-
ing now requires only (1 + ((2) � 3 + 2) � 3 + 8) � 4
= 132 instruction cycles, a savings of 31.2% over the
initial (locally) scheduled loop.2

PRELUDE (MIDDLE LOOP):

1. t[0]=a[i][0]*b[0][0];

MIDDLE LOOP BODY

(executed for J=0 ... 2):

INNERMOST LOOP BODY

(executed for k=l ... 3):

1.

2. t[k]=a[i,k]*b[k,j] # c[i,j]=t[k-l]+c[i,j]

POSTLUDE (INNERMOST LOOP):

1. nop

2. t[0]=a[i,O]*b[0,j+l] # c[i,j]=t[3]+c[i,j]

POSTLUDE (MIDDLE LOOP):

1. nop

2. t[1]=a[i,1]*b[1,3] # c[i,3]=t[0]+c[i,3]

3. nop

4. t[2]=a[i,2]*b[2,3] # c[i,3]=t[1]+c[i,3]

5. nop

6. t[3]=a[i,3]*b[3,3] # c[i,3]=t[2]+c[i,3]

7. nop

8. c[i,3]=t[3]+c[i,3]

2.2 Modulo Scheduling

Allan et al. [1] provide an good summary of
current software pipelining methods, dividing soft-
ware pipelining techniques into two general categories

1Actually, software pipelining could improve upon this by

overlapping two iterations of the loop within the 2-instruction

loop body, yielding a scheduling requiring only 96 cycles. We

chose the presented schedule to simplify the discussion.
2Again, a better schedule is possible, one requiring 84 cycles.



int a[4][4];

int b[4][4];

int c[4][4];

main()

{

int i, j, k;

for(i=O; i<4; i++)

for(j=0; j<4; j++)

{

c[i][j] = 0;

for(k=0; k<4; k++)

c[i][j] = a[i][k] * b[k][j] + c[i][j];

}

}

Figure 1: C Program for computing a 4x4 product

called kernel recognition methods and modulo schedul-
ing methods. In the kernel recognition technique, a
loop is unrolled an \appropriate" number of times,
yielding a representation for N loops bodies which is
then scheduled. After scheduling the N copies of the
loop, some pattern recognition technique is used to
identify a repeating kernel within the schedule. Ex-
amples of kernel recognition methods are Aiken and
Nicolau's perfect pipelining method [10, 11] and Al-
lan's petri-net pipelining technique [12].

In contrast to kernel recognition methods, mod-
ulo scheduling does not schedule multiple iterations
of a loop and then look for a pattern. Instead, mod-
ulo scheduling selects a schedule for one iteration of
the loop such that, when that schedule is repeated,
no resource or dependence constraints are violated.
This requires analysis of the data dependence graph
(DDG) for a loop to determine the minimum number
of instructions required between initiating execution
of successive loop iterations. Once that minimum ini-
tiation interval is determined, instruction scheduling
attempts to match that minimum schedule while re-
specting resource and dependence constraints. Lam's
hierarchical reduction is a modulo scheduling method
as is Warter's [13, 4] enhanced modulo scheduling
which uses IF-conversion to produce a single super-
block to represent a loop. Rau [3] provides a detailed
discussion of an implementation of modulo scheduling.

Since Rocket's software pipelining, patterned after
Warter's enhanced modulo scheduling [13], uses a mod-
ulo scheduling algorithm, we shall investigate mod-

ulo scheduling in a bit more detail. While Warter's
method provides a general framework for our software
pipelining, the actual modulo scheduling technique
implemented in Rocket closely follows Rau [3]. Mod-
ulo scheduling assumes that a single data-dependence
graph (DDG) can be built for a loop. To build a sin-
gle DDG for a loop requires some method of treating
the entire loop as a single basic block. Like Warter,
we use IF-conversion to transform a loop with arbi-
trary control 
ow into a single block and then con-
struct the DDG for that \super-block" using standard
dependence analysis. Since we intend to overlap dif-
ferent loop iterations we need to consider loop-carried
dependence as well as loop-independent dependence,
but well-known algorithms provide this information
[14, 15].

Once the DDG is constructed for the loop, modulo
scheduling attempts to identify the smallest number
of instructions which might separate di�erent loop it-
erations. This minimum initiation interval (IImin)
represents the shortest time interval between the ini-
tiation of consecutive loop iterations. IImin depends
upon two characteristics of the DDG for the loop (and
the parallelism available in the target architecture):

� The recurrence constraint, RecII, represents a
limit on IImin due to dependence arcs within the
DDG. The recurrence constraint is due to loop-
carried dependences which create cycles in the
DDG.

� The resource constraint, ResII, represents a limit
based upon how much \work" the loop requires



(how many integer operations, 
oating point op-
erations, memory operations, etc.) and howmuch
parallelism is provided by the architecture (how
many 
oats, ints, etc. can be issued in a instruc-
tion.) In this context, a resource can be thought
of as a functional unit needed to complete some
operation.

Following Rau [3], to �nd RecII we iterate on po-
tential values for RecII, building a matrix, MinDist,
for each possible II value. MinDist[i; j] is de�ned
to be the minimum interval between loop operations i
and j which maintains data dependence integrity. The
MinDist entries of interest are the diagonal elements
MinDist[i; i]. A positive value for any such diagonal
element implies that the operation must follow itself,
indicating a failure for that value of RecII. Thus, we
try again with a larger value for RecII.

While determining RecII is computationally expen-
sive, calculating ResII is considerably easier. It re-
quires determining limits among the di�erent classes of
resources available for the hardware of choice. So, for
each resource class (
oating point multiplier, 
oating
point adder, read/write pipeline, integer ALU) mod-
ulo scheduling needs to know how many such resources
can be started in each instruction and it needs to de-
termine how many such resources are needed to exe-
cute one iteration of the loop. Using these factors, one
can determine the minimumnumber of instructions re-
quired to execute an iteration of the loop based upon
the most limited resource, and that minimum number
of instructions is ResII. For example, consider a loop
which requires 4 
oating point multiplies, 8 
oating
point adds, 10 integer operations and 6 memory op-
erations to complete the execution of a loop iteration.
If we are pipelining that loop for a machine which can
start 1 
oating point add, 1 
oating point multiply,
and 2 integer operations each instruction and which
can start a memory operation every other instruction,
then ResII would be 12, because the limiting resource
would be the ability to schedule the memory opera-
tions. The individual resource limits for this example
would be:

� 4 Instructions needed for 
oating multiplies since
4 
oating multiplies in the loop divided by 1 
oat-
ing multiply started per instruction equals 4.

� 8 Instructions needed for 
oating adds since 8

oating adds in the loop divided by 1 
oating
add started per instruction equals 8.

� 5 Instructions needed for integer operations since
10 integer operations divided by 2 integer opera-
tions started per instruction equals 5.

� 12 Instructions needed for memory operations
since 6 memory operations divided by .5 memory
operations started per instruction equals 12.

Since the maximum constraint for any resource is the
12 instructions required for the memory operations,
ResII would be 12 in this case. Given both ResII and
RecII, the actual minimum initiation interval (IImin)
is the maximum of ResII and RecII.

Having computed IImin, modulo scheduling next
attempts to schedule the DDG in IImin instructions.
Again following Rau, we use a modi�ed conventional
acyclic list scheduling method. If ResII is signi�cantly
greater than RecII, the nodes are scheduled using tra-
ditional list scheduling. If, however, IImin is close
to RecII, heuristics are used to give priority to nodes
which are in the longest dependence cycle. If a sched-
ule of IImin instructions can be found which does not
violate any resource or dependence constraints, mod-
ulo scheduling has achieved a minimum schedule. If
not, scheduling is attempted with IImin + 1 instruc-
tions, and then IImin + 2, ..., continuing up to the
worst case which is the number of instructions required
for local scheduling. However many instructions are
required to \legally" schedule the DDG becomes the
actual initiation interval, II.

After �nding a schedule for the loop body requiring
II instructions, it may be necessary to perform mod-
ulo variable expansion [2] to circumvent inter-interval
dependences which can occur due to register reuse.
To overcome such inter-interval dependences, the loop
body schedule may need to be copied M times, where
M is the number of di�erent loop iterations repre-
sented within the loop body schedule. Each register
within the (II-length) loop body is then \expanded" to
become a group of registers, one per copy of the orig-
inal loop body, thereby removing con
icts produced
by register reuse dependences.

Once a schedule has been found for the loop
body and modulo variable expansion has been per-
formed, modulo scheduling needs to add a prelude and
postlude for the loop, much as was shown in the ex-
ample of Section 2.1. Remember that this postlude
and prelude are required to initialize and then drain
the \software pipe."

After inserting the prelude and postlude code we
may need to \clean-up" the loop body to cover the
side e�ects of modulo variable expansion. Since mod-
ulo variable expansion will potentially produce multi-
ple copies of the loop body, we need to alter the num-
ber of times the loop body actually executes. This is
relatively easy if the number of times the single loop
body should execute, N, is a multiple of the loop body



expansion factor, F. When F is not a factor of N, we
need to set the loop body iteration count to the inte-
ger part of N=F and add mod(N;F ) additional copies
of the single loop body either before the prelude or
after the postlude. This process of setting the proper
number of loop iterations is called loop conditioning.

So, to summarize, the steps required in modulo
scheduling once a single block (or super-block) rep-
resents the loop include:

� Build a DDG for the block (or super-block), in-
cluding both loop-independent and loop-carried
dependences.

� Since modulo scheduling requires an iterative pro-
cess to �nd the best schedule, we need to deter-
mine a worst-case schedule which is that schedule
required for the loop without software pipelining.
Thus, we schedule a single iteration of the loop us-
ing normal scheduling techniques. Let N be the
length of this schedule.

� Compute the best possible (minimum) II

{ compute ResII

{ compute RecII

{ IImin = max(ResII,RecII)

� Attempt to schedule the nodes of the loop in
IImin instructions, using a resource reservation
table of length IImin.

� If scheduling in IImin instructions is not possible,
try IImin + 1, IImin + 2, ... N. (We know we can
schedule in N instructions without pipelining at
all.)

� Having found a schedule for the loop body, per-
form modulo variable expansion.

� Add prelude and postlude code to initialize and
drain, respectively, the software pipeline.

� Perform loop conditioning to counter the side ef-
fects of modulo variable expansion.

3 Unroll-and-Jam

Callahan,et al., have shown that when software
pipelining is performed, simple inner loop unrolling
does not help in the presence of recurrences nor does
it help with a mismatch in the resources demanded
by a loop and the resources provided by a machine

[5]. However, unroll-and-jam, or outer-loop unrolling,
can be used to improve the ILP available to a software
pipelining algorithm in the above situations [5, 6]. The
transformation unrolls an outer loop and then jams
the resulting inner loops back together. Using unroll-
and-jam we can introduce more parallelism into an in-
nermost loop body. For example, consider our matrix
multiply example from Figure 1:

for(i=O; i<4; i++)

for(j=0; j<4; j++)

{

c[i][j] = 0;

for(k=0; k<4; k++)

c[i][j] = a[i][k]*b[k][j]+c[i][j];

}

Our previous software pipeline of this loop includes
one nop every loop iteration to account for the recur-
rence. After unroll-and-jam of the j-loop by 1, we
have:

for(i=O; i<4; i++)

for(j=0; j<4; j+=2)

{

c[i][j] = 0;

c[i][j+1] = 0;

for(k=0; k<4; k++)

{

c[i][j]=a[i][k]*b[k][j]+c[i][j];

c[i][j+1]=a[i][k]*b[k][j+1]+c[i][j+1];

}

}

Now with two recurrences carried by the k-loop, each
of which is parallel with the other, the software
pipelined loop will not contain a nop. In addition to
improving parallelism in the presence of recurrences,
unroll-and-jam can match the resource demands of a
loop with the resources available on a given architec-
ture. This is discussed in some detail below.

3.1 Balance

We assume a pipelined architecture that allows
asynchronous execution of memory accesses and

oating-point operations (e.g. HP PA-RISC). We
also assume a typical optimizing compiler { one that
performs scalar optimizations only. In particular,
we assume that it performs strength reduction, op-
timizes for machine addressing modes, allocates reg-
isters globally (via a coloring scheme) and schedules
the pipelines. To measure the performance of program
loops given the above assumptions, we use the notion
of balance de�ned by Callahan, et al. [5].



3.1.1 Machine Balance

A computer is balanced when it can operate in a
steady state manner with both memory accesses and

oating-point operations being performed at peak
speed. To quantify this relationship, we de�ne �M
as the rate at which data can be fetched from memory
in words per cycle, MM , compared to FM , the rate at
which 
oating-point operations can be performed in

ops per cycle:

�M = MM

FM

The values of MM and FM represent peak perfor-
mance where the size of a word is the same as the
precision of the 
oating-point operations.

3.1.2 Loop Balance

Not only do machines have balance ratios, but also
loops. More formally, we can de�ne balance for a spe-
ci�c loop, L, as

�L = ML

FL

where ML is the number of memory operations in loop
L and FL is the number of 
oating-point operations
in L.3 This model assigns a uniform cost to memory
references under the assumption that compiler opti-
mizations can be performed to attain cache locality
[16, 17, 18].

Comparing �M to �L can give us a measure of the
performance of a loop running on a particular archi-
tecture. If �L > �M , then the loop needs data at
a higher rate than the machine can provide and idle
computational cycles will exist. Such a loop is said
to be memory bound and its performance can be im-
proved by lowering �L to be as close to �M as possible.

In our matrix multiply example in Figure 1, the
original loop has a balance of 1 because c[i][j]

can be allocated to a register using scalar replace-
ment [19, 20]. On a machine that can issue two

oating-point operations per memory operation, the
unroll-and-jammed loop, with a balance of 0.75 (note
that c[i][j], c[i][j+1], and the second reference to
a[i][k] can be allocated to registers), would perform
better even in the presence of no pipeline interlock.
This is because there is a better match between the
resource demands of the loop and the resources pro-
vided by the machine.

3If the target architecture does not include auto-increment

addressing modes, the extra address computations must be

considered.

Although there are methods other than unroll-and-
jam to deal with recurrences [21], unroll-and-jam can
additionally bring memory-bound loops into balance.
Inner loop unrolling does not improve memory perfor-
mance as reuse across the inner loop will already be
captured by cache and registers [22]. Unroll-and-jam
moves reuse carried by outer loops into the inner loop
to reduce the number of memory references and cache
misses, thus, decreasing the memory demands of the
loop.

3.1.3 Applying Unroll-and-Jam In A Com-

piler

Previous work has used the following optimization
problem to guide unroll-and-jam [6]:

objective function: min j�L � �M j0
constraint: RL � RM

where RL is the number of registers required by a loop,
RM is the register-set size of the target architecture,
and j�L��M j0 is the balance norm having the follow-
ing de�nition:

j�L � �M j0 =

�
�M � �L if �L � �M
�L � �M + � otherwise

The decision variables in the problem are the un-
roll amounts for each of the loops in a loop nest.
The register-pressure constraint limits unrolling to the
point before 
oating-point registers are spilled. For
the solution to the objective function, � causes the
balance norm to favor a slightly compute-bound loop
over a slightly memory-bound one.

Essentially, the objective function attempts to
match the balance of a loop with the balance of a
target machine without creating too much register
pressure. The optimization is machine-independent
in that it can be retargeted to a new architecture by
changing �M and RM .

The construction of and solution to the objective
function has been shown to be e�cient. �L and RL
can be constructed from the dependence graph of a
loop in time proportional to the size of the dependence
graph. The solution to the objective function for a
particular loop nest can be optimized in O(logRM )
steps when unroll-and-jam is applied to one loop and
O(RM ) steps when unroll-and-jam is applied to two
loops [6].

After unroll-and-jam guided by the above objective
function, a loop may still contain pipeline interlock,
leaving idle computational cycles. To remove these



cycles, we simply ensure that the number of copies
of the innermost loop body is at least as large as the
length of the longest pipeline in the target architec-
ture. We expect this heuristic to be needed rarely as
unrolling for loop balance will likely remove interlock.

In previous work, Carr and Kennedy show that
unroll-and-jam guided by the previous optimiza-
tion formula improves the performance on the IBM
RS/6000 [6]. Their experiment presents execution-
time improvements to validate their claims. How-
ever, the RS/6000 only has limited hardware instruc-
tion scheduling and the full bene�t of unroll-and-jam
could not be measured. The experiment in this paper
will look at the e�ect of unroll-and-jam on software
pipelining and show the full improvements possible in
ILP.

4 Experimental Evaluation

To evaluate our hypothesis that unroll-and-jam can
improve software pipelining's ability to generate e�-
cient code, we performed unroll-and-jam on 28 loops
which we subsequently software pipelined. In this ex-
periment, we used the implementation of unroll-and-
jam in Memoria and the implementation of software
pipelining in Rocket. Our experimental method is
graphically described in Figure 2. To obtain our opti-
mized code, we �rst performed unroll-and-jam on the
original Fortran source. Then, we converted the re-
sulting Fortran code to ParaScope's intermediate lan-
guage (Iloc) and used a translator to convert from
Iloc to Rocket's intermediate form. Rocket then built
DDGs for the loops to be pipelined and added the
loop-carried dependences for the DDG. To measure
the e�ectiveness of the schedules built by software
pipelining, we compared the actual iteration interval,
II, obtained by software pipelining after unroll-and-
jam with the II obtained when software pipelining was
used without bene�t of unroll-and-jam.

For our target architecture we chose a machine with
four integer units and two 
oating-point units. Only
one of the integer units can be used for memory oper-
ations. Each integer operation has a latency of two
cycles while each 
oating-point operation has a la-
tency of four cycles. Since we are not currently able
to perform register assignment after software pipelin-
ing, the machine has essentially an unlimited number
of registers. However, our unroll-and-jam con�gura-
tion assumes a machine with 64 registers and limits
its unrolling accordingly. The reason that we chose a
disproportionate number of integer functional units is

to compensate for the lack of addressing-mode opti-
mization in Rocket.

Our experimental test suite includes the Perfect,
SPEC and RiCEPS benchmark suites. Each bench-
mark was examined for loops with nesting depth two
or more. We then applied our transformation sys-
tem to those loops to determine the improvement
in the software pipelining initiation interval by using
unroll-and-jam. We investigated 64 nested loops in the
benchmark suites to which unroll-and-jam can be ap-
plied. Of those loops, unroll-and-jamunrolled 26. The
remaining 38 loops were not unrolled because Memo-
ria's heuristics for loop unrolling suggested that no
bene�t would accrue from unrolling the loop. Memo-
ria uses two simple heuristics to determine when to
unroll-and-jam. If Memoria recognizes that the loop
balance is greater than the target machine balance, it
will unroll in an attempt to lower the loop balance as
described in Section 3. Additionally if Memoria de-
tects an inner-loop recurrence, it will unroll the outer
loop N times where N represents the target machine's

oating point pipe depth. This attempts to remove
any pipeline interlock within the inner loop. In the
38 loops Memoria failed to unroll no inner-loop re-
currence was found. In addition, one (or both) of
two conditions led Memoria to conclude that improved
loop balance was not possible through unroll-and-jam.
Thirty-one loops contain no outer-loop-carried depen-
dences so no improvement of the balance was possi-
ble. Eighteen loops were already determined to be in
balance and so no unrolling was deemed necessary to
achieve peak e�ciency. Of the 26 unrolled loops three
contained intrinsic function calls and were therefore
not considered in this study since our measurement of
RecII is not accurate in the presence of function calls.
Of the 23 loops which we both unrolled and software
pipelined, all 23 showed schedule improvements due to
the unroll-and-jam procedure. In addition, 5 loops ex-
tracted from Fortran kernels were software pipelined
after unroll-and-jam and each of these 5 loops showed
improvement as well. Table 1, lists the 23 benchmark
loops as well as the 5 kernel loops along with their
improvements in initiation interval due to unroll-and-
jam.

The most noteworthy result from Table 1 is that,
not only did all 28 unrolled loops show schedule im-
provements by software pipelining when unroll-and-
jam was applied �rst, but that the amount of improve-
ment is quite signi�cant, ranging from a low of 15.3%
to a high of 80%. Performing an unweighted average
on the % Improvement column shows that, on aver-
age, the 28 loops showed an improvement of 43%. Of
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Figure 2: Experimental Method

Program SubProgram/ Before Unrolling After Unrolling %
Loop Number RecII ResII II times RecII ResII II Improvement

RICEPS
simple conduct1 4 4 5 17 37 52 52 38.8

conduct2 4 4 5 51 4 154 154 39.6
SPEC

dnasa7 btrix1 4 12 12 12 4 48 48 66.7
btrix2 4 12 12 5 4 44 44 26.7
btrix3 7 41 41 2 56 45 58 29.3
btrix4 4 12 12 5 26 40 40 33.3
cholsky1 4 4 5 25 7 98 98 21.6
gmtry 4 4 5 49 4 99 99 59.6
vpenta1 9 23 23 3 18 49 49 29.0
vpenta2 4 18 18 3 14 30 30 44.4

PERFECT
adm radb2.lo 4 16 16 10 4 52 52 67.5

radbg1 4 3 5 50 206 52 206 17.6
radbg1* 4 3 5 5 8 8 8 68.0


o52 collc 4 3 5 4 4 10 10 50.0
d
ux2 4 4 5 25 14 100 100 20.0
d
ux3 4 4 5 25 4 74 74 40.8
d
ux5 4 4 5 25 14 76 76 39.2
d
ux6 4 5 5 4 14 14 14 30.0
d
ux7 4 4 5 25 14 76 76 39.2
d
uxc1 4 4 5 8 5 21 21 47.5
d
uxc3 4 5 5 16 5 45 45 43.8
d
uxc4 4 5 5 17 10 72 72 15.3
d
uxc5 4 4 5 25 14 76 76 39.2
d
uxc6 4 4 5 25 5 51 51 59.2

KERNELS
dmxpy 4 4 5 49 8 99 99 59.6
fold 4 4 5 19 8 27 27 71.6
mmjik 4 4 5 4 8 9 9 55.0
mmjki 4 4 5 9 4 9 9 80.0
sor1k 4 6 6 10 44 37 47 21.7

AVERAGE 43.0

Table 1: Software Pipelining Improvement with Unroll-and-Jam



the 28 loops unrolled, 10 showed improvement greater
than or equal to 50%, corresponding to a speed-up of
2 or better.

In addition, our results suggest that unroll-and-jam
will increase the number of loops in which IImin is de-
termined by ResII rather than RecII. While ResII ex-
ceeded RecII for only 11 of the 28 loops before unroll-
and-jam, ResII was greater than RecII for 23 out of
28 loops after unroll-and-jam was applied. This is a
positive e�ect as well, since it suggests that we are
indeed making better use of the target architecture's
hardware. Perhaps of less importance, but still inter-
esting, is the fact that unroll-and-jam leads to loops
for which software pipelining is more likely to achieve
an iteration interval of IImin. Software pipelining was
able to �nd II equal to IImin for 13 of 28 loops be-
fore unroll-and-jam, while 26 of 28 loops achieved II
of IImin after unroll-and-jam. We attribute this di-
rectly to the greater likelyhood that IImin will be de-
termined by ResII for the unrolled loops.

One loop, found in radbg1, produced results which
look a bit odd at �rst glance. Notice that Table 1 in-
cludes radbg1 twice, once with a \*", to re
ect that we
changed the source code for the nested loop. First con-
sider the results for the unchanged loop. Notice that
we unrolled 50 times and that RecII for the unrolled
version is 206! This seems odd in its own right. The
reason that radbg1 required such a long recurrence
iteration interval is that the innermost loop consists
of a somewhat lengthy chain of intra-iteration (loop
independent) dependences combined with an induc-
tion variable which, of course, represents a recurrence.
However, this is the only recurrence in the nested loop,
as originally written. Meanwhile the outer loop con-
tains a loop-carried dependence which led Memoria to
unroll the outer loop. However, this merely led to a
longer chain of intra-iteration dependences within the
inner loop with still the same recurrence on the in-
duction variable. This, in turn, led to the unusually
large RecII. By interchanging the inner- and outer-
most loops of radbg1 (leading to radbg1*) unroll-and-
jam allows for much better software pipelining, as can
be seen from the table, where the radbg1 allowed im-
provement of 17.6% and radbg1* showed improvement
of 68%. This suggests that judicious use of loop in-
terchange might well allow unroll-and-jam to produce
even more improvement in software pipelining than
was found in this study.

Overall, this experiment certainly supports the hy-
pothesis that unroll-and-jam can improve software
pipelining's ability to generate e�cient code. Consid-
ering that unroll-and-jam,when applied, improved the

performance of every loop tested and that the average
improvement was 43% over software pipelining with-
out unroll-and-jam, we conclude that unroll-and-jam
should be attempted whenever software pipelining of
nested loops is performed.

5 Conclusions

To achieve e�cient code for loops, compilers for
instruction-level parallel (ILP) architectures use soft-
ware pipelining, which overlaps operations from dif-
ferent loop iterations to obtain a more compact in-
struction schedule. We show how unroll-and-jam can
be used to increase parallelism available to software
pipelining, allowing even better schedules to be found.
By judiciously applying unroll-and-jam we can im-
prove the \balance" between memory operations and

oating point operations within the nested loop, al-
lowing software pipelining to better utilize the target
architecture's hardware.

Our results show that performing unroll-and-jam
can signi�cantly improve schedules generated by soft-
ware pipelining. All 28 loops on which unroll-and-
jam was applied showed software pipelining improve-
ments over that attainable without unroll-and-jam.
While these improvements averaged 43% over all 28
loops, 10 loops exceeded 50% improvement, and one
showed 80% improvement, corresponding to a factor
of 5 speed-up. Based upon this empirical evidence, we
recommend that unroll-and-jam should be attempted
whenever software pipelining of nested loops is per-
formed.
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