[YS92] A. Yonezawa and B.C. Smith, editors. Proceedings of the IMSA’92 Interna-
tional Workshop on Reflection and Meta-level Architecture, 1992.

18

[JA92]

[MWS7]

[Pau79]

[Pau89]

[Smi83]

[SWY91]

[Tal85]

[Wey80]

[WTS5]

[WYSS]

[WY90]

[Yon91]

S. Jagannathan and G. Agha. A Reflective Model of Inheritance. In The Sizth
FEuropean Conference on Object-Oriented Programming, number to appear in

LNCS, 1992.

Z. Manna and R. Waldinger. The Deductive Synthesis of Imperative LISP
Programs. In Sizth National Conference on Artificial Intelligence. AAAI,
1987.

L. Paulson. Tactics and Tacticals in Cambridge LCF. Technical Report 39,
Computer Laboratory, University of Cambridge, 1979.

L. Paulson. The Foundation of a Generic Theorem Prover. Journal of

Automated Reasoning, 5:363-396, 1989.

B.C. Smith. Reflection and Semantics in LISP. In Proc. 11th ACM POPL,
pages 23-35, 1983.

S.Matsuoka, T. Watanabe, and A. Yonezawa. Hybrid Group Reflective Ar-
chitecture for Object Oriented Concurrent Reflective Programming. Lecture
Notes in Computer Science, 512:231-250, 1991.

C. Talcott. The essence of RUM: theory of the intensional and extensional
aspects of LISP-type computation. PhD thesis, Department of Computer
Science, Stanford University, 1985. Also report No. STAN-C5-85-1060.

R.W. Weyhrauch. Prolegomena to a Theory of Mechanized Formal Reason-
ing. Artif. Intell., 13(1):133-176, 1980.

R.W. Weyhrauch and C. Talcott. HGKM: a Simple Implementation. FOL
working paper 4, November 1985.

T. Watanabe and A. Yonezawa. Reflection in an Object-Oriented Concur-
rent Language. In Object-Oriented Programming Systems, Languages and
Applications Conference Proceedings, pages 306-316. ACM Press, 1988.

T. Watanabe and A. Yonezawa. An Actor Based Metalevel Architecture
for Group-wide Reflection. In Proceedings of the REX School/Workshop

on Foundations of Object Oriented Languages, Lecture Notes in Computer

Science, May 1990.

A. Yonezawa. A Reflective Object Oriented Concurrent Language. Lecture
Notes in Computer Science, 441:254-256, 1991.

17

[Giu92]

[GMMW?T7]

[GMW79]

[GTY1]

[GTY2]

[GT93]

[GWO1]

[HL85]

[HL89]

[How88]

[IMWY91]

F. Giunchiglia. The GETFOL Manual - GETFOL version 1. Technical Report
9204-01, DIST - University of Genova, Genoa, Italy, 1992. Forthcoming
IRST-Technical Report.

M.J. Gordon, R. Milner, I.. Morris, and C. Wadsworth. A Metalanguage
for Interactive Proof in LCF. CSR report series CSR-16-77, Department of

Artificial Intelligence, Dept. of Computer Science, University of Edinburgh,
1977.

M.J. Gordon, A.J. Milner, and C.P. Wadsworth. Fdinburgh LCF - A mecha-
nized logic of computation, volume 78 of Lecture Notes in Computer Science.

Springer Verlag, 1979.

F. Giunchiglia and P. Traverso. Reflective reasoning with and between a
declarative metatheory and the implementation code. In Proc. of the 12th In-
ternational Joint Conference on Artificial Intelligence, pages 111-117, Syd-
ney, 1991. Also IRST-Technical Report 9012-03, IRST, Trento, Italy.

F. Giunchiglia and P. Traverso. A Metatheory of a Mechanized Object The-
ory. Technical Report 9211-24, IRST, Trento, Italy, 1992. Submitted for
publication to: Journal of Artificial Intelligence.

F. Giunchiglia and P. Traverso. Program Tactics and Logic Tactics. Tech-
nical Report 9301-01, IRST, Trento, Italy, 1993.

F. Giunchiglia and R.W. Weyhrauch. FOL User Manual - FOL version 2. Man-
ual 9109-08, IRST, Trento, Italy, 1991. Also MRG-DIST Technical Report
9107-02, DIST, University of Genova.

P.M. Hill and J.W. Lloyd. The Godel Programming Language. Technical
Report CSTR 92-27, University of Bristol, Dept. Computer Science, 1985.

P. M. Hill and J. W. Lloyd. Analysis of meta-programs. In J. Lloyd, editor,
Proc. Workshop on Meta-Programming in Logic Programming. MIT Press,
1989.

D. J. Howe. Computational metatheory in Nuprl. In R. Lusk and R. Over-
beek, editors, CADFE9, 1988.

Y. Ichisugi, S. Matsuoka, T. Watanabe, and A. Yonezawa. An Object Ori-
ented Concurrent Reflective Architecture for Distributed Computing Envi-
ronments. In Proceedings of the 29th Allerton Conference on Communica-
tion, Control and Computing, October 1991.

16

References

[BKS2]

[BM79]

[BMS1]

[BM90]

[Bun88]

[BvHHS90]

[BW85]

[CAB*86]

[GA93]

[GC8Y]

(GC92]

K.A. Bowen and R.A. Kowalski. Amalgamating language and meta-language
in logic programming. In S. Tarlund, editor, Logic Programming, pages 153—

173, New York, 1982. Academic Press.

R.S. Boyer and J.S. Moore. A Computational Logic. Academic Press, 1979.
ACM monograph series.

R.5. Boyer and J.S. Moore. Metafunctions: proving them correct and using
them efficiently as new proof procedures. In R.S. Boyer and J.S. Moore, edi-
tors, The correctness problem in computer science, pages 103-184. Academic

Press, 1981.

R.S. Boyer and J.S. More. A theorem prover for a computational logic. In
Proceedings of the 10th Conference on Automated Deduction, Lecture Notes
in Computer Science 449, Springer-Verlag, pages 1-15, 1990.

A. Bundy. The Use of Explicit Plans to Guide Inductive Proofs. In R. Luck
and R. Overbeek, editors, Proc. of the 9th Conference on Automated Deduc-

tion, pages 111-120. Springer-Verlag, 1988. Longer version available as DAI
Research Paper No. 349, Dept. of Artificial Intelligence, Edinburgh.

A. Bundy, F. van Harmelen, C. Horn, and A. Smaill. The Oyster-Clam
system. In M.E. Stickel, editor, 10th International Conference on Automated
Deduction, pages 647-648. Springer-Verlag, 1990. Lecture Notes in Artificial
Intelligence no. 449.

K.A. Bowen and T. Weiberhg. A Meta-level Extension of Prolog. In IFEFE
Symposium on Logic Programming, pages 669—675, Boston, 1985.

R.L. Constable, S.F. Allen, H.M. Bromley, et al. Implementing Mathematics
with the NuPRL Proof Development System. Prentice Hall, 1986.

F. Giunchiglia and A. Armando. A Conceptual Architecture for Introspective
Systems. Forthcoming IRST-Technical Report, 1993.

F. Giunchiglia and A. Cimatti. HGKM Manual - a revised version. Technical
Report 8906-22, IRST, Trento, Italy, 1989.

F. Giunchiglia and A. Cimatti. Introspective Metatheoretic Reasoning. Tech-
nical Report 9211-21, IRST, Trento, Italy, 1992.

15

5 Conclusions

In this paper we have presented how computational reflective capabilities and mechanized
logical deduction can be integrated. We have explained how this integration is achieved in
GETFOL, a theorem prover where a logical metatheory MT describes both the logical prop-
erties of the object theory OT and the code implementing deduction in OT. This seems
a promising step towards systems that are able to modify deductively and automatically
their underlying computation machinery. In fact:

1. The code implementing the logical metatheory MT constitutes the embedded ac-
count of the system, i.e. the computational description of the system code.

2. Self introspection can be automated by means of a general purpose lifting process
that, given the system code and data structures, automatically generates the em-
bedded account.

3. Self modification can be performed correctly by means of a general purpose flattening
process that, given theorems generated by the theorem prover, maps them into either
new or new versions of programs

4. The mechanized MT and the lifting and flattening processes allow for a flexible
control over computational reflection, i.e. the object level computation system and
its metalevel representation can be connected with different, application dependent
control mechanisms.

Acknowledgements

The work presented in this paper owes a lot to all the members of the Mechanized Rea-
soning Groups in Trento and Genoa. The authors would like to thank in particular Fausto
Giunchiglia that has supervised and worked at the GETFOL project since 1989: without
him the research described in this paper could have never been done. Other members of
the Mechanized Reasoning Group in Trento and in Genoa are working on related issues.
This work has been also strongly influenced by the work done by Richard Weyhrauch
on FOL. Alessandro Armando, Paolo Pecchiari, Carolyn Talcott and Richard Weyhrauch
have provided useful feedback on various aspects of the work described in this paper.

14

taken this work as a starting point to define the correct and complete logical metatheory
MT, to write the suitable system code and relate it to MT, and to define and implement
lifting and flattening thus providing computational reflection via logical deduction.

Other deductive reasoning systems have been proposed that provide logical reflection, but
that do not provide computational reflection, ¢.e. that do not have the possibility of using
the results of deduction to produce modifications of the underlying system code. Notice
that this is the case also of deductive systems that provide a logic that can be mapped
to programs and to computation, like for instance [CABT86, How88], [BK82, HL89] and
[BM81]. In fact, in these systems, logical statements can be executed as programs, but
these are not the programs used to implement the system itself. They cannot thus use the
results of deduction in the metatheory to produce modifications of the underlying system
code. An exception is the work (in progress) with the Acl2 theorem prover [BM90]: its
goal is to prove the correctness of the theorem prover within the theorem prover itself.
This work should raise a lot of very interesting issues in building correct self reflective
systems.

In the programming language community a lot of work has addressed the issue of self-
reflection (see for instance [Y S92, Smi83, JA92, WY8S8, Yon91, IMWY91, SWY91, WY90]).
The main difference with GETFOL is the way in which computational reflection is per-
formed. In GETFOL computation is affected by using logical deduction in MT. This opens
up the possibility of reasoning deductively about computation and of performing safe self-
extension and self-modification. Moreover, computational reflection in GETFOL has been
achieved in two different steps that are related, but are kept sharply distinct on purpose.
In the first step (described in section 2), we have provided the necessary link between the
system code and its embedded account. In the second step (described in section 3) we
have defined lifting and flattening, that is how this link can be used to build the embed-
ded account automatically and to affect computation. Keeping these two steps distinct
implies a peculiar feature: when and how lifting and flattening are to be applied is left
unspecified, i.e. the connection is not restricted to any “hardwired” control strategy. In
GETFOL, proving a statement in MT allows for but does not necessarily imply flattening
the corresponding code. Similarly, writing a new program or modifying an existing pro-
gram, allows for but does not necessarily imply lifting its metalevel specifications. The
computational system and its embedded account may evolve in their own, independently
within the correctness constraints deriving from the other. This fact leaves open the pos-
sibility to causally connect the object level system and its metalevel representation with
different control mechanisms according to the application requirements. This approach is
very different from what happens in other reflective systems where the control over the
connection is hardwired and precompiled in the system.

13

the reasoning process feasible, we want it to be local and at the right level of abstraction.
For instance, in order to reason about tactics, we do not want MT to consider the system
deciders, nor are we interested in the internal structure of inference rules (the choice of
what code we lift, and at which level of abstraction we describe it, strongly depends on our
goals). Once the right level of abstraction is determined, reasoning can exploit the usual
techniques: HGKM function definitions are immersed via a one-to-one mapping into the
logic of MT and become definitional axioms. For instance, lifting the function definition
of mptac (figure 4) gives axiom 4. Of course, one could describe mp with a one-to-one
lifting of its subroutine definition, assuming that formulas are primitive objects; in this
case axiom 3 would be derivable from the axioms lifted from the code implementing wifs.
However, this would imply reasoning at a different (lower) level of abstraction. Therefore
a uniform mapping is not satisfactory for our purposes. The primitive entities of MT,
such as mp, should be described as if they were black boxes. Lifting the corresponding
axioms is indeed the difficult task: indeed, the relevant code must be lifted without
analyzing the internal structure, i.e. its definition. In this case lifting is rather based
on the role that the code plays within the system. For instance, in order to lift the
functional code implementing an inductively defined data type, such as wifs, lifting can
exploit the role of the different functions, e.g. constructors, selectors and recognizers.
The task becomes more difficult once we consider non-functional code: the corresponding
state has to be taken into account in lifting. This is the case for lifting of inference
rules: formulas, once proved, are asserted (by proof-add-theorem) as theorems in the
state implementing the current proof; verifying theoremhood (see THEOREM in figure 4)
amounts to searching in the corresponding data structure. Lifting the code of inference is
based on the idea that the proof can be seen as an approximation of the (non-recursive) set
of all the provable formulas (represented in MT by T'): if the code adds a data structure
to the state approximating the set of theorems, then this data represents a theorem,
i.e. the approximation is sound. In the particular case of the code for modus ponens,
mpprf adds the result of mp, under the applicability conditions determined by mptac, to
the state approximating the set of theorems (by calling proof-add-1line). Under this
interpretation the lifting procedure generates axiom 3.

4 Related Work

The major influence on this work comes from the work done in the FOL system [Wey80],
one of the first deductive systems with self-reflective capabilities. The idea of reflection
rules has been first proposed in FOL. FOL had an implementation of reflection down. The
idea of enforcing a correspondence between symbols of the language of a logical metatheory
to HGKM code was originally proposed and implemented in FOL. The GETFOL project has

12

of lifting is in its generality, as the technology applied is general purpose, i.e. independent
of the fact that we are lifting the code of a theorem prover. In general this is an important
feature as the interesting characteristics of the embedded account of a refelctive system can
depend on the particular introspection to be performed. The peculiar feature of flattening
as a self modification process is the starting point, i.e. logical M'T statements, which are
de facto formal specifications for system modifications/extensions. The advantage is that
in this way the synthesized code is guaranteed to satisfy the specifications, and therefore
the process of self extension can be proved to be correct.

The definition of the lifting and flattening relations are by no means trivial, not even
assuming the conditions on MT and on the structure of the system code discussed in pre-
vious section. Lifting and flattening are in fact mapping between a computational system
(the code implementing GETFOL) and a deductive system (MT). In the past such relation
has been widely studied. It is a well known fact in the mathematical logic literature that
it is possible to express deduction in terms of computation (e.g. in the A-calculus) and
vice versa deduction (e.g. in Peano arithmetics) may represent computation; in computer
science, programming languages are given formal account to allow formal reasoning for
program synthesis, optimization and verification. However these results are obtained in
rather idealized settings. Here we take a different perspective. Establishing the connec-
tion between MT and the code mechanizing OT has required facing a lot of problems,
which arise just because we are dealing with a real full blown system. Independently
of the features of the language being described, i.e. functional [BM79] or imperative
[MW8T7], all the approaches to mapping between computation and deduction are based
on a uniform mapping. In most cases, the computing subroutines are immersed into the
logic with a mapping which is basically one-to-one. This is of course a good property,
that would make the implementation of lifting nearly trivial. However, in particular in
the case of languages with imperative constructs and state, these approaches seem quite
far apart from being applicable to our problem. The code of GETFOL amounts to more
than one MB of source, and uses a lot of state: reasoning in the theory describing it in a
one-to-one fashion would simply be unfeasible in practice. Therefore lifting and flattening
are not uniform: different parts of the code are treated in different ways. The result is
a one-to-one correspondence only for a particular class of programs; however, this allows
for the expression of computations we are interested in reasoning about.

In the following we focus on the description of lifting; we rely on the intuition that
flattening can be seen as the inverse process. The generation of the language of MT and
the description of the data structures in OT is somewhat standard: for instance, the
MT axiom T(“Vax.P(x)”) is the lifting for the (data structure implementing the) axiom
Va.P(x)of OT. Let us consider the problem of lifting code. We are interested in developing
a system which reasons about its underlying implementation code. In order to maintain

11

Mechanized Logical

Meta Level Meta Level
M
' data
Fllatte latten ift
system
|_' t code
,,,,, AN
' data
M echanized Logica
Object Level Object Level

Figure 5: Lifting and flattening in GETFOL

determined.

The connection between MT and the system code is exploited in the reverse direction with
the flattening process. Flattening is basically a process of executable code synthesis. M'T
theorems can be interpreted as descriptions of pieces of executable (system) code satisfying
certain specifications. Flattening, given such specification, (automatically) generates the
corresponding executable code.

The arrows Lift and Flatten, in figure 5, depict the implementation of lifting and
flattening, which have effect on the system data structures and code. Lift has the actual
effect of generating the data mechanizing MT, i.e. to build the embedded account of the
system and its causal connection to the system code. Flatten has the effect of generating
new parts of the system code starting from the theorems of MT; in this way the system
can perform self-extension, when the added code implements new functionalities, and
self-modification, when the added code is a substitute for old functionalities.

It is then clear in which sense these functionalities allow for computational reflection
in GETFOL: the computations (implementing deduction) in MT are actually about the
computation mechanisms of the system itself, and the flattening process, exploiting the
causal connection between the mechanized MT and the system code, performs system
modification and extension.

Lifting is the basis for the automatization of the self introspection process. Notice that the
generation of the embedded account is vital to any reflective system. The main advantage

10

(DEFLAM mpprf (X Y)
(maybe-proof-add-theorem (mptac X Y)))

(DEFLAM maybe-proof-add-theorem (X)
(IF (FAIL? X)
(print-error-message)
(proof-add-theorem X)))

(DEFLAM mptac (X Y)

(IF (AND (THEOREM X) (THEOREM Y) (HP X Y))
(mp X Y)
fail))

Figure 4: The mechanization of modus ponens in GETFOL

latter takes into account the way inference rules may not be applicable. Other primitives
implement operations which have no direct correspondence in OT (e.g. handling of the
input output channel), but which are vital to the implementation of a full blown reasoning
system.

Compare now the two versions of mpprf in figure 3 and in figure 4. The computations
described in the two cases are very similar, undistinguishable from many points of view.
However, the abstraction levels in the “mechanized” solution are sharply identified, and
the functions are separated from the actions on the state; this does not happen in the other
implementation, where the different levels are collapsed together. Furthermore, notice how
the mechanization of modus ponens of figure 4 yields the natural correspondence between
the definition of mptac and axiom 4.

3 Computational Reflection in GETFOL

The connection between MT and the system code described in previous section allows
for the implementation of the functionalities schematized in figure 5. Lifting is a theory-
building process, whose result is the (automated) generation of the description of the
system code, i.e. MT. With lifting, the system code and data structures are analyzed, and
as a result the necessary language and axioms are automatically generated. Furthermore,
the connections between the language of M'T and the corresponding data structures are

(DEFLAM mpprf (X Y)

(IF (AND (THEOREM X) (THEOREM Y) (HP X Y))
(proof-add-theorem (mp X Y))
(print-error-message)))

Figure 3: A possible implementation of modus ponens

we say that we do representation theory using programs as representational tools. We call
this way of writing code, mechanization, and distinguish it from simple implementation

[GC92].

Consider the code implementing the rule of modus ponens, shown in figure 3. THEOREM
evaluates to TRUE if the argument is (a data structure asserted as) a theorem, HP evaluates
to true if the first argument is an hypothesis of the second, mp builds (the data structure
representing) the conclusion of the inference, and proof-add-theorem adds it to the
proof. Its reading is very natural: “if the inference rule is applicable, then build the (data
structure representing) the resulting formula and store it in the current proof, otherwise
report an error message”. Everyone would agree that this is well written code. However,
it 1s hard to see how this code could be related to the representation of modus ponens
in MT. For instance, whilst mptac in MT describes modus ponens as a binary function
mapping wifs to wifs, mpprf implements modus ponens with a side effect on the system
(either adds a theorem to the proof or prints an error message) and does not return a
value.

The work on mechanizing GETFOL has required different rewritings of the code, during
which we have devised general criteria for the development of code with the required
properties. An example of this way of writing code is the mechanization of modus ponens
in GETFOL, given in figure 4. mp is the function that, given two formulas that satisty
the applicability conditions, returns the result of the inference. mptac is the modus
ponens tactic, which maps two data structures in the conclusion of the inference if the
preconditions are satisfied, otherwise returns fail, the data structure representing failure.
FAIL? tests whether its argument is fail. proof-add-theorem adds its argument to
the proof, while print-error-message prints an error message. The general idea is to
enforce a sharp identification of the levels of abstraction and of the state of the system
involved in the representation of OT, and to separate it from other parts of the code which
have no strict representational meaning. mp and mptac take into account two different
aspects of inference in OT: the former captures the notion of “correct” inference, while the

In the mechanized OT, in addition to building proofs, it is possible to define tactics®, i.c.
programs which implement search strategies for proofs. Tactics specify which inference
rules to apply, in which order and under which conditions, and how to recover when the
chosen rule is not applicable; they are HGKM complex programs containing conditionals,
iterations and failure generation and trapping constructs. Tactics are a very relevant
part of the code mechanizing deduction in GETFOL. MT provides for representing and
reasoning about tactics. In order to show how this is done, we consider the simple tactics
corresponding to the application of a single inference rule. These tactics are mechanized
so that they allow for failure trapping and composition into more complex tactics. The
MT axiom describing the tactic corresponding to the rule of modus ponens is:

Vay.mptac(x,y) = trmif T'(x) AT (y) A Hp(z,y) then mp(x,y) else faul (4)

The individual constant fa:l represents failure in the applicability of inference steps. tr-
mif is the MT constructor for conditional terms, namely terms whose denotation depends
on the interpretation of the condition wff. The intuition is that when the applicability
conditions of the inference rule are satisfied, mp is called, otherwise a failure is gener-
ated. This axiom reflects the implementation code. However, in MT it is possible to
reason about the computation in a declarative way. Failure trapping is simply equivalent
to proving the equality of the corresponding tactic with faul. Inference rules to intro-
duce and eliminate conditional expressions [Giu92] allow for reasoning deductively about
conditionals. This expressiveness of MT allows for using effectively the theorem proving
capabilities of the system to reason about a relevant portion of the code implementing
GETFOL and settles the basis to extend and modify it deductively.

2.2 The system code

Our goal is to produce code implementing OT that can also be described by a logical
metatheory of OT. Notice that this is not a trivial consequence of the fact that the
code implements the deductive machinery of OT. Writing such a code is not a simple
operation of implementation. It is not enough to satisty the usual software engineering
requirements (e.g. bug-free, understandable). It is aslo necessary that the code preserves
a form of structural similarity with the entity being represented, in this case OT. Every
data structure, every step of computation, the system structure and the abstraction levels
are determined in terms of the concepts that are represented. To emphasize this point

3Historically, tactics have been mostly developed in the programming language ML [GMMW77] and
used in LCF and its descendants [GMWT79, Pau79, Pau89, CABT86]. There actually exist technical
differencies between GETFOL tactics and LCF tactics, that we do not discuss here since out of the goal of
this paper.

connect the embedded account to the system code and data structures.

The existence of a causally connected embedded account is a first step towards computa-
tional reflection. However, achieving the necessary relation between MT and the code as
described above is by no means trivial. It requires that MT and the code be designed to
satisfy some fundamental conditions. In sections 2.1 we discuss necessary requirements
in the definition of MT; in section 2.2 we discuss some issues in writing the system code.

2.1 The metatheory

There are actually several different ways to set up the signature and the axioms of MT
such that MT is a metatheory of the formal OT. Consider the object level inference rule
of modus ponens:

A ADB

B p

(1)

At the metalevel, modus ponens could be represented by the axiom:
T(“A??) /\ T(“A D B??) D T(“B??) (2)

“A”, “A D B” and “B” denote the object level wifs A, A O B and B, respectively. Axiom
2 states that if A and A D B are theorems, then B is a theorem. Axioms of this form
may suffix to provide a correct and complete representation of OT provability.

However, as we want MT to take into account the mechanization of OT, this choice is
not satisfactory. Axiom 2 has no correspondence with the structure of the system code:
it states the provability of the conclusion of the rule given the premises, independently of
the computations implementing the application of the inference rule. The mechanization
of modus ponens in GETFOL is based on the HGKM predicate HP, that tests the precondition
of the rule and returns TRUE iff its arguments are (data structures representing) wifs of
the foorm A O B and A, and on the HGKM function mp that, given (the data structures
corresponding to) the premises A and A D B, returns (the data structure corresponding
to) the conclusion of the rule B. The MT axiom

Vo y.T(z) NT(y) A Hp(x,y) O T(mp(z,y)) (3)

describes modus ponens preserving a structural similarity with the system code mecha-
nizing it. The binary function symbol mp corresponds to mp, and the binary predicate
symbol Hp corresponds to HP. The other inference rules of OT are represented in MT
according to the criteria shown in this simple example.

Mechanized Logical
Meta Level Meta Level

the mechanization of MT

I |
MT i§ amémheory of OT
[i
v I

the mechanization of OT \

Mechanized Logica
Object Level Object Level

Figure 2: The link between MT and the code in GETFOL

rem provers, e.g. [CAB186, How88, HL85, BWS85, BvHHS90]. The logical metatheories
implemented there describe the object theory, but have no relation with the code and
the data implementing the object theory. MT has instead a distinguishing characteristic
that makes it different from any other logical metatheory proposed so far. Not only does
MT describe the logical theory OT, but it also takes into account the fact that OT is
mechanized in GETFOL. It also describes the way in which deduction in OT is actually
performed by running code. This results in a well defined relation between the language
of MT and (a relevant subset of) OT data and the system code: deduction in MT cor-
responds to computation in the code implementing OT. The symbols in ML are in a
one-to-one correspondence with HGKM ? computational entities in the mechanization of
OT. For any individual constant in ML (e.g. “VYa.A(x)”) there is a corresponding data
structure (e.g. the s-expression (forall x (P x))) representing an object of OT (e.g.
the formula Va.P(x)). For any function or predicate symbol (f and P) in the language
of MT there is a corresponding HGKM function (f and P) in the code implementing OT.
This relation between the logical metatheory MT and the mechanized object theory is
depicted in figure 2. As a consequence of this relation, the GETFOL implementation of MT,
i.e. MT data, plays the role of embedded account in GETFOL: indeed, MT describes actual
data and programs of GETFOL, and MT data encodes this (partial) representation of the
system in the system itself. Furthermore, being MT data mechanized within the system
itself, it is possible to implement the link between MT and the code, i.e. to causally

2HGKM is the implementation language of GETFOL [Tal85, WT85, GC89].

2 The relation between MT and the code

Consider first a generic first order logical theory, OT, defined as the triple < £, A, R >,
L being the language, A the set of axioms and R the set of inference rules. Given OT, we
define the first order logical theory MT = < ML, M A, MR >, to be its metatheory. We
fix a naming relation between MT and the objects of OT, i.e. ML contains names of the
objects (e.g. terms, wifs, axioms) of OT. For instance, the constants “Va.A(x)” and “a”
are the names of the OT wif Va.A(x) and of the OT variable x, respectively. The ML
statement T'(“A”) expresses the provability in OT of the formula A. MA axiomatizes
the OT provability relation so that MT is correct and complete w.r.t. OT, i.e. T(“A”) is
provable in MT iff A is provable in OT. This fact provides a theoretical justification for
the reflection rules R,, and R, between MT and OT depicted in figure 1. The premise
of reflection up is the OT wif A, and its conclusion the MT wif T'(“A”); reflection down
works in the opposite way, i.e. maps T(“A”) in MT to A in OT.

Mechanized Logical
Meta Level Meta Level

M echanized Logica
Object Level Object Level

Figure 1: GETFOL implements logical reflection

GETFOL allows for the implementation of MT and OT as distinct contexts, shown in
figure 1 as 0T data and MT data. Each context contains data structures implementing
the language, the set of axioms and the set of inference rules of each logical theory. R,
and Rg, are mechanized by the system commands RUP and RDOWN (see figure 1), that
assert a theorem in MT data given a theorem in 0T data as input, and vice versa.

MT, as described so far, plays a role similar to metalevel representations in other theo-

1. There exists a relation between MT and the code implementing OT. The same
expressions of MT referring to the logical properties of OT are also in a well defined
relation with the code implementing logical deduction in OT. Not only does MT
reason about (logical properties of) OT, but also reasons about (computational
properties of) the system code implementing logical deduction.

2. The relation between MT and the code is exploited by lifting and flattening, two
general and domain independent procedures, that map MT into the code and vice
versa. Lifting, given in input the code implementing the object theory, generates
the data structures implementing MT. Flattening, given in input data structures
implementing MT, generates system code.

As a consequence of the first fact, the implementation of MT is indeed the computational
description of the system code, or, according to Smith’s terminology, the embedded account
of the system [Smi83]. As a consequence of the second fact, lifting builds the embedded
account and its causal connection to the system code, while flattening affects systems
computation by extending/modifying the underlying computational strategies. Therefore,
the machinery performing deduction in MT is the basis for the machinery that is used
to perform computational reflection. This achieves our final goal, i.e. computational
reflection via mechanized logical deduction.

GETFOL is developed within a global project that has gone on at the Mechanized Reason-
ing Group of IRST since 1989. The ideas presented in this paper have been developed
starting from the results of existing research within this project that involves the authors
and other members of the group. The aim of this paper is to interpret and understand
this research under a different perspective, thus opening the way to use computational
reflection (via mechanized logical deduction) as an important tool to achieve the project’s
goals. Therefore, many technical details are omitted here. The interested reader is de-
ferred to other papers: [GT91, GT92, GT93] describe in detail MT and how MT takes into
account the code implementing deduction in OT, while [GC92] describes the lifting and
flattening processes, the GETFOL code and how it must be written to allow for a mapping
with MT; [GA93] describes a conceptual architecture to integrate logic and computation
in GETFOL.

The paper is structured as follows. Section 2 describes how MT, the logical object theory
and the code implementing it are related. Section 3 describes how this relation is used to
achieve computational reflection (i.e. lifting and flattening). In sections 4 we discuss the
relation of our work with some related systems. In section 5 we give some conclusions.

1 Introduction and motivations

Reflective and metatheoretic reasoning are well known techniques applied in automated
deduction (see for instance [Wey80], [Bun88], [BM8&1], [CAB*86, How88], [BK82, HL89]).
Proof checkers and theorem provers have been proposed that implement logical metatheo-
ries, i.e. logical theories whose language has expressions referring to other logical (object)
theories or even to themselves. Logical metatheories can reason deductively about and
affect logical deduction within other theories. We call this ability, logical reflection. How-
ever, these systems do not have the ability to affect their own computation. Their data
and programs do not represent and compute about data and programs of the system itself.
In a word, they do not provide computational reflection.

We are interested in the integration of computational reflection and deduction in auto-
mated reasoning systems. Our goal is to present how a system for automated deduction
can be given computational reflection by using the very same reasoning capabilities of the
system itself. Such a system has the ability to affect its own computation mechanism,
and the machinery used to affect its own computation is based on the machinery imple-
menting logical deduction. We call this feature computational reflection via mechanized
logical deduction. “Computational reflection”, since the theorem prover can access and
modify its own computation. “Via mechanized logical deduction”, since the basis for this
computational reflection is inference within the mechanized logical framework.

There are some main motivations for this work. On the one hand, there is the intrin-
sic interest in how self-reflective computation and mechanized deduction can be related,
combined and integrated. On the other hand, providing computational reflection within
a deductive reasoning system presents significant advantages from the practical point of
view. First, the theorem prover can inspect, extend and modify its own underlying theo-
rem proving strategies automatically. Second, mechanized logical deduction can be used
to reason about the ways these strategies can be extended and modified. Since logic gives
a semantics which allows us to make and prove correctness statements, this approach
opens up the possibility of building systems that are able to perform correct and safe
self-extension and self-modification.

In this paper we show how computational reflection is achieved via mechanized logical
deduction within the deductive reasoning system GETFOL [Giu92] !. Similarly to other
theorem provers, GETFOL implements logical reflection using a metatheory, called MT,
describing the logical object theory (OT). In addition, two main distinguishing features
allow us to achieve the desired properties.

LGETFOL has been developed on top of a reimplementation [GW91] of the FOL system [Wey80].

Computational Reflection
via Mechanized Logical Deduction*

Alessandro Cimatti and Paolo Traverso
IRST - Istituto per la Ricerca Scientifica e Tecnologica
38050 Povo, Trento, Italy
cx@irst.it, leaf@irst.it

Abstract

In this paper, we show how a system for automated deduction can be given
computational reflection, i.e. can compute about and affect its own computation
mechanism, by using the very same machinery implementing logical deduction. This
feature, that we call computational reflection via mechanized logical deduction, pro-
vides both theoretical and practical advantages. First, the theorem prover can
inspect, extend and modify its own underlying theorem proving strategies automat-
ically. Second, mechanized logical deduction can be used to reason about the ways
these strategies can be extended and modified and to prove correctness statements.
This opens up the possibility of building systems that are able to perform correct
and safe reflective self-extension and self-modification.

*This work has been conducted as part of MATA, the integrated Al project under development at
IRST.

[IesT

ISTITUTO PER LA RICERCA SCIENTIFICA E TECNOLOGICA

I 38100 TRENTO — Loc. PANTE DI POvOo — TEL. 0461—314444
TELEX 400874 ITCRST — TELEFAX 0461—302040

COMPUTATIONAL REFLECTION
VIA MECHANIZED LOGICAL DEDUCTION

A. Cimatti, P. Traverso

December 1993
Technical Report # 9312-02

T,
1 C

IsTiITUTO TRENTINO DI CULTURA

