
[YS92] A. Yonezawa and B.C. Smith, editors. Proceedings of the IMSA'92 Interna-tional Workshop on Reection and Meta-level Architecture, 1992.

18

[JA92] S. Jagannathan and G. Agha. A ReectiveModel of Inheritance. In The SixthEuropean Conference on Object-Oriented Programming, number to appear inLNCS, 1992.[MW87] Z. Manna and R. Waldinger. The Deductive Synthesis of Imperative LISPPrograms. In Sixth National Conference on Arti�cial Intelligence. AAAI,1987.[Pau79] L. Paulson. Tactics and Tacticals in Cambridge LCF. Technical Report 39,Computer Laboratory, University of Cambridge, 1979.[Pau89] L. Paulson. The Foundation of a Generic Theorem Prover. Journal ofAutomated Reasoning, 5:363{396, 1989.[Smi83] B.C. Smith. Reection and Semantics in LISP. In Proc. 11th ACM POPL,pages 23{35, 1983.[SWY91] S.Matsuoka, T. Watanabe, and A. Yonezawa. Hybrid Group Reective Ar-chitecture for Object Oriented Concurrent Reective Programming. LectureNotes in Computer Science, 512:231{250, 1991.[Tal85] C. Talcott. The essence of RUM: theory of the intensional and extensionalaspects of LISP-type computation. PhD thesis, Department of ComputerScience, Stanford University, 1985. Also report No. STAN-CS-85-1060.[Wey80] R.W. Weyhrauch. Prolegomena to a Theory of Mechanized Formal Reason-ing. Artif. Intell., 13(1):133{176, 1980.[WT85] R.W. Weyhrauch and C. Talcott. HGKM: a Simple Implementation. FOLworking paper 4, November 1985.[WY88] T. Watanabe and A. Yonezawa. Reection in an Object-Oriented Concur-rent Language. In Object-Oriented Programming Systems, Languages andApplications Conference Proceedings, pages 306{316. ACM Press, 1988.[WY90] T. Watanabe and A. Yonezawa. An Actor Based Metalevel Architecturefor Group-wide Reection. In Proceedings of the REX School/Workshopon Foundations of Object Oriented Languages, Lecture Notes in ComputerScience, May 1990.[Yon91] A. Yonezawa. A Reective Object Oriented Concurrent Language. LectureNotes in Computer Science, 441:254{256, 1991.17

[Giu92] F. Giunchiglia. The GETFOL Manual - GETFOL version 1. Technical Report9204-01, DIST - University of Genova, Genoa, Italy, 1992. ForthcomingIRST-Technical Report.[GMMW77] M.J. Gordon, R. Milner, L. Morris, and C. Wadsworth. A Metalanguagefor Interactive Proof in LCF. CSR report series CSR-16-77, Department ofArti�cial Intelligence, Dept. of Computer Science, University of Edinburgh,1977.[GMW79] M.J. Gordon, A.J. Milner, and C.P. Wadsworth. Edinburgh LCF - A mecha-nized logic of computation, volume 78 of Lecture Notes in Computer Science.Springer Verlag, 1979.[GT91] F. Giunchiglia and P. Traverso. Reective reasoning with and between adeclarative metatheory and the implementation code. In Proc. of the 12th In-ternational Joint Conference on Arti�cial Intelligence, pages 111{117, Syd-ney, 1991. Also IRST-Technical Report 9012-03, IRST, Trento, Italy.[GT92] F. Giunchiglia and P. Traverso. A Metatheory of a Mechanized Object The-ory. Technical Report 9211-24, IRST, Trento, Italy, 1992. Submitted forpublication to: Journal of Arti�cial Intelligence.[GT93] F. Giunchiglia and P. Traverso. Program Tactics and Logic Tactics. Tech-nical Report 9301-01, IRST, Trento, Italy, 1993.[GW91] F. Giunchiglia and R.W.Weyhrauch. FOLUser Manual - FOL version 2. Man-ual 9109-08, IRST, Trento, Italy, 1991. Also MRG-DIST Technical Report9107-02, DIST, University of Genova.[HL85] P.M. Hill and J.W. Lloyd. The G�odel Programming Language. TechnicalReport CSTR 92-27, University of Bristol, Dept. Computer Science, 1985.[HL89] P. M. Hill and J. W. Lloyd. Analysis of meta-programs. In J. Lloyd, editor,Proc. Workshop on Meta-Programming in Logic Programming. MIT Press,1989.[How88] D. J. Howe. Computational metatheory in Nuprl. In R. Lusk and R. Over-beek, editors, CADE9, 1988.[IMWY91] Y. Ichisugi, S. Matsuoka, T. Watanabe, and A. Yonezawa. An Object Ori-ented Concurrent Reective Architecture for Distributed Computing Envi-ronments. In Proceedings of the 29th Allerton Conference on Communica-tion, Control and Computing, October 1991.16

References[BK82] K.A. Bowen and R.A. Kowalski. Amalgamating language and meta-languagein logic programming. In S. Tarlund, editor, Logic Programming, pages 153{173, New York, 1982. Academic Press.[BM79] R.S. Boyer and J.S. Moore. A Computational Logic. Academic Press, 1979.ACM monograph series.[BM81] R.S. Boyer and J.S. Moore. Metafunctions: proving them correct and usingthem e�ciently as new proof procedures. In R.S. Boyer and J.S. Moore, edi-tors, The correctness problem in computer science, pages 103{184. AcademicPress, 1981.[BM90] R.S. Boyer and J.S. More. A theorem prover for a computational logic. InProceedings of the 10th Conference on Automated Deduction, Lecture Notesin Computer Science 449, Springer-Verlag, pages 1{15, 1990.[Bun88] A. Bundy. The Use of Explicit Plans to Guide Inductive Proofs. In R. Luckand R. Overbeek, editors, Proc. of the 9th Conference on Automated Deduc-tion, pages 111{120. Springer-Verlag, 1988. Longer version available as DAIResearch Paper No. 349, Dept. of Arti�cial Intelligence, Edinburgh.[BvHHS90] A. Bundy, F. van Harmelen, C. Horn, and A. Smaill. The Oyster-Clamsystem. In M.E. Stickel, editor, 10th International Conference on AutomatedDeduction, pages 647{648. Springer-Verlag, 1990. Lecture Notes in Arti�cialIntelligence no. 449.[BW85] K.A. Bowen and T. Weiberhg. A Meta-level Extension of Prolog. In IEEESymposium on Logic Programming, pages 669{675, Boston, 1985.[CAB+86] R.L. Constable, S.F. Allen, H.M. Bromley, et al. Implementing Mathematicswith the NuPRL Proof Development System. Prentice Hall, 1986.[GA93] F. Giunchiglia and A. Armando. A Conceptual Architecture for IntrospectiveSystems. Forthcoming IRST-Technical Report, 1993.[GC89] F. Giunchiglia and A. Cimatti. HGKM Manual - a revised version. TechnicalReport 8906-22, IRST, Trento, Italy, 1989.[GC92] F. Giunchiglia and A. Cimatti. IntrospectiveMetatheoretic Reasoning. Tech-nical Report 9211-21, IRST, Trento, Italy, 1992.15

5 ConclusionsIn this paper we have presented how computational reective capabilities and mechanizedlogical deduction can be integrated. We have explained how this integration is achieved inGETFOL, a theorem prover where a logical metatheory MT describes both the logical prop-erties of the object theory OT and the code implementing deduction in OT. This seemsa promising step towards systems that are able to modify deductively and automaticallytheir underlying computation machinery. In fact:1. The code implementing the logical metatheory MT constitutes the embedded ac-count of the system, i.e. the computational description of the system code.2. Self introspection can be automated by means of a general purpose lifting processthat, given the system code and data structures, automatically generates the em-bedded account.3. Self modi�cation can be performed correctly bymeans of a general purpose atteningprocess that, given theorems generated by the theorem prover, maps them into eithernew or new versions of programs4. The mechanized MT and the lifting and attening processes allow for a exiblecontrol over computational reection, i.e. the object level computation system andits metalevel representation can be connected with di�erent, application dependentcontrol mechanisms.AcknowledgementsThe work presented in this paper owes a lot to all the members of the Mechanized Rea-soning Groups in Trento and Genoa. The authors would like to thank in particular FaustoGiunchiglia that has supervised and worked at the GETFOL project since 1989: withouthim the research described in this paper could have never been done. Other members ofthe Mechanized Reasoning Group in Trento and in Genoa are working on related issues.This work has been also strongly inuenced by the work done by Richard Weyhrauchon FOL. Alessandro Armando, Paolo Pecchiari, Carolyn Talcott and Richard Weyhrauchhave provided useful feedback on various aspects of the work described in this paper.14

taken this work as a starting point to de�ne the correct and complete logical metatheoryMT, to write the suitable system code and relate it to MT, and to de�ne and implementlifting and attening thus providing computational reection via logical deduction.Other deductive reasoning systems have been proposed that provide logical reection, butthat do not provide computational reection, i.e. that do not have the possibility of usingthe results of deduction to produce modi�cations of the underlying system code. Noticethat this is the case also of deductive systems that provide a logic that can be mappedto programs and to computation, like for instance [CAB+86, How88], [BK82, HL89] and[BM81]. In fact, in these systems, logical statements can be executed as programs, butthese are not the programs used to implement the system itself. They cannot thus use theresults of deduction in the metatheory to produce modi�cations of the underlying systemcode. An exception is the work (in progress) with the Acl2 theorem prover [BM90]: itsgoal is to prove the correctness of the theorem prover within the theorem prover itself.This work should raise a lot of very interesting issues in building correct self reectivesystems.In the programming language community a lot of work has addressed the issue of self-reection (see for instance [YS92, Smi83, JA92, WY88, Yon91, IMWY91, SWY91, WY90]).The main di�erence with GETFOL is the way in which computational reection is per-formed. In GETFOL computation is a�ected by using logical deduction in MT. This opensup the possibility of reasoning deductively about computation and of performing safe self-extension and self-modi�cation. Moreover, computational reection in GETFOL has beenachieved in two di�erent steps that are related, but are kept sharply distinct on purpose.In the �rst step (described in section 2), we have provided the necessary link between thesystem code and its embedded account. In the second step (described in section 3) wehave de�ned lifting and attening, that is how this link can be used to build the embed-ded account automatically and to a�ect computation. Keeping these two steps distinctimplies a peculiar feature: when and how lifting and attening are to be applied is leftunspeci�ed, i.e. the connection is not restricted to any \hardwired" control strategy. InGETFOL, proving a statement in MT allows for but does not necessarily imply atteningthe corresponding code. Similarly, writing a new program or modifying an existing pro-gram, allows for but does not necessarily imply lifting its metalevel speci�cations. Thecomputational system and its embedded account may evolve in their own, independentlywithin the correctness constraints deriving from the other. This fact leaves open the pos-sibility to causally connect the object level system and its metalevel representation withdi�erent control mechanisms according to the application requirements. This approach isvery di�erent from what happens in other reective systems where the control over theconnection is hardwired and precompiled in the system.13

the reasoning process feasible, we want it to be local and at the right level of abstraction.For instance, in order to reason about tactics, we do not want MT to consider the systemdeciders, nor are we interested in the internal structure of inference rules (the choice ofwhat code we lift, and at which level of abstraction we describe it, strongly depends on ourgoals). Once the right level of abstraction is determined, reasoning can exploit the usualtechniques: HGKM function de�nitions are immersed via a one-to-one mapping into thelogic of MT and become de�nitional axioms. For instance, lifting the function de�nitionof mptac (�gure 4) gives axiom 4. Of course, one could describe mp with a one-to-onelifting of its subroutine de�nition, assuming that formulas are primitive objects; in thiscase axiom 3 would be derivable from the axioms lifted from the code implementing w�s.However, this would imply reasoning at a di�erent (lower) level of abstraction. Thereforea uniform mapping is not satisfactory for our purposes. The primitive entities of MT,such as mp, should be described as if they were black boxes. Lifting the correspondingaxioms is indeed the di�cult task: indeed, the relevant code must be lifted withoutanalyzing the internal structure, i.e. its de�nition. In this case lifting is rather basedon the role that the code plays within the system. For instance, in order to lift thefunctional code implementing an inductively de�ned data type, such as w�s, lifting canexploit the role of the di�erent functions, e.g. constructors, selectors and recognizers.The task becomes more di�cult once we consider non-functional code: the correspondingstate has to be taken into account in lifting. This is the case for lifting of inferencerules: formulas, once proved, are asserted (by proof-add-theorem) as theorems in thestate implementing the current proof; verifying theoremhood (see THEOREM in �gure 4)amounts to searching in the corresponding data structure. Lifting the code of inference isbased on the idea that the proof can be seen as an approximation of the (non-recursive) setof all the provable formulas (represented in MT by T): if the code adds a data structureto the state approximating the set of theorems, then this data represents a theorem,i.e. the approximation is sound. In the particular case of the code for modus ponens,mpprf adds the result of mp, under the applicability conditions determined by mptac, tothe state approximating the set of theorems (by calling proof-add-line). Under thisinterpretation the lifting procedure generates axiom 3.4 Related WorkThe major inuence on this work comes from the work done in the FOL system [Wey80],one of the �rst deductive systems with self-reective capabilities. The idea of reectionrules has been �rst proposed in FOL. FOL had an implementation of reection down. Theidea of enforcing a correspondence between symbols of the language of a logical metatheoryto HGKM code was originally proposed and implemented in FOL. The GETFOL project has12

of lifting is in its generality, as the technology applied is general purpose, i.e. independentof the fact that we are lifting the code of a theorem prover. In general this is an importantfeature as the interesting characteristics of the embedded account of a refelctive system candepend on the particular introspection to be performed. The peculiar feature of atteningas a self modi�cation process is the starting point, i.e. logical MT statements, which arede facto formal speci�cations for system modi�cations/extensions. The advantage is thatin this way the synthesized code is guaranteed to satisfy the speci�cations, and thereforethe process of self extension can be proved to be correct.The de�nition of the lifting and attening relations are by no means trivial, not evenassuming the conditions on MT and on the structure of the system code discussed in pre-vious section. Lifting and attening are in fact mapping between a computational system(the code implementing GETFOL) and a deductive system (MT). In the past such relationhas been widely studied. It is a well known fact in the mathematical logic literature thatit is possible to express deduction in terms of computation (e.g. in the �-calculus) andvice versa deduction (e.g. in Peano arithmetics) may represent computation; in computerscience, programming languages are given formal account to allow formal reasoning forprogram synthesis, optimization and veri�cation. However these results are obtained inrather idealized settings. Here we take a di�erent perspective. Establishing the connec-tion between MT and the code mechanizing OT has required facing a lot of problems,which arise just because we are dealing with a real full blown system. Independentlyof the features of the language being described, i.e. functional [BM79] or imperative[MW87], all the approaches to mapping between computation and deduction are basedon a uniform mapping. In most cases, the computing subroutines are immersed into thelogic with a mapping which is basically one-to-one. This is of course a good property,that would make the implementation of lifting nearly trivial. However, in particular inthe case of languages with imperative constructs and state, these approaches seem quitefar apart from being applicable to our problem. The code of GETFOL amounts to morethan one MB of source, and uses a lot of state: reasoning in the theory describing it in aone-to-one fashion would simply be unfeasible in practice. Therefore lifting and atteningare not uniform: di�erent parts of the code are treated in di�erent ways. The result isa one-to-one correspondence only for a particular class of programs; however, this allowsfor the expression of computations we are interested in reasoning about.In the following we focus on the description of lifting; we rely on the intuition thatattening can be seen as the inverse process. The generation of the language of MT andthe description of the data structures in OT is somewhat standard: for instance, theMT axiom T(\8x:P (x)") is the lifting for the (data structure implementing the) axiom8x:P (x) of OT. Let us consider the problem of lifting code. We are interested in developinga system which reasons about its underlying implementation code. In order to maintain11

Meta Level
Mechanized

Mechanized

OT
data

data

Meta Level
Logical

Object Level

MT

OT

Logical
Object Level

Lift
Flatten

system
code

MT

Flatten

Lift

Figure 5: Lifting and attening in GETFOLdetermined.The connection between MT and the system code is exploited in the reverse direction withthe attening process. Flattening is basically a process of executable code synthesis. MTtheorems can be interpreted as descriptions of pieces of executable (system) code satisfyingcertain speci�cations. Flattening, given such speci�cation, (automatically) generates thecorresponding executable code.The arrows Lift and Flatten, in �gure 5, depict the implementation of lifting andattening, which have e�ect on the system data structures and code. Lift has the actuale�ect of generating the data mechanizing MT, i.e. to build the embedded account of thesystem and its causal connection to the system code. Flatten has the e�ect of generatingnew parts of the system code starting from the theorems of MT; in this way the systemcan perform self-extension, when the added code implements new functionalities, andself-modi�cation, when the added code is a substitute for old functionalities.It is then clear in which sense these functionalities allow for computational reectionin GETFOL: the computations (implementing deduction) in MT are actually about thecomputation mechanisms of the system itself, and the attening process, exploiting thecausal connection between the mechanized MT and the system code, performs systemmodi�cation and extension.Lifting is the basis for the automatization of the self introspection process. Notice that thegeneration of the embedded account is vital to any reective system. The main advantage10

(DEFLAM mpprf (X Y)(maybe-proof-add-theorem (mptac X Y)))(DEFLAM maybe-proof-add-theorem (X)(IF (FAIL? X)(print-error-message)(proof-add-theorem X)))(DEFLAM mptac (X Y)(IF (AND (THEOREM X) (THEOREM Y) (HP X Y))(mp X Y)fail)) Figure 4: The mechanization of modus ponens in GETFOLlatter takes into account the way inference rules may not be applicable. Other primitivesimplement operations which have no direct correspondence in OT (e.g. handling of theinput output channel), but which are vital to the implementation of a full blown reasoningsystem.Compare now the two versions of mpprf in �gure 3 and in �gure 4. The computationsdescribed in the two cases are very similar, undistinguishable from many points of view.However, the abstraction levels in the \mechanized" solution are sharply identi�ed, andthe functions are separated from the actions on the state; this does not happen in the otherimplementation, where the di�erent levels are collapsed together. Furthermore, notice howthe mechanization of modus ponens of �gure 4 yields the natural correspondence betweenthe de�nition of mptac and axiom 4.3 Computational Reection in GETFOLThe connection between MT and the system code described in previous section allowsfor the implementation of the functionalities schematized in �gure 5. Lifting is a theory-building process, whose result is the (automated) generation of the description of thesystem code, i.e. MT. With lifting, the system code and data structures are analyzed, andas a result the necessary language and axioms are automatically generated. Furthermore,the connections between the language of MT and the corresponding data structures are9

(DEFLAM mpprf (X Y)(IF (AND (THEOREM X) (THEOREM Y) (HP X Y))(proof-add-theorem (mp X Y))(print-error-message)))Figure 3: A possible implementation of modus ponenswe say that we do representation theory using programs as representational tools. We callthis way of writing code, mechanization, and distinguish it from simple implementation[GC92].Consider the code implementing the rule of modus ponens, shown in �gure 3. THEOREMevaluates to TRUE if the argument is (a data structure asserted as) a theorem, HP evaluatesto true if the �rst argument is an hypothesis of the second, mp builds (the data structurerepresenting) the conclusion of the inference, and proof-add-theorem adds it to theproof. Its reading is very natural: \if the inference rule is applicable, then build the (datastructure representing) the resulting formula and store it in the current proof, otherwisereport an error message". Everyone would agree that this is well written code. However,it is hard to see how this code could be related to the representation of modus ponensin MT. For instance, whilst mptac in MT describes modus ponens as a binary functionmapping w�s to w�s, mpprf implements modus ponens with a side e�ect on the system(either adds a theorem to the proof or prints an error message) and does not return avalue.The work on mechanizing GETFOL has required di�erent rewritings of the code, duringwhich we have devised general criteria for the development of code with the requiredproperties. An example of this way of writing code is the mechanization of modus ponensin GETFOL, given in �gure 4. mp is the function that, given two formulas that satisfythe applicability conditions, returns the result of the inference. mptac is the modusponens tactic, which maps two data structures in the conclusion of the inference if thepreconditions are satis�ed, otherwise returns fail, the data structure representing failure.FAIL? tests whether its argument is fail. proof-add-theorem adds its argument tothe proof, while print-error-message prints an error message. The general idea is toenforce a sharp identi�cation of the levels of abstraction and of the state of the systeminvolved in the representation of OT, and to separate it from other parts of the code whichhave no strict representational meaning. mp and mptac take into account two di�erentaspects of inference in OT: the former captures the notion of \correct" inference, while the8

In the mechanized OT, in addition to building proofs, it is possible to de�ne tactics3, i.e.programs which implement search strategies for proofs. Tactics specify which inferencerules to apply, in which order and under which conditions, and how to recover when thechosen rule is not applicable; they are HGKM complex programs containing conditionals,iterations and failure generation and trapping constructs. Tactics are a very relevantpart of the code mechanizing deduction in GETFOL. MT provides for representing andreasoning about tactics. In order to show how this is done, we consider the simple tacticscorresponding to the application of a single inference rule. These tactics are mechanizedso that they allow for failure trapping and composition into more complex tactics. TheMT axiom describing the tactic corresponding to the rule of modus ponens is:8xy:mptac(x; y) = trmif T (x) ^ T (y) ^Hp(x; y) then mp(x; y) else fail (4)The individual constant fail represents failure in the applicability of inference steps. tr-mif is the MT constructor for conditional terms, namely terms whose denotation dependson the interpretation of the condition w�. The intuition is that when the applicabilityconditions of the inference rule are satis�ed, mp is called, otherwise a failure is gener-ated. This axiom reects the implementation code. However, in MT it is possible toreason about the computation in a declarative way. Failure trapping is simply equivalentto proving the equality of the corresponding tactic with fail. Inference rules to intro-duce and eliminate conditional expressions [Giu92] allow for reasoning deductively aboutconditionals. This expressiveness of MT allows for using e�ectively the theorem provingcapabilities of the system to reason about a relevant portion of the code implementingGETFOL and settles the basis to extend and modify it deductively.2.2 The system codeOur goal is to produce code implementing OT that can also be described by a logicalmetatheory of OT. Notice that this is not a trivial consequence of the fact that thecode implements the deductive machinery of OT. Writing such a code is not a simpleoperation of implementation. It is not enough to satisfy the usual software engineeringrequirements (e.g. bug-free, understandable). It is aslo necessary that the code preservesa form of structural similarity with the entity being represented, in this case OT. Everydata structure, every step of computation, the system structure and the abstraction levelsare determined in terms of the concepts that are represented. To emphasize this point3Historically, tactics have been mostly developed in the programming language ML [GMMW77] andused in LCF and its descendants [GMW79, Pau79, Pau89, CAB+86]. There actually exist technicaldi�erencies between GETFOL tactics and LCF tactics, that we do not discuss here since out of the goal ofthis paper. 7

connect the embedded account to the system code and data structures.The existence of a causally connected embedded account is a �rst step towards computa-tional reection. However, achieving the necessary relation between MT and the code asdescribed above is by no means trivial. It requires that MT and the code be designed tosatisfy some fundamental conditions. In sections 2.1 we discuss necessary requirementsin the de�nition of MT; in section 2.2 we discuss some issues in writing the system code.2.1 The metatheoryThere are actually several di�erent ways to set up the signature and the axioms of MTsuch that MT is a metatheory of the formal OT. Consider the object level inference ruleof modus ponens: A A � BB mp (1)At the metalevel, modus ponens could be represented by the axiom:T (\A") ^ T (\A � B") � T (\B") (2)\A", \A � B" and \B" denote the object level w�s A, A � B and B, respectively. Axiom2 states that if A and A � B are theorems, then B is a theorem. Axioms of this formmay su�x to provide a correct and complete representation of OT provability.However, as we want MT to take into account the mechanization of OT, this choice isnot satisfactory. Axiom 2 has no correspondence with the structure of the system code:it states the provability of the conclusion of the rule given the premises, independently ofthe computations implementing the application of the inference rule. The mechanizationof modus ponens in GETFOL is based on the HGKM predicate HP, that tests the preconditionof the rule and returns TRUE i� its arguments are (data structures representing) w�s ofthe form A � B and A, and on the HGKM function mp that, given (the data structurescorresponding to) the premises A and A � B, returns (the data structure correspondingto) the conclusion of the rule B. The MT axiom8x y:T (x)^ T (y) ^Hp(x; y) � T (mp(x; y)) (3)describes modus ponens preserving a structural similarity with the system code mecha-nizing it. The binary function symbol mp corresponds to mp, and the binary predicatesymbol Hp corresponds to HP. The other inference rules of OT are represented in MTaccording to the criteria shown in this simple example.6

MT

OT

MT

OT

Object Level

Meta Level
Mechanized

Object Level
Mechanized

system code

MT

OT

data

Meta Level

Logical

MT

OT

MT

OT

Meta Level
Mechanized

Object Level
Mechanized

MT

OT

Meta Level
Mechanized

Object Level
Mechanized

Logical

the mechanization of MT

data the mechanization of OT

MT is a metatheory of OT

and the mechanization of OT

the relation between MT

Figure 2: The link between MT and the code in GETFOLrem provers, e.g. [CAB+86, How88, HL85, BW85, BvHHS90]. The logical metatheoriesimplemented there describe the object theory, but have no relation with the code andthe data implementing the object theory. MT has instead a distinguishing characteristicthat makes it di�erent from any other logical metatheory proposed so far. Not only doesMT describe the logical theory OT, but it also takes into account the fact that OT ismechanized in GETFOL. It also describes the way in which deduction in OT is actuallyperformed by running code. This results in a well de�ned relation between the languageof MT and (a relevant subset of) OT data and the system code: deduction in MT cor-responds to computation in the code implementing OT. The symbols in ML are in aone-to-one correspondence with HGKM 2 computational entities in the mechanization ofOT. For any individual constant in ML (e.g. \8x:A(x)") there is a corresponding datastructure (e.g. the s-expression (forall x (P x))) representing an object of OT (e.g.the formula 8x:P (x)). For any function or predicate symbol (f and P) in the languageof MT there is a corresponding HGKM function (f and P) in the code implementing OT.This relation between the logical metatheory MT and the mechanized object theory isdepicted in �gure 2. As a consequence of this relation, the GETFOL implementation of MT,i.e. MT data, plays the role of embedded account in GETFOL: indeed, MT describes actualdata and programs of GETFOL, and MT data encodes this (partial) representation of thesystem in the system itself. Furthermore, being MT data mechanized within the systemitself, it is possible to implement the link between MT and the code, i.e. to causally2HGKM is the implementation language of GETFOL [Tal85, WT85, GC89].5

2 The relation between MT and the codeConsider �rst a generic �rst order logical theory, OT, de�ned as the triple < L;A;R >,L being the language, A the set of axioms and R the set of inference rules. Given OT, wede�ne the �rst order logical theory MT = <ML;MA;MR >, to be its metatheory. We�x a naming relation between MT and the objects of OT, i.e. ML contains names of theobjects (e.g. terms, w�s, axioms) of OT. For instance, the constants \8x:A(x)" and \x"are the names of the OT w� 8x:A(x) and of the OT variable x, respectively. The MLstatement T (\A") expresses the provability in OT of the formula A. MA axiomatizesthe OT provability relation so that MT is correct and complete w.r.t. OT, i.e. T (\A") isprovable in MT i� A is provable in OT. This fact provides a theoretical justi�cation forthe reection rules Rup and Rdw between MT and OT depicted in �gure 1. The premiseof reection up is the OT w� A, and its conclusion the MT w� T (\A"); reection downworks in the opposite way, i.e. maps T (\A") in MT to A in OT.
MT

OT

R up

dw
R

Object Level

Meta Level
Mechanized

Object Level
Mechanized

system code

MT

OT
data

data

Meta Level

Logical

Logical

RDW

RUP

Figure 1: GETFOL implements logical reectionGETFOL allows for the implementation of MT and OT as distinct contexts, shown in�gure 1 as OT data and MT data. Each context contains data structures implementingthe language, the set of axioms and the set of inference rules of each logical theory. Rupand Rdw are mechanized by the system commands RUP and RDOWN (see �gure 1), thatassert a theorem in MT data given a theorem in OT data as input, and vice versa.MT, as described so far, plays a role similar to metalevel representations in other theo-4

1. There exists a relation between MT and the code implementing OT. The sameexpressions of MT referring to the logical properties of OT are also in a well de�nedrelation with the code implementing logical deduction in OT. Not only does MTreason about (logical properties of) OT, but also reasons about (computationalproperties of) the system code implementing logical deduction.2. The relation between MT and the code is exploited by lifting and attening, twogeneral and domain independent procedures, that map MT into the code and viceversa. Lifting, given in input the code implementing the object theory, generatesthe data structures implementing MT. Flattening, given in input data structuresimplementing MT, generates system code.As a consequence of the �rst fact, the implementation of MT is indeed the computationaldescription of the system code, or, according to Smith's terminology, the embedded accountof the system [Smi83]. As a consequence of the second fact, lifting builds the embeddedaccount and its causal connection to the system code, while attening a�ects systemscomputation by extending/modifying the underlying computational strategies. Therefore,the machinery performing deduction in MT is the basis for the machinery that is usedto perform computational reection. This achieves our �nal goal, i.e. computationalreection via mechanized logical deduction.GETFOL is developed within a global project that has gone on at the Mechanized Reason-ing Group of IRST since 1989. The ideas presented in this paper have been developedstarting from the results of existing research within this project that involves the authorsand other members of the group. The aim of this paper is to interpret and understandthis research under a di�erent perspective, thus opening the way to use computationalreection (via mechanized logical deduction) as an important tool to achieve the project'sgoals. Therefore, many technical details are omitted here. The interested reader is de-ferred to other papers: [GT91, GT92, GT93] describe in detail MT and how MT takes intoaccount the code implementing deduction in OT, while [GC92] describes the lifting andattening processes, the GETFOL code and how it must be written to allow for a mappingwith MT; [GA93] describes a conceptual architecture to integrate logic and computationin GETFOL.The paper is structured as follows. Section 2 describes how MT, the logical object theoryand the code implementing it are related. Section 3 describes how this relation is used toachieve computational reection (i.e. lifting and attening). In sections 4 we discuss therelation of our work with some related systems. In section 5 we give some conclusions.3

1 Introduction and motivationsReective and metatheoretic reasoning are well known techniques applied in automateddeduction (see for instance [Wey80], [Bun88], [BM81], [CAB+86, How88], [BK82, HL89]).Proof checkers and theorem provers have been proposed that implement logical metatheo-ries, i.e. logical theories whose language has expressions referring to other logical (object)theories or even to themselves. Logical metatheories can reason deductively about anda�ect logical deduction within other theories. We call this ability, logical reection. How-ever, these systems do not have the ability to a�ect their own computation. Their dataand programs do not represent and compute about data and programs of the system itself.In a word, they do not provide computational reection.We are interested in the integration of computational reection and deduction in auto-mated reasoning systems. Our goal is to present how a system for automated deductioncan be given computational reection by using the very same reasoning capabilities of thesystem itself. Such a system has the ability to a�ect its own computation mechanism,and the machinery used to a�ect its own computation is based on the machinery imple-menting logical deduction. We call this feature computational reection via mechanizedlogical deduction. \Computational reection", since the theorem prover can access andmodify its own computation. \Via mechanized logical deduction", since the basis for thiscomputational reection is inference within the mechanized logical framework.There are some main motivations for this work. On the one hand, there is the intrin-sic interest in how self-reective computation and mechanized deduction can be related,combined and integrated. On the other hand, providing computational reection withina deductive reasoning system presents signi�cant advantages from the practical point ofview. First, the theorem prover can inspect, extend and modify its own underlying theo-rem proving strategies automatically. Second, mechanized logical deduction can be usedto reason about the ways these strategies can be extended and modi�ed. Since logic givesa semantics which allows us to make and prove correctness statements, this approachopens up the possibility of building systems that are able to perform correct and safeself-extension and self-modi�cation.In this paper we show how computational reection is achieved via mechanized logicaldeduction within the deductive reasoning system GETFOL [Giu92] 1. Similarly to othertheorem provers, GETFOL implements logical reection using a metatheory, called MT,describing the logical object theory (OT). In addition, two main distinguishing featuresallow us to achieve the desired properties.1GETFOL has been developed on top of a reimplementation [GW91] of the FOL system [Wey80].2

Computational Reectionvia Mechanized Logical Deduction�Alessandro Cimatti and Paolo TraversoIRST - Istituto per la Ricerca Scienti�ca e Tecnologica38050 Povo, Trento, Italycx@irst.it, leaf@irst.itAbstractIn this paper, we show how a system for automated deduction can be givencomputational reection, i.e. can compute about and a�ect its own computationmechanism, by using the very same machinery implementing logical deduction. Thisfeature, that we call computational reection via mechanized logical deduction, pro-vides both theoretical and practical advantages. First, the theorem prover caninspect, extend and modify its own underlying theorem proving strategies automat-ically. Second, mechanized logical deduction can be used to reason about the waysthese strategies can be extended and modi�ed and to prove correctness statements.This opens up the possibility of building systems that are able to perform correctand safe reective self-extension and self-modi�cation.
�This work has been conducted as part of MAIA, the integrated AI project under development atIRST. 1

Istituto per la Ricerca Scientifica e TecnologicaI 38100 Trento � Loc. Pant�e di Povo � tel. 0461�314444Telex 400874 ITCRST � Telefax 0461�302040
Computational Reflectionvia Mechanized Logical DeductionA. Cimatti, P. TraversoDecember 1993Technical Report # 9312-02

Istituto Trentino di Cultura

