
Rejection Strategies in Handwriting
Recognition Systems

Diplomarbeit
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Roman Bertolami

2004

Leiter der Arbeit:

Prof. Dr. Horst Bunke
Institut für Informatik und
angewandte Mathematik





Abstract

This master thesis investigates multiple rejection strategies for offline hand-
written sentence recognition. The rejection strategies are implemented as a
post-processing step of a Hidden Markov Model based text recognition sys-
tem, and are based on confidence measures derived from a list of additional
candidate sentences produced by the recogniser. Four different reject models
are presented and three different sources of candidate sentences are investi-
gated. Experimental results on extracted sentences from the IAM database
validate the effectiveness of the proposed rejection strategies.
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Chapter 1

Introduction

1.1 Motivation

The goal of a handwriting recognition system is to process handwritten text
electronically, transcribing it with the highest possible recognition rate, and to
achieve a similar accuracy as humans do.
The domain of handwriting recognition is divided into two fields, offline and
online recognition. In online recognition the movement of the pen is tracked,
and movement information is recorded during the writing process. In gen-
eral, this makes online recognition a less difficult task than offline recognition,
where only the image of the handwritten text is available and processed. In
this master thesis the task of offline handwriting recognition is considered.
Industrial applications using offline handwritten text recognition are mainly
found in the specific field of address reading and bank cheque processing. In
the future, possible applications of unconstrained text recognition could be the
recognition of personal notes or automatic transcription of large handwritten
archives.
For many years, research has been conducted on the topic of offline handwrit-
ing recognition. In the case of isolated numerals or digits, high recognition
rates are achieved today. But as the complexity of the problem increases, as
for example the recognition of words or numeral strings, the recognition rates
decrease significantly. One main problem of recognising entire words is seg-
menting the words into their individual characters, or, at a higher level, con-
sidering the recognition of whole sentences, the segmentation of the sentence
into words. The problem is usually solved by using a Hidden Markov Model
(HMM) recogniser which implicitly segments the words or sentences into its
components during the recognition process.
Writer independent recognition of general handwritten text is still considered

15



16 CHAPTER 1. INTRODUCTION

a very difficult problem. Depending on the experimental setup, word recogni-
tion rates between 50% and 80% are reported in the literature (Perraud et al.,
2003; Vinciarelli et al., 2003; Zimmermann and Bunke, 2004).
For many applications such low recognition rates are not acceptable. If a com-
plete automation of the transcription process is not required, rejection strate-
gies may be used to reject certain parts of the handwritten text to achieve the
required level of accuracies on the remaining parts.
The rejection of input (for example letters, words, sentences) is typically based
on a confidence measure. If the confidence measure exceeds a specific thresh-
old, the recognition result is accepted. Otherwise, it is rejected.
In the literature a large number of confidence measures are proposed depend-
ing on the application and the nature of the underlying recogniser. For offline
handwriting recognition research most of these confidence measures are de-
rived from the scores of the n-best list, which is produced by the recogniser. In
contrast to offline handwriting recognition, confidence measures based on the
integration of a statistical language model are frequently used in the field of
continuous speech recognition. In this master thesis similar confidence mea-
sure are investigated for the first time in offline handwriting recognition.

1.2 Problem Statement and Goal

In this thesis the problem of word rejection in writer independent offline recog-
nition of general handwritten text is addressed. The proposed rejection strate-
gies are based on confidence measures derived from multiple alternative can-
didate sentences.
The aim of this thesis is to investigate the ability of alternative candidate sen-
tences to reject individual words. The impact of several reject models, as well
as different strategies to generate multiple alternative candidate sentences, are
examined.

1.3 Contribution

This master thesis contributes to the field of offline handwriting recognition
by proposing new rejection strategies for general text recognition. The confi-
dence measures of these rejection strategies are based on alternative candidate
sentences extracted from recognition lattices.
Different strategies of producing multiple candidate sentences are investigated,
as the quality of these sentences has an essential impact on the performance of
the reject model. Some of these strategies are based on the integration of a
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statistical language model. The integration of variations of the proportion of
the language model into the reject models has only been investigated in the
domain of speech recognition, but not in handwriting recognition.
Experiments have been conducted to investigate the performance of the dif-
ferent reject models and alternative candidate sentence generation strategies.

1.4 Structure of the Thesis

The remaining chapters of this master thesis are organized as follows:
In Chapter 2 the handwritten text recognition system as well as objectives and
backgrounds of rejection are discussed. A general system overview is given to
identify the main parts of the recognition system. Furthermore, related litera-
ture in on- and offline handwriting and speech recognition is presented.
Four reject models based on alternative candidate sentences are presented in
Chapter 3. For each of the reject models, its confidence measure is explained
and an example is provided to illustrate the behaviour of the reject model.
Chapter 4 starts with an introduction to recognition lattices. After that differ-
ent strategies to produce alternative candidate sentences are presented. The
quality of the alternative candidate sentences is a key aspect for the proposed
reject models.
Conducted experiments and achieved results are presented in Chapter 5. Per-
formance measures are introduced in the evaluation methodology section. The
experimental setup is explained, and test set results show the performance of
the introduced reject models and alternative candidate sentences generation
strategies.
The main conclusions of this thesis are drawn and possible future research is
discussed in Chapter 6.
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Chapter 2

Handwriting Recognition and
Rejection

In this master thesis an unconstrained handwritten sentence recognition sys-
tem that includes the ability to reject individual words is presented. From
an image of a handwritten text the recogniser produces a network of possible
recognitions which is used by the post-processor to determine the confidence
measure. Based on the confidence measure, rejections are made to classify in-
correct words.
The rest of the chapter is organized as follows: First in Section 2.1 an introduc-
tion to offline handwritten text recognition is given. Section 2.2 describes the
recognition system used in this master thesis, and Section 2.3 discusses the ba-
sics of rejection. A short system overview is provided in Section 2.4. Section 2.5
explains the way how multiple candidate sentences are handled. Finally, re-
lated work in the fields of on- and offline handwriting and continuous speech
recognition are presented in Section 2.6

2.1 Offline Handwritten Text Recognition

The most general case of handwriting recognition is offline handwritten text
recognition. In contrast to the recognition of isolated characters or single words,
more effort has to be made for segmentation, as the number of words in a line
or sentence is not known in advance.
An offline handwriting recognition system tries to find a correct transcription
for a document written by hand. The document can contain an isolated char-
acter or digit, a single word, or some general text. The document is usually
available as a greyscale image scanned at a relatively low resolution. Figure 2.1
presents an example of a handwritten document.

19



20 CHAPTER 2. HANDWRITING RECOGNITION AND REJECTION

Figure 2.1: Example of handwritten text.

Offline handwritten text recognition is more general than online handwriting
recognition, where the user is forced to use a specific writing instrument and
a specific writing pad. No such constrain is necessary for offline handwriting
recognition. The user can select a writing instrument (for example a quill) and
a writing pad (for example paper) just as he wants, as long as the document
shows some contrast.
The recognition system used in this master thesis is writer independent. Writer
independent recognition systems are optimized to the highest possible gener-
alization regarding the number of writing styles, as well as the used writing
instruments. No handwritten samples of the writers in the test set are avail-
able for the training and the validation of the system. In many applications,
writer independent recognition is a requirement. In an address reading system
for example, it is obviously not feasible to collect training samples from every
customer.
Recognition of general text means finding the correct sequence of words for
a given image of handwritten text. The correct number of words in a line or
sentence is not known in advance. The unknown segmentation of the text into
isolated words leads to additional types of errors. The problem is similar to
the segmentation of a word image into individual characters. The result of the
sentence or line recogniser may contain too many, or too few words, depend-
ing on the segmentation of the image into its individual words. Inserting too
many words into the recognition result is called over-segmentation. The term
under-segmentation is used if too few words are present in the result of the
recognition process.
In specific application domains like bank cheque or address reading, task-
specific knowledge is available to facilitate the recognition task. In the case
of bank cheque recognition, the legal and the courtesy amount of the cheque
must be equivalent. Address reading systems have a reduced lexicon con-
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taining only zip codes, city names, and street names. Additionally, relations
between zip codes and city names, and between street names and cities can be
used to improve the performance of the system.
In contrast to bank cheque or address reading, task-specific knowledge is re-
duced to statistical language models for the case of general text recognition.
Most often so called n-gram models are used to integrate the information about
the language (Marti and Bunke, 2001; Perraud et al., 2003). N-gram models are
based on the observed frequency of adjacent words. Although n-gram models
are a very raw approximation of the natural language, their integration into
the recognition process can significantly improve the performance of a hand-
writing recognition system.
The integration of grammar-based syntax analysis is presented by Zimmer-
mann (2003). The result of the Hidden Markov Model (HMM) based recog-
niser is an n-best sentences list, containing the n most probable interpretations
of the text image. Each of these sentences is afterwards analyzed with help of
a stochastic context-free grammar, which represents the language model. The
actual recognition is determined by combining the weighted scores from the
HMM based recogniser and the syntax analysis.
Applications of offline handwriting recognition technology are mainly found
in address reading systems and automatic bank cheque processing. An ad-
dress reading system can be used for automatic, machine-aided mail sorting,
while bank cheque recognition enables the automatic processing of financial
transactions. The recognition of historical documents is a third potential ap-
plication of offline handwriting technology. Large handwritten archives could
be processed and automatically transcribed with offline handwriting recogni-
tion of general text technology.

2.2 Recognition System

The HMM based handwritten text recognition system used in this master the-
sis corresponds to the recogniser described by Zimmermann et al. (2003). It is
an enhanced version of the recognition system developed by Marti and Bunke
(2001). The enhanced recogniser of Zimmermann et al. (2003) is capable of
handling complete sentences, which may consist of several lines of handwrit-
ten text. Improvements are made in the language model integration as well as
in the modeling of the characters.
After text line normalization and extraction of feature vector sequences dur-
ing the pre-processing phase, features are extracted from the normalized text
images. Then the actual recognition is performed by Viterbi decoding (Viterbi,
1967), supported by a word bigram statistical language model. The Baum-
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Figure 2.2: Example of different writing styles.

Welch algorithm (Rabiner, 1989) is used for the training of the character HMMs.

2.2.1 Text Line Normalization

Every writer has a different writing style, which contributes a lot to the com-
plexity of the recognition task. Figure 2.2 provides an illustration of different
writing styles.
The intention of the pre-processing operations is to normalize the text lines in
order to reduce the variations caused by different writing styles and instru-
ments. These operations include the following normalization procedures (see
Marti and Bunke, 2001; Zimmermann et al., 2003):

Skew Correction: The text line has to be aligned horizontally. The normaliza-
tion is performed by correcting the skew angle.

Slant Correction: The writing’s slant is transformed into a vertical position by
applying a shearing.

Line Positioning: The location of the upper and lower baseline is normalized.
For this purpose a vertical scaling operation is performed.

Horizontal Scaling: The variations in the width of the handwritten text are
normalized.
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Image Contrast: The contrast of the greyscale image is normalized.

2.2.2 Feature Extraction

The sliding window technique is used to extract a sequence of feature vectors
from the normalized text images. The width of the window is one pixel while
the height is the image’s height. The window is moved from the left to the
right, one pixel per step, computing nine geometrical features at every win-
dow position.
The first three features contain information about the number and the distri-
bution of the black pixels in the window. The next four features describe the
position and the orientation of the upper and the lower contour in the window.
Feature eight contains the number of vertical black/white transitions. The last
feature contains the number of black pixels between the upper and the lower
contour.

2.2.3 Recognition using Hidden Markov Models

Hidden Markov Models (HMMs) are widely used in the field of pattern recog-
nition. Coming from speech recognition, HMMs have become very popular
in handwriting recognition because of the implicit segmentation of a text line
image into its word images.
Token passing (Young et al., 1989), an alternative formulation of the Viterbi
decoding algorithm, is used in the recognition phase. The advantage of the
token passing model is the ability to produce not only the most probable sen-
tence, but also a recognition lattice which contains a network of hypothesised
sentences (see Section 4.1 for more details about lattices).
A bigram language model is integrated in the decoding step. This integration
of a statistical language model intends to increase the recognition rate by pre-
ferring more frequently observed word sequences to less frequently observed
word sequences.

2.3 Rejection Strategies

Current handwritten text recognition systems are far from being perfect. De-
pending on the experimental setup, the systems achieve word recognition
rates between 50% and 80% (Perraud et al., 2003; Vinciarelli et al., 2003; Zim-
mermann and Bunke, 2004). For many applications such low recognition rates
are not acceptable. Unless a complete automation of the transcription pro-
cess is a requirement, rejection strategies are used to reject certain parts of the
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handwritten text to achieve the required level of accuracies on the remaining
input.
Generally, the objective of rejections is to identify the input patterns (for exam-
ple letters, words, or sentences) which are problematic and might have been
recognised incorrectly (Matti et al., 2001). These patterns are rejected, while
the unproblematic patterns are accepted. Rejection can also be used to direct
the probably incorrectly recognised patterns into a separate classifier, which is
usually called reject handler. The task of the reject handler is to reanalyze the
problematic input pattern.

2.3.1 Rejection System Architecture

A rejection strategy can be incorporated into a recognition system at two pos-
sible stages:

At the recognition stage : An n-class classification problem is modelled as an
n + 1-class problem, where the additional class represents the rejection.

At the post-processing stage: After the n-class classification is performed, a two-
class recogniser is applied to decide whether to reject an input sample or
not.

In this master thesis rejection strategies at the post-processing stage are inves-
tigated. These strategies have the advantage that no modification of the recog-
nition process itself is required. The proposed rejection procedure is an inde-
pendent part of the system. It can work together with different recognisers, as
long as the recognition output is a recognition lattice, containing a network of
the most probable interpretations of the processed image (see Section 4.1 for
details).
Each of the reject models introduced in Chapter 3 of this master thesis is based
on alternative candidate sentences. These candidate sentences can be seen as
possible answers to the given question, which is to provide a correct transcrip-
tion of the handwritten text image. The words of most probable candidate
sentences are the ones to be accepted or rejected, as there is no reason to accept
any words of less likely candidate sentences. For the most probable candidate
sentence the term hypothesised candidate sentence is used in this master thesis,
while the term alternative candidate sentences is used to describe the additional
sentences.
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2.3.2 Bayes’ Decision Theory

The entire rejection problem can be considered as a classification task with two
classes. The goal of the resulting two-class problem is to distinguish between
“good” sets of candidates, where the hypothesis is correct, and “bad” sets of
candidates, where the hypothesis is not the correct answer. In the ideal case,
every “good” set of candidates is accepted, while all “bad” sets are rejected.
Of course, in practice usually some “good” sets are rejected (false rejection),
and some “bad” sets are accepted (false acceptance).
A minimization of these errors is provided by the Bayes classification for a
two class problem, if the posterior probabilities of candidate sets as well as the
different costs of errors and rejections are known (Schürmann, 1996; Gorski,
1997). Given the feature vector ( f1, . . . , fm), describing the set of candidates,
Bayes classification determines the optimal error-reject characteristic of a de-
cision maker by means of the posterior probabilities p(c| f1, . . . , fm), where
c ∈ {correct, incorrect}. Fukunaga (1993) presents a comprehensive descrip-
tion of the Bayes classification for the two class rejection problem.
To find the optimal error-reject characteristic the following three steps are per-
formed:

1. The features ( f1, . . . , fm) describing a candidate set are defined.

2. The posterior probabilities p(c| f1, . . . , fm) are estimated.

3. The decision rule is applied with different costs for errors and rejects.

The first step is probably the most delicate, and difficult one. According to
Gorski (1997) the feature set determines the potential of the decision maker.
The second step is performed using relative frequencies derived from the train-
ing set. In the third step, each cost represents one point in the resulting error-
reject curve.

2.3.3 Confidence Measure

The rejection of input (for example letters, words, or sentences) is typically
based on a confidence measure. If the confidence measure exceeds a specific
threshold t, the recognition result is accepted, otherwise it is rejected. With the
confidence measure, the features describing the set of candidates are reduced
to one quantity. In the optimal case of Bayes rule, this quantity represents the
posterior probability of the features, which are used to describe the candidate
sets.
In this master thesis four different confidence measures are introduced. These
confidence measures are based on alternative candidate sentences, and allow
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to reject input words of the hypothesised sentence. Additionally, three dif-
ferent sources of candidates are investigated as the quality of the alternative
candidates is considered to be an important aspect of the rejection system.
The presented confidence measures make use of estimation of the posterior
probabilities as postulated by Bayes’ decision theory.

2.4 System Overview

The offline handwriting recognition system can be divided into three major
parts: pre-processing, recognition based on the Hidden Markov Model (HMM),
and post-processing as illustrated in Figure 2.3. The output of the system is the
transcription of the recognised text, hypothesis of the recogniser. Some of the
words in this hypothesis are marked as rejected by the post-processing rejec-
tion procedure.

handwritten
image

pre-processing recognition post-processing recognized
text

Recognition System

Figure 2.3: Handwriting recognition system overview.

The pre-processing part segments the text image into text lines. Sentence frag-
ments are then extracted from the text lines. Furthermore the skew, the slant
and the positions of the baselines are normalized to reduce the impact of the
different writing styles. The pre-processing concludes with the extraction of
feature vector sequences which are used as input data for the HMM based
recogniser.
The HMM based recogniser produces a recognition lattice for every sentence,
containing a network of possible transcriptions (see Section 4.1). The recog-
nition is performed by the Viterbi decoding. For this decoding, the trained
HMMs, the dictionary and the n-gram language model are required. The
trained HMMs represent the different character classes, the dictionary maps
the words to corresponding sequences of character HMMs, and the n-gram
model, as the statistical language model, is used to prefer more probable word
sequences over less probable word sequences.
Rejection is performed at the post-processing step. Multiple candidate sen-
tences are extracted from the recognition lattice. Based on these alternative
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candidate sentences, a confidence measure is computed for every word in the
sentence according to a specific reject model. A word is only accepted if the
confidence measure ρ is higher than a specified threshold t. Otherwise it is
rejected. An illustration of the rejection procedure is provided in Figure 2.4.

Figure 2.4: Rejection procedure overview.

2.5 Sentence Comparison

All reject models investigated in this thesis are based on multiple candidate
sentences. In order to obtain the information needed to compute the con-
fidence measures, the candidate sentences have to be aligned appropriately.
This section explains how the post-processing rejection procedure aligns and
compares the multiple candidate sentences, which were extracted from a recog-
nition lattice. The alignment is based on a dynamic string alignment proce-
dure, which aligns two sentences, and which is extended to allow it to process
more than two sentences.

2.5.1 Aligning one Sentence Against Another

If alternative candidate sentences are generated, then despite the fact that the
sentences originate from the same image, they generally do not contain the
same amount of words. That is why the sentences must be submitted to an
alignment process which is based on dynamic string alignment, using the
string edit distance (Wagner and Fischer, 1974).
To align the sentences, the following costs are used to calculate the string edit
distance: a substitution costs 10 penalty units while insertions and deletions
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a)
Mr. Lisbon had escaped
Mr. Lisbon has it taped

0 0 10 7 10
b)

See figs
for figs
10 0

c)
See figs
See Fig. 5
0 7 10

d)
Ben gone and .
Ben Germany .

0 7 10 0

Figure 2.5: Alignment examples.

cost 7 penalty units. Of course, leaving a word standing that coincides has no
penalty1.
Four alignment examples are provided in Figure 2.5, where two sentences
are aligned against each other. The upper sentence is the reference sentence
against which the second sentence is aligned. The third row shows the result-
ing costs for each column.
In Figure 2.5 the string edit distance for Example a) is 27, as there are two sub-
stitutions (had → has and escaped → taped) and one insertion (→ it). In Example
b), the substitution See → for arises an edit distance of 10 while an insertion
(→ Fig.) and a substitution (figs → 5) lead to a distance of 17 in Example c).
The same costs arise in Example d) where a deletion (gone →) and a substitu-
tion (and → Germany) have to be applied to align the two sentences.
All the string edit distances are minimal for these sentences, and that is why
the alignment is performed as shown.

2.5.2 Comparison of two sentences

After the alignment of the two sentences, every column of the alignment pro-
cess falls into one of the four following categories:

Hit (H): the word of the hypothesis matches exactly the word of the alterna-
tive. In Figure 2.5 the first word of Example a) illustrates such a hit.

Substitution (S): the words of the two sentences differ. The last column of
Example a) in Figure 2.5 gives an example of a substitution.

Deletion (D): the word of the hypothesised sentence must be deleted because

1The presented costs originate from the string alignment tool HResults, which is part of the
Hidden Markov Model Toolkit (HTK) (Young et al., 2002).
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Mr. Lisbon had escaped
Mr. Lisbon has it taped

1 1 0 0

Figure 2.6: Sentence comparison example.

there is no corresponding word in the alternative. In Figure 2.5 the sec-
ond column of Example d) represents a deletion.

Insertion (I): to achieve the additional word in the alternative, a word has to
be inserted into the hypothesised sentence. An insertion can be found in
Example c) of Figure 2.5 in the second column.

The comparison of two sentences in the reject models is done based on these
categories, and not based on the string edit distance. Hits are taken as a match
(1), substitutions and deletions are taken as a mismatch (0), and insertions are
ignored. Figure 2.6 shows this behaviour for the sentence aligned in Example
a) of Figure 2.5.
Neglecting the insertions can be justified by the fact that the reject models pre-
sented in this master thesis are only interested in the words that are part of the
hypothesised candidate sentence. Because insertions mean that the word only
appears in the second sentence, they are of less interest. Ignoring the insertions
has the added advantage that the alignment has exactly as many columns as
the hypothesis’ amount of words. This is an important feature when more than
two sentences have to be aligned.

2.5.3 Handling more than Two Sentences

In general, comparing more than two sentences can be very difficult, because
the sentences might all have a different length. The problem of aligning k sen-
tences can be solved by filling a k-dimensional matrix of costs (Tompa, 2000).
But the computational effort of this algorithm is considerably high. Wang and
Jiang (1994) have proven that the problem of finding the optimal alignment for
multiple sentences is NP-complete (Cook, 1971).
In this thesis, the alignment of multiple sentences is much more simple and
efficient. Instead of aligning k sentences against each other, k − 1 sentences
are aligned against one sentence. This approach is possible because there is
only one hypothesised sentence and k− 1 alternative candidate sentences. The
alignment becomes even simpler, considering that the insertions are ignored.
During the alignment process, all k − 1 alternative candidate sentences get
pruned or expanded to the same length of the hypothesised sentence.
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a)

Mr. Brown Oxford Dictionary
Mr. Dr. near Oxford Dictionary
it is , near Oxford Dictionary
Mother , near Oxford Dictionary
Mr. Dr. been Oxford Dictionary
it ’s near Oxford Dictionary

b)

Mr. Brown Oxford Dictionary
Mr. Dr. Oxford Dictionary
it is Oxford Dictionary
Mother , Oxford Dictionary
Mr. Dr. Oxford Dictionary
it ’s Oxford Dictionary
2 0 5 5

Figure 2.7: Alignment example with six sentences.

Similar to the alignment, the comparison of k sentences is based on k − 1 com-
parisons. Each of the alternative candidate sentences is compared to the hy-
pothesised sentence which results in k− 1 binary sequences of the same length.
The result of the comparison is achieved by summing up the content of the se-
quences for every column. The resulting number denotes the number of words
in the alternative sentences that are equal to the word in the hypothesised sen-
tence.
Figure 2.7 provides an example, in which the six sentences are aligned and
compared. Figure 2.7 a) shows the list of candidate sentences, where the first
sentence is the hypothesised candidate sentences, while the other five sen-
tences are the alternative candidate sentences. The result of the alignment is
provided in Figure 2.7 b). It can be seen that several words from the alternative
candidate sentences are ignored, such as for example near in the first alterna-
tive sentence, or the comma in the second alternative sentence. The last row of
Figure 2.7 b) shows the resulting values of the comparison.

2.6 Related Work

In the literature, a large number of rejection strategies are proposed depending
on the application and the nature of the underlying recogniser. In this section
related work in offline and online handwriting recognition, and continuous
speech recognition research are presented.
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2.6.1 Offline Handwriting Recognition

In offline handwriting recognition rejection strategies for address reading (Bra-
kensiek et al., 2003), cheque processing (Gorski, 1997), and character recogni-
tion (Pitrelli and Perrone, 2003) systems are presented.
Brakensiek et al. (2003) introduces confidence measures for an HMM based
handwriting recognition system for German address reading. In order to re-
ject isolated handwritten street and city names, four different strategies are
described, based on normalized likelihoods and the estimation of posterior
probabilities. For the likelihood normalization the number of frames is used.
In the case of estimation of the posterior probabilities, the normalization is per-
formed using a garbage model, a two-best recognition, and a character-based
recogniser. On the complete dictionary, the best performance is given by the
two-best recognition model. For detection and rejection of out-of-vocabulary-
words the garbage model performs better than the two-best recognition model.
Rejection strategies for cheque processing systems are presented by Gorski
(1997), where an artificial neural network computes a confidence measure from
a set of 10-20 features. Most features represent quantities derived from the
scores of the n-best candidate list produced by the recogniser, such as for ex-
ample, the log of the best score. The decision-making task is defined as a two-
class recognition problem. The neural network is used to estimate the posterior
probabilities of the classes.
Pitrelli and Perrone (2003) investigate several confidence measures for an of-
fline handwritten character recognition system. The described measures of
recognition confidence are recognition score, likelihood ratio, estimated poste-
rior probability and exponentiated probability. An additional confidence mea-
sure is built by using a Multi-Layer Perceptron (MLP) to combine the previous
confidence measures. Compared to the raw recognition score, simple confi-
dence measures are able to reduce the rejections by up to 30% at the same
error rate. The combination of multiple confidence measures using an MLP
improved performance significantly by reducing the rejections up to 53%.

2.6.2 Online Handwriting Recognition

For the case of online handwriting recognition similar confidence measures, as
in the case of offline handwriting recognition, are used.
Pitrelli and Perrone (2002) evaluate similar confidence measures in the field
of online handwriting recognition, as Pitrelli and Perrone (2003) have investi-
gated in offline recognition. An artificial neural network, combining different
confidence measures, is used to decide when to reject isolated digits or words.
In the case of isolated digits, the system requires 13% false rejection rate to
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achieve a false acceptance rate lower than 10%. The word verification system
obtains a false acceptance rate under 10% at a false rejection rate of 33%.
Various confidence measures for online handwriting recognition are investi-
gated by Marukatat et al. (2002). The confidence measures are integrated in
an isolated word recognition system as well as in a sentence recognition sys-
tem. Four different letter-level confidence measures based on different implicit
anti-models are applied. Anti-models are used to normalize the likelihood of
an unknown observation sequence by calculating the ratio between the proba-
bility of the hypothesised word and its anti-model. An implicit anti-model of a
hypothesised word is derived from competing hypothesis or, more generally,
from other models in the system. At the isolated word level, the best perform-
ing model allows a reduction of the error rate to 5% at a rejection rate of about
30%. Rejecting about 30% of the embedded words in a sentence recognition
process reduces the error rate from 30% to 10%.

2.6.3 Speech Recognition

Additional confidence measures, based on the integration of a statistical lan-
guage model, are used in the field of continuous speech recognition. The inte-
gration of the language model in the recognition process can be controlled by
two factors: the Grammar Scale Factor (GSF) which weights the impact of the
statistical language model against the acoustic recognition of the utterance,
and the Word Insertion Penalty (WIP) which controls the segmentation of the
recogniser (see Section 4.3 for details).
In continuous speech recognition it has been observed that those words of the
hypothesised sentence that are very sensitive to variations of the integration
of the statistical language model are frequently recognised incorrectly. Such
words are therefore to be rejected.
Sanchis et al. (2000) investigate the use of the GSF to classify incorrect words in
a speech recognition system. The GSF is varied to generate additional candi-
date sentences, from which the confidence measures are derived. Two models,
Model 1 and Model 2, based on acoustic stability are presented, analogous
to Model 1 described in Section 3.2, and Model 2 described in Section 3.3.
The study additionally investigates the reduction of computational costs of
the reject models. The presented experiments show that models with reduced
computational costs provide approximately the same results as the ordinary
models. Model 2, which respects the currently processed word, performs sig-
nificantly better than Model 1.
Not only the GSF, but also the WIP is varied by Zeppenfeld et al. (1997) in
the field of conversational telephone speech recognition. Multiple candidate
sentences derived from GSF and WIP variations are used to determine the
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confidence measure. With the presented technique the error rate is reduced
from over 50% down to 38%.
San-Segundo et al. (2000) considers five different word-level confidence mea-
sures based on the three features, language model back-off sequence, language
model score, and phonetic length of recognised words. The first three confi-
dence measures are these features themselves, while the forth confidence mea-
sure is a combination of the three features based on a decision tree model. The
fifth confidence measure combines the features using a Multi-Layer Perceptron
(MLP). The MLP combination outperforms the other confidence measures and
is able to detect over 43% of the incorrectly recognised words at a false rejection
rate of 5%.
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Chapter 3

Reject Models

The reject models investigated in this thesis are based on confidence measures
derived from a list of candidate sentences. In addition to the recogniser’s
top ranked output in form of a hypothesised sentence W = (w1, . . . , wn), the
list contains K alternative sentences (Ŵ1, . . . , ŴK) produced by the recognition
process.
Compared to confidence measures that are computed during the recognition
itself the approach presented in this thesis is completely different. It has the
advantage of being relatively independent of the underlying recogniser. The
only requirement is the existence of multiple alternative candidate sentences.
In this chapter four different reject models are introduced. For each model the
confidence measure is presented and an example is provided to illustrate the
behaviour of the rejection.
Section 3.1 presents a confidence measure based on a single alternative candi-
date sentence. In the confidence measure introduced in Section 3.2 not only
one, but multiple candidate sentences are considered. In Section 3.3 a more
precise confidence measure based on multiple candidate sentence is presented.
Finally, Section 3.4 introduces a confidence measure determined by a Multi-
Layer Perceptron.

3.1 Model 0: Single Alternative

The most evident way to reject a word of the hypothesised sentence based on
alternatives, is to produce a single alternative sentence and to reject all words
of the hypothesised sentence that are not present in the aligned alternative
sentence. Even if this idea looks trivial, it leads to a very efficient reject model
because no training is needed and only one alternative per sentence has to be
computed. Therefore, rejections can be performed very fast.

35
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Transcription: Mr. Lisbon has it taped
Hypothesis: Mr. Lisbon had escaped
Alternative: Mr. Lisbon has it taped

Figure 3.1: Rejection with a single alternative candidate sentence.

3.1.1 Confidence Measure

After aligning the two sentences as described in Section 2.5, the confidence
measure ρ0 of this model is defined for every word of the hypothesised sen-
tence in the alignment as follows:

ρ0 =
{

1 : same word in alternative
0 : otherwise (3.1)

This approach is quite easy to implement, but it also depends heavily on the
available alternative. Using a 2-best list for this model is not suitable because,
as the candidate sentences from an n-best list always differ, the rejection pro-
cedure rejects at least one word in every sentence. Above all, for recognisers
providing good sentences, this might lead to many false rejections.
It is for these reasons that in this master thesis the alternative is generated by
varying the proportion of the language model as described later in Section 4.3.
It can be expected that small variations produce a few rejections only, while
large variations result in high rejection rates. Obviously, no training is needed
for this model, but the way in which the alternative sentence is generated has
to be determined and optimized experimentally.

3.1.2 Example

An example of this simple rejection strategy is given in Figure 3.1. The first line
shows the transcription which is the desired result of the recognition process.
The second line provides the actual result of the recogniser, while the third line
shows the alternative sentence.
It can be seen that the hypothesis differs from the alternative sentence at the
words had and escaped. The reject model therefore rejects these two words, and
retains the equal ones Mr. and Lisbon. In the example given in Figure 3.1,
this strategy leads to a perfect result: the wrongly recognised words had and
escaped are identified as incorrect and rejected, while the correctly recognised
words Mr. and Lisbon are accepted.
Notice that the forth column of the alignment with the word it in the transcrip-
tion and the alternative sentence is ignored, because no corresponding word
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is available in the hypothesised sentence.

3.2 Model 1: Multiple Alternatives

The second proposed reject model is an extension of Model 0. Instead of con-
sidering just a single alternative sentence, the confidence measure of Model 1
requires a list of K alternative candidate sentences (Ŵ1, . . . , ŴK), in addition to
the recogniser’s top ranked sentence W. These sentences have to be aligned
against the top ranked sentence (the hypothesis) as described in Section 2.5.
The confidence measure of Model 1 is derived from the domain of continuous
speech recognition, where it has been applied by Sanchis et al. (2000).

3.2.1 Confidence Measure

The probability of a word w of the hypothesised sentence being recognised
correctly can be defined as p(c|n, w), where c ∈ {0, 1} (0 stands for incorrect
and 1 for correct) and n = 0, . . . , K represents the number of times a word w is
observed in the K alternative candidate sentences.
To reduce computational complexity, and because the training set is not large
enough to estimate p(c|n, w) for every n and every word w, it is assumed
that the probability of being recognised correctly is independent of the cur-
rent word w. This assumption results in the approximation p(c|n) ' p(c|n, w).
The probability p(c|n) is then used as confidence measure ρ1 for this reject
model.

ρ1 = p(c|n) (3.2)

During the training phase, the quantity p(c|n) is estimated for every n =
0, . . . , K, using the relative frequencies obtained from the training set as pre-
sented in Equation 3.3:

p(correct|n) ' xn

xn + yn
p(incorrect|n) ' yn

xn + yn
(3.3)

The quantity xn counts the number of correctly recognised words, in which n is
the number of times a hypothesised word appears in the alternative candidate
sentences. The quantity yn is used to count the cases of the words which are
not correctly recognised.
This approach is still quite simple as it basically implies summing up the
words with a hit in the aligned alternative candidate sentences, and looking
for the value of p(c|n) in the precomputed probability function.
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The following two engraving simplifications possibly decrease the perform-
ance of the rejection procedure:

• The assumption that the probability of a correct recognition is indepen-
dent of the currently processed word is strong, because there might be
words that are easy to recognise correctly, while others are not.

The experiments with the reject model described later in Section 3.3 show
that the probability of being recognised correctly differs considerably
from word to word. While, for example, the word of is recognised cor-
rectly with a probability of more than 92%, the probability for the word
or lies under 23%.

• Just summing up the identical words in the alternatives leads to infor-
mation loss. All alternatives have the same weight on the resulting one-
dimensional feature vector n. This seems reasonable as long as all the
sources of the different alternatives are of more or less the same quality
and reliability, but in general this condition is not true.

A good illustration of the problem is given by considering that the al-
ternative candidate sentences are acquired by extracting an n-best list as
described in Section 4.2. Here it is obvious that the reliability of the first
sentence differs from the last sentence of this list. Nevertheless, these
sentences have the same impact on the confidence measure ρ1.

3.2.2 Example

An example of the reject model described above is given in Figure 3.2, with
the transcribed sentence “Mr. Lisbon has it taped”. The hypothesised sentence
“Mr. Lisbon had escaped” proposed by the recogniser is shown on the second
line. Furthermore K = 5 alternative candidate sentences (Ŵ1, . . . , Ŵ5) are gen-
erated. The last line shows n, the number of times a word of the hypothesis is
observed in the alternative sentences.
In this example the words had and escaped are the words that were recognised
incorrectly and that should be rejected by the rejection process, while Mr. and
Lisbon should be accepted. The missing word it in column four is ignored as it
is not part of the hypothesised sentence.
Table 3.1 shows the probabilities p(c|n), which have been estimated during the
training phase. This means that the probability of being correct if none of the
alternative candidate sentences contain a matching word is 0.0625, while, for
example, the probability of a word being recognised correctly when n = 4 is
about 58%. It can be seen, as expected, that the probability of a correct recogni-
tion raises with an increasing number n of matching words in the alternatives.
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Transcription: Mr. Lisbon has it taped
Hypothesis W: Mr. Lisbon had escaped
Alternative Ŵ1: Mr. Lisbon has it taped
Alternative Ŵ2: Mr. Lisbon has it taped
Alternative Ŵ3: Mr. Lisbon had escaped
Alternative Ŵ4: Mr. Lisbon had escaped
Alternative Ŵ5: Mr. Lisbon had escaped

n: 5 5 3 3

Figure 3.2: Counting the number of times n, a hypothesised word occurs in
alternative candidate sentences.

n p(correct|n)
0 0.0625
1 0.1630
2 0.2832
3 0.3973
4 0.5872
5 0.9157

Table 3.1: Estimated probabilities p(c|n).
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w ρ1
Mr. 0.9157
Lisbon 0.9157
had 0.3973
escaped 0.3973

Table 3.2: Example Model 1: Resulting confidence measures ρ1.

With regard to the estimated probabilities provided in Table 3.1, and the values
n on the last line of Figure 3.2, the confidence measures ρ1 for each word of the
hypothesised sentence W are computed. The resulting values are shown in
Table 3.2.
If the threshold for rejection is set to 0.5, which means that the system only
accepts words with ρ1 > 0.5, the desired effect is obtained, which is to reject
had and escaped, as well as to accept Mr. and Lisbon.

3.3 Model 2: Considering the Current Word

Model 2 addresses the earlier mentioned problem that some words are more
likely to be recognised correctly than others. For its confidence measure ρ2,
Model 2 takes into account the currently processed word w, instead of assum-
ing that the recognition result is independent of word w as was supposed by
Model 1 in Section 3.2.
By considering the currently processed word, additional information is inte-
grated into the calculation of the confidence measure. This added information
could lead to a superior performance of the rejection procedure of Model 2
over the rejection procedure of Model 1.
The model introduced in this section is equivalent to Model 2 introduced by
Sanchis et al. (2000) in the field of speech recognition. Sanchis et al. (2000)
show that Model 2 can clearly outperform the rejection strategy of Model 1.

3.3.1 Confidence Measure

Similar to Model 1 in Section 3.2, the confidence measure of Model 2 is an
approximation of p(c|n, w), but in contrast, the currently processed word w is
no longer ignored but incorporated into the confidence measure.
Using Bayes’ rule, p(c|n, w) can be expressed as follows:

p(c|n, w) =
p(n|c, w) · p(c|w)

∑x=0,1 p(n|x, w) · p(x|w)
(3.4)
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As the system is not able to calculate p(n|c, w), an approximation is necessary
by assuming that p(n|c, w) ' p(n|c), meaning that the probability of being in
class n, given c ∈ {0, 1} and the word w, is independent of w. The resulting
term is shown in Equation 3.5

p(n|c, w) · p(c|w)
∑x=0,1 p(n|x, w) · p(x|w)

' p(n|c) · p(c|w)
∑x=0,1 p(n|x) · p(x|w)

(3.5)

By means of the approximation presented in Equation 3.5 the confidence mea-
sure ρ2 is defined as follows:

ρ2 =
p(n|c) · p(c|w)

∑x=0,1 p(n|x) · p(x|w)
(3.6)

In this model both p(n|c) and p(c|w) have to be estimated during the train-
ing phase. From the training set the quantities p(n|c) are estimated using the
relative frequencies obtained by counting the number of times a hypothesised
word that is correct xn (incorrect yn) has n hits in the alternative candidate
sentences.

p(n|correct) ' xn

x0 + . . . + xK
p(n|incorrect) ' yn

y0 + . . . + yK
(3.7)

The quantities p(c|w) are estimated using the relative frequencies determined
by counting the number of times a word w has been recognised correctly (w1)
and incorrectly (w0) respectively.

p(correct|w) ' w1

w0 + w1
p(incorrect|w) ' w0

w0 + w1
(3.8)

If there are no or not enough training samples of one word w, this approach
is not feasible because p(c|w) is not available or can not be determined with
adequate care. If, for example, a word w appears only once in the training
corpus, the estimation of p(c|w) is 1, if this one sample has been correct, and
0 otherwise. For this reason a minimal amount of samples for one word has
to be available in the training corpus. If these samples are not available, the
confidence measure ρ1 of Model 1 (see Section 3.2) is used instead of ρ2 to
approximate p(c|n, w).

3.3.2 Example

In this example the same sentence “Mr. Lisbon has it taped” as in the previous
one (Figure 3.2) is discussed. Instead of ρ1 of Model 1, the confidence mea-
sure ρ2 of Model 2 is used, which respects the particularity of the currently
processed word w.
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The estimated values for p(c|w) obtained from the training set are shown in
Table 3.3. It can be seen that for Lisbon and escaped the system does not provide
any result because the training corpus does not contain these words, or it does
not contain enough of these words to estimate the probabilities. This means
that for these words the confidence measure ρ2 is not practicable, and ρ1 must
be used instead.

Word w: p(1|w) p(0|w)
Mr. 0.5416 0.4584
Lisbon - -
had 0.7916 0.2084
escaped - -

Table 3.3: Trained probability p(c|w) of a word w of being correctly.

For the words Lisbon and escaped the confidence measure ρ1 is used and there-
fore p(c|n) must be estimated as well. The required values for n = 3 and n = 5
are shown in Table 3.4 which is an extract of Table 3.1.

n p(correct|n)
3 0.3973
5 0.9157

Table 3.4: Estimated probabilities p(c|n).

The estimated probabilities for p(n|c) are shown in Table 3.5. If a sentence is
correct, it is more likely that the alternative candidate sentences match, which
is expressed in a higher value of n.

Correctness n = 0 n = 1 n = 2 n = 3 n = 4 n = 5
correct 0.0021 0.0145 0.0602 0.0949 0.1406 0.6877

incorrect 0.0551 0.1512 0.2924 0.2401 0.1512 0.11

Table 3.5: Probabilities p(n|c) of being in class n, given the correctness of the
recognition.

Next, the confidence measure for every word w of the hypothesised sentence is
calculated using the estimated probabilities. The results of these computations
are displayed in Figure 3.6. For the words Mr. and had the confidence measure
ρ2 can be used while ρ1 is required to compute the confidence measure of the
words Lisbon and escaped.
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If the threshold for rejection is set to about 0.7, the procedure provides the
desired results. It can be assumed that, with the consideration of p(c|w), the
confidence measure becomes more precise compared to p(c|n).

Word w: n Computation Result
Mr. ρ2 5 0.6877·0.5416

0.11·0.4584+0.6877·0.5416 0.8808
Lisbon ρ1 5 0.9157
had ρ2 3 0.0949·0.7916

0.2924·0.2084+0.0949·0.7916 0.6002
escaped ρ1 3 0.3973

Table 3.6: Calculated confidence measures for every word w.

3.4 Model 3: Multi-Layer Perceptron

Model 3 employs a Multi-Layer Perceptron (MLP), using feature vectors derived
from multiple alternative candidate sentences, to determine a confidence mea-
sure.
An MLP is an artificial neural network consisting of multiple layers of com-
putational neurons connected in a feedforward way. Each neuron in a layer
has directed connections to every neuron of the subsequent layer. MLPs are
usually trained using the back-propagation-of-error algorithm (Rojas, 1996).
The entire post-processing rejection procedure can be conceived as a two-class
classification problem. Based on a feature vector, provided by K alternative
candidate sentences, the system must decide whether to accept a word, or to
reject it. This problem can be solved sub-symbolically with a MLP using one
layer of hidden neurons (Pao, 1993).
Successful experiments using an MLP to calculate confidence measures have
been presented by Pitrelli and Perrone (2002, 2003). In these studies the MLP
based confidence measures perform better than the other investigated confi-
dence measures.
The confidence measure based on an MLP is expected to address the previ-
ously mentioned problem of Model 1 in which some alternative candidate
sentence sources are of higher quality than others. The sources which pro-
duce better sentences should have a larger impact on the confidence measure
than sources of weaker quality.
Additionally, the MLP is able to consider relations between different sources of
alternative candidate sentences, as usually these source are not independent.
It is possible for example that if neither the second sentence, nor the last sen-
tence of the n-best list match the word in the hypothesis, the probability of an
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incorrect recognition is higher than if the third and forth sentence mismatch
the hypothesis.
The additional information content that is considered in the confidence mea-
sure of Model 3 is expected to lead to a superior performance over Model 1.

3.4.1 MLP Architecture

Two possible architectures can be considered to solve the two-class problem.
In both architectures the MLP is entirely connected and consists of n input
channels and m internal neurons. The proposed architectures differ only in
the number of output channels.
The first possible architecture is an MLP with a single output channel y1. This
output channel estimates the probability p(correct|x1, . . . , xn) of being recog-
nised correctly given the feature vector (x1, . . . , xn). The estimation of a false
recognition p(incorrect|x1, . . . , xn) is given by 1− y1.
The advantage of this architecture is that less weights have to be determined
and therefore less training samples are required. The drawback is the training
and the validation of the MLP. For training with the back-propagation algo-
rithm, a threshold t has to be defined for which rejections should be made if
y1 < t. The optimal value of threshold t is hardly to be defined in a general
rejection system.
It is because of this problem that an MLP architecture with two output chan-
nels y0 and y1 is preferred in this master thesis. The value of y0 represents
the score for rejection, while y1 represents the acceptance score. During the
training phase a sample with feature vector (x1, . . . , xn) is regarded as rejected
if y0 > y1, otherwise it is regarded as accepted. During the testing phase y1
is used as a confidence measure, as it indicates the score for a given feature
vector (x1, . . . , xn) of being recognised correctly.
An example of the proposed MLP architecture is given in Figure 3.3. The fully
connected MLP with five input neurons (x1, . . . , x5) and four hidden neurons
has two output neurons. The nodes x0 and z0 are used to adjust the biases
of the nodes in layer 1 and layer 2 respectively. The resulting output of the
MLP is stored in the vector (y0, y1). The value of y0 stands for the rejection
score, while the value of y1 represents the score for acceptance of a word with
feature vector (x1, . . . , x5). The quantity y1 is used as a confidence measure in
the rejection process.
To train the weights of the MLP, an sufficiently large training set has to be
available. If the MLP consists of n input channels, m hidden neurons, and 2
output classes, nm + 3m + 2 weights need to be trained. In the above men-
tioned example, where n = 5 and m = 3, 26 weights must be quantified.
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x1

x3

x4

x5

x2

x0 z0

y0

y1

Layer 1 Layer 2

Figure 3.3: Example of a Multi-Layer Perceptron.

Mr. Brown Oxford Dictionary
Ŵ1 Mr. 1 Dr. 0 Oxford 1 Dictionary 1
Ŵ2 it 0 is 0 Oxford 1 Dictionary 1
Ŵ3 Mother 0 , 0 Oxford 1 Dictionary 1
Ŵ4 Mr. 1 Dr. 0 Oxford 1 Dictionary 1
Ŵ5 it 0 ’s 0 Oxford 1 Dictionary 1

Figure 3.4: Example of a feature vector acquisition.

3.4.2 Feature Vector Acquisition

The feature vectors (x1, . . . , xn), which are used as input data for the MLP,
are acquired from multiple candidate sentences after the sentence alignment.
Instead of summing up the matching words, as in Model 1 introduced in Sec-
tion 3.2, every alternative candidate sentence Ŵi contributes one element xi
to the feature vector. xi is 1 if the word of Ŵi matches the word in the hy-
pothesised sentence, and 0 otherwise. When K alternative candidate sentences
are available, this strategy leads to a binary vector (x1, . . . , xK) of length K for
every word in the hypothesised candidate sentence.
The example of Figure 3.4 shows how a feature vector is derived from multiple
alternative candidate sentences. Every word of the hypothesis is tested against
the corresponding words in the alternative candidate sentences {Ŵ1 . . . Ŵ5},
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Figure 3.5: Cross validation process.

and if these words match, xi is set to 1, else it is set to 0. The resulting feature
vectors (x1, . . . , x5) for the hypothesised words are as follows: Mr.: (1,0,0,1,0),
Brown: (0,0,0,0,0), Oxford: (1,1,1,1,1), and Dictionary: (1,1,1,1,1).

3.4.3 Combining Multiple Multi-Layer Perceptrons

For the three preceding reject models, no validation set is required because
there were no additional parameters to optimize. This is different to the MLP
based confidence measure, where a validation set is needed, because during
several iterations the MLP is trained and the effect of the training is validated
for each iteration.
But in the sentence database used in this thesis, only two sets are available,
and therefore the set, which is used for training in the preceding models, is
split up in a training and in a validation set.
To reduce the dependency on the selection of the training and validation set,
a cross validation is performed (Kohavi, 1995). The original data set M is di-
vided into n mutual exclusive subsets M1, . . . , Mn, with the property M =⋃

i=1,...,n Mi. Then, n separate MLPs are constructed, each of them using one
set Mi as validation set, and the remaining sets for training. An illustration of
the cross validation process is shown in Figure 3.5.
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3.4.4 Confidence Measure

The confidence measure ρ3 of Model 3 is a combination of the confidence mea-
sures y1,i(i = 1, . . . , n) of the n MLPs as it can be seen in Figure 3.5. The
following combination schemes have been investigated in this thesis: mean
value (∑i=1...n

y1,i
n ), minimum value (min (y1,1, . . . , y1,n)) and maximum value

(max (y1,1, . . . , y1,n)). By means of validation on the entire training set, calculat-
ing the mean value has outperformed the minimum and the maximum value.
Therefore, the confidence measure ρ3 for the MLP based reject model is

ρ3 = ∑
i=1,...,n

y1,i

n
(3.9)

where y1,i is the score of being accepted from MLP i, and n is the number of
MLPs in the combination process.
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Chapter 4

Alternative Sentences Generation

In this chapter different strategies to generate multiple alternative candidate
sentences are presented. The candidate sentences originate from a recognition
lattice, which is the result of the recogniser, and which contains a network of
possible interpretations of a given handwritten text image.
The quality of the alternative candidate sentences is a key aspect for a good
performance of the reject models introduced in Chapter 3. At best, an alter-
native sentence distinguishes itself from the hypothesised sentence exactly at
the position where the words are recognised incorrectly. Of course, in practice,
this is rarely the case, as alternatives sometimes differ in words that are correct
or coincide with words that are incorrectly chosen by the recogniser. Nonethe-
less, the alternative candidate sentences must be chosen thoughtfully because
they have an essential impact on the performance of the rejection system.
The candidate sentences can be immediately produced during the recognition
process but, in this thesis, a different strategy has been implemented: instead
of directly generating alternative candidate sentences, the recogniser builds a
form of intermediate data structure, a so called Recognition Lattice, from which
the candidate sentences can be extracted. The main advantage of this strat-
egy is a significantly improved performance when multiple experiments are
conducted with the same handwritten text image.
This chapter is structured as follows: In Section 4.1 recognition lattices are in-
troduced. Next, n-best lists are presented in Section 4.2 as a possible source of
alternative candidate sentences. Section 4.3 discusses possibilities of language
model variations to obtain alternative sentences.

49
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4.1 Recognition Lattice

Recognition lattices are able to store different hypotheses from the output of
the handwriting recognition system in a finite state network. A recognition lat-
tice is a data structure which represents the most promising subspace of recog-
nitions investigated by the Viterbi decoding step. The lattices are produced by
the token passing algorithm (Young et al., 1989), which is an extension of the
Viterbi decoding step, and stored in the HTK Standard Lattice Format (Young
et al., 2002).
A recognition lattice consists of a set of nodes and a set of links, where every
node represents an end of a word, while the links represent the transitions be-
tween word ends. This means, a link stands for a hypothesised word between
two positions in the image. Every node is labelled with the position in the
image. The links are labelled with a word hypothesis, an optical score, and a
language model score. Additionally, every link has to remember its start and
end node. A lattice must have exactly one start node with no incoming links,
and one end node without any outgoing links.
An example of a lattice produced by the recogniser after analyzing the dis-
played handwritten sentence is shown in Figure 4.1. To increase clarity and
readability the lattice has been pruned from originally 201 nodes to 28 nodes.
Despite the pruning, many possible alternative ways remain to walk through
the lattice.

4.2 N-Best List Extraction

A common strategy to produce multiple candidate sentences during the recog-
nition process is to extract an n-best list. This list contains the n highest ranked
and therefore most promising interpretations for a given image of a handwrit-
ten sentence.
Extracting n-best lists is an easy, fast and standard way to generate multiple
candidate sentences in offline handwritten text recognition systems.
In n-best lists every sentence is different from the n − 1 other sentences. This
property is quite important in the context of rejecting, based on alternative can-
didate sentences. In many applications it is an advantage to obtain different
sentences, but in this rejection application it could be a handicap. The differ-
ences between the alternatives can lead to unnecessary rejections, especially if
the entire sentence has been correctly recognised by the recognition process.
An example of such an n-best list extraction process is provided in Figure 4.2.
The original handwritten sentence can be seen in Part a) of the figure. The
handwriting recognition system uses this image as input data and creates a
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Figure 4.1: Example of a (pruned) recognition lattice.
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recognition lattice containing a network of hypothesis. A pruned and simpli-
fied version of this lattice is shown in Part b). Part c) of the figure shows the
six most probable sentences extracted from the lattice.

a)

b)

1 2 3

4

5

6

7

8

9 10

11

12
Barry and

but

in

in.

Eric

have

have

have

have enthusiasm

enthusiasm

.

c) n
1 Barry and Eric have enthusiasm .
2 Barry and in have enthusiasm .
3 Barry and Eric have enthusiasm
4 Barry and but have enthusiasm .
5 Barry and in have enthusiasm
6 Barry and in. have enthusiasm .

Figure 4.2: Example of an n-best list extraction.

4.3 Language Model Variation

The integration of a statistical language model into HMM based recognition
systems for offline handwritten text can be controlled by two factors. The
Grammar Scale Factor (GSF), which weights the impact of the statistical lan-
guage model against the optical recognition of the sentence, and the Word In-
sertion Penalty (WIP), which controls the segmentation rate of the recogniser.
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By varying these two factors multiple sentences can be extracted, which are
then used as alternative candidate sentences.
Integrations of language model variations in the post-processing rejection pro-
cedure have been successfully investigated in the field of continuous speech
recognition (Sanchis et al., 2000; Zeppenfeld et al., 1997).

4.3.1 Language Model Integration

The goal of a handwritten text recognition system with an integrated statistical
language model is to find the most probable word sequence Ŵ = (w1, . . . , wn)
for a given observation sequence X = (X1, . . . , Xm) (Zimmermann and Bunke,
2004):

Ŵ = argmax
W

p(W|X). (4.1)

As an HMM based classifier does not compute p(W|X) but p(X|W), Equa-
tion (4.1) can be transformed using Bayes’ rule and rewritten as:

Ŵ = argmax
W

p(X|W)p(W)
p(X)

. (4.2)

The probability p(X) is constant for a given observation sequence X. There-
fore, the denominator of Equation (4.2) can be neglected, and this results in the
following simplified equation:

Ŵ = argmax
W

p(X|W)p(W). (4.3)

Because the sentence W with the maximum score is sought, taking the loga-
rithm does not change the result but simplifies the computation, which results
in:

Ŵ = argmax
W

log p(X|W) + log p(W). (4.4)

Following Equation (4.3) and (4.4) the result of the HMM classification system,
the optical model p(X|W), needs to be combined with the statistical language
model. This statistical language model is represented by p(W), the probability
of the proposed sentence W.
The probability p(W) is often computed by so called N-Gram Models (Rosen-
feld, 2000), where the probability of a word is dependent on the n − 1 preced-
ing words.
The HMM and the n-gram language model merely deliver approximations of
probabilities. Therefore, two additional parameters, α and β, are necessary to
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compensate the deficiencies of the optical model and the language model.

Ŵ = argmax
W

log p(X|W) + α log p(W) + nβ (4.5)

In this thesis, the term Grammar Scale Factor (GSF)1 is used for parameter α,
and Word Insertion Penalty (WIP) for the parameter β. The optimal values for
α and β are determined empirically because the probabilistic meaning of these
two parameters is unclear, and although the two parameters are commonly
utilized, very little research has addressed the meanings and systematic opti-
mization of GSF and WIP (Takeda et al., 1998).
The GSF is used to weight the language model against the optical model pro-
duced by the HMM character models. If α is set to 0 the language model is
ignored, and increasing the GSF increases the impact of the language model
on the most probable sentence calculation.
The WIP helps to control the insertion and deletion of words. It allows the
system to balance the word insertion rate and the word deletion rate during
the decoding. Multiplied with n, which is the length of sentence W, the WIP
is added to the recognition score. Selecting β ≤ 0 can be used to reduce over-
segmentation while choosing β ≥ 0 helps to decrease under-segmentation.

4.3.2 Variation of GSF and WIP

Zimmermann and Bunke (2004) investigate the systematical optimization of
the integration of the two language model factors, GSF and WIP, into HMM
based recognition systems for offline handwritten text. The experiments pre-
sented in this study show substantial improvements in the performance of the
general text recogniser when GSF and WIP are optimized.
In the domain of continuous speech recognition, it has been shown that words
with a high stability concerning the integration of a statistical language model
are relatively error-free compared to words that rapidly change when this in-
tegration is varied (Zeppenfeld et al., 1997). This means that words which are
observed less frequently in alternative candidate sentences, provided by lan-
guage model variations, are more likely to be incorrect compared to words
which appear in all or most candidate sentences.
In the domain of speech recognition, Sanchis et al. (2000) only vary the GSF
in their study concerning efficient rejection strategies while Zeppenfeld et al.
(1997) vary the GSF as well as the WIP. In this master thesis both approaches
are investigated separately.

1In other works the terms linguistic weight, language weight or language model weight
are used.
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When the GSF is varied, while the WIP is kept constant, K different values αi
(i = 1, . . . , K) are chosen in the range [α − x, α + y] where x ∈ [0, α], y ≥ 0.
The quantity α represents the best performing GSF, which has been globally
optimized (Zimmermann and Bunke, 2004). α is the GSF of the hypothesised
candidate sentence. After the selection of αi (i = 1, . . . , K), α in Equation (4.5)
is substituted by αi and the resulting set of K alternative candidate sentences
is given by

{Ŵ1, Ŵ2, . . . , ŴK} =
⋃

i=1,...,K

argmax
W

log p(X|W) + αi log p(W) + nβ (4.6)

The variation of GSF and WIP is an extension of Equation (4.6). Instead of
choosing K values for the GSF, K parameter pairs (αi, βi) (i = 1, . . . , K) are
selected where αi ∈ [α − x, α + y] and βi ∈ [β − s, β + t]. The values of α and β
represent the globally optimized GSF and WIP of the hypothesised candidate
sentence, x ∈ [0, α] and y, s, t ≥ 0. The set of alternative candidate sentences
can then be expressed as follows:

{Ŵ1, Ŵ2, . . . , ŴK} =
⋃

i=1,...,K

argmax
W

log p(X|W) + αi log p(W) + nβi (4.7)

4.3.3 Example

In this example the same handwritten text image is considered as in the exam-
ple shown in Figure 4.2 of Section 4.2. Multiple alternative candidate sentences
for the sentence “Barry and Eric have enthusiasm.” are produced.
The GSF as well as the WIP are varied, the GSF in the range from 0 to 60, and
the WIP in the range from -100 to 150. Assuming that α = 30 and β = 50, this
leads to x, y = 30, s = 150, and t = 100. Nine alternative candidate sentences
are produced, and therefore K is set to 9. The values of αi and βi are evenly
distributed in the selected range. This leads to α1,2,3 = 0, α4,5,6 = 30, α7,8,9 = 60,
β1,4,7 = −100, β2,5,8 = 25, and β3,6,9 = 150.
The pre-computed lattice is rescored with each of the (αi, βi) pairs according to
Equation 4.7. The results of these rescoring processes are shown in Figure 4.3.
In this example all the sentences differ from each other but generally this is not
at all the case.
Figure 4.3 provides an excellent illustration of the influence of the WIP on the
segmentation of the sentence. The average amount of words for βi = −100 is
4.33 compared to 7 when βi = 150. In two cases (i = 6, 8) increasing the WIP
causes the dot at the end of the sentence to be correctly recognised.
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i αi βi Ŵi
1 0 -100 Barry arm inch we enthusiasm
2 0 25 Barry arm inch we m run rush
3 0 150 B my arm inch we m run rush :
4 30 -100 Barry and include enthusiasm
5 30 25 Barry and Eric have enthusiasm
6 30 150 Barry and Eric have enthusiasm .
7 60 -100 Barry and include enthusiasm
8 60 25 Barry and include enthusiasm .
9 60 150 Barry and in have enthusiasm .

Figure 4.3: Candidate sentences based on language model variation.



Chapter 5

Experiments and Results

In this chapter experiments conducted in order to illustrate the behaviour of
the different rejection strategies are presented. In Section 5.1 measure and plots
are presented which enable to quantify the performance of rejection strategies.
Section 5.2 describes the experimental setup, and explains training and valida-
tion. The results of the test set runs are presented in Section 5.3 and discussed
in Section 5.4.

5.1 Evaluation Methodology

For every recognised input word, the post-processing rejection procedure com-
putes a confidence measure ρ, ranging in the interval [0,1], on which the deci-
sion, whether to accept or to reject the word, is based. This confidence measure
quantifies the assumed correctness of the word. The closer ρ is to 1, the more
certain is the system that a word is correct. And the closer ρ is to 0, the less
confidence is given to the recognition. The decision, whether to accept or to
reject a word, is controlled by a threshold t. Words with a confidence measure
ρ higher than or equal to t are accepted, while words with ρ below threshold t
are rejected.
Confusion matrix and the statistics derived from this matrix are used to il-
lustrate the performance of the different rejection strategies. Furthermore,
Receiver-Operating-Characteristic (ROC) curve as well as error-reject plots are
presented, which graphically illustrate the performance of a rejection strategy.

5.1.1 Confusion Matrix

The efficiency of the rejection procedures are evaluated using a confusion ma-
trix (Figure 5.1). A recognised word can either be a correct or a false recogni-
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Output of the recogniser:

Correct False

Accept CA FA

Reject FR CR

Figure 5.1: Confusion matrix.

tion which can be accepted or rejected by the post-processing rejection proce-
dure. The result of the post-processor therefore falls in one of the four cate-
gories:

Correct Acceptance (CA) A correctly recognised word is accepted by the post-
processor.

False Acceptance (FA) A word is not recognised correctly but nonetheless it
is accepted by the post-processor.

Correct Rejection (CR) An incorrectly recognised word is rejected by the post-
processing rejection procedure.

False Rejection (FR) A word that is recognised correctly is rejected by the
post-processor.

Obviously correct acceptances and correct rejections are the desired categories,
while false acceptances and false rejections are errors and thus to be avoided.

5.1.2 Performance Measures

Based on the confusion matrix many different statistics quantifying the be-
haviour and the performance of the underlying rejection procedure can be de-
rived. In this thesis the following measures have been used:

Error Rate (ERR) The error rate describes the ratio of false accepted words to
all recognised words:

ERR =
FA

CA + FA + CR + FR
(5.1)

Reject Rate (REJ) The reject rate describes the ratio of all rejected words to all
recognised words:

REJ =
CR + FR

CA + FA + CR + FR
(5.2)
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False Acceptance Rate (FAR) The false acceptance describes the false accep-
tance on wrongly recognised words by measuring the percentage of in-
correctly recognised words that are accepted:

FAR =
FA

FA + CR
(5.3)

False Rejection Rate (FRR) The false rejection rate describes the false rejec-
tion on correctly recognised words by measuring the percentage of cor-
rectly recognised words that are rejected:

FRR =
FR

FR + CA
(5.4)

5.1.3 Statistical Background

In statistical theory, the problem of decision making is expressed in the deci-
sion landscape (Daugman, 2000; Maltoni et al., 2003). Two distributions repre-
sent the two states of the world, the hypotheses H0 and H1. H0 assumes that
the input word has been recognised incorrectly, while H1 assumes a correct
recognition. Figure 5.2 illustrates the idea of the decision landscape. The ab-
scissa is the confidence measure produced by the post-processing reject model,
while the vertical axis represents the probability density. The decision criteria
whether to accept or to reject is given by the threshold t. Acceptance is on the
right side of t, while rejection is on the left side of t. Different thresholds t lead
to different rejection and acceptance result.
The likelihoods that the decisions are correct or not correspond to the four
areas that lie under the two probability distributions of Figure 5.2 on either
side of the decision criteria t. Moving the threshold t to the right or to the
left will change the relative likelihood of the four outcomes. Shifting t to the
right is raising correct rejection and false rejection, while shifting t to the left is
increasing correct acceptance and false acceptance.
In this master thesis, 100 different values equally distributed in the interval
[0, 1] have been used for threshold t. Thus, the full range of possible applica-
tions is covered. Extremely low rejection rates as well as very high rejection
rates are possible.

5.1.4 ROC Curve Plot

As can be seen in the decision landscape (Figure 5.2), False Acceptance Rate
(FAR) and False Rejection Rate (FRR) strictly trade off. Both of them are func-
tions of the threshold t. If t is decreased and the system is more tolerant to
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Figure 5.2: Decision landscape.

input variation, then FAR increases while FRR decreases; vice versa, if t is
raised, then FRR increases and FAR decreases and the system becomes more
strict.
To illustrate the performance of a rejection model, a Receiver-Operating-Charac-
teristic (ROC) curve is constructed by plotting the FAR of Equation 5.3 against
the FRR of Equation 5.4. An example of a ROC curve is given in Figure 5.3.
To reach a low false acceptance rate, the rejection threshold must be raised,
leading to an increased false rejection rate. In contrast, a low false rejection
rate is at the cost of a higher false acceptance rate.
As the goal of a general rejection strategy is to reach both, a low FAR and a
low FRR, a good rejection model produces a ROC curve close to the origin.
In contrast to a general rejection strategy, as it is considered in this thesis, the
tolerable FAR (FRR) might be fixed in a specific application. In this case the
post-processing rejection strategy is optimized on this FAR (FRR).

5.1.5 Error-Reject Plot

A second characteristic curve that can be derived from the aforementioned
measures is the Error-Reject Plot. Here the Error Rate (ERR) of Equation 5.1 is
plotted against the Reject Rate (REJ) of Equation 5.2. Raising the REJ reduces
the ERR of the system as ERR and REJ naturally trade off.
An example of an error-reject plot is provided in Figure 5.4. As expected, in-
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Figure 5.3: Receiver-Operating-Characteristic (ROC) curve example.

creasing the number of rejections clearly decreases the number of incorrectly
accepted words. Of course, the better a rejection procedure performs, the
larger is the decrease of the error rate.
In a specific application, the acceptable ERR is usually given, and the rejection
procedure is trained to achieve this ERR at a REJ as low as possible.
In an error-reject plot, it can be directly perceived how many samples have to
be rejected to achieve a given error rate. This makes the error-reject plot eas-
ier to read than the Receiver-Operating-Characteristic (ROC) curve. The latter
has the advantage that reject models, which produce nearly the same curves
in an error-reject plot, nevertheless generate ROC curves that can visually be
distinguished. That is why the ROC curves are more appropriate for com-
paring different reject models while the error-reject plot is more convenient to
describe the overall performance of a single reject model.

5.2 Experimental Setup

The handwriting recognition system and the database used for the experi-
ments are described in this section. Furthermore, optimizations of the lan-
guage model integration and of the Multi-Layer Perceptron (MLP) architecture
are discussed before the training of the reject models is explained.
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5.2.1 Offline Handwriting Recognition System

All experiments reported in this master thesis make use of the Hidden Markov
Model (HMM) based handwritten sentence recognition system described in
Section 2.2. The recognition system uses word bigram models as a statistical
language model and is based on individual character models with a linear
topology and multi-Gaussian output densities (see Marti and Bunke (2001);
Zimmermann and Bunke (2004) for details).
Furthermore, the same experimental setup as described in Zimmermann and
Bunke (2004) is used. The number of states is selected depending on the indi-
vidual character, and a mixture of eight Gaussians for every state is used. The
tagged LOB Corpus (Johansson et al., 1986) is used for the included bigram
language model.

5.2.2 Database

The training and the test set each contain 200 complete English sentences. The
400 sentences, with an average length of 23.1 words, have been written by 200
individual writers, where the first 100 writers are present in the training set
while the second 100 writers contributed to the test set. The lexicon has been
closed over the test (training) set and included 8,819 (8,825) words. The closing
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i αi
1 0
2 0.9523
3 1.9047
4 2.8571

. . .

. . .
64 60

Table 5.1: Values αi used as GSF in language model variation.

of the lexicon over the test (training) set ensures that all words of the test set
are contained in the task lexicon.
The sentences originate from the segmented IAM database (Marti and Bunke,
1999; Zimmermann and Bunke, 2002), which has been created at the Institute
of Computer Science and Applied Mathematics at the University of Berne to
build, train and test offline handwriting recognition systems for general En-
glish texts. The entire database consists of about 1,500 forms of handwritten
text, including more than 10,000 handwritten text lines written by over 500
writers.

5.2.3 Optimizing the Language Model Variations

As explained in Section 4.3, the global optimal values of the Grammar Scale
Factor (GSF) α and the Word Insertion Penalty (WIP) β have to be determined
experimentally, because there is no exact mathematical model of GSF and WIP.
Zimmermann and Bunke (2004) have systematically optimized the language
model integration for this experimental setup. They show in their study, that
α = 30 and β = 50 maximize the recognition rate. Because the same exper-
imental setup is used in this master thesis, the same values for α and β are
used.
The number of alternative candidate sentence K is set to 64 and the GSF is
varied in the range from 0 to 60, while the WIP is varied in the range from
-100 to 150. These values have been shown to perform well in the preliminary
studies. In terms of Subsection 4.3.2, this means that x = y = 30, while s = 150
and t = 100. The variations of the GSF and the WIP are equally distributed.
Table 5.1 shows the different values for αi in the case where only the GSF is
varied. For example, if i = 35 the resulting value for α35 is 32.3809.
The values of αi and βi used when both the GSF and the WIP are varied are
shown in Table 5.2. If, for example, i = 52, the resulting values are α52 =
51.4285 and β52 = 7.1428.
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i αi
1-8 0

9-16 8.5714
17-24 17.1428
25-32 25.7142
33-40 34.2857
41-48 42.8571
49-56 51.4285
57-64 60

i βi
1,9,. . .,57 -100

2,10,. . .,58 -64.2857
3,11,. . .,59 -28.5714
4,12,. . .,60 7.1428
5,13,. . .,61 42.8571
6,14,. . .,62 78.5714
7,15,. . .,63 114.2857
8,16,. . .,64 150

Table 5.2: Values αi and βi used as GSF and WIP in language model variation.

5.2.4 Multi-Layer Perceptron Optimization

To conduct rejection experiments with Model 3 as introduced in Section 3.4, the
number of internal neurons m of the MLPs has to be determined. A traditional
value for m is half of the sum of input and output neurons.
If K = 64 is the number of input neurons, and two output neurons (accept and
reject score) are present, then 33 internal neurons are needed. With these 33
internal neurons, 2213 weights have to be trained.
But as there are only about 4150 word samples available in the training set, less
than 2 training samples would be available per weight for training.
To avoid under-training, two strategies are considered:

Reduction of internal neurons: Not an MLP with 33 internal neurons, but MLPs
with 20, 10 and 2 internal neurons are evaluated.

Reduction of input channels: Instead of 64 input channels, only 16 input chan-
nels are used. These smaller MLPs are evaluated with 9, 5 and 2 internal
neurons.

On the training set, both strategies are validated for the different candidate
sentence generation strategies. The results of this validation is provided in
Table 5.5. K is the number of input channels, while m is the number of hidden
neurons. The values are FAR values sampled from an ROC curve where FRR
is 0.1, . . . , 0.9. The best value of each column is highlighted with bold font.
If the alternative candidate sentences originate from language model variation
(GSF and GSF & WIP) the best performing MLPs are the one with 64 input
channels and 20 internal neurons. By extracting the candidate sentences from
n-best lists, the MLPs with 64 input and 10 internal neurons outperform the
other ones. In any case, the reduction of input channels does not provide the
desired effect at all.
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GSF & WIP

K m 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
64 20 0.22571 0.12518 0.07711 0.04760 0.02902 0.01941 0.01160 0.00544 0.00160
64 10 0.27727 0.15306 0.10014 0.06904 0.04655 0.02288 0.01393 0.00779 0.00216
64 2 0.31471 0.18978 0.12316 0.08370 0.05970 0.04048 0.02319 0.01546 0.00773
16 9 0.33554 0.20380 0.13474 0.09356 0.05900 0.03791 0.02875 0.01083 0.00464
16 5 0.33573 0.20613 0.13481 0.09092 0.06110 0.03879 0.02188 0.01136 0.00406
16 2 0.34505 0.21441 0.14369 0.09689 0.06699 0.04640 0.03465 0.02310 0.01155

GSF

K m 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
64 20 0.43446 0.20371 0.13620 0.08990 0.06320 0.04119 0.02189 0.00939 0.00272
64 10 0.43011 0.20824 0.14025 0.09311 0.06570 0.04225 0.02224 0.01137 0.00346
64 2 0.43469 0.22433 0.15562 0.09337 0.06795 0.04497 0.02751 0.01217 0.00609
16 9 0.43933 0.21424 0.14706 0.09961 0.07117 0.04384 0.02264 0.01219 0.00501
16 5 0.43933 0.21488 0.15007 0.09712 0.07023 0.04430 0.02322 0.01209 0.00500
16 2 0.48847 0.21471 0.15202 0.09737 0.06746 0.04424 0.02458 0.01283 0.00642

NBEST

K m 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
64 20 0.69722 0.40195 0.10800 0.05915 0.04259 0.02533 0.01529 0.00775 0.00246
64 10 0.68747 0.39718 0.09943 0.04387 0.02538 0.01554 0.00830 0.00545 0.00075
64 2 0.71831 0.43661 0.18885 0.09237 0.06376 0.04398 0.02635 0.01742 0.00871
16 9 0.80232 0.60465 0.40697 0.20930 0.08794 0.04791 0.02429 0.01085 0.00401
16 5 0.80246 0.60493 0.40739 0.20986 0.08491 0.04476 0.02520 0.00933 0.00421
16 2 0.80267 0.60535 0.40802 0.21070 0.10398 0.06091 0.04018 0.01781 0.00880

Figure 5.5: Multi-Layer Perceptron validation.

Therefore, confidence measure ρ3 uses the following amount of input channels
and internal neurons: 64 input channels with 20 internal neurons for the lan-
guage model variation based rejection strategy, and 64 input channels with 10
internal neurons if the candidate sentences originate from n-best lists.

5.2.5 Training and Smoothing

The quantities p(c|n), p(c|w) and p(n|c) have to be estimated using relative
frequencies obtained from the training set. These quantities are estimated sep-
arately for the different alternative candidate sentences extraction strategies.
Additionally, multiple MLPs have to be trained for Model 3 using the well-
known back-propagation algorithm.
The probabilities p(c|n) are estimated for every n = 0, . . . , 64 as described in
Section 3.2. For each of the alternative candidate sentence extraction strategies,
the resulting frequencies of the training are shown in Figure 5.6. A linear trend
can be determined, but the curves also contain large jumps, as for example
the n-best curve, where p(correct|n = 28) = 52% while p(correct|n = 29) =
37%. Additionally, it can be seen that the variation of GSF and WIP reaches a
probability p(correct|n) over 80% for every n > 54, while n-best list extraction
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Figure 5.6: Relative frequencies p(c|n) obtained from the training set.

achieves p(correct|n) over 80% only if n = 63 or n = 64.
Examples of the estimated probabilities p(c|w) are provided in Table 5.3. Only
words with more than ten input samples in the training set are considered
in the estimation of p(c|w). In absolute values this means that of the 1457
different words appearing in the training set, the quantities p(c|w) are only
available for 50 words. However, these 50 different words represent more than
50% of the words in the training set. Furthermore, large differences in the
probabilities of different words are present. While p(correct|the) is higher than
90%, the same probabilities for the words her and I lie slightly below 39 %.
For every alternative sentences extraction strategy the estimated probabilities
p(n|c) are shown in Figure 5.7. The first plot shows p(n|correct), the proba-
bility of a correctly recognised sample of being in class n, and the second plot
shows p(n|incorrect), the probability of a wrongly recognised sample of being
in class n.
Estimation of probabilities using relative frequencies implies that enough train-
ing samples are available for every quantity to be estimated. But as the training
set is never arbitrarily large, it may occur that too few samples are available for
an adequate estimation of the probabilities. In this case the estimation results
are smoothed.
In this master thesis smoothing is applied to the values of p(c|n), because the
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Figure 5.7: Probabilities p(n|c) estimated on the training set.
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w p(correct|w)
It 0.8
as 0.6364
but 0.6875
on 0.7778
not 0.875
the 0.9039
her 0.3889
for 0.7813
an 0.6
I 0.3846

Table 5.3: Extract of the frequencies p(correct|w) computed on the training set.
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distribution of training samples on the different values of n are quite vari-
able. This fact is illustrated in Figure 5.8 where x(n) represents the relative
amount of samples in one class. This means that for any n, x(n) multiplied
with the total number of training samples are the number of training samples
y(n) available to estimate p(c|n). Figure 5.8 shows that x(n) differs signifi-
cantly for various n. Almost 35% of the training sample are in one single class
(n = 64), while very few training samples are available for n < 15.
For the estimated probabilities p(c|n), smoothing is performed by moving the
values towards the straight line n

K , where K is the number of alternative can-
didate sentences, if not enough training samples y(n) are available to estimate
p(c|n). The strength of the smoothing is controlled by the threshold τ, which
decides if and how much the calculated frequency p̂(c|n) is smoothed. Equa-
tion 5.5 provides a mathematical representation of the smoothing process.

p(c|n) ≈
{

p̂(c|n) : y(n) > τ
y(n)

τ · p̂(c|n) + (τ−y(n))
τ · n

K : y(n) ≤ τ
(5.5)

In the experiments performed within the scope of this master thesis, smooth-
ing is applied with τ = 20, which has not been experimentally optimized, but
seems to be a reasonable choice. If less than 20 samples of the training set are
available for estimating one value p(c|n), smoothing is applied, and the value
is moved towards n

K depending on the available number of samples. If more
than 20 samples are available, the obtained relative frequency p̂(c|n) is used as
an estimation for p(c|n).

5.3 Test Set Results

In this section the performance of the four reject models combined with the
three strategies of alternative candidate sentences generation is presented. To
increase readability, plots are shown and described for every model and every
sentence generation strategy, instead of showing a curve for each experiment
in one plot, which would lead to a huge confusing plot with more than ten
curves.
First every reject model is evaluated separately, showing the impact of the
origin of the candidate sentences on the performance of the different reject
models. In a second part Model 1, Model 2, and Model 3 are compared for
each of the three alternative candidate sentences generation strategies, which
illustrates the influence of the chosen confidence measure on the performance
of the rejection system.
The outputs of the handwriting recognition system are recognition lattices
which are the same for every test run. The rejection experiments described
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Figure 5.9: ROC Curve Plot of Model 0.

in this section generate candidate sentences from these lattices, apply one of
the reject models, and measure the performance of the rejection procedure.

5.3.1 Model 0 Results

For the single alternative model (see Section 3.1 for details), 64 pairs (αi, βi)
are determined by varying the GSF and the WIP. With each of these pairs the
recognition lattices are rescored and 64 sentences are generated out of every
sentence image. Each of the 64 sentences is used as a single alternative to the
hypothesised sentence, and the confidence measure ρ0 (see Equation 3.1) is
computed 64 times to obtain different levels of rejection strictness.
Figure 5.9 shows the performance of Model 0 in terms of false acceptance and
false rejection. The 64 values plotted in the Receiver-Operating-Characteristic
(ROC) curve correspond to the 64 pairs (αi, βi) used to generate the single al-
ternative sentence.
As expected, raising the FRR decreases the FAR. It can also be seen that most
of the values are in the FRR range from 0% to 20%, while there are no values
for a FRR higher than 50%.
Model 0 achieves a FRR of 20% at 33.8% false acceptance. A FRR below 10%
can only be obtained at a FAR of 48%. In this experiment no FAR under 20%
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Figure 5.10: Error-Reject Plot of Model 0.

could be achieved because the data density for higher FRRs is too small.
An error-reject plot, illustrating the performance of Model 0, is given in Fig-
ure 5.10. Again, the values in the error-reject plot correspond to the 64 pairs
(αi, βi) which were used for rescoring the lattice and generating the single al-
ternative sentence.
Similar to the absence of FRR values over 50% in the ROC curve plot, no data
is available for reject rates over 50% in the error-reject plot, and most values
fall below 30%.
To keep the error rate under 10%, Model 0 needs to reject 18.7% of the words.
The lowest error rate achieved with this experimental setup is 5%, at a reject
rate of 38.7%.

5.3.2 Model 1 Results

The confidence measure ρ1 of Model 1 (see Equation 3.2) which is based on
multiple alternatives has been described in Section 3.2. For this confidence
measure 64 alternative candidate sentences are generated from the recognition
lattices by means of GSF variation, GSF and WIP variation, and n-best list
extraction.
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Figure 5.11: ROC Curve Plot of Model 1.

For each of the alternative sentences extraction strategies, p(c|n) is estimated
on the training set. The result of these estimations have been presented previ-
ously in Figure 5.6.
A comparison of the three alternative sentences extraction strategies is pro-
vided in Figure 5.11. The ROC curve plot shows the performance of GSF vari-
ation, GSF and WIP variation, and n-best list extraction integrated into the
confidence measure ρ1 of Model 1.
Producing the alternative candidate sentences via GSF and WIP variation clear-
ly outperforms the other strategies for any FAR. It reaches a FAR under 20%,
while keeping the FRR below 21%. In comparison, varying only the GSF
achieves a FAR under 20% at a FRR of 25.5%. Even worse is the use of an
n-best list as source of alternative candidate sentences. This method requires a
FRR of 28% to obtain a false acceptance rate below 20%.
Figure 5.12 shows the overall performance of Model 1, with alternatives based
on GSF and WIP variations (the best performing strategy for Model 1) in an
error-reject plot. If an error rate of 10% is tolerable, the reject rate lies slightly
below 16%. To achieve an error rate under 5%, 28.5% of the input has to be
rejected.
The error rate of this recognition system without any rejections lies at 19.9%.
By rejecting 10% of the input words, this error rate can be reduced from over
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Figure 5.12: Error-Reject Plot of Model 1.

36% to 12.6%. A reduction of 59.8% is achieved with the rejection of 20% of the
input.

5.3.3 Model 2 Results

Similar to the experiments conducted with Model 1, 64 alternative candidate
sentences produced by GSF variation, GSF and WIP variation as well as n-
best list extraction, have been tested with ρ2 from Equation 3.6, which is the
confidence measure of Model 2 (see Section 3.3 for details about Model 2). In
contrast to Model 1, Model 2 takes into account which word w is currently
being processed.
The probabilities p(c|w) and p(n|c) are estimated during the training phase.
Furthermore, p(c|n) is estimated, since p(c|w) is possibly not available for ev-
ery word w in the test set, and in this case, Model 1 with its confidence mea-
sure ρ1 is used instead of Model 2. The result of the training phase has been
presented previously in Figure 5.6 (p(c|n)), Figure 5.7 (p(n|c)), and Table 5.3
(p(c|w))
The ROC curve plot of Model 2 with the different alternative candidate sen-
tences generation strategies is shown in Figure 5.13. The variation of GSF and
WIP yields the best results, and the variation of the GSF alone clearly out-
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Figure 5.13: ROC Curve Plot of Model 2.
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Figure 5.14: Error-Reject Plot of Model 2.
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performs the n-best list extraction. For a FAR under 20%, the GSF and WIP
variation requires 20.6% FRR, GSF variation needs 25.1% FRR, while n-best
list extraction requires 28.5% FRR.
The error-reject plot of Figure 5.14 shows the performance of Model 2 using
GSF and WIP variation to extract multiple candidate sentences. To obtain an
error rate of 10%, 16.3% of the input words have to be rejected. For an error
rate of 5%, the required rejection rate is 28%.
Compared to the original error rate of 19.9% of the recognition system, Model 2
achieves an error reduction of 35.5% by rejecting 10% of the words. A rejection
rate of 20% of the input words reduces the error rate by 58.2% down to 8.3%.

5.3.4 Model 3 Results

For each of the three alternative candidate sentence extraction strategies, ten
MLPs are trained in the cross validation process of Model 3 described in Sec-
tion 3.4. From the training set, which contains 200 sentences, 180 sentences are
used to train an MLP, while 20 sentences are used for validation. Training is
done with the well-known back-propagation algorithm (Rojas, 1996), which is
a standard algorithm for training a supervised neural network.
From the ten MLPs the confidence measure ρ3 is computed as introduced in
Equation 3.9. The number of input channels and internal neurons is set to
the optimized values, which are 64 input channels for all experiments and
20 internal neurons for the experiments with language model variations (GSF
variation, GSF and WIP variation) and 10 internal neurons when the candidate
sentences origin from n-best lists (see Subsection 5.2.4).
The resulting ROC curve plot is shown in Figure 5.15. The variation of GSF
and WIP clearly outperforms the other strategies of alternative candidate sen-
tences generation. The worst performance is shown by extracting n-best lists
as alternative candidate sentences. With a FRR under 21%, the variation of
GSF and WIP enables Model 3 to reach a FAR below 20%, where varying only
the GSF requires 29.4% FRR, and extracting n-best list needs even 32.6% FRR.
Figure 5.16 shows the overall performance of the best strategy for Model 3,
which is GSF and WIP variation based alternative candidate sentences gener-
ation, in an error-reject plot. Model 3 achieves an error rate under 10%, at a
reject rate of 15.7%. For an even lower error rate of 5%, a reject rate of 28.6% is
reached.
Model 3 allows to reduce the original error rate of the recognition system by
36% to 12.7% at a reject rate of 10%. At a reject rate of 20%, the error rate drops
by 59.8% to 8%.
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Figure 5.15: ROC Curve Plot of Model 3.
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Figure 5.16: Error-Reject Plot of Model 3.
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Figure 5.17: ROC Curve Plot of Model 1, Model 2, and Model 3 with alterna-
tive candidate sentences based on n-best list extraction.

5.3.5 N-Best Lists

The ROC curve plot of Figure 5.17 shows the performance of the confidence
measures ρ1, ρ2, and ρ3 of Model 1, Model 2, and Model 3 with alternative
candidate sentences generated by n-best list extraction. It can be seen that no
model outperforms the other for every value of FRR, especially Model 1 and
Model 2 are competing. For a FAR below 20% Model 2 outperforms Model 1,
while, for example, for a FAR between 20% and 30% Model 1 leads to better
results. Slightly worse is the performance of Model 3, the model which uses
MLPs to calculate the confidence measure.

5.3.6 Variation of GSF

Figure 5.18 illustrates the performance of the confidence measure of the dif-
ferent reject models with alternative candidate sentences based on GSF varia-
tion. Model 3 delivers the best results for a FAR between 30% and 100%, while
Model 2 outperforms the other models for a FAR lower than 30%.
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Figure 5.18: ROC Curve Plot of Model 1, Model 2, and Model 3 with alterna-
tive candidate sentences based on GSF variation.
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Figure 5.19: ROC curve plot of Model 1, Model 2, and Model 3 with alternative
candidate sentences based on GSF and WIP variation.
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5.3.7 Variation of GSF and WIP

The curves in the ROC curve plot of Figure 5.19 show the performance of
Model 1, Model 2 and Model 3 with alternative candidate sentences based on
GSF and WIP variation. The results of the three reject models are quite similar.
Model 2 slightly outperforms Model 1 and Model 3 for small FARs, and there
exist local maxima where one model delivers better results than the others. For
Model 1 this is the case when a FRR of only 1% is required. Model 3 obtains
better results compared to the other models for a FRR of about 12%.

5.4 Discussion

In this discussion section several aspects of the rejection strategies and their
performance in the experiments are presented. Comparisons of the investi-
gated reject models and sentence generation strategies are made and conclu-
sions are drawn.

5.4.1 Reject Models

The simple confidence measure ρ0 of Model 0 seems not to be a real competitor
to the more complex confidence measures ρ1, ρ2, and ρ3. Especially in the ROC
curve Model 0 cannot compete with any of the other reject models. To achieve
a FRR of 20% Model 0 requires a FAR of 33.8%, while the other reject mod-
els require less than 21% FAR to reach the same FRR. The confidence model
ρ0 depends too strongly on the quality of one single alternative sentence. In
general, one single source of sentences seems to be incapable of providing the
demanded quality. In contrast, 64 sources are able to compensate the inca-
pacity of single sources and therefore to provide more balanced confidence
measures. The additional effort of considering multiple candidate sentences
and estimating the posterior probabilities during the training phase leads to
the desired effect of substantially superior rejection performance.
Model 2 is an extension of Model 1. Both corresponding confidence mea-
sures ρ1 and ρ2 deliver approximations of p(c|n, w), but ρ2 of Model 2 respects
the currently processed word w and therefore Model 2 is expected to deliver
results that are more precise. This additional exactness can be noticed in a
slightly better performance for any sentence generation strategy and most val-
ues of FRR. Nevertheless, Model 1 outperforms Model 2 for some FRR val-
ues in the ROC plot of the Figures 5.17 and 5.19, and the difference between
Model 1 and Model 2 are rather small.
A possible reason for the small differences between Model 1 and Model 2 is
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that for only about 50% of the input words the posterior probability p(c|w)
can be estimated using relative frequencies from the training corpus. For the
other words, not enough training samples exist in the training corpus and ρ1 is
used as confidence measure instead of ρ2. This means that for about half of the
input, Model 2 makes exactly the same rejection decisions as Model 1 because
the same confidence measure is used.
Another point at issue is the number of training samples that must be present
to estimate p(c|w). In the experiments reported in this master thesis, this num-
ber is set to 20 meaning that at least 20 samples of a word exist in the training
corpus to estimate p(c|w). But this number might be too small and the result-
ing estimations too inprecise, with the possible effect that ρ2 is a less accurate
approximation of p(c|n, w) than ρ1.
Similar to Model 2, Model 3 is an extension of Model 1. Not the currently
processed word is additionally considered, but the source of the alternative
sentence. Model 3 uses the feature vector (x1, . . . , xn) to describe the result of
the sentence comparison and to compute the confidence measure ρ3, instead
of summing up the number of matching words, as it is performed by Model 1.
Despite the added information, Model 3 does not clearly outperform Model 1.
Two possible reasons can explain the similar performance of Model 1 and
Model 3. First, it could be possible that the sources of alternative candidate
sentence provide relatively independent results and that the quality of these
sources is quite similar in terms of rejection. Few additional information is ac-
quired by treating the sources separately. A second reason could be that the
MLPs, used to calculate the confidence measure ρ3, are under-trained, because
the training corpus is too small.

5.4.2 Alternative Candidate Sentence Sources

In contrast to previously published works in the domain of handwriting recog-
nition, the rejection strategies investigated in this master thesis are based on
the fact that a statistical language model supports the recognition process. So
far, such rejection strategies have only been addressed in the domain of con-
tinuous speech recognition.
For any confidence measure investigated in this thesis the language model
variations clearly outperform the n-best list extraction. According to Zeppen-
feld et al. (1997), an advantage of the language model based alternative candi-
date sentences over the n-best list approach is that, for very stable input sen-
tences, the sentences based on language model variations could potentially all
have the same transcription. This leads to a high confidence measure as it is
desired for stable sentences. The confidence measure based on an n-best list is
limited since some words must change in every sentence of the n-best list.
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The fact that every sentence of an n-best list is different, is considerably ob-
structive for relative short sentences, which are entirely correctly recognised.
For example, if there are only five words in a sentence, the 64 alternative can-
didate sentences based on n-best list lead to a relative low confidence for most
words of the sentence.
In the research in the domain of speech recognition it is shown that regions of
high acoustic stability are relatively error-free (Zeppenfeld et al., 1997; Sanchis
et al., 2000). As the language variation strategies outperform the n-best list ex-
traction, the same observation can be made in the field of offline handwritten
text recognition. Words with a high stability concerning language model vari-
ations are relatively error-free, while words that are less frequently observed
in the alternative sentences based on language model variation are more often
recognised incorrectly.
The additional variation of the Word Insertion Penalty (WIP) and not only the
variation of the Grammar Scale Factor (GSF), leads to superior rejection re-
sults for each reject model. These results support the work of Zimmermann
and Bunke (2004) which shows that a good performing integration of the lan-
guage model is dependent on both factors, the GSF and the WIP. A systematic
optimization of the choice of (αi, βi) of Equation 4.7, which are used to rescore
the lattices, could lead to additional improvements of the performance.

5.4.3 General Remarks

In the experiments conducted in this master thesis, the source of alternative
candidate sentences has a substantially higher impact on the performance of
the rejection system than any of the considered confidence measures. While
the confidence measures ρ1, ρ2, ρ3 perform nearly the same for a given sentence
extraction strategy, the variation of GSF and WIP delivers substantially better
results than GSF variation, which in itself outperforms n-best list extraction.
The quality of the alternative sentences is the key for these rejection strate-
gies based on alternative candidate sentences. A “good” alternative sentence
differs from the hypothesised sentence at the points where the words were
recognised incorrectly, while it matches at the points where the words were
correctly recognised. Seemingly the investigated strategies of alternative sen-
tence generation deliver sentences of quite different quality.
The results of the different confidence measures ρ1, ρ2, ρ3 are quite similar. This
similarity can have multiple reasons. From the theoretical point of view, ρ2
and ρ3 could perform better than ρ1, because the information that is used to
compute the confidence measure is increased from ρ1 to ρ2, and from ρ1 to ρ3.
As the amount of the considered information increases, more training effort
must be made. Additional probabilities have to be estimated in Model 2, or
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weights must be determined in Model 3. But if more quantities have to be
set with the same training data, the estimations of the quantities can get less
accurate, and under these circumstances under-training can occur.
A second reason for the similarity of the performance of ρ1, ρ2, and ρ3 is that
ρ1 already performs quite well. To top the results of the confidence measure
of Model 1 is challenging. The additional information used in Model 2 and
Model 3 appears to be incapable of significantly improving the performance.



Chapter 6

Conclusion and Outlook

In this last chapter, main conclusions of this master thesis are drawn and pos-
sible future work is discussed.

6.1 Conclusion

The main goal of this master thesis was the evaluation of multiple rejection
strategies with confidence measures derived from alternative candidate sen-
tences in the domain of recognition of general handwritten text.
A post-processing rejection procedure has been proposed. This procedure gen-
erates alternative candidate sentences and computes a confidence measure for
every word based on features extracted from the candidate sentences. The
confidence measure is used to decide whether to accept or to reject the word.
Four different confidence measures based on alternative candidate sentences
have been presented as reject models. The simplest model derives its confi-
dence measure from a single alternative sentence. Confidence measures de-
rived on the number of times a hypothesised word appears in the multiple
candidate sentences are used in two models. The most sophisticated model
uses a Multi-Layer Perceptron to determine its confidence measure.
Additionally three different sources of alternative candidate sentences were
investigated. The first strategy to obtain candidate sentences were n-best lists,
containing the n-most probable sentences for a given image of handwritten
text. The second and the third strategies were based on language model varia-
tions. The second strategy varied the Grammar Scale Factor (GSF) to get mul-
tiple candidate sentences, while the third strategy varied the GSF as well as
the Word Insertion Penalty (WIP).
The experiments and their results showed the different impact of confidence
measures and the sentence generation strategies on the rejection task. The

83
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performance of the different confidence measures for a given sentence genera-
tion strategy were quite similar, except for the model with a single alternative,
which performed clearly worse. On the other hand, for the sentence extraction
strategies, the language model variations, especially varying the GSF and WIP,
substantially outperformed the n-best list sources.
The best performing rejection strategy was capable to achieve a false accep-
tance rate of 20% at a false rejection rate of only 20.6%. In terms of error-reject,
the presented system allowed to obtain an error rate of 10% if 16.3% of the
input words are rejected.

6.2 Outlook

In this section some further issues and experiments are presented which may
be considered in future studies.
The experiments with the reject models presented in this master thesis were
performed with a training set of 200 sentences. The estimations of the prob-
abilities were sometimes done with a minimal amount of training samples.
Experiments with a much larger set should be considered in order to obtain
more stable estimations of the posterior probabilities. Additionally, the archi-
tecture of the MLPs of Model 3 could be adapted, and more internal neurons
could be inserted, as there is more training data available to train the weights.
The number K of alternative candidate sentences as well as the values of GSF αi
and WIP βi, which were used for rescoring the lattice, were not systematically
optimized. Since the quality of the alternative sentences is a key aspect of the
proposed rejection strategies, a systematic optimization of the language model
variations could improve the quality of the alternative candidate sentences,
thereby improving the performance of the rejection procedure.
The combination with features derived from other sources is an additional
promising issue. The features could be derived from the recognition score
or from characteristics of n-best lists and build additional confidence mea-
sures. The additional confidence measures could be combined with the con-
fidence measures derived from alternative candidate sentences. This combi-
nation could be done by mean value, or, if some weighting is required, by a
neural network.
The comparison of the candidate sentences with the hypothesised sentences
as described in Section 2.5 considers hits as a match while deletions and sub-
stitutions are taken as a mismatch. Insertions are ignored entirely. A more
sophisticated comparison strategy would probably improve the performance
of the rejection procedure. Including the insertions into the comparison would
enable the system to detect missing words in the hypothesised sentences.
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The presented rejection system is contrary to the more traditional approaches
of rejection which are usually used in offline handwriting rejection. The ap-
proach introduced in this thesis makes use of the statistical language model
and is based on multiple alternative candidate sentences. An experimental
comparison with the more traditional rejection approaches would be interest-
ing to estimate the improvements and illustrate the advantages and disadvan-
tage of the presented strategy.
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