
A lower-bound result on the power of

a genetic algorithm

Kihong Park �

park@cs.bu.edu

BU-CS-94-009

July 31, 1993

Computer Science Department

Boston University

Boston, MA 02215

Abstract

This paper presents a lower-bound result on the computational power of a genetic

algorithm in the context of combinatorial optimization. We describe a new genetic

algorithm, the merged genetic algorithm, and prove that for the class of monotonic

functions, the algorithm �nds the optimal solution, and does so with an exponential

convergence rate. The analysis pertains to the ideal behavior of the algorithm where the

main task reduces to showing convergence of probability distributions over the search

space of combinatorial structures to the optimal one. We take exponential convergence

to be indicative of e�cient solvability for the sample-bounded algorithm, although a

sampling theory is needed to better relate the limit behavior to actual behavior. The

paper concludes with a discussion of some immediate problems that lie ahead.

�I would like to thank Dr. Peter Gacs and Marcus Peneido for helpful discussions. A summary paper

appears in Proc. 5th International Conference on Genetic Algorithms.
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1 Introduction

This paper presents a lower-bound result on the computational power of genetic algorithms

in the context of combinatorial optimization. We introduce a new genetic algorithm, the

merged genetic algorithm, and show that for monotonic functions, the algorithm �nds the

optimal solution, and does so fast. In particular, we prove that a probability measure which

completely characterizes the state of the genetic algorithm, converges to the limiting distri-

bution encoding the optimal solution with an exponential convergence rate. The algorithm

combines reproduction and cross-over operations in a novel, but simple way, which makes

its behavior amenable to rigorous mathematical analysis. A previous result of [7] has shown

that the n-bit MAX-SUM function, x1 + x2 + : : :+ xn, lies within the reach of a standard

genetic algorithm that uses n-point cross-over. Our result extends the class of functions e�-

ciently solvable by a genetic algorithm (albeit nonstandard) to monotonic functions which,

in some sense, are the simplest representant of the \building-block hypothesis" [3].

In technical considerations, the following points can be made regarding the di�culty of

dealing with various aspects of genetic algorithms:

1. Mutation alone. Mutation by itself is easy to analyze. It corresponds to doing a random

walk in the space of all combinatorial structures via local transitions. Although every

point gets visited eventually (assuming the space is bounded), it is too expensive.

2. Reproduction alone. Reproduction has the e�ect of increasing the average �tness of a

population to the �tness level of the �ttest element in the initial population. Repro-

duction by itself cannot be viewed as doing any meaningful search.

3. Reproduction + mutation. Although less trivial than 1 and 2, the analysis is straight-

forward. Basically, it corresponds to \zooming in" via reproduction coupled with

localized search through random perturbations.

4. Crossover alone. By no means trivial. The mixing properties of cross-over alone can

be fruitfully analyzed using Markov chain techniques [4, 2, 6]. A recent result of

[6] shows that under weak restrictions on the cross-over operator (symmetricity and

aperiodicity), its stationary distribution is unique and easily characterizable.

5. Reproduction + cross-over. This seems to be the most interesting case. When cross-

over is combined with reproduction, tracking the behavior of a population becomes a
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di�cult task because reproduction tends to disrupt the homogenizing e�ect of cross-

over. In [7], a clever scheme of \jumping" across representations has made the analysis

of the MAX-SUM function tractable. In this paper, a di�erent approach is taken,

whose main advantage lies in the \merging" of reproduction and cross-over in a new

algorithm, whose behavior is more easily analyzable.

6. Reproduction + cross-over + mutation. Although this represents the most general

situation, it can be viewed as case 5 plus perturbation. As such, it does not pose any

new problems.

This paper is organized as follows. First, we give a brief overview of the probabilistic approach

employed here and some background motivation. Second, we de�ne monotonic functions and

describe the merged genetic algorithm with its associated equation of motion. Third, we

analyze the ideal behavior of the system by showing convergence to the solution distribution

with an exponential rate. We conclude with remarks on future directions.

2 Background

Let S be a �nite set of combinatorial structures. For example, S may be the set of all inputs

to a n-variable Boolean function, the set of all subgraphs of some graph G, or the set of all

hands in a card game such as Poker. A population H of size N is a multi-set consisting of N

elements from S. Let A be the set of all populations of size N . Cross-over and reproduction

are probabilistic algorithms that map A into itself, and as such, they induce a stochastic

process on A. A �tness function (or objective function) f is a mapping f : S ! R. The

basic goal in most applications is to �nd an element x� 2 S that optimizes f . Since S is

usually a prohibitively large set, the strategy employed by genetic algorithms is to take a

small sample (i.e. population) of size N � jSj, and by generating successive populations

based upon the two main operators1 hopefully end up producing a population that contains

elements that are close to optimal with respect to f .

For N su�ciently large, the ideal behavior of such algorithms can be described in a

probabilistic setting as follows. Let M be the set of all probability measures on S. Then a

genetic algorithm induces a map h :M!M. This is over two successive populations. The

1The e�ect of mutation will be ignored in this presentation due to its secondary nature and easy

characterization.
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iterative process leads to a dynamical system where the central problem lies in determining

the asymptotic behavior of (hi(p)) for p 2 M. The optimization problem2 can be expressed

as

max
p2M

X

x2S

f(x)p(x):

The \solution distribution," p�, is then given by p�(x) = 1 if x = x�, and p�(x) = 0, x 6= x�

where x� satis�es f(x�) = maxx2S f(x). Informally, a genetic algorithm can be said to �nd

the optimal solution if hi(p) ! p� as i ! 1. We can say a genetic algorithm solves a

problem if it �nds the optimal solution to all instances of the problem set. Let Tr and Tc

denote the reproduction and cross-over operators, respectively. The most popular form of

Tr and Tc in terms of their ideal behavior is given by

p0(y) = Tr(p)jy =
f(y)p(y)

P
x2S f(x)p(x)

; p0(z) = Tc(p)jz =
X

x;y2S

Prfzjx; ygp(x)p(y):

Tc need not be limited to being quadratic and other forms abound. It is clear that limi!1 T i
r(p)

= p�. Hence Tr \�nds" the optimal solution. Nevertheless, since the sample size N needs to

be of the same order of magnitude as jSj to adequately emulate Tr, we cannot say that Tr is

an e�cient procedure. Formalizations of e�cient solvability and a corresponding sampling

theory can be found in [5].

For cross-over operator Tc, Prfzjx; yg is a �xed quantity, hence Tc induces a stationary

stochastic process. It is not hard to see that by lifting the system to the product space

S � S and suitably extending Tc, we get a Markov chain over S � S. Thus Markov chain

techniques can be applied to this larger space to obtain characterizations, which are then

projected back to S to yield statements about the original system. In [6], this method

was employed to show that under weak restrictions on Tc (symmetricity and aperiodicity),

its stationary distribution is unique and easily characterizable via linear invariants. The

composite map h = TcTr can be expressed as

p0(z) = h(p)jz =
X

x;y2S

f(x)f(y)

(
P

u2S f(u)p(u))2
Prfzjx; ygp(x)p(y):

Unlike before, TcTr is a more complicated map due to inheriting nonstationarity from Tr

(p(u) in the denominator), and mixing (Prfzjx; yg) from Tc. The analysis of the dynamics

of (TcTr)i under various assumptions on f is of extreme interest. Intuitively, for x; y 2 S

2Without loss of generality, let us only consider maximization problems.
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with f(x), f(y) >
P

u2S f(u)p(u), the transition probability Prfzjx; yg will receive a \boost"

whereas for elements with �tness values below the mean, the opposite occurs. This subject

is under investigation and will be reported elsewhere. In this paper, we impose additional

structure on S, which in conjunction with the monotonicity assumption on f , allows us to

prove the lower-bound results.

3 The merged genetic algorithm

Let X be a �nite set, and let the elements of X be indexed by f1; 2; : : : ;mg. Let f(x1; x2; : : : ;

xn) be a n-variable �tness function f : Xn ! R. In our earlier notation, S = Xn. Let M

be the set of probability measures on Xn. A probability measure p 2 M is fully supported

if p(x) > 0, 8x 2 Xn. We begin with a de�nition of monotonicity.

De�nition 1 A function f : Xn ! R is monotonic if 8xi, i 2 f1; : : : ; ng, 9 total order �i

on X such that a �i b =) f(x1; : : : ; xi�1; a; xi+1; : : : ; xn) < f(x1; : : : ; xi�1; b; xi+1; : : : ; xn).

Thus, for example, all multinomials in n variables with positive coe�cients are monotonic.

This includes the MAX-SUM function as a special case. Intuitively, monotonic functions

should be good examplars of the \building-block hypothesis" [3] since the components of the

function are maximally independent. Later we will exploit this property to show that this is

indeed the case. In the context of combinatorial optimization, an n-argument function from

the natural numbers to the reals is clearly su�cient to represent all \interesting" optimization

problems, certainly the class NP . For instance, with xi 2 f0; 1g, f may encode SAT , an

NP -complete problem. Finding the largest clique in a graph, whose decision problem is

also NP -complete, can be encoded an a n-argument function where n corresponds to the

number of vertices in the graph. Unless P = NP , these considerations show that a genetic

algorithm which operates on f cannot be expected to perform miracles. Even for function

computation problems such as MAX-Clique, recent results in complexity theory have shown

that approximating the size of the maximum clique is as hard as computing its exact value

[1]. Hence attempting to prove most general results on the power of GA's will be as daunting

as proving P 6= NP .

Let us view each xi (i = 1; 2; : : : ; n) as a random variable, and de�ne a discrete probability

measure pi for each xi. Let pij denote pij � Prfxi = xijg. Let t be a discrete time index.

We shall see shortly that pij(t) will be treated as a function of time. Let p be the product
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measure p = p1 � p2 � : : :� pn. At any time instant t � 0, the state of the merged genetic

algorithm (m-GA) will be completely speci�ed by p(t). First, we give the description of the

m-GA.

m-GA:

begin

repeat

Sij := 0, 8i; j.

p := p0.

for N times do

generate v := a1a2 : : : an randomly from p.

Siai := Siai + f(a1; a2; : : : ; an), 8i.

endfor

p0ij := Sij=
Pm

k=1 Sik, 8i; j.

until jjp0 � pjj < �

end

The mechanics of the algorithm is easy to understand. At each generation, N samples

from p are generated, and each pij is updated by the normalized weight of the sampled

f values. Mixing is achieved by generating each component ai independently with prob-

ability piai. Biased selection is done the same way as in standard reproduction. Let

z = (z1; z2; : : : ; zn�1) 2 Xn�1. Denote by fij(z) � f(z1; : : : ; zi�1; j; zi; : : : ; zn�1) and

�i(z) � p1z1p2z2 : : : pi�1zi�1pi+1zi : : : pnzn�1 . The equation of motion governing the ideal be-

havior of the algorithm when N is unbounded is given by

pij(t+ 1) = pij(t)

P
z2Xn�1 fij(z)�i(z)Pm

k=1 pik(t)
P

z2Xn�1 fik(z)�i(z)
(1)

The next section deals with the asymptotic analysis of this equation. First, we prove that

the above map is continuous (which is obvious for p fully supported) which is needed for a
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later proof. The stronger property of local Lipschitz continuity is needed in the context of a

sampling theory [5], and is stated here for completeness.

Proposition 1 Let jjp� qjj � 1

2m
. Then jjh(p)� h(q)jj < Kjjp� qjj where K = K(n;m).

Proof Let p0 = h(p). It su�ces to show that for all i; j, jp0ij � q0ijj < K(n;m)jjp� qjj. Let

� = jjp� qjj. Case 1: using equation 1,

jp0ij � q0ijj=

�����

P
z2Xn�1 fij(z)p1z1 : : : pij : : : pnzn�1Pm

k=1

P
z2Xn�1 fik(z)p1z1 : : : pik : : : pnzn�1

�

P
z2Xn�1 fij(z)q1z1 : : : qij : : : qnzn�1Pm

k=1

P
z2Xn�1 fik(z)q1z1 : : : qik : : : qnzn�1

�����

�

P
z2Xn�1 fij(z)pij�i(z)Pm

k=1

P
z2Xn�1 fik(z)pik�i(z)

�

P
z2Xn�1 fij(z)(p1z1� �) : : : (pnzn�1� �)

Pm
k=1

P
z2Xn�1 fik(z)(p1z1+ �) : : : (pnzn�1+ �)

yields an upper bound in one direction with the other extreme obtained if we switch the

signs in the numerator and denominator for � (case 2). Note, although we refrain from using

a separate notation, if pkl� � < 0, then pkl� � = 0. Similarly, if pkl+ � > 1 then pkl+ � = 1.

Next,

(p1z1 � �) : : : (pnzn�1� �) = pij�i(z) � [�(p2z2p3z3 : : : pnzn�1 + p1z1p3z3 : : : pnzn�1 + : : :

+ p1z1 : : : pn�1zn�2 ) � �2(p3z3p4z4 : : : pnzn�1 + : : :+ p1z1 : : : pn�2zn�3 ) + : : :+ (��)n]

� pij�i(z) � [�(p2z2p3z3 : : : pnzn�1 + p1z1p3z3 : : : pnzn�1 + : : :+ p1z1 : : : pn�1zn�2 )

+ �2(p3z3p4z4 : : : pnzn�1 + : : :+ p1z1 : : : pn�2zn�3 ) + : : :+ �n] = pij�i(z) � D�;p

where D�;p denotes the sum in the square brackets. After combining and canceling terms,

the upper bound can be written as

jp0ij � q0ijj �

P
z fij(z)pij�i(z)

P
k

P
z fik(z)D�;p +

P
z fij(z)D�;p

P
k

P
z fik(z)pik�i(z)P

k

P
z fik(z)pik�i(z)

P
k

P
z fik(z)(p1z1+ �) : : : (pnzn�1+ �)

<
fmax (

P
k

P
z fik(z)D�;p +

P
z fij(z)D�;p)

f2min

�
2f2max (

n
n=2)(� + �2 + : : :+ �n)

f2min

< �
2f2max (

n
n=2)n

f2min

= jjp� qjjK1(n)

where fmax = maxx2Xn f(x), fmin = minx2Xn f(x), fmax �
P

k

P
z fik(z)pik�i(z) (the op-

posite holds for fmin). In the second inequality, the summation was taken inside D�;p, and

note that the factor of �n=2 is largest and can be bounded by ( n
n=2)fmax. Since K1(n) is
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independent of p, q, this yields the Lipschitz constant for the �rst case. Case 2:

jp0ij � q0ijj �

P
z2Xn�1 fij(z)(p1z1+ �) : : : (pnzn�1+ �)

Pm
k=1

P
z2Xn�1 fik(z)(p1z1� �) : : : (pnzn�1� �)

�

P
z2Xn�1 fij(z)pij�i(z)Pm

k=1

P
z2Xn�1 fik(z)pik�i(z)

=

P
z fij(z)D�;p

P
k

P
z fik(z)pik�i(z) +

P
z fij(z)pij�i(z)

P
k

P
z fik(z)D�;pP

k

P
z fik(z)pik�i(z)

P
k

P
z fik(z)(p1z1� �) : : : (pnzn�1� �)

<
� 2f2max (

n
n=2)n

f2min

P
k

P
z(p1z1� �) : : : (pnzn�1� �)

� �
2f2max (

n
n=2)n

f2min(
1

m
� �)n

< �
2f2max (

n
n=2)n

f2min(
1

2m
)n

= jjp� qjjK2(n;m):

Since p is a probability measure, 8i; 1 � i � n, 9 j; 1 � j � m such that pij � 1=m. This

establishes
P

k

P
z(p1z1� �) : : : (pnzn�1� �) � ( 1

m
� �)n. Using our assumption, � � 1=2m,

yields the last inequality. Note, both K1(n) and K2(n;m) are exponential functions of n.

Setting K = K2(n;m) > K1(n) completes the proof. �

4 Analysis of convergence

In this section, we will show that m-GA �nds the solution, and does so with an exponential

(or geometric) convergence rate. For all i 2 f1; : : : ; ng, let ui be the element such that

8a 2 X and a 6= ui, a �i ui. Let vi be the element such that 8a 2 X and a 6= ui, vi �i a.

Let Eij =
P

z2Xn�1 fij(z)�i(z) and let Di =
Pm

k=1 pik(t)
P

z2Xn�1 fik(z)�i(z).

Lemma 1 Let f be monotonic and let p(0) be fully supported. Then 8i 2 f1; : : : ; ng,

pivi(0) > pivi(1) > pivi(2) > : : : , and piui(0) < piui(1) < piui(2) < : : : . Moreover, pivi(t)! 0,

and piui(t)! 1, as t!1.

Proof Di �Eivi =
mX

k=1

pik(t)
X

z2Xn�1

fik(z)�i(z) �
X

z2Xn�1

fivi(z)�i(z)

>
mX

k=1

pik(t)
X

z2Xn�1

fivi(z)�i(z) �
X

z2Xn�1

fivi(z)�i(z) = 0:

Hence pivi(t) is monotonically decreasing. A symmetric argument, where we substitute ui

for k in Di, shows Eiui > Di. Let p�ivi = limt!1 pivi(t). By compactness of [0; 1], p�ivi 2 [0; 1].

Since h is continuous and 0 is the only left stationary point, p�ivi = 0. A similar argument

shows that limt!1 piui(t) = 1. �
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Note, lemma 1 implies that all other probabilities except piui converge to 0. The next lemma

shows that they do so monotonically after an initial transient period.

Lemma 2 Let f be monotonic and let p(0) be fully supported. Then 8a; vi �i a �i ui,

9ta > 0 such that 8t > ta, pia(t+ 1) < pia(t).

Proof Let vi �i a2 �i a3 �i : : : �i am�1 �i ui denote the ordering induced by �i. First,

consider pia2 . We need to show that eventually Di �Eia2 > 0, and remains so thereafter. In

the following, note pivi + pia2 + : : :+ pian�1 + piui = 1.

Di �Eia2 =
X

a2�ik

pik(t)
X

z2Xn�1

(fik(z)� fia2(z))�i(z) � pivi(t)
X

z2Xn�1

(fia2(z)� fivi(z))�i(z)

>
X

a2�ik

pik(t)
X

z2Xn�1

(fik(zmin) � fia2(zmin))�i(z)� pivi(t)
X

z2Xn�1

(fia2(zmax)� fivi(zmax))�i(z)

> (
X

z2Xn�1

�i(z)) [
X

a2�ik

pik(t)(fik(zmin) � fia2(zmin)) � pivi(t)(fia2(zmax)� fivi(zmax))]

where zmin is the vector such that fik(zmin) � fia2(zmin) = minz2Xn�1 fik(z) � fia2(z), and

zmax satis�es fia2(zmax)�fivi(zmax) = maxz2Xn�1 fia2(z)�fivi(z). Since fik(zmin)�fia2(zmin),

fik(zmax)� fia2(zmax) > 0 are �xed quantities, and by lemma 1 pivi ! 0, piui ! 1, for some

ta2 > 0, Di � Eia2 > 0. Moreover, by monotonicity of pivi and piui , 8t > ta2, pia2(t + 1) <

pia2(t). A simple induction on aj, j = 3; 4; : : : ;m� 1, completes the proof. �

This leads to the theorem stating that for monotonic f , there exists a unique invariant

measure with respect to m-GA.

Theorem 1 Let f be monotonic and let p(0) be fully supported. Then p(t)! p�, t!1.

Proof By lemma 1, lemma 2, and the characterization of the solution distribution p� for

monotonic functions as p�ij = 1 if j = ui, and p�ij = 0 otherwise, i = 1; 2; : : : ; n, the theorem

follows directly. �

The next task is to estimate the rate of convergence. This is easy to do for vi, the minimal

element. A little consideration is needed for the other cases.

Lemma 3 Let f be monotonic and p(0) > 0. Then 8t > 0, pivi(t+1) < pivi(t)(1� c), where

0 < c < 1.

Proof By lemma 1, Di > Eivi . Denote Bivi = Di � Eivi . Since Eivi=Di = 1 � Bivi=Di, to

bound the rate, it su�ces to �nd a lower bound for Bivi , B
lo
ivi
, and an upper bound for Di,
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Dup
i . First,

Bivi =
X

vi�ik

pik(t)
X

z2Xn�1

(fik(z)� fivi(z))�i(z) > (
X

z2Xn�1

�i(z))
X

vi�ik

pik(t)(fik(zmin)� fivi(zmin))

> (
X

z2Xn�1

�i(z)) piui(t) (fiui(zmin)� fivi(zmin)) = Blo
ivi

where zmin has the same interpretation as in lemma 2. Next,

Di =
mX

k=1

pik(t)
X

z2Xn�1

fik(z)�i(z) <
mX

k=1

pik(t)
X

z2Xn�1

fik(zmax)�i(z) < (
X

z2Xn�1

�i(z))
mX

k=1

fik(zmax) = Dup
i

Thus, Eivi

Di
= 1 �

Bivi

Di
< 1 �

Blo
ivi

Dup
i

= 1 � piui(t)
fiui(zmin)� fivi(zmin)Pm

k=1 fik(zmax)

< 1 � piui (0)
fiui(zmin)� fivi(zmin)Pm

k=1 fik(zmax)
= 1 � c

where the last inequality follows from the monotonicity of piui (t). c is a �xed, time-

independent quantity with 0 < c < 1. �

The next proposition shows that if 0 < piui < 0:5, convergence to 0:5 is exponential in

1 + (1 � piui(0))c.

Proposition 2 Let f be monotonic and p(0) > 0. Then piui(t+1) > piui (t)(1+(1�piui(t))c)

where c > 0.

Proof Since Eiui > Di and Eiui=Di = 1+ (Eiui �Di)=Di, we need to bound Eiui �Di from

below and Di from above.

Eiui �Di =
X

k�iui

pik(t)
X

z2Xn�1

(fiui(z)� fik(z))�i(z) > (
X

z2Xn�1

�i(z))
X

k�iui

pik(t)(fiui(zmin)� fik(zmin))

> (
X

z2Xn�1

�i(z)) (fiui(zmin)� fib(zmin))
X

k�iui

pik(t)

= (
X

z2Xn�1

�i(z)) (fiui(zmin)� fib(zmin)) (1 � piui(t))

where b was chosen so that fiui(zmin)� fib(zmin) = mink�iui fiui(zmin)� fik(zmin). Thus the

constant in the proposition is given by c = (fiui(zmin)� fib(zmin))=
Pm

k=1 fik(zmax). �

The next lemma shows the exponential convergence of all other nonoptimal probabilities

which allows us to uniformly bound the optimal probability.

Lemma 4 Let f be monotonic and p(0) > 0. Then 8a, vi �i a �i ui, pia(t+1) < pia(t)(1�

c), for t > (m� 2)K where c and K are constants depending only on i.
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Proof Let vi �i a2 �i a3 �i : : : �i am�1 �i ui denote the ordering induced by �i. First,

consider pia2 . Note from lemma 2 that Di � Eia2 is bounded by

Di �Eia2 > (
X

z2Xn�1

�i(z)) [
X

a2�ik

pik(t)(fik(zmin)� fia2(zmin)) � pivi(t)(fia2(zmax)� fivi(zmax))]:

AssumeDi�Eia2 < 0. Then for one or more k, pik(t)(fik(zmin)�fia2(zmin))�pivi(fia2(zmax)�

fivi(zmax)) < 0. Consider

Lia2 = piui (0)(fiui(zmin)� fia2(zmin)) � pivi(t)(fia2(zmax)� fivi(zmax))

< piui (t)(fiui(zmin)� fia2(zmin)) � pivi(t)(fia2(zmax)� fivi(zmax))

<
X

a2�ik

pik(t)(fik(zmin)� fia2(zmin)) � pivi(t)(fia2(zmax) � fivi(zmax)):

Since pivi(t) decreases exponentially with a rate at least 1� cv as given in lemma 3, Lia2 > 0

if t > 1

cv
log 1

Aia2

, where Aia2 = piui(0)(fiui(zmin)� fia2(zmin))=(fia2(zmax)� fivi(zmax)). That

is, after a constant number of steps depending only on the initial condition, pia2 is assured

to decrease monotonically at an exponentially rate. It is easily seen that the rate of pia2,

1 � c2, can be bounded above by 1 � c2 < 1 � Lia2=(2Di) if we choose t >
1

cv
log 2

Aia2

. Since
Pm

k=1

P
z2Xn�1 fik(z) is an upper bound of Di, the convergence rate of pia2 is bounded by a

�xed quantity independent of time. In general, for aj,

Liaj = piui(0)(fiui(zmin)� fiaj(zmin)) � (fiaj(zmax)� fib(zmax))
X

k�iaj

pik(t)

< piui(0)(fiui(zmin)� fiaj(zmin)) �
X

k�iaj

pik(t)(fiaj(zmax)� fik(zmax))

<
X

aj�ik

pik(t)(fik(zmin)� fiaj(zmin)) �
X

k�iaj

pik(t)(fiaj(zmax)� fik(zmax))

where b was chosen such that fiaj(zmax) � fib(zmax) = maxk�iajfiaj(zmax) � fik(zmax). Let

1�c2, : : : , 1�cj�1 be the convergence rates of pia2; : : : ; piaj�1 , respectively. LetK2; : : : ;Kj�1

be the constant lower bounds consumed at previous steps to guarantee monotonic conver-

gence. Using the same arguments as before, for t > 1

cb
log 1

Aiaj

, Liaj > 0, where cb =

minfcv; c2; : : : ; cj�1g and Aiaj = piui(0)(fiui(zmin)�fiaj(zmin))=(fiaj (zmax)�fib(zmax)). Com-

pleting the induction, we see that after at most (m�2)K steps whereK = maxfK2; : : : ;Km�1g,

all probabilities decrease monotonically with a rate bounded above by 1�c = 1�minfcv; c2; : : : ;

cm�1g. �

Finally, we can state the main theorem.
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Theorem 2 Let f be monotonic and let p(0) be fully supported. Then jjp� � p(t + 1)jj <

(1� c)jjp� � p(t)jj, 8t > (m� 2)K, where 0 < c < 1 and K > 0.

Proof By lemma 4, for each i = 1; : : : ; n, after at most (m � 2)K(i) steps, where K(i)

depends on i, the probabilities converge monotonically with a rate at least c(i) as described

in the lemma. Take K = maxfK(1); : : : ;K(n)g and c = minfc(1); : : : ; c(n)g. Noting piui =

1�
P

j 6=ui pij and by the chracterization of p�, the sup-norm inequality follows immediately.

�

5 Conclusion

We have presented an analysis of the limit behavior of m-GA for e�ciently solving the

optimization problem for monotonic functions. Several problems still remain. First, although

showing that the ideal behavior of a GA that converges to the optimal probability distribution

with an exponential rate is indicative that the actual, sample-bounded GA may also fair well,

such intuitive reasoning is far from su�cient. A rigorous sampling theory is needed to �ll the

gap. Second, tighter bounds (both lower and upper) on the power of m-GA are interesting

to pursue. In particular, it would be fruitful to show that a standard GA is at least as

powerful as the m-GA (in some suitable sense) which seems reasonable. In the same venue,

a systematic, and quantitative characterization of the e�ect of k-point cross-over (1 � k � n)

and other variational features should be manageable and illuminating. Third, analyzing the

standard GA using dynamic Markov chain techniques looms as an interesting challenge. We

hope this paper is a step in the right direction.
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