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Abstract

With the increasing demand for document transfer services such as the World Wide Web comes
a need for better resource management to reduce the latency of documents in these systems. To
address this need, we analyze the potential for document caching at the application level in docu-
ment transfer services. We have collected traces of actual executions of Mosaic, re
ecting over half
a million user requests for WWW documents. Using those traces, we study the tradeo�s between
caching at three levels in the system, and the potential for use of application-level information in
the caching system. Our traces show that while a high hit rate in terms of URLs is achievable, a
much lower hit rate is possible in terms of bytes, because most pro�tably-cached documents are
small. We consider the performance of caching when applied at the level of individual user ses-
sions, at the level of individual hosts, and at the level of a collection of hosts on a single LAN. We
show that the performance gain achievable by caching at the session level (which is straightforward
to implement) is nearly all of that achievable at the LAN level (where caching is more di�cult
to implement). However, when resource requirements are considered, LAN level caching becomes
much more desirable, since it can achieve a given level of caching performance using a much smaller
amount of cache space. Finally, we consider the use of organizational boundary information as an
example of the potential for use of application-level information in caching. Our results suggest
that distinguishing between documents produced locally and those produced remotely can provide
useful leverage in designing caching policies, because of di�erences in the potential for sharing these
two document types among multiple users.

�This work has been partially supported by NSF (grant CCR-9308344). Document Internet URL is
``ftp://cs-ftp.bu.edu/techreports/95-002-web-client-caching.ps.Z''.
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1 Introduction

Some of the most popular services currently provided by the Internet are the distributed information

systems such as the World Wide Web (WWW), the Anonymous FTP transfer system, the Wide

Area Information System (WAIS), and the Gopher system. These services are characterized by a

many-to-many pattern of �le transfer | most hosts in the system are potentially capable of serving

�les as well as requesting them. We refer to these systems as document transfer systems and to

the �les involved as documents since each �le has essentially been electronically \published."

An increasingly large fraction of available bandwidth on the Internet is being used to transfer

documents [9]. Strategies for reducing the latency of document access, the network bandwidth

demand of document transfers, and the demand on document servers are becoming increasingly

important. Techniques that could reduce document latency, network bandwidth demand, and

server demand include data caching and replication. However, in contrast to most distributed �le

systems, document transfer services usually incorporate simple caching strategies, if any, and do

not typically provide location transparency.

While techniques based on distributed �le systems could be used to improve signi�cantly the

performance of document transfer systems, there are a number of advantages to considering caching

and replication at the application level, rather than at the �lesystem level. First, application-

level caching does not require all users to agree on a common �lesystem; it enables heterogeneous

systems to participate easily. Second, and more important, application-level caching allows cache

strategies to make use of the higher semantic content available at the application level to exploit such

information as document type, user pro�le, user past history, document content, and organizational

boundaries.

This paper describes initial investigations into application-level strategies for document caching

and replication on wide area networks. While we are in general concerned with all three aspects

of the problem (document latency, network demand, and server demand) we focus in this paper on

minimizing document latency as our primary goal. As a result, we concentrate on caching strategies

rather than document replication, which is mainly a technique for reducing server load.

We employed a trace-driven simulation approach to studying the document caching problem.

First, we collected logs of users accessing the World Wide Web. We instrumented a version of

NCSA Mosaic [6] to keep a record of all documents (named by their Uniform Resource Locators |

URLs) accessed by the user during an execution of Mosaic. (We refer to each execution of Mosaic
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as a session, and we call the log of each session a trace.) The results in this paper are based on

4,700 traces.

Next, we used the traces as input to an event-driven simulation that determined how various

caching strategies and cache sizes a�ected the performance of the system. The simulation outputs

a set of statistics that describes the e�ectiveness of caching in terms of bytes transferred and

document latency.

This paper discusses cache policies that operate at three levels: 1) the session level, in which

caches for separate sessions are managed independently; 2) the host level, in which caches for

separate hosts are managed independently; and 3) the LAN level, in which caches for separate

LANs are managed independently.

Session caches are similar to the policies used in current versions of NCSA Mosaic. Host caches

consist of a single host's bu�ers allocated to document caching that persist across invocations of

the client. Host caches could be implemented by a local server, or by periodically synchronizing

each application's memory-based cache with a disk bu�er. LAN caches consist of a cache managed

by the clients on a single LAN, as in [4]. LAN caches require cooperation among the participating

clients; host and session caches do not.

Our work is unique in a number of ways. First, we base it on the large amount of user trace data

we have collected. Second, we consider caching policies that can be implemented without client

cooperation as well as policies that require client cooperation. Finally, we use application-level

information in analyzing our trace data and in formulating cache policies.

Our results show that caching strategies that are nearly as e�ective as a cooperative strategy

can be implemented at the application level without cooperation; in fact, session level strategies

yield nearly all the gains of host level and LAN level strategies. In addition, while session level

caching is nearly as e�ective as the others, it consumes much more system resources. For a given

level of performance, less system resources are consumed by host level caching, and even less are

consumed by LAN level caching. Thus, if a �xed amount of system resources is to be allocated to

caching, they are best allocated to LAN level caching.

Finally, our data suggest that the use of application-level information can signi�cantly improve

some aspects of system performance; in particular, identifying documents that originate outside

of the local organizational boundary (in our case, the Boston University community) is useful in

understanding and tuning cache performance. We discuss cache policies that favor or discourage

retention of local documents. We show that documents originating outside the local organization
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show markedly di�erent sharing patterns from those that are served locally.

The remainder of the paper consists of: �rst, a description of our trace data and the collection

process; next, the results of our simulations for various caching policies using that data; next, a

comparison of our work with related research; and, �nally, our conclusions.

2 Reference Patterns

2.1 Data Collection Methods

Prior studies of WWW tra�c have been based on logs from proxies [7, 16], or logs from the HTTP

server daemon [13]. Our study required knowledge of individual user's access patterns, and we

did not wish our data to be in
uenced by the caching behavior built in to the client application

(Mosaic). For these reasons, we instrumented Mosaic directly and captured logs of all accesses

performed by the user. Thus the entries in our traces consist of each URL requested by the user,

whether it was served from Mosaic's cache or from the network.

Each entry in a trace consists of the client host name, the time stamp when the request was

made, the URL, the size of the document (including the overhead of the protocol) and the round

trip retrieval time.

The computing environment considered in this study consists of 37 SparcStation 2 workstations;

these workstations comprised the set of client hosts. The LANs used are part of a larger, subnetted

domain (bu.edu) which consists of many hundreds of workstations, many of which act as WWW

servers. Five of the workstations support graduate students in BU's Computer Science Department,

and the other 32 support a general population of computer science students.

The traces used in this study were collected over a period of 3.5 months, frommiddle of November

1994 to end of February 1995. In this period a total of 4,700 sessions were traced, representing

591 di�erent users. User names were mapped to numeric IDs so that researchers performing data

analysis were not aware of user identities.

2.2 Summary of Data Collected

Descriptive statistics summarizing our data are given in Table 1. In the table, Documents Requested

means the total number of URLs whose contents were retrieved for the user, either from the network

or fromMosaic's cache. Note that many of the URLs may refer to small items, such as icon bitmaps.

Unique Documents Requested is the number of unique URLs in the traces. Bytes Requested means
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Sessions 4,700
Users 591
Documents Requested 575,775
Unique Documents Requested 46,830
Bytes Requested 2713 MB
Unique Bytes Requested 1088 MB

Table 1: Summary Statistics of Trace Data

the sum over all document requests of the �le sizes requested; Unique Bytes Requested represents

the same sum over only the unique URLs.

The table shows that, on average, users engaged in multiple sessions (8 sessions per user), and

that the average number of documents requested per session was high (122 documents per session).

It also shows that there is a high potential payo� for document caching, since the di�erence between

Bytes Requested and Unique Bytes Requested is large. This di�erence represents the best-case

number of bytes that could be obtained from a demand-driven cache without prefetching.

The distribution of the documents and references by size is shown in Figure 1.1 In the �gure,

the complete distributions are shown in the left-hand histograms; the right-hand histograms show

the distributions for small documents only (less than 6.4 k bytes). The upper histograms plot

the distribution of documents, while the lower histograms plot the distribution of references to

documents.

Previous studies of user �lesystem requests have shown a strong preference for small �les [11, ?].

Our data shows a similar pattern; the most popular document size is between 256 and 768 bytes.

The strong preference for small �les is somewhat surprising due to the potential for multimedia

content of WWW documents and the large amounts of data needed to transfer images, video, and

sound. However a number of factors may tend to increase the proportion of small �le sizes. First,

many of the images (small icon bitmaps) are actually fairly small in size; Mosaic typically caches

these images so users are not often aware of how many small images are employed in a WWW

document. Second, users may tend to interrupt document transfers that take too long; our data

does not include any documents whose transfer was interrupted. Finally, we feel that these data

indicate that despite the great potential for large, multimedia document transfers, such transfers

1These histograms are clipped; the maximum observed for the unique documents was 32,262, in the 0 to 10 K

slot; the maximum total number of accesses was 536,826, in the 0 to 10 K slot. The counts for the 128-byte scale

were 2,716 in the 256-384 slot and 2,460 in the 384-512 slots for the unique documents, and 112,119 in the 128-256

slot, 90,461 in the 256-384 slot, 49,372 in the 384-512 slot, and 56,051 in the 640-768 slot.
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do not as of yet constitute the predominant use of the WWW.
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Figure 1: Distribution of User Requests by File Size; Unique (Top) and Total (Bottom).

The di�erences between the upper and lower plots in Figure 1 indicate that, while most docu-

ments are small, the e�ect of user reference patterns is to increase the preference for small docu-

ments. That is, smaller documents are more likely to be requested than are large documents. In

fact, there is a signi�cant correlation between the size of a document and the number of times it is

requested. Figure 2 shows a plot of the average number of requests to a document given its size.

The solid line is the plot of a statistically signi�cant (99.9% level) inversely proportional relation-

ship between the number of requests to a document and its size. However the data is quite noisy

and the least squares estimator (references = 9.67 size�0:33) only explains a small part of the total

variation (R2 = 0.14).

The distribution of small and large documents and references can be seen another way in Figure 3.

This �gure shows the cumulative distribution of number of bytes accessed by document size, and

the proportion of those bytes that are referenced at least twice. The plot reveals that a considerable
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Figure 3: Cumulative Distribution of Document Requests.

amount (about 90%) of the total number of bytes requested come from documents up to 5 MBytes.

Of all the bytes accessed, the reused bytes constitute a signi�cantly smaller component. This data

suggests that a purely demand-driven cache will not be able to totally eliminate document latency.

This �gure also shows that most of the reused bytes come from small �les (less than 500K).

3 Caching E�ectiveness

3.1 Experimental Setup and Metrics

In this section we present results of trace-driven simulation of various caching schemes. The traces

used consist of all references that a user makes during a session with Mosaic and were described

in Section 2.2. The individual session traces are combined to allow for the simulation of the 3
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granularities of caching: session, host and LAN.

We show results for both �nite and in�nite cache sizes. The measurements obtained for an

in�nite cache provide an upper bound on the e�ectiveness of caching at each granularity. We also

use the traces to drive simulations of �nite caching with variable size caches and least frequently

used (LFU) replacement. Since we are dealing only with \published" documents we do not consider

invalidation of cache entries. In the analysis of our results it is also useful to distinguish between

documents that are local and those which are stored at remote locations. We consider a document

to be local if was served from a host within the Boston University organization, which can be

detected based on the server's name.

For each caching granularity and cache size, we measure three quantities: hit rate, byte-hit rate

and latency savings.

The �rst measure is H , the hit rate. This is de�ned as the ratio of the number of references

satis�ed by the cache to the total number of references.

Hit rate is a good measure only if the documents are of equal sizes. However, our traces reference

documents of widely varying sizes. In order to get a better idea of the e�ectiveness of the caching

schemes we weight each reference by the document size to calculate the byte-hit rate B.

Comparisons based on B alone presume that all bytes cost the same. Just as there is a wide

variation in document size there are varying distances from which documents must be fetched

introducing variation in delay. A measure of the fraction of worst-case latency saved by caching,

which captures the variation in distance, can be de�ned by weighting each reference by the round-

trip delay time for the document. We denote this measure of latency savings by C.

3.2 Simulation Results

3.2.1 In�nite Caches

For the case of an in�nite cache we de�ne H , B, and C in terms of the following variables. Each

trace entry represents a reference to a document i from the set of all documents f1; 2; : : : ; ng. For

each document i we denote the size of the document by si, the round-trip delay for document

retrieval by di and the number of references to the document by ri.

Given an in�nite cache all but the �rst reference to any document will be cache hits:

H =

P
n

i=1
(ri � 1)

P
n

i=1
ri

:

7



Cache Granularity H B C

session 79.10 37.65 63.64

host 86.21 46.06 68.36

LAN 91.97 60.18 77.17

Table 2: All references (575,775 references).

Cache Granularity H B C

session 82.50 36.83 63.44

host 84.95 41.31 66.77

LAN 90.35 52.73 75.67

Table 3: Remote references only (452,864 references).

Cache Granularity H B C

session 66.58 40.92 66.36

host 90.85 64.84 89.37

LAN 97.94 90.69 97.16

Table 4: Local references only (122,911 references).

Calculation of the byte-hit rate weights each document reference ri by the document size si:

B =

P
n

i=1
si(ri � 1)

P
n

i=1
siri

:

By weighting each reference ri by the round-trip delay di we can de�ne the fraction of worst-case

latency saved by caching as:

C =

P
n

i=1 di(ri � 1)
P

n

i=1 diri
:

The percentages H , B and C can be calculated directly for the single cache at the LAN. For host

and session granularities the values are averaged over all caches.

In Table 2 we present the results we have obtained by running the trace-driven simulation on

data compiled from all 4,700 sessions. Each row gives values of H , B and C as a percentage for one

of the cache granularities studied. Table 3 gives values when only remote references are included

in the simulation and Table 4 gives values when only local references are considered. These tables

show a steady increase in hit rate as the granularity of the cache is increased. This is to be expected

as repeated references are increasingly captured when more references are passed through an in�nite

cache.

Table 2 shows that a relatively high hit rate (H = 91%) is possible for an in�nite cache at the
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Metric Ideal Mosaic

H 79.10 77.34

B 37.65 32.56

C 63.64 61.49

Table 5: Comparison of ideal session hit rates and Mosaic's hit rates.

LAN level. However, the corresponding byte-hit rate is only 60%. This is in fact the best possible

byte-hit rate since Table 1 shows that of 2713 MB requested, 1088 MB (40%) are unique. These

data re
ect the fact that the large documents in our traces are not as pro�tably cached | they are

referenced relatively few times each. This agrees with the trend shown in Figure 2.

Turning to our measure of latency savings (C), we see a relatively small e�ect as cache granularity

is increased. That is, for the combined data in Table 2 it appears that the advantage of a LAN

cache is that it caches a greater percentage of the bytes referenced but does not save that much time

compared to session or host caches. This is due to the extra sharing being composed primarily of

local (inexpensive) documents as seen from Table 4. For local documents, the byte-hit rate increases

from 41% at the session granularity to 91% at the LAN. Thus, the local proportion of the shared

bytes increases as the cache granularity is increased. In addition, the cost of retrieving remote

documents is so much higher than for local ones (the ratio of the total cost for remote document

retrieval to the total cost for local document retrieval is approximately 18 for our traces) that

the C values in Table 2 re
ect the diminishing returns of caching remote documents at the LAN

granularity. For B values, remote documents contribute 4 times as many bytes as local documents

and so the combined �gures also more closely resemble those of the remote documents.

Since the results presented in this section were obtained using in�nite caches, it might be the

case that in practice actual hit rates would not approach these ideal rates. To test this possibility

we measured the hit rates obtained by Mosaic itself, which demonstrates a real session caching

algorithm operating with limited cache space. The results are shown in Table 5. The table shows

the session-level hit rates, byte-hit rates, and latency reduction rates obtained in our ideal simulation

and obtained by Mosaic. These data show that the hit rates obtained in our simulation are very

close to those obtainable in practice.
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Local Remote

Documents Requested 122,911 452,864

Unique Documents Requested 2,579 44,251

Bytes Requested 551 MB 2163 MB

Unique Bytes Requested 51 MB 1037 MB

Average Document Size Requested 4,696 5,008

Average Requests Per Document 47.7 10.2

Average Requests Per Byte 10.6 2.1

Table 6: Summary Statistics of Local and Remote Documents

3.2.2 Application-Level Caching Policies

Tables 3 and 4 also imply that there is a higher degree of sharing among local documents than

remote documents. Notice that the hit rate and the byte-hit rate both increase for local documents

as the cache granularity increases. This relationship also holds, though to a much smaller degree,

for remote documents. For byte-hit rate B, an additional 16% of the requested remote bytes are

satis�ed by a LAN cache than a session cache. But, an additional 50% of the requested local bytes

are satis�ed by a LAN cache versus a session cache.

Turning to C, session caching of remote documents saves 63% of the total time that would have

been spent retrieving documents if no caching were done. Caching at the LAN increases the savings

rate to 75%. However, for local documents, LAN caching provides a 97% savings versus no caching

while session caching provides only a 66% savings.

More detailed statistics summarizing the di�erences between local and remote documents are

given in Table 6. The �rst four lines in the table are breakdowns of the corresponding lines in

Table 1. The lower three lines are derived from the �rst four.

Table 6 shows that local and remote documents do not di�er in size on average. However, these

data suggest that accesses to local and remote documents exhibit signi�cantly di�erent sharing

patterns. To explore the utility of distinguishing between local and remote documents, we studied

the performance of caching policies that used document location information.

We �rst characterized the di�erences in sharing patterns between remote and local documents by

studying caching policies that cached documents of only one of the two types. The Remote policy

caches only remote documents; the Local policy caches only local documents. To study sharing

patterns, we simulated multiple users sharing a single cache (essentially a LAN cache). To do this
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Figure 4: Multi-way byte-hit rate vs LAN cache size

for N users, we divided the traces into N sets; in each set, traces were concatenated, and the sets

were then interleaved. This strategy ensured a constant level of multi-way sharing of the cache.2

Figure 4 shows the relationship between the cache size and the achievable byte-hit rate, for

di�erent levels of multi-way sharing (namely for 1, 5, and 30 users). There are two sets of curves.

The �rst illustrates the behavior of the Remote policy, whereas the second illustrates the behavior

of the Local policy. Figure 4 shows that users are more likely to share local documents than remote

ones. In order to quantify this level of sharing, we de�ne the Sharing Index (SI) as a function of

both the number of users N and a �xed byte-hit rate B = �.

SI(�;N) = 1�
1

N � 1
�
L(�;N)� L(�; 1)

L(�; 1)

In the above de�nition, L(�;N) is the size of the LAN cache necessary to achieve a byte-hit

rate of � for an N -way-shared cache. L(�;N) can be obtained from Figure 4. A Sharing Index of

1 means that increasing the number of users does not necessitate increasing the size of the cache to

keep the byte-hit rate at a constant level. A Sharing Index of 0 means that increasing the number

of users will necessitate increasing the size of the cache proportionally to keep the byte-hit rate at

2Due to the repeated numbers of simulations required these results and those in the next section were obtained

from a subset of our total reference data.
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a constant level. Tables 7 and 8 show various values of SI(�;N) for the Local and Remote policies,

respectively.

� 2 5 15 30 50

0.06 1.00 1.00 0.99 0.98 0.99
0.08 0.98 1.00 1.00 1.00 0.99
0.10 0.98 0.99 1.00 0.99 0.99
0.12 0.98 1.00 1.00 n/a n/a

Table 7: Sharing Index for Local Policy

� 2 5 15 30 50

0.06 0.89 0.82 0.89 0.90 0.90
0.08 0.92 0.75 0.85 0.87 0.88
0.10 0.67 0.71 0.84 0.86 0.89
0.12 0.60 0.64 0.87 0.86 0.88

Table 8: Sharing Index for Remote Policy

The signi�cant di�erence in sharing patterns demonstrated in Tables 7 and 8 suggests that

caching policies might pro�tably exploit the distinction between local and remote documents. To

quantify the potential bene�ts from this approach, we de�ne the Cache Expansion Index (CEI) for

a particular level of byte-hit rate � and a particular number of users N to be the ratio of L(�;N)

to L(�; 1). This is the expected \expansion" in cache size that is necessary to maintain the byte-hit

rate at a constant �, while the number of users sharing the cache increases from 1 to N . A larger

CEI signi�es a smaller level of sharing, whereas a smaller CEI signi�es a larger level of sharing.

Figure 5 illustrates the value of CEI for various numbers of users and for various byte-hit rates.

Again, we notice that, due to the higher level of N -way sharing of local documents (compared to

remote documents), the Local policy exhibits a small CEI, compared to the Remote policy. Figure 5

suggests that the CEI for both the Local and Remote policies is linear in N . The constant for the

Local policy is very small (0.03)3, whereas the constant for the Remote policy is much larger (0.12).

In both cases, there is no indication of the CEI reaching a plateau (at least for the number of users

we considered in our simulations). Figure 5 also shows no particular correlation between the CEI

and the desired hit rate level.

3This means that a 3% increase in cache size is necessary to maintain the same hit rate with one additional user
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Figure 5: Cache Expansion Index

3.2.3 Cache Space Utilization

In order to explore resource utilization trade-o�s we ran simulations for all three caching granular-

ities with various limited cache sizes and LFU replacement.

The graphs in Figures 6 and 7 show the hit rate and byte-hit rate respectively for the three

caching granularities with cache sizes ranging from 10KB to 2GB. For session and host granularities

the total number of cache bytes is equally divided among �ve hosts since our traces were collected

on �ve workstations. Since the total number of unique bytes accessed by all references is 157MB,

ideal caching occurs at or above this cache size for the LAN granularity. That is B approaches

48%, the value found for an in�nite cache of LAN granularity.

Figure 6 shows the clear superiority of cooperative LAN caching regardless of cache size as

measured by hit rate. Session caching gives the smallest hit rate at all granularities while host

caching equals the performance of session caching at smaller cache sizes and rises to within three

percentage points of LAN caching performance at higher cache sizes.

Once again we focus on the more informative measure of byte-hit rate. Figure 7 gives the byte-

hit rates over the range of cache sizes studied. Here again the bene�t of LAN caching is clearly

evident.

Session caching actually outperforms Host caching at cache sizes less than 4MB (800 KB/host)
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due to interference between users sharing a cache on a workstation. Above this level the cache

is big enough that documents can remain in the cache long enough for sharing to occur and be

re
ected in the byte-hit rate.

At a cache size of 9MB, LAN caching achieves a 37% byte-hit rate. To get the same bene�t

from host caching would require approximately 90MB or 10 times as much memory. Session caching

never achieves this rate, even with in�nite caches for each client session. Viewed another way, given

a total cache size of 250KB, deployment of �ve 50KB host caches gives a byte-hit rate of 10% while

cooperative sharing of a 250KB LAN cache achieves a rate of 19%. And this relative di�erence

remains consistently robust: for a size of 75MB, session caching reaches its peak byte-hit rate of

31% while the same size cache shared by session on each host improves the byte-hit rate to 36% and

a cooperatively shared cache at the LAN provides further improvement to 48%, the performance

of an in�nite cache.

4 Related Work

A great deal of research on caching and replication in distributed �le systems has been conducted

previously (e.g., [14, 15]). In such research the main goal has been to improve the overall perfor-
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mance of the system. In contrast to these studies, the material presented in this paper focuses

mainly on reducing response time through caching at the application level, rather than caching at

the �le system level.

Danzig et al. [5] propose a hierarchical caching system that caches �les at Core Nodal Switching

Subsystems within the NSFNET. The main goal of their research is to reduce the bandwidth

used by the system; their study shows that the NSFNET backbone tra�c can be reduced by

as much as 21%. Such schemes do not make use of application-level information. In our study

signi�cant di�erences were observed between documents identi�ed at the application to be local

from those identi�ed as remote. Although we did not report on network bandwidth reduction,

we have performed preliminary studies that show a signi�cant potential for network bandwidth

reduction by application-level caching.

The reduction of network tra�c due to intelligent data placement and replication is also studied

in [1]. They present a distributed dynamic replication scheme, which uses a �nite state automaton-

based technique to learn �le access patterns. In contrast, our focus is on data caching rather than

replication and placement techniques.

In [12] the authors approximate an optimal caching schedule based on �xed network and storage

costs. This schedule indicates where and when a �le should be cached. In the worst-case the
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algorithm produces a schedule that is no worse than twice the optimal one. Their theoretical work

is an o�-line algorithm in comparison to the work presented here in which trace data from user

accesses is used to study on-line algorithms.

Muntz and Honeyman [10] performed simulations on a two level caching system, intermediate

servers and clients. Although the intermediate cache reduces both the peak load at upstream

servers and network load, the average hit rate at the intermediate cache is not signi�cant. We

further extend their work showing the improvements in latency due to application caching.

In [3] Blaze presents a dynamic hierarchical �le system. Each client can service requests issued

by other clients from the local disk cache. The focus of that work was to reduce server load. Here

we focus on reducing latency through the use of application-level caching; we plan future work to

explore the potential for reduction in server load possible via application-level caching.

Performance bene�ts of cooperative caching have been studied in [4]. Through the use of trace

driven simulations a range of caching algorithms were studied. Their results show that an improve-

ment of 73% in �le read performance can be achieved. Our work extends this study by comparing

cooperative caching with caching at the session and host level, by considering the the resource

demands of all three approaches, and by attempting to de�ne the types of documents that should

be cached at the di�erent levels.

A di�erent approach to reducing server load and latency for distributed information systems,

such at the WWW, is based on the popularity-based dissemination of information from servers to

proxies, which are closer to clients. There are three problems to be tackled for such an approach,

namely what, how far, and in which direction(s) to disseminate. The work in [2] addresses the

�rst two aspects, whereas the work in [8] investigates the third. Supply-based dissemination of

information is complementary to demand-driven caching; the former aims primarily at reducing

tra�c and balancing load (through replication), whereas the latter aims primarily at reducing the

service time (through caching).

5 Conclusion

In this paper we have presented results of a study tracing user accesses to the World Wide Web,

and the results of simulations employing those traces to study caching algorithms for document

transfer systems.

Our trace data shows that a high hit rate is possible in terms of document accesses; however,
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the fraction of bytes that could be found even in an in�nite cache is much lower. This occurs

because a large fraction of documents requested are small, despite the large �le sizes needed for

multimedia. Thus, e�ectively eliminating latency to large, infrequently accessed documents is not

well addressed in this work.

Given the relatively low upper bound for byte-hit rate, we show that session level strategies (the

easiest to implement) can achieve much of the performance bene�t of LAN level strategies (which

require inter-client cooperation). This is shown by the fact that the maximum possible byte-hit

rate results in a document latency reduction of 77% for the LAN level strategy, compared to 64%

achievable using a session level strategy.

When the resource requirements of the three caching levels are considered, the LAN level becomes

much more desirable. LAN level caching consistently requires less cache space to achieve a given

byte-hit rate when compared to host and session level caching. In a wide range (up to 30% byte

hit rate) LAN level caching can perform as well as session or host level caching in approximately

one-fourth the space.

Finally, we consider the recognition of organizational boundaries as an example of the use of

application-level information in the caching process. We show that local documents experience a

higher degree of sharing among clients on our LAN than do remote documents. It is important to

note that while organizational boundaries might be deduced or known at the level of the �lesystem,

the proper response of the caching algorithm might vary depending on the application.

While this study yields a number of insights into application-level document caching, it also

suggests a number of areas of future work. We are beginning a longer term project to study many

of these issues.
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