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Abstract

Inferring both 3D structure and motion of nonrigid

objects from monocular images is an important prob-

lem in computational vision. The challenges stem not

only from the absence of point correspondences but also

from the structure ambiguity. In this paper, a hierar-

chical method which integrates both local patch anal-

ysis and global shape descriptions is devised to solve

the dual problem of structure and nonrigid motion re-

covery by using an elastic geometric model|extended

superquadrics. The nonrigid object of interest is seg-

mented into many small areas and local analysis is per-

formed to recover small details for each small area, as-

suming that each small area is undergoing similar non-

rigid motion. Then, a recursive algorithm is proposed

to guide and regularize local analysis with global in-

formation by using an appropriate global shape model.

This local-global hierarchy enables us to capture both

local and global deformations accurately and robustly.

Experimental results on both simulation and real data

are presented to validate and evaluate the e�ectiveness

and robustness of the proposed approach.

1 Introduction

Estimation of 3D structure and motion from 2D
monocular image sequences has been a central prob-
lem in computer vision for many years. Many studies
have focused on recovering structure from feature cor-
respondences or optic ow by using rigidity assump-
tion. However, the rigidity assumption is inadequate
for representing motions in many real-world examples.
Nonrigid motion is ubiquitous. For instance, most bi-
ological objects are exible and articulated: �ngers
bend, cheeks stretch, neck and body twist, �sh swim,
and trees sway. Nonrigid motion analysis has drawn
signi�cant attention, as it is important in many com-
puter vision problems, and is motivated by numerous
applications. In this paper, our goal is to deal with
the recovery of structure and nonrigid motion from
2D monocular views when the object of interest is un-
dergoing a deformation.

Several e�orts have been made to solve the problem
of structure and nonrigid motion recovery. In general,

the existing methods can be classi�ed into two cate-
gories: the local patch based methods and the model
based methods. The local patch based methods sim-
ply abandon the idea of recovering a whole body de-
scription of the motion, and recover structure on a
patch-by-patch basis in order to cope with nonrigidity
[16, 20]. Unfortunately, using a local description limits
the methods themselves to using only noise-sensitive
local measurements. Consequently, such patch-by-
patch recovery of structure is not likely to be either
very meaningful or robust. On the contrary, the model
based methods utilized prede�ned 3D active shape
models to recover a global description of nonrigid mo-
tion. Essentially, the prede�ned shape models provide
extra constraints which incorporate prior knowledge
about a shape's smoothness and its resistance to defor-
mation. A number of di�erent 3D deformable model
formulations have been proposed and actually used
for the task of structure and nonrigid motion recovery
[19, 15, 13, 14, 8]. Terzopoulos et.al. [19] proposed
a physically based modeling framework and recovered
limited global descriptions (e.g. symmetry axis shape)
from nonrigid motion. Pentland et.al. [15] used �-
nite element method (FEM) models which incorporate
elastic properties of real materials for the recovery of
structure and nonrigid motion. Huang and Goldgof
[8] proposed the adaptive-size physically-based models
for nonrigid shape and motion analysis. Many appli-
cations of model-based structure and nonrigid motion
recovery were also presented [9, 11, 17, 18, 7, 3, 12].
For example, Kakadiaris and Metaxas [9] discussed
the human body tracking, DeCarlo and Metaxas [7]
estimated the shape and motion of human faces with
a deformable model. However, the major limitation
of such methods is that only overconstrained global
shape descriptions of nonrigid motion are recovered
and small details may be ignored or smoothed out.
With the absence of local measurements, it would be
very hard to obtain dense and accurate structure infor-
mation and 3D correspondences, by only using global
shape models. Thus, hierarchical methods which are
capable of capturing both local patch information and
global shape descriptions are very desirable. Authors



in [2] combined local and global analysis and esti-
mated nonrigid motion and 3D structure of hurricanes
(with subpixel accuracy) from a sequence of 2D satel-
lite images. Local analysis within every small area was
�rst performed to get rough initial results, then global
smoothing was applied to obtain accurate hurricane
top heights and motion. However, due to the lack of
the shape model for describing hurricane's uid mo-
tion, their method su�ered from the overconstrained
smoothness assumption and had larger errors in the
areas of hurricane eye and hurricane edge.

In this paper, a novel hierarchical method which in-
tegrates local patch analysis and global shape descrip-
tions is devised to solve the dual problem of structure
and nonrigid motion recovery by using an elastic ge-
ometric model|extended superquadrics (ESQ). The
nonrigid object of interest is segmented into many
small areas and local analysis is performed to re-
cover small details for each small area, assuming that
each small area is undergoing similar nonrigid mo-
tion. Then, a recursive algorithm is proposed to guide
and regularize local analysis with global information
by using an appropriate global ESQ model. This
local-global hierarchy enables us to capture both lo-
cal patch and global shape deformations accurately
and robustly. The rest of the paper is organized as
follows: Section 2 formulates the local patch analysis
and Section 3 introduces a set of global shape con-
straints based on extended superquadric (ESQ) mod-
els. In Section 4, local patch analysis is integrated with
global shape constraints by a recursive algorithm. Ex-
perimental results on both simulation and real image
sequences are demonstrated to validate and evaluate
the e�ectiveness and robustness of the proposed ap-
proach in Section 5. Finally, conclusions and future
work are presented in Section 6.

2 Tracking Local Patches
Due to the extremely varying nature of nonrigid

motion, di�erent kinds of motion such as bending, ex-
pansion, and contraction, can be found locally within
one nonrigid object. For instance, it was found that
in facial motion, the motion of cheeks, lips, and so on,
correspond to di�erent kinds of nonrigid motion [5].
Consequently, local patch tracking is very necessary
in order to capture small details of objects' deforma-
tions by some local measurement techniques.

Ideally, one would like to segment the nonrigid ob-
jects appropriately and track consistent nonrigid mo-
tion locally within each segmented region. However,
the segmentation itself is an extremely hard problem.
In this paper, we segment the whole nonrigid object
evenly into several small areas. For each small area,

if the area is small enough, say 3 � 3 pixels, we can
assume that this small region is undergoing nonrigid
motion according to the same nonrigid motion model.

2.1 Local Nonrigid Motion Model

A key component of the local patch analysis is
de�ning a good nonrigid motion model for each small
area. Di�erent motion models such as isometric mo-

tion, homothetic motion, conformal motion etc., have
been employed in the past. In this paper, since there
is no any prior knowledge about the object's motion
behaviors, a�ne motion model is chosen because a�ne
motion model is a general nonrigid motion model and
has more power in describing nonrigid motion.

With the a�ne motion model, we have
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Since the dual problem of structure and nonrigid mo-
tion recovery is a very ill-posed problem and it is
under-constrained in terms of unknowns that needed
to be estimated, more constraint equations are nec-
essary to make the algorithm robust. In this paper,
we assume that the nonrigid motion within each small
area is consistent not only spatially but also tempo-
rally. Thus, we have
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where �i is a scaling factor between successive frames
in order to compensate for possible deviations of tem-
poral scale.

Eq. 2 describes objects' motion behaviors in the
3D space. When Pl

i is projected to the 2D image
coordinate under perspective projection, the following
equations can be easily derived:
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where (Xl
i; Yl

i) is in the image coordinate and
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k
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Eq. 5 represents the constraint equation for tracking a
point across a sequence of images using a�ne motion
model.

2.2 Local Motion Model Fitting

Given the a�ne motion formulation for each small
area, the remaining problem for local patch tracking
is to �t all the unknowns in Eq. 5 by using 2D optical
ow measurements, Vo(ul

i; vl
i), as input data. In this

paper, Levenberg-Marquardt non-linear optimization
method is utilized to accomplish this task.

With optical ow vectorsVo(ul
i; vl

i) as input data,
a least-square EOF function can be de�ned by the sum
of the square distance between the optic ow vectors
and the 2D perspective projection of the a�ne ow
vectors obtained by Eq. 5:
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By minimizing Eq. 7, the object's nonrigid deforma-
tion within each local patch can be initially estimated,
given the observed optical ow vectors.

In this paper, we will only analyze the case where
the object's range data at time t = 0 is known. Then,
the depth unknowns in the �rst frame can be elimi-
nated by �xing them with the available range data.
Actually, this is a very important step to ensure our
algorithm's robustness and convergence. When per-
forming 3D nonrigid motion tracking based on only
2D information with no prior knowledge of the non-
rigid objects, very limited depth information or con-
straints are available. Without a good initial depth at
the �rst frame, it is almost impossible to get a robust
and meaningful tracking. On the other hand, in prac-
tical monocular vision systems, the determination of
initial object 3D information can be achieved by some
speci�c system initialization routines. For example,
during the system initialization, the object of interest
is asked to rotate rigidly or the system camera rotates
around the object in order to recover the object's ini-
tial 3D information. Such techniques have been suc-
cessfully utilized in some commercial vision systems
and research has been done on this particular issue
of structure from controlled motion estimation [4, 6].
Since we are concerned with the estimation of nonrigid

motion and structure from monocular images. In this
paper, we do not deal with the determination of ini-
tial object 3D information. Rather, we use the initial
depth assumption for our particular purpose.

3 Global Shape Constraints

With local patch analysis, our algorithm is capable
of capturing small details of the object's deformation.
However, local measurements are very noise-sensitive
and there may be heavy over-�tting involved in the lo-
cal motion model optimization. It is clear that it will
not be enough to robustly and precisely track struc-
ture and nonrigid motion only by local patch analy-
sis. Global constraints are necessary in order to limit
possible nonrigid behaviors and regularize the locally
tracked nonrigid motion and structure.

In the literature of computer vision, di�erent kinds
of shape models have been proposed as global descrip-
tions of nonrigid motion [10, 19, 15, 13, 14, 8]. With
global shape models, speci�c global constraints can be
de�ned to guide the local nonrigid motion analysis by
rejecting bad hypotheses (point with \wrong" struc-
ture or \wrong" motion). A well-suited global shape
model will be very bene�cial for the problem of struc-
ture and nonrigid motion analysis. In this section, we
�rst shortly review the existing nonrigid shape mod-
els. Then, a set of global shape constraints is pro-
posed based on a novel geometric model, extended su-
perquadrics (ESQ), for our purpose of structure and
nonrigid motion recovery.

3.1 Nonrigid Shape Models

Most of the existing shape models can be classi-
�ed into three major families: physics-based models,
stochastic models, and geometric models. These mod-
els govern themselves with particular types of con-
straints and demonstrate both exibility and regular-
ity. Physics-based models exploit the physical prop-
erties of objects to describe their nonrigid behav-
iors. Deformations are the results of applying external
and/or internal forces to these models. Due to their
underlying consistency with real-worldmotion dynam-
ics, promising results can be obtained by using these
models. However, the measurement of the physical
properties is a very hard problem and physical dy-
namics usually involves heavy computational expense.
For stochastic models, correlation between motions of
di�erent parts is extracted to reduce the dimension of
searching space. But these models usually require ex-
tensive training to acquire accurate knowledge of the
motion. Geometric models model both global and lo-
cal deformations by adjusting a set of control points or
control parameters. Nonrigid motion tracking can be



accomplished by some simple and e�cient represen-
tations. However, geometric models deform only ac-
cording to their own geometric properties and realistic
deformations can not be modeled precisely. In this pa-
per, since our purpose is to have a global description
of nonrigid motion in order to regularize the locally
recovered details, it is not necessary or important to
have the global shape model capture all the motion
details. In this sense, we prefer geometric models due
to their simplicity and e�ciency.

Authors in [1] proposed a novel geometric shape
model called extended superquadrics (ESQ). ESQ rep-
resentations can model non-symmetrical shapes be-
cause they extend the exponents of superquadrics to
functions of latitude angle and longitude angle in
the spherical coordinate system. They also maintain
many desired properties of superquadrics such as com-
pactness, controllability, and intuitive meaning, which
are all advantageous for shape modeling, reconstruc-
tion, and motion analysis. In this paper, a set of global
shape constraints are de�ned based on the extended
superquadric model for the dual problem of structure
and nonrigid motion analysis.

3.2 ESQ Based Global Constraints

Extended superquadrics are an extension of su-
perquadric models. They are de�ned by a set of points
x(x; y; z) satisfying the equations as following.

x =
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where �p , �p represent the latitude and longitude an-
gles respectively in the spherical coordinate system,
and �s, �s represent the superquadric angles. The ex-
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where P1i and P2i are the control points, and the Bn
i

are the Bernstein polynomials of degree n,

Bn
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Whereas the exponents of superquadrics are con-
stants, the extended superquadrics have exponents
changing according to �p and �p. Since the expo-
nents, f1(�p) and f2(�p), are two relative shape pa-
rameters (f1(�p) is the squareness parameter along

Figure 1: A sample of shapes that can achieved by
deforming an initial spherical shape randomly using
its 19 control points.

the z axis and f2(�p) is the squareness parameter in
the x-y plane), local deformations can be easily ob-
tained by adjusting the corresponding control points
in both exponent functions. Furthermore, it is even
not necessary for the control points to be evenly dis-
tributed in the exponent functions. Instead of using
one B�ezier curve for each exponent function, several
B�ezier curve segments with common endpoints can be
utilized. More control points can be de�ned for the
area with a lot of local details, while less control points
can be de�ned for other areas in an adaptive way. This
property is extremely important for modeling complex
nonrigid objects with economical number of parame-
ters. Fig. 1 shows a sample of shapes that can be
achieved by deforming an initial spherical shape ran-
domly using its 19 control points. As can be seen,
a wide range of nonrigid motions and their resulting
shapes can be produced with relatively few control
points.

Based on ESQ global shape models, a set of global
shape constraints can be de�ned to further guide the
local patch tracking process. In this paper, a model
force is simply de�ned as

EMl
i =

1� F i(Pl
i)
2 ; (12)

where F is the inside-outside function of ESQ models,
as shown in Eq. 13.

Clearly, with Eq. 12, over-�tted or local noise re-



F (x) =

"�
x

a1

� 2

f2(tan�1( yx )) +

�
y

a2

� 2

f2(tan�1( yx))
# f2(tan�1( yx ))

f1

�
tan�1

�
zp

x2+y2

��
+

�
z

a3

� 2

f1

�
tan�1

�
zp

x2+y2

��
: (13)

sults will be rejected since they may be \far" away
from those predicted by the global shape models. In
the next section, we will discuss the methodology to
integrate the global shape constrains into the local
patch analysis.

4 Integrating Local Patch Analysis

with Global Shape Constraints

Having de�ned a model force by using the global
ESQ models, the remaining problem is to integrate lo-
cal patch tracking with global shape constraints. How-
ever, the ESQ shape models for every frame are un-
known initially. An ESQ shape model should be re-
covered for every frame in the �rst stage.

4.1 ESQ Shapes Fitting with An Elastic
Force

Since a set of initial results will be available after
local patch tracking, they can be utilized to �t the
global ESQ models for every frame. Authors in [1]
have discussed the methodology for ESQ model �t-
ting. An error-of-�t function was �rst de�ned using
the inside-outside function of ESQ. Then, the �tting
of ESQ parameters was accomplished by a hierarchical
nonlinear optimization. However, since the initial lo-
cally tracked results usually consist a lot of noise in z

�eld due to the depth ambiguity, the �tting techniques
discussed in [1] will be insu�cient. More constraints
are necessary in order to alleviate the inuence of the
noise data. In this paper, an elastic force is de�ned
according to the small elastic motion assumption.

As we know, for elastic objects, the neighborhood
relationship between points will never change during
motion, i.e. local elements can only deform smoothly
and continuously. Thus, there exists no abrupt change
in the latitude and longitude angles for all the points
on elastic objects during small elastic motion. For
instance, when elastic objects uniformly expand or
contract, the latitude and longitude angles of all the
points will not change at all. Based on this observa-
tion, an elastic force can be de�ned as

EEl
i =

�li+1 � �l
i
2 + �li+1 � �l

i
2 ; (14)

where �l
i, �l

i represents the latitude and longitude
angles for point l in the ith frame. With the elas-
tic force, a new EOF function for the ESQ �tting (in
frame i) can be easily de�ned by adding EEl

i to the
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Figure 2: Fitting global ESQ with elastic force for
frame i.

EOF function de�ned in [1],

�2esq =

N dataX
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1� F (xj)
f1
2 +EEl
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The advantage of Eq. 15 is that the latitude and
longitude angles can be computed only from the x, y
information and the hypothesized ESQ model, which
means that the new de�ned EOF function puts more
weights on the locally recovered x; y information than
the z information. Fig. 2 illustrates the strategy. In
this paper, we experimentally found that Eq. 15 works
very well for our particular purpose. Since only 2D op-
tical ow measurements are utilized as input data, the
x; y information in the initial results are more mean-
ingful and useful than the initially obtained z infor-
mation. It would be, of course, unfair to treat them
equally. Eq. 15 actually provides a reasonable way to
capture the di�erence.

4.2 Adaptive Weights

Once the global ESQ models are �tted for every
frame, the model force de�ned in Eq. 12 can be uti-
lized to guide and regularize the local nonrigid motion
tracking. However, simply including the model force
into Eq. 7 with a constant weight will be biased be-
cause the �tted global ESQ models cannot describe
every detail of the nonrigid object perfectly. At those
places where the global shapes cannot provide a good
estimation, the model force will be less meaningful.
Hence, the model force must have an adaptive weight
which should be selected according to the exactness of
the global shape models. In this paper, the residual
errors after the ESQ model �tting are utilized to con-
struct such an adaptive weight because they actually



reect the di�erence between the �tted ESQ shape
models and the initial results. Although the residual
errors may not provide a very accurate assessment,
they are very simple and found to work very well in
our particular situation.

With the residual errors, the global shape con-
straints can be integrated into local patch analysis by
modifying Eq. 7 as
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and el
i is the residual error for point l in frame i when

minimizing Eq. 15. It should be noted that the adap-
tive weight scheme essentially relaxes the global shape
constraints at places where the objects have small de-
tails, thus giving the local patch analysis more exi-
bility.

4.3 A Recursive Algorithm

In the previous scheme, we presented a scheme
to guide local patch tracking with global shape con-
straints. Since the optimal results often cannot be
achieved in just one step, we propose a recursive al-
gorithm which estimates global ESQ parameters and
performs local tracking iteratively until the recovered
structure and nonrigid motion converge to a stable
solution. A single step of the recursive algorithm in-
cludes local patch tracking according to the current
global ESQ shapes, updating the previous motion and
structure results, and �tting a new set of ESQ shape
models to the updated results. Based on the di�erence
between the current results and the previous results,
it is very easy to decide whether the algorithm con-
verges to a stable solution. The complete algorithm is
shown in Algorithm 1.

Intuitively, the recursive algorithm retrieves useful
information (global ESQ shapes) under some proper
constraints from current results and then uses the in-
formation as global constraints for the next iteration's
optimization. A solid theoretical study of the conver-
gence properties of the recursive algorithm is yet to
be made, but the experimental results in Section 6
show the desired convergence in both the simulation
and real-world applications. Fig. 3 presents the ini-
tial results (without global shape constraints) and the
results after nine iterations for frame 10 in the simula-
tion experiments. It is clear that the initial recovered
structure and motion have a lot of noise and change
dramatically from one small area to the other while

Algorithm 1: A Recursive Algorithm for Hierarchi-
cal Structure and Nonrigid Motion Analysis

begin

for i := 1 to n Areas step 1 do
minimize Eq. 7 and do local patch tracking
to get initial results for small area i;

choose arbitrary initial s of large magnitude;
while ksk is greater than some threshold do

�t ESQ parameters for every frame from the
current results;
for i := 1 to n Areas step 1 do

minimize Eq. 16 (with global shape
constraints) to get a new set of results
for small area i

calculate the di�erence s between the current
results and the previous results;

end

(a) (b)

Figure 3: Comparison of the results without and with
global shape constraints: (a) locally tracked initial re-
sults; (b) results after nine iterations with global shape
constraints.

the results after incorporating global constraints look
very smooth and reasonably correct.

5 Experimental Results

Experiments on both simulation and real image se-
quences have been performed. The simulation image
sequences are generated by using Open Inventor in
SGI workstation. The main purpose of the simulation
experiments is to quantitatively evaluate the e�ective-
ness and accuracy of our algorithm since the ground
truth for the simulation data is available. Fig. 4(a)
shows a simulation image sequence in which a sphere
deforms nonrigidly. In order to test the capability
of our algorithm in tracking small local details, some
small arti�cial pits and bumps are added to the sphere
surface. Nine iterations were performed with our re-
cursive algorithm. The recovered dense structure and
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Frame 10

Figure 4: (a): A simulation image sequence generated
by Open Inventor (Note that the texture of the �rst
frame is removed in order to show the arti�cial pits
and bumps clearly); (b) The estimated dense structure
for the sphere.

nonrigid motion (2D projection in the x�y plane) are
shown in Fig. 4(b) and Fig. 5 respectively. As can be
seen, the structure and motion of the nonrigid sphere
was successfully tracked. Fig. 6 shows the mean errors
of our results when compared with the ground truth at
every frame. Our results are very encouraging, with
the mean errors of around 0.57 pixel for the motion
and 0.02{0.1 pixel for the structure. Also, it can be
noted that although the global ESQ models cannot
model the sphere well at the small pits and bounds,
local analysis enable us to capture these small details
and track them reliably.

We now present experiments on real image se-
quences. The real image sequences were captured in
a poorly illuminated environment because we want to
test our algorithm with a noisy optical ow as input
data. Fig. 7(a) shows a real sequence, in which the
subject made an expression and large motion can be
seen at the lips and the chin. Fig. 7(b) shows the esti-
mated dense structure of the face and Fig. 7(c) shows
the rendered images of the recovered 3D faces. Un-
fortunately, a quantitative validation cannot be per-
formed for the real image sequence since the ground
truth is not available. However, veri�cation can be
performed via visual inspection and qualitative eval-
uation. When manually comparing the facial motion
presented in the input 2D images and the recovered
3D motion correspondences, it is found that the fa-
cial motion were tracked quite correctly and the esti-
mated 3D face structure is similar to the face in the
original imagery. Particularly, the motion and struc-

Figure 5: 2D projection of the recovered nonrigid mo-
tion for the simulation sequence.
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Figure 6: (a): Mean errors of the estimated structure
compared with the ground truth at every frame; (b):
Mean errors of the estimated motion compared with
the ground truth at every frame.

ture at the lips and the chin are also tracked success-
fully despite the presence of the large motion. To a
substantial extent, this accuracy is attributable to the
local-global hierarchy presented in our algorithm. The
global shape constraints enable us to re�ne and reg-
ularize the nonrigid motion and structure even with
poor quality input data while local patch tracking cap-
tures all the small details of the nonrigid objects.

For more results and animations, please refer to
our video demo (410-1.mpg). This demo includes six
animations. The �rst part is a simulation sequence,
followed by the estimated 3D nonrigid motion and
dense structure, presented in the second and the third
part. Then, we show the real experimental results.
The fourth animation presents a real sequence. The



(a)

(b)

Frame1 Frame5 Frame10

Frame1 Frame5 Frame10

(c)

Figure 7: (a): A real image sequence; (b): Estimated
dense structure of the face; (c): Rendered images of
the recovered 3D faces.

�fth one shows the recovered 3D motion while the last
one shows the estimated dense structure.

6 Conclusions and Future Work

This paper motivates and implements a new hier-
archical method for the problem of structure and non-
rigid motion recovery by using 2D monocular images.
This method has shown promise in capturing both
global and local nonrigid deformations. Dense struc-
ture and 3D correspondences are estimated to subpixel
accuracy. Experiments on simulation and real image
sequences con�rm the e�ectiveness and robustness of
the proposed algorithm. Our future work will focus on
parallel implementations in order to construct a real-
time structure and nonrigid motion tracking system.
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