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Abstract

Current risk assessment methodologies separate the analysis of market and credit risk
and thus misestimate security and portfolio risk levels. We propose a new approach that
relates financial market volatility to firm specific credit risk and integrates interest rate,
interest rate spread, and foreign exchange rate risk into one overall fixed income
portfolio risk assessment. Accounting for the correlation between these significant risk
factors as well as portfolio diversification results in improved risk measurement and
management. The methodology is shown to produce reasonable credit transition
probabilities, prices for bonds with credit risk, and portfolio value-at-risk mea-
sures. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Risk assessment methodologies seek to assess the maximum potential change
in the value of a portfolio with a given probability over a pre-set horizon
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resulting from changes in market factors, credit risk, and liquidity risk. The risk
in owning a portfolio of risky fixed income securities is a function of changes
in the risk-free term structure (interest rate risk), macroeconomic or market
conditions which affect the overall risk premium of an asset class (spread risk),
foreign exchange rates (FX risk), and the credit quality of the assets in the
portfolio (credit risk). We will use the term market risk to refer to the aggregate
impact of interest rate, interest rate spread, and FX risk.

The current practice is to undertake market and credit risk assessments
separately. Combining such separate risk measures into one overall portfolio
risk measure is not easily accomplished. The absence of reliable overall port-
folio risk measures creates problems determining capital adequacy require-
ments, capital-at-risk measures, hedging strategies, etc.

Given the correlated nature of credit and market risk (Fridson et al., 1997),
the importance of an integrated risk assessment methodology seems apparent.
To address the above risk measurement problem we develop a diffusion-based
methodology for assessing the value-at-risk (VaR) of a portfolio of fixed in-
come securities with correlated interest rate, interest rate spread, exchange rate,
and credit risk. This is accomplished by simultaneously simulating both the
future financial environment in which financial instruments will be valued and
the credit rating of specific firms. The fundamental basis of this methodology
is the contingent claims analysis (CCA) proposed by Merton (1974) with a
number of stochastic financial environment variables. Appropriately calibrated
for the volatility of the period and firms to be studied the simulation meth-
odology developed in this paper is shown to produce reasonable credit tran-
sition probabilities, valuations for bonds with credit risk, and portfolio VaR
measures including the marginal impact of each risk factor. The model has the
potential to be extended to undertake financial institution asset and liability
risk assessments as well as financial system systemic risk assessments (see
Barnhill et al., 2000).

Overall portfolio risk in this model is a function of six types of underlying
correlated and uncorrelated stochastic variables including interest rates, in-
terest rate spreads, FX rates, returns on equity market indices (i.e. systematic
risk), firm specific equity returns (i.e. unsystematic risk), and default recovery
rates. Given the number of significant variables and the complexity of the re-
lationships a closed form analytical solution for portfolio VaR is not available.
Therefore, we use a numerical simulation methodology.

As an overview, both the future financial environment in which the asset will
be valued and the credit rating of specific firms are simulated. The financial
environment is represented by eight correlated (approximately) arbitrage-free
term structures of interest rates (United States Treasury, Aaa,..., Caa-C), a
single FX rate (e.g. Japanese yen), and a set of 24 equity market indices rep-
resenting various sectors of the economy (in practice any number of term
structures, FX rates, and equity indices could be simulated). The correlated
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evolution of the market value of the firm’s equity, its debt ratio, and credit
rating are then simulated in the context of the simulated financial environment.
The structure of the methodology is to select a time step over which the sto-
chastic variables are allowed to fluctuate in a correlated random process. The
firm specific equity returns and security specific default recovery rates are as-
sumed to be uncorrelated with each other and the other stochastic variables.
For each simulation run a new financial environment (correlated interest rate
term structures, FX rate, and market equity returns) as well as firm specific
market value of equity, debt ratio, credit rating, and default recovery rates are
created. This information allows the correlated values of financial assets to be
estimated, and after a large number of simulations, a distribution of portfolio
values is generated and analyzed. A similar methodology has been applied to
portfolios containing mortgages, variable rate loans, other fixed income secu-
rities, equities, real estate, and derivative securities (Barnhill et al., 2000).

The paper is organized in the following manner. First, a review of current
credit risk and market risk analysis methodologies is provided. Second, the
model for integrating market and credit risk is developed as well as discussion
of how the parameters necessary for the model are empirically estimated.
Third, the simulated credit transitions for representative bonds are compared
to historical transition matrixes, bond valuation tests are performed, and the
simulation methodology is used to assess integrated credit and market risk for
various portfolios. Simulated and historical portfolio risk analyses are com-
pared. Finally the conclusions are given.

2. Credit risk analysis

Two general methodologies have been developed to price debt instruments
subject to credit risk and in some cases correlated interest rate and credit risk.
The contingent claims methodology models the asset value of the firm as a
stochastic process and prices the debt as an option on the value of the firm
(Merton, 1974). Longstaff and Schwartz (1995) extend this methodology to the
pricing of debt instruments facing correlated interest rate and credit risk. In the
diffusion models, the value of a firm’s bond is a function of the underlying asset,
the total firm value, the volatility of the firm’s value, and the term structure.
While this is a theoretically tractable methodology, it does not produce results
consistent with the observed short-term credit spreads. This limitation led to the
development of a second general methodology, referred to as reduced form
models or hazard rate models (Jarrow et al., 1997; Das and Tufano, 1996;
Madan and Unal, 1998; Duffie and Singleton, 1997, 1999). The reduced form
models assume fixed probabilities for credit quality changes and a fixed recovery
rate in the event of default. While these models produce more realistic short-term
credit spreads, there is no underlying theoretical model driving bond prices.
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Credit risk analysis assesses the impact of stochastic changes in credit
quality (including default) on the value of a fixed income security or a portfolio
of fixed income securities. This requires estimating the probability of financial
assets migrating to different risk categories (bond rating) over a pre-set hori-
zon. The values of the financial assets are then estimated for each possible
future risk category using forward rates from the current term structure ap-
propriate for each risk class. There are currently a number of different packages
available to assess credit risk including CreditMetrics™, CreditRisk+™,
Credit View, Loan Analysis System (LAS), and ValueCalc™ (Barnhill, 1998).
Altman and Saunders (1998) develop an analytical model that relies on the
Altman (1993) Z” score to determine the probability of default over time.
Jarrow et al. (1997) develop a model based on historical transition probabili-
ties, which follow a Markov process, to price bonds. This methodology can
also be applied for credit risk assessment.

Jarrow et al. (1997) decomposes fixed income instruments into zero-coupon
bonds. By assuming the bond is held to maturity, the authors collapse the
problem of credit risk into only two states of nature, default or not default. If
the payoff in default is known with certainty, the value of a zero-coupon risky
bond can be represented in continuous time as

Vi=p(Ce™) + (1 —p)(De™), (1)

where 7] is the value of the zero-coupon bond at time ¢, p, the probability of not
defaulting at time ¢, C, the cash flow (principal repayment) on the zero-coupon
bond at time ¢, » the interest (discount) rate at time ¢, and D, the value of the
bond in default at time ¢. Since p, and D, are assumed to be certain, the ap-
propriate discount rate is the risk-free rate at time ¢.

2.1. Credit event

Credit risk is sometimes thought of as the probability of default. However,
this definition of credit risk views the bond in only two states: defaulted or not
defaulted. In the more complex setting necessary to price bonds that may be
sold before maturity, credit risk is a continuum with multiple states with each
state representing an associated probability of default. Hence, temporal credit
risk is a function of the probability of a change in the value of the bond as-
sociated with a transition in the probability of default over time, and credit risk
can be either a positive or negative shift. A positive credit change decreases the
likelihood of the bond defaulting and is commonly related to an increase in the
bond’s rating and value, an upgrade. A negative credit event is related to either
default or a downgrade, which can lead to a significant loss in the value of the
bond. The significance of credit ratings is evident by the importance third
parties and financial regulators place on them for assessing the risk of financial
institutions, mutual funds, and pension funds.
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Clearly some caution is in order when utilizing credit ratings. First, credit
rating changes lag market pricing (Ederington et al., 1987). Second, credit
ratings attempt to assess the overall credit risk of a fixed income security, and
to do this they combine both the probability and severity of default into a
single measure. This impedes the comparison of bonds across seniority classes
and can lead to some confusion. For example, a senior secured Ba bond likely
has a higher probability of default than a junior subordinated Ba bond. The
senior secured bond has less credit risk in the event of default because on
average it will have a higher recovery rate. Thus for the senior secured bond to
be rated the same as the junior subordinated bond, the other component of
credit risk, the probability of default, must be greater.

2.2. Credit risk

Changes in bond ratings reflect changes in the perceived ability of the firm to
meet its financial obligations. Such credit quality changes may result from
changes in macroeconomic conditions (systematic risk) or from changes in the
unique financial condition of the firm (unsystematic risk). The correlated im-
pacts of macroeconomic factors on the credit quality of many firms imply a
correlation in credit risk across firms in various industries as well as a corre-
lation between market and credit risk. The simulation methodology developed
in this paper captures such correlations.

An analysis of the effect of a shift of one rating category on the value of a
bond is provided in Table 1. Non-callable term structures, estimated for 12/31/
98, are used in this example. The significance of a credit event on the value of a
bond is apparent. This is especially true as credit rating declines. A credit
migration from Aaa to Aa for a five-year bond decreases the value of the bond
by 0.96% while a credit migration from B to Caa decreases the value of the
bond by 16.53%. The comparison in Table 1 of the effect of credit migration
between the five- and ten-year bonds, as well as the discrepancy of the change
in the price based upon an upgrade versus a downgrade, demonstrates the
effect of duration and convexity on credit risk.

2.3. Transition matrixes

To assess credit risk each possible credit transition must be associated with a
probability. One method to project future transitions is to rely on historical
transition probabilities (see Jarrow et al., 1997; CreditRisk+, 1997). Moody’s
Investor Service and Standard & Poor’s are two of the most prominent firms
that compile historical probabilities of credit transition by rating category. For
this study, Moody’s transition matrixes ' are utilized for comparison to our

! See Carty and Lieberman (1996).
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Table 1

Changes in bond values resulting from rating changes
Rating category Aaa Aa A Baa Ba B Caa
Five-year bond yield 0.0509 0.0531 0.0555 0.0600 0.0879 0.1034 0.1501
Downgrade to next category 99.04 98.96 98.07 88.75 93.97 83.47 34.00
% change downgrade -096 —-1.04 -193 —-11.25 —-6.03 —16.53 —66.00
Upgrade to next category n.a. 100.96 101.05 101.95 111.96 106.25 118.16
% change upgrade n.a. 0.96 1.05 1.95 11.96 6.25 18.16
Ten-year bond yield 0.0543  0.0575 0.06 0.0649  0.0966 0.1143 0.21
Downgrade to next category 97.56 98.12 96.39 79.53 89.35 56.38 34.00
% change downgrade —244 —-1.88 —-3.61 2047 -10.65 —43.62 —66.00
Upgrade to next category n.a. 102.47 10190 103.69 123.37 111.43 157.60
% change upgrade n.a. 2.47 1.90 3.69 23.37 11.43 57.60

The change in the value of the bond is calculated by changing the required yield to maturity to that
of the adjacent rating category. Bond yields to maturity are estimated as of 12/31/98. Bonds are
assumed to initially be priced at PAR (100). For example, a five-year Ba bond priced at 100 would
be priced at 93.97 if downgraded to B, or it would be priced at 111.96 if upgraded to Baa.

simulated transition probabilities. Given the Carty and Lieberman (1996)
finding of no systematic bias in the withdrawn category between upgrades and
downgrades, the transition matrixes given in Table 2 are adjusted to eliminate
the withdrawn category.

Utilizing a historical transition matrix to assess credit risk has a number of
problems. For example, Fridson et al. (1997) found a relation between mac-
roeconomic conditions and default probability. Thus credit transition proba-
bilities differ considerably during economic recession and expansion. In
addition, we believe that to accurately assess overall financial risk a method-
ology must account for correlated market and credit risk across an entire
portfolio of assets. This is difficult to achieve using historical transition ma-
trixes. The method presented in this paper relates the value of a firm’s equity
and ultimately its credit rating systematically to the simulated returns on equity
indices for various sectors of the economy. In this way credit transition
probabilities are systematically related to economic expansion and contraction
as well as being correlated with changes in other financial environmental
variables (e.g. interest rates, FX rates, etc.).

2.4. Recovery rates in the event of default

In the case of default, the distribution of recovery rates must also be
modeled. Carty and Lieberman (1996) and Altman and Kishore (1996) con-
clude that average recovery rates increase with the seniority and security of the
bonds. However, within a seniority class there is a wide distribution of realized
recoveries. Additionally, Altman and Kishore (1996) found some indication
that recovery rates may be a function of industry. Given the large standard



T.M. Barnhill Jr., W.F. Maxwell | Journal of Banking & Finance 26 (2002) 347-374 353

Table 2

Moody’s transition matrixes adjusted for withdrawn ratings (1920-1996)
Initial Aaa Aa A Baa Ba B Caa-C Default
rating
Probability of rating after one year
Aaa 92.28% 6.43% 1.03% 0.24% 0.02% 0.00% 0.00% 0.00%
Aa 1.28%  91.68% 6.09% 0.70% 0.17% 0.02% 0.00% 0.06%
A 0.07% 2.45%  91.59% 4.97% 0.67% 0.11% 0.02% 0.13%
Baa 0.03% 0.26% 4.19%  89.41% 5.07% 0.66% 0.07% 0.30%
Ba 0.01% 0.09% 0.43% 5.09%  87.23% 5.47% 0.45% 1.23%
B 0.00% 0.04% 0.15% 0.67% 6.47%  85.32% 3.44% 3.90%

Caa—C 0.00% 0.02% 0.04% 0.37% 1.38% 5.80%  78.78% 13.60%

Probability of rating after three years

Aaa 81.64%  13.93% 3.26% 0.75% 0.36% 0.02% 0.00% 0.03%
Aa 3.09%  78.67%  14.54% 2.53% 0.76% 0.09% 0.02% 0.29%
A 0.18% 5.80%  80.42%  10.26% 2.19% 0.45% 0.07% 0.63%
Baa 0.08% 0.76%  10.26%  75.43% 9.55% 2.12% 0.26% 1.54%
Ba 0.05% 0.25% 1.62%  12.14%  69.19%  10.59% 1.44% 4.72%
B 0.01% 0.10% 0.44% 2.26%  13.67%  65.88% 5.60% 12.04%

Caa-C 0.00% 0.00% 0.03% 1.04% 3.88% 10.12%  56.79% 28.14%

To examine if credit transitions are Markov and as benchmark for the transition probabilities
generated using a CCA, Moody’s historical transition probabilities are reported (Carty and Lie-
berman, 1996). Carty and Lieberman find no bias in the withdrawn category. Thus, the transition
probabilities are adjusted for bonds that have had their ratings withdrawn by Moody’s.

deviation of realized recovery rates, > in our proposed simulation the default
recovery rate is modeled as a stochastic variable drawn from a beta distribu-
tion, which allows the recovery rate to fall within 0% and 100% while main-
taining an assumed mean and standard deviation.

2.5. Utilizing transition matrixes and recovery rates to value bonds before
maturity

Table 3 gives an example of a standard credit risk calculation for a ten-year
B-rated bond trading with an initial PAR value of $1000. The value of the cash
flows from the bond (price of the bond at r = 1 plus the coupon payment) is
calculated at a one-year time step assuming the implied forward rates from the
current term structure are the actual arrived at spot rates. The distribution of
possible values multiplied by the probability of arriving at that credit quality is
the mean expected value of the bond at the end of one year, $1,054.66 in this
example. The standard deviation of the bond’s value at the end of one year,
$174.12, can then be easily calculated. Confidence levels can also be calculated

2 See Carty and Lieberman (1996) and Altman and Kishore (1996).
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Table 3
Credit risk analysis for a ten-year B-rated bond
Probability = Coupon Bond Bond plus Prob. Change
of transition value coupon value weighted from
(%) t=1 t=1 mean
Aaa 0.00 $117.61  $1,432.45 $1,550.06 $- $495.39
Aa 0.04 $117.61  $1,400.63 $1,518.23 $0.61 $463.57
A 0.15 $117.61  $1,377.47 $1,495.07 $2.24 $440.41
Baa 0.67 $117.61  $1,333.98 $1,451.59 $9.73 $396.92
Ba 6.47 $117.61  $1,084.28 $1,201.89 $77.76 $147.22
B 85.32 $117.61  $972.12  $1,089.73 $929.76  $35.06
Caa 3.44 $117.61  $501.89  $619.50 $21.31 $(435.17)
Default 3.90 - - 340 $13.26 $(714.66)
Average $1,054.66
Std. dev. $174.12
99% confidence level $340.00
95% confidence level $619.50

A sample of a standard credit risk analysis for a B-rated bond with a ten-year maturity with an
initial PAR value of 1000 is provided. The probability transitions are from Moody’s one-year
transition matrix. The spot and implied forward rates are estimated from the 12/31/98 yield curve.
The cash flows from the bond (price + coupon) are revalued at the end of the first year utilizing the
implied forward rates as of 12/31/98. Since the yield curve is upward sloping in this example, the
value of the bond at the end of the first year is worth less than its original value even if the bond
stays in the same rating category.

in this framework by determining the level at which a cumulative percentage
exceeds the confidence level. The cumulative percentage exceeds 95% when the
bond is rated Caa ($619.50) and 99% when the bond is in default ($340.00).
Similar to Jarrow et al. (1997), the analysis given in Table 3 assumes that the
credit transition probabilities and recovery rate in default are deterministic.

3. An integrated model of correlated market and credit risk

In this section, the simulation model for estimating correlated market and
credit risk is developed. We believe it is necessary to simultaneously simulate
the future financial environment in which bonds will be valued and the cor-
related evolution of the credit quality of the financial instruments to fully
evaluate the risk characteristics of instruments and portfolios. This model is a
modification and extension of the diffusion models developed by Merton (1974)
and Longstaff and Schwartz (1995), applied to a multi-asset portfolio.

The price of a fixed income security is a function of the term structure for that
asset. For current demonstration purposes, we have eight mutually exclusive
asset classes (Aaa,. . ., Default) into which a bond may fall. The term structures
for each asset class (excluding the default category) is a stochastic variable.
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The simulation of bond credit rating is undertaken in a reduced form of the
CCA framework. As developed by Black and Scholes (1973) and more ex-
plicitly by Merton (1974) the firm’s stockholders hold a call option on the firm
and the debt ratio is a measure of how far the call option is in the money. In
addition to a number of standard efficient market assumptions the CCA
framework assumes that the dynamics for the value of the firm, V, through
time can be described by a diffusion-type stochastic process with the stochastic
differential equation

AV = (a¥ — C)dt + oV dz, )

where o is the instantaneous expected rate of return on the firm per unit time, C
the total dollar payout by the firm per unit of time to either its shareholders or
liabilities holders, ¢? the instantaneous variance of return on the firm per unit
of time, and dz a standard Gauss—Wiener process.

We relax and modify some of the standard assumptions found in the CCA
framework and make some additional assumptions as follows:

Assumption 1. The value of debt in the debt ratio refers to the face value of the
debt, which is the cash flow due at maturity of the bond.

Assumption 2. The default-free interest rate, interest rate spreads, equity indi-
ces, and FX rates are correlated stochastic variables.

Assumption 3. The firm’s debt ratio (D/V) and volatility (o) can be used to
determine the appropriate risky term structure (AAA,. . ., Default) to value the
bond’s cash flows.

Assumption 4. If the bond defaults, the recovery rate is stochastic and drawn
from a beta distribution with a known mean (e.g. 34%) and standard deviation
(e.g. 25%) (see Altman and Kishore, 1996).

Assumption 5. The firm’s expected return on equity and firm specific equity
return volatility can be estimated using a one factor CAPM model (multi-
factor models would also be feasible).

Assumption 6. The expected growth rate in the market value of the firm’s
common stock is equal to the firm’s expected return on equity minus its divi-
dend yield.

Assumption 7. The dividend yield is constant over the time period simulated.
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Assumption 8. The firm has an expected growth rate in assets and a target debt
ratio that are constant.

Our goal is to model the stochastic changes in the market value of a bond.
The factors that cause stochastic shifts in a bond’s price are correlated interest
rate, interest rate spread, exchange rate, and credit rating changes (including
default). Default risk refers to the ability of the firm to meet set cash payments,
which is in reference to the face value of the debt (book value), and the default
recovery rate if the payments are not met. Work by Ogden (1987) and Barnhill
and Maxwell (1998) suggests that Assumption 3 is reasonable as debt ratios can
be used to reasonably map bond ratings if the industry specific nature of
business risk is taken into account. Given Assumption 8, we model the firm has
having a fixed financing plan (i.e. equity and debt sales or repurchases) over the
simulation period. Thus variations in the debt to value ratio and credit rating
at time step Az reflect changes in the market value of the firm’s equity. This is
consistent with the findings that stock returns lead bond returns in reflecting
firm specific information over a short-term horizon (Kwan, 1996) and over a
longer-term horizon (Gebhardt, 1999).

3.1. Simulating stochastic term structures

For this study, the Hull and White extended Vasicek model (Hull and
White, 1990, 1993, 1994) is used to model stochastic risk-free (e.g. U.S.
Treasury) interest rates. In this model interest rates are assumed to follow a
mean-reversion process with a time dependent reversion level. The simulation
model is robust to the use of other interest rate models.

The model for r is

a

Ar:a<@—r)m+<mz, (3)

where Ar is the risk-neutral process by which » changes, a the rate at which r
reverts to its long-term mean, r the instantaneous continuously compounded
short-term interest rate, and 6(¢) an unknown function of time which is chosen
so that the model is consistent with the initial term structure and is calculated
from the initial term structure as

0(t) = F0,£) + aF (0, 1) + g (1 — e,

F(0,¢) is the forward interest rate at time ¢ as calculated at time 0, F;(0,¢) the
derivative of the forward interest rate with respect to time, A¢ a small increment
to time, o the instantaneous standard deviation of r, which is assumed to be
constant, and Az a Wiener process driving term structure movements with Ar
being related to Ar by the function Az = &v/Ar.
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Table 4
Term structure by bond rating class and mean reversion and volatility of term structures by bond
rating class

Asset class

Trea- Aaa Aa A Baa Ba B Caa
sury

Term structure information: 12/31/98

Time to maturity 1 4.59% 4.96% 5.00% 5.17% 5.53% 7.41% 8.78% 12.00%
5 439% 5.09% 5.31% 5.55% 6.00% 8.79% 10.43% 15.01%
10 4.59% 5.43% 5.75% 6.00% 6.49% 9.66% 11.43% 21.00%
15 4.89% 5.80% 6.18% 6.43% 6.95% 10.12% 11.99% 21.00%

Term structure parameter estimates (empirically estimated from 1/93-12198)

Mean-reversion 0.048 0.061 0.062 0.058 0.084 0.171 0.069 0.142*
rate

Std. dev. of the 0.007 0.010 0.010 0.010 0.011 0.014 0.010 0.039*
short interest rate

Std. dev. of the n.a. 0.002 0.002 0.001 0.002 0.011 0.011 0.034
interest rate spread

(e.g. Ba—Baa)

The term structure is estimated from Standard & Poor’s CreditWeek and the Lehman Brothers
bond database. Mean-reversion rates and volatilities of the short rates are estimated empirically
over the January 1993 to December 1998 time period.

#For Caa—C.

The above mean-reversion and volatility rates can be estimated from a time
series of short-term interest rates or implied from cap and floor prices. In this
study they are estimated from a time series of short-term interest rates over the
1993-1998 period (Table 4). Given a simulated future value of r, the initial term
structure, and the other parameters of the model a complete term structure of
risk-free interest rates can be calculated and financial assets can be re-valued at
time step At.

Once the risk-free term structure has been estimated then the Aaa term
structure is modeled as a stochastic lognormal spread over risk free, the Aa
term structure is modeled as a stochastic spread over Aaa, etc. The mean value
of these simulated credit spreads are set approximately equal to the forward
rates implied by the initial term structures for various credit qualities (e.g.
Aaa). This procedure insures that all simulated credit spreads are always
positive and that the simulated term structures are approximately arbitrage-
free.

The first step in modeling the eight different term structures is to determine
the appropriate initial yield curves. For this study term structure estimates for
United States Treasury securities, Aaa, Aa, A, Baa, Ba, and B bonds are taken
from Standard & Poor’s Credit Week, while the Caa term structure is estimated
from the Lehman Brothers bond database (Table 4). In addition a time series



358  T.M. Barnhill Jr., W.F. Maxwell | Journal of Banking & Finance 26 (2002) 347-374

of short-term yields for the various credit ratings is estimated for 1993-1998.
This time series is used to estimate the volatility of the various credit spreads
(e.g. Aa vs. Aaa,..., B vs. Ba, ctc.). Table 4 gives the estimated volatilities for
the various interest rate spreads.

3.2. Simulating asset returns

The model utilized to simulate the value of the equity market indices and FX
rate (S) assumes that S follows a geometric Brownian motion where the ex-
pected growth rate m and volatility ¢ are constant (Hull, 1997, p. 362). The
expected growth rate is equal to the expected return on the asset u minus its
dividend yield ¢. For a discrete time step, At, it can be shown that

2

S+ AS = Sexp [(m—%)AtvLae\/E]. (4)

¢ is the random sample from a standardized normal distribution.
The return on the market index (Kj,) is estimated as

Kin = ((S+AS)/S) +q. ()
The return on equity for individual firms is simulated using a one-factor model:
K; = Rp + Beta,;(Ky, — Rg) + 0 Az, (6)

where K; is the return on equity for the firm i, Rg the risk-free interest rate,
Beta; the systematic risk of firm i, K, the simulated return on the equity index
from Eq. (5), 0, the firm specific volatility in return on equity, and Az a Wiener
process with Az being related to A¢ by the function Az = ev/Ar.

In the simulations where bonds are priced in a risk neutral framework the
expected return on the equity index is set equal to the risk-free rate. In the
simulations undertaking integrated market and credit risk analysis on port-
folios of bonds the expected return on the equity indices is set equal to the risk-
free rate plus a long-term average risk premium of 8%. The average dividend
yield on the S&P500 from 1993 to 1998 of approximately 2.6% (source: DRI) is
used as the market dividend yield. The 1998 equity return volatility for the
S&P500 of 23 percent is utilized as the estimate for market volatility for all
equity indices. The volatility of the yen versus U.S. dollar FX rate is assumed
to be its 1987-1996 average of 10%.

After simulating the market return, the return on equity for an individual
firm is estimated in the CAPM framework (Eq. (6)). The first step in calculating
the expected return on equity for a “typical” firm in a particular rating class
(e.g. B) is to estimate appropriate beta coefficients and the unsystematic
component of equity return risk. To do this, a cross-sectional time series is
developed from Compustat for firms with various bond ratings for the period
1993-1998. Within each bond rating class the firms are then divided into high
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Table 5
Equity return volatility for low and high volatility firms by bond rating category and market
volatility

Low volatility Mean beta Mean firm  High vola- Mean beta Mean firm

firms with 1993-1998  specific eq-  tility firms 1993-1998  specific eq-
bonds rated uity return  with bonds uity return
volatility rated volatility
1993-1998 1993-1998
Aaa 0.679 0.245 Aaa 0.682 0.317
Aa 0.649 0.249 Aa 0.757 0.363
A 0.699 0.222 A 0.864 0.412
Baa 0.864 0.292 Baa 0.994 0.507
Ba 1.019 0.425 Ba 1.131 0.729
B 1.314 0.727
Caa 1.301 0.954
Market volatility
1993 1994 1995 1996 1997 1998
S&P500 vola-  0.059 0.107 0.050 0.107 0.158 0.230

tility

A cross-sectional time series is developed from Compustat to calculate the average firm’s beta by
bond rating for the period 1993-1998. Bonds are sorted by bond rating and characteristic lines are
estimated to compute the firm’s beta and unsystematic (firm specific) risk. The market volatility
over the 1993-1998 time period is also displayed.

or low volatility classes. Low volatility firms are defined to be those in the
lower third of total equity return volatility. High volatility firms are defined to
be the remaining two-thirds of firms. Due to their inherent high volatility B-
and Caa-rated firms are not divided into different volatility categories. Char-
acteristic lines are then estimated for each rating and volatility class relating
firm’s return on equity to the return on a sector equity index. The results are
found in Table 5. As bond rating declines, the firm’s systematic equity return
risk (beta) and unsystematic risk (the annualized root mean square error) in-
creases.

3.3. Simulating an n-variate normal distribution

Fridson et al. (1997) find a positive relation between interest rates and de-
fault rates. This is consistent with negative correlations between interest rate
changes and equity returns. The historical correlation structure between the
change in interest rates, the return on various equity indices, and the U.S.
dollar/Japanese yen exchange rate are found in Table 6. For example, the
correlation coefficient between changes in the short U.S. Treasury rate and the
return on the S&P500 is a negative 0.33. The correlation between interest rates
and equity index returns is of course a function of the interest rate sensitivity of
the sector.



Table 6
Correlation of the change in interest rates, the return on U.S. industry equity indices, and the yen/U.S. $§ exchange rate on a monthly basis from
January 1987 to December 1996

ATre- S&- Auto Bank Chem Bldg Energy Entmt Health Insur Manuf OilGas Paper Tech Tele- Textile Util  Yen/

asury P500 com US. $
ATreasury 1 -0.33 -0.02 -0.23 -0.15 -0.27 -0.23 0.02 -0.18 -0.35 -0.18 -0.03 -0.13 —-0.02 —-0.26 —0.05 —0.49 0.101
S&P500 1 037 0.69 066 073 0.60 0.56 0.77 070 071 056 047 071 0.54 045 0.57 —0.062
Auto 1 041 047 054 022 037 005 019 045 022 043 031 027 015 0.07 0.022
Bank 1 052 0.54 041 049 038 055 049 035 039 051 044 024 032 0.073
Chem 1 048 0.51 0.31 050 032 061 043 0.64 044 042 030 0.15 —0.054
Bldg 1 041 0.57 042 047 071 046 043 051 037 046 039 0.025
Energy 1 0.21 033 036 033 046 0.08 035 025 022 057 —0.219
Entmt 1 039 037 050 034 036 058 023 028 010 0.033
Health 1 052 041 029 033 051 030 039 039 —0.014
Insur 1 041 025 0.19 036 046 021 0.58  0.038
Manuf 1 0.53 057 061 035 048 0.24 —0.095
OilGas 1 021 048 020 037 023 —0.211
Paper 1 040 037 029 0.00 —0.084
Tech 1 029 032 0.18 —0.126
Telecom 1 —0.01 0.41 —0.003
Textile 1 —0.02  0.007
Util 1 —0.068
Yen/U.S. $ 1

09¢
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In the current portfolio risk assessment model, the equity indices and FX
rate returns are simulated as stochastic variables correlated with the simulated
future risk-free interest rate and interest rate spreads. Hull (1997) describes a
procedure for working with an n-variate normal distribution. This procedure
requires the specification of correlations between each of the n stochastic
variables. Subsequently » independent random samples ¢ are drawn from
standardized normal distributions. With this information the set of correlated
random error terms for the n stochastic variables can be calculated. For ex-
ample, for a bivariate normal distribution,

&1 = X, (7)

& = px1 +x20/1 — p?, (8)

where x,x, are independent random samples from standardized normal dis-
tributions, p the correlation between the two stochastic variables, and ¢, ¢, the
required samples from a standardized bivariate normal distribution. It can be
shown that the simulated volatilities and correlations for all of the stochastic
variables match closely the assumed values.

3.4. Mapping debt ratios into credit ratings

The above simulated equity returns (Eq. (6)) are then used to estimate a
distribution of possible future equity market values and debt ratios. The sim-
ulated debt ratios are then mapped into credit ratings. This methodology as-
sumes a deterministic relation between the firm’s debt ratio and its credit
rating. * In a contingent claims framework this is equivalent to assuming a
constant volatility for the value of the firm.

To implement this method an empirical analysis of the distribution of debt
ratio # by rating class is performed on all non-financial firms with a Standard &
Poor’s bond rating tracked by Compustat on a quarterly basis from 1987 to
1998. We segmented the bonds by rating class into two categories, high and low
volatility firms, based upon the historical volatility of their equity returns as
described above. Debt ratio distributions are then analyzed by rating category
and volatility category. The results are found in Table 7. As expected, debt
ratio increases as bond rating declines, and high volatility firms have lower
average debt ratios. For the Caa—C and Default categories it is noted that there

3 Blume et al. (1998) suggest that leverage ratios and credit ratings are not constant over time.
However, their results are over a longer time frame than simulated in this framework.

4 Merton (1974) defined leverage ratio as debt over equity. To simplify for comparison purpose,
the algebraically equivalent debt over total market capitalization (i.e. debt ratio), defined as [book
value of debt/(book value of debt + market value of equity)], is utilized in this study.
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Table 7

Debt ratios and bond ratings for firms segmented into low and high volatility firms
Rating N Mean  Std. dev. Max. 05 Median O, Min.
Low volatility firms
Aaa 57  0.141 0.127 0.988 0.171  0.121 0.075  0.051
Aa 293 0.241 0.122 0.489 0.334  0.278 0.117  0.011
A 989 0319 0.132 0.606 0.419  0.350 0.221  0.020
Baa 509  0.341 0.171 0.747 0.463  0.352 0.200 0.018
Ba 723 0472  0.186 0.943 0.589  0.460 0.333  0.060
High volatility firms
Aaa 286  0.144  0.145 0.748 0.157  0.101 0.048  0.015
Aa 1067  0.163  0.120 0.690 0.204  0.127 0.077  0.017
A 3646  0.240  0.140 0.821 0.340 0.212 0.131  0.012
Baa 4312 0319  0.159 0.832 0.431  0.305 0.198  0.011
Ba 3500  0.397  0.207 0.960 0.554  0.386 0.226  0.012
B 3076  0.515  0.235 0.983 0.702  0.525 0.324  0.015
Caa 34 0729  0.262 0.984 0.931 0.819 0.615 0.117
Def 17 0779  0.226 0.990 0.940 0.851 0.699  0.127

All non-financial firms with a Standard & Poor’s bond rating which Compustat tracked over the
period of 1987 to 1998 are identified. Quarterly data on debt ratios and bond rating is obtained.
The debt ratio is defined as (book value of short- and long-term debt/(book value of short- and
long-term debt + market value of equity)). Due to their inherent high volatility B- and Caa-rated
firms are not divided into different volatility categories. For Caa and defaulted companies only the
first observation in that category is utilized in the analysis. The descriptive statistics of this analysis
are provided.

is very little difference in the distribution of debt to value ratios which are based
on the first observation when a firm is reported to have entered these catego-
ries. For simulation runs reported later in this study, we assume that debt
ratios start at the mid point between the first and third quartiles for the as-
sumed initial credit rating category. Credit ratings are generally assumed to
change when simulated debt ratios cross the quartile boundaries. However due
to the fact that the distribution of debt to value ratios of Caa—C and defaulted
companies is very similar, the debt to value ratio at which firms are assumed to
default is set at 0.78. This level is approximately equal to the mean for de-
faulting firms. Increasing (decreasing) this critical debt to value ratio reduces
(increases) simulated bond default rates.

After simulating the bond’s future credit rating its value is calculated using
the simulated term structure of interest rates appropriate for that risk class. If
the bond is simulated to default, the recovery rate on the bond is simulated as a
beta distribution > with a mean value of 34% and a standard deviation of 25%.

5 Utilizing a beta distribution allows the recovery rate to fall within 0% and 100% while
maintaining the same mean and standard deviation.
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If the bond is denominated in a foreign currency then its numeraire currency
value is calculated by multiplying the simulated bond value by the simulated
foreign exchange rate that by construction is also a correlated stochastic
variable. To determine a probability distribution of simulated values, the
simulation is run 10,000 times. The distribution of values is then used to de-
termine test statistics and estimates for the 99%, 97.5%, and 95% confidence
levels. The final result is a total portfolio risk analysis, which accounts for
correlated market and credit risk.

4. Simulation results

In this section, we demonstrate the methodology described previously to
undertake various analyses. Unless otherwise noted, the previously stated as-
sumptions are utilized.

4.1. Credit transition matrixes

Utilizing the above models, data, and assumptions a firm’s debt ratio and
hence credit rating can be simulated over any time step. The results for 10,000
simulations for one-, and three-year time steps are reported in Table 8 for both
high and low volatility firms.

Comparisons of the simulated transition matrixes and Moody’s historical
transition matrixes (Table 2) show many similarities. In each case the most
likely event is that the rating stays the same, the next most likely event is that
the ratings move up or down by one category. Also the rating transitions be-
come more dispersed as the time step increases (e.g. one-year versus three-
year).

Moody’s does not distinguish between low and high volatility companies
thus there is no direct comparison for historical transition probabilities and the
simulated ones for low and high volatility firms. However it is interesting to
note that the simulated probabilities of the lower volatility firms staying in their
initial rating category are consistently larger than those for the higher volatility
firms. Also an average of the simulated transition probabilities for the low and
high volatility firms would result in distributions somewhat more dispersed
than Moody’s historical average. In addition the simulated default rates on
Caa—C rated firms are higher than the historical averages. This result is con-
sistent with the volatile conditions which prevailed in the markets during 1998
where the S&P500 had a volatility of 23% versus 20% over the long term. It is
also consistent with the high yield on Caa—C securities prevailing at that time
(i.e. 21% on ten-year bonds). Over other selected periods (e.g. early to mid
1990s) market volatility and thus simulated default rates would have been
lower. Finally it is important to note that the investment grade bonds generally
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Table 8

Simulated credit rating transition matrixes
Initial Aaa Aa A Baa Ba B Caa—C  Default
rating

Low volatility firms
Probability of rating after one year

Aaa 93.50% 6.50% 0.00% 0.00% 0.00%  0.00% 0.00% 0.00%
Aa 0.09%  97.67% 2.23% 0.01% 0.00%  0.00% 0.00% 0.00%
A 0.00% 1.51%  94.30% 3.57% 0.62%  0.00% 0.00% 0.00%
Baa 0.00% 0.99% 717%  79.41%  12.19%  0.24% 0.00% 0.00%
Ba 0.01% 0.46% 2.40% 7.61%  76.44% 12.13% 0.88% 0.07%
Probability of rating after three years

Aaa 79.58%  20.33% 0.08% 0.01% 0.00%  0.00% 0.00% 0.00%
Aa 4.08%  81.94% 11.11% 1.63% 1.20%  0.04% 0.00% 0.00%
A 0.09% 9.87%  72.41% 9.14% 8.11%  0.38% 0.00% 0.00%
Baa 0.33% 8.08%  11.42%  52.95%  21.38%  5.42% 0.38% 0.04%
Ba 0.65% 6.41% 6.22% 8.70%  52.21% 16.72% 4.88% 4.21%

High volatility firms

Probability of rating after one year

Aaa 80.75%  15.68% 3.56% 0.01% 0.00%  0.00% 0.00% 0.00%
Aa 3.66%  83.51%  12.72% 0.11% 0.00%  0.00% 0.00% 0.00%
A 0.05% 4.38%  82.99%  10.91% 1.66%  0.01% 0.00% 0.00%
Baa 0.01% 1.30% 9.70%  71.39%  1521%  2.38% 0.01% 0.00%
Ba 0.14% 1.44% 6.47% 4.03%  72.22% 14.12% 1.22% 0.36%
B 0.00% 0.25% 0.80% 1.15% 9.15% 78.15% 6.60% 3.90%

Caa-C 0.02% 0.34% 1.18% 1.14% 5.80%  9.17%  58.80%  23.55%

Probability of rating after three years

Aaa 67.69%  17.54%  14.07% 0.67% 0.03%  0.00% 0.00% 0.00%
Aa 13.37%  60.48%  22.79% 2.85% 0.51%  0.00% 0.00% 0.00%
A 3.05% 10.90%  61.05%  14.90% 8.36%  1.68% 0.04% 0.02%
Baa 1.99% 6.71%  12.42%  50.77%  17.71%  9.51% 0.64% 0.25%
Ba 2.87% 5.84% 9.11% 3.98%  55.89% 15.53% 2.81% 3.97%
B 1.16% 2.49% 5.05% 2.52%  10.66% 51.81% 5.18%  21.13%

Caa—C 1.34% 2.37% 3.94% 1.74% 7.18%  6.94%  28.95%  47.54%

Utilizing a CCA framework, simulated credit rating transition matrixes are estimated for low and
high volatility firms by bond rating category. The transition matrices are a function of the volatility
of the equity market indices (e.g., S&P500), and the firm’s risk, the unsystematic risk, debt ratio,
and dividend yield. The volatility of the equity market index (0.23) is estimated for the year 1998.
The firm specific parameters are estimated over the 1993-1998 period.

had a zero or very low simulated default rate while Moody’s shows some small
percentage. This is a limitation of the proposed methodology. Possible expla-
nations for these differences include inaccuracies in the proposed model or its
estimated parameters, non-normal equity return distributions including infre-
quent catastrophic losses, delays in bond rating changes by rating agencies,
actions by some companies to maintain a target bond rating by adjusting in-
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vestment and financing strategies, a dispersion of firm characteristics not
captured by the standard assumptions used in the analysis, and occasional
changes in firms’ target capital structures (e.g. leveraged buyouts). Of course
simulated default rates can be increased (decreased) by lowering (raising) the
debt to value ratio at which default is assumed to occur.

Overall it is concluded that the model produces transition probabilities
similar to the reported historical transitions. It is important to note that each
firm’s bond rating is related systematically to the returns on the equity index
for the sector in which it operates. Thus the model captures the impact of
macro financial market volatility. Further because the equity indices for vari-
ous sectors are correlated with each other the simulation captures correlated
credit risk for bond portfolios.

4.2. Bond valuation tests

To test the ability of the model to value bonds, comparisons are made be-
tween analytical and simulated coupon bond prices. Bond prices with a
maturity of ten years are calculated from the known typical yield curves
for each rating class as of December 1998. The values of the coupon bonds
are then simulated out one, and three years (t = 1, 3) and discounted back at
the average simulated risk-free rate. For the model to be arbitrage-free, the
known value at ¢ =0 ($100) should equal the simulated value (at ¢ = 1,3)
discounted back to # = 0 at the risk-free rate. A deviation between the known
value and the simulated value implies a mispricing in a risk-neutral valuation
framework.

Using the standard simulation assumptions, the bond valuation tests are
performed on bonds with assumed initial credit ratings of Aaa through Caa.
The results are found in Table 9. The estimated error represents the difference
between the mean simulated values and the analytical solutions. The results
suggest that the simulation models are reasonably accurate for bond rating
categories Aaa through Baa for both one- and three-year time steps, where
the models produce close to arbitrage-free estimates in most cases with no
error exceeding 2%. For non-investment grade bonds the simulated prices
are somewhat higher than the analytical values, particularly so for the three-
year time step. The finding of a premium in a risk neutral valuation frame-
work for non-investment grade bonds is consistent with Fons (1987), Altman
(1989), and Jarrow et al. (1997). It should also be noted that December 1998 is
a time of wide credit spreads which is consistent with a liquidity premium for
holding such securities. Finally if the objective is to produce arbitrage-free
values for a particular type of bond (e.g. B-rated) then it could easily be ac-
complished by adjusting the debt to value ratio at which firms are assumed to
default.
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Table 9
Bond valuation tests

Aaa Aa A Baa Ba B Caa-C

Simulated price at t =1 discounted back at the risk-free rate
High volatility firms

Mean value 997.15  1001.83 999.09  980.25 1037.15 1012.21  1025.80

Std. dev. 42.10 40.24 50.36 90.73 119.97 199.83 490.15

% pricing error —-0.29 0.18 —-0.09 —-1.98 3.72 1.22 2.58
Low volatility firms

Mean value 1000.88  1002.72  1002.77  989.48 1035.12 n.a. n.a.

Std. dev. 40.09 39.68 4491 77.92 105.69 n.a. n.a.

% pricing error 0.09 0.27 028 —1.05 3.51 n.a. n.a.

Simulated price at t =3 discounted back at the risk-free rate
High volatility firms

Mean value 1004.49  1016.71  1007.88  994.89 1118.79  1052.70  1086.43

Std. dev. 75.29 79.29 103.50  134.35 188.04 366.56 694.47

% pricing error 0.45 1.67 0.79  —0.51 11.88 5.27 8.64
Low volatility firms

Mean value 1008.46  1016.54  1009.54  998.03 1104.48 n.a n.a.

Std. dev. 74.10 81.15 102.48  126.84 205.10 n.a. n.a.

% pricing error 0.85 1.65 095 —-0.20 10.45 n.a. n.a.

The value represents the value of a ten-year coupon bond simulated out one and three years in a
risk-neutral framework and then discounted back at the risk-free rate (V5 = ¥;e™""). The simulation
output contains the mean value and the standard deviation of the simulated values. The estimated
error represents the over- or under-valuation of the simulated mean compared to the initial market
value of $1000.

4.3. Risk analysis

After examining the transition probabilities and valuation for a single bond,
we next examine the model’s ability to analyze integrated market and credit
risk for a portfolio of bonds. A principal advantage of using a simulation
model in the portfolio analysis is the ability to relate financial environment
volatility (i.e. equity index volatility) to firm specific credit risk. Further since
equity index returns are correlated with other stochastic variables (e.g. interest
rates) correlated market and credit risk for a portfolio can be estimated. For
example a bond portfolio that is highly concentrated in one industry would
have less credit risk diversification, while a bond portfolio which is diversified
across a large number of industries will have diversified credit risk to a greater
extent. Also during periods of high market volatility simulated market and
credit risk both increase.

The risk analysis demonstration will first focus on a single bond and sub-
sequently consider portfolios of bonds. The value of the bond is simulated at
the end of the time period and includes the last coupon payment. The risk
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Table 10
Simulated VaR measures for a B-rated bond

One B-rated bond facing various risks

Interest rate risk Yes Yes No Yes Yes
Interest rate spread risk No Yes No Yes Yes
Credit risk No No Yes Yes Yes
FX risk No No No No Yes
Mean value 108,866 109,081 104,148 104,225 104,426
Std. dev. 3,215 6,450 22,561 23,433 25,869
Change in std. dev. n.a. 3,235 16,111 872 2,436
Maximum value 121,238 126,769 153,464 164,057 198,049
Minimum value 98,037 72,129 29 21 18
VaR confidence levels

99% level 101,718 90,096 9,130 8,844 9,187

97.5% level 102,790 94,406 29,164 29,791 29,427

95% level 103,723 97,180 60,544 56,736 53,230

VaR measures are simulated for a B-rated bond with an initial value of $100,000 at one-year time
step. The value of the bond is equal to the price at # = 1 plus the coupon payment if the bond did
not default.

analysis for a single ten-year B-rated bond at a one-year time step is found in
Table 10. Initially the risk analysis is performed with only interest rate risk.
Under this assumption the mean simulated value of the bond is $108,866 with a
standard deviation of $3,215 and 95% confidence level of $103,723. The in-
clusion of interest rate spread risk has little impact on the mean value
($109,081) however the standard deviation doubles to $6,450 and the 95%
confidence level declines to $97,180. Thus spread risk is clearly a significant risk
factor. For example spread risk is said to have caused large losses for Long-
Term Capital Management.

Next a risk analysis is performed on credit risk only. Credit risk reduces the
mean simulated value to $104,148 (due to credit downgrades and default los-
ses), sharply increases the standard deviation to $22,561, and sharply reduces
the 95% confidence level to $60,544. In the extreme the minimum value of the
bond falls to $29 reflecting the possibility of default with minimal recovery. The
simulated standard deviation for bond value resulting from credit risk alone is
somewhat higher than that calculated in Table 3 using a standard credit risk
analysis ($17,412 for a $100,000 initial value). This difference is explained by
the fact that the simulated probabilities for higher volatility firms migrating out
of the B-rating category at the end of 1998 are somewhat larger than Moody’s
average historical credit transition probabilities. Also the penalty for down-
grading to Caa is large due to the unusually high yield on Caa bonds (21%).

The inclusion of interest rate risk, and spread risk along with credit risk has
little impact on the mean value of the bond ($104,225 versus $104,148), how-
ever it marginally increases the standard deviation by $872 ($23,433 versus
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$22,561) and reduces the 95% confidence interval from $60,544 to $56,736. This
small increase in the standard deviation of bond value ($872) suggests that for
the current simulation the covariance between total interest rate risk (risk-free
plus spreads) and credit risk is small. The low covariance between total interest
rate and credit risk in this case is a function of several factors. First B-rated
firm’s have a high level of firm specific equity return volatility (72.7%) relative
to systematic equity index return volatility (23%). Second, the assumed cor-
relation between interest rate changes and equity index returns is only —0.33.
Third, the level of volatility for risk-free interest rates is relatively low. In other
circumstances (time periods, countries) these relationships change and the
volatilities and correlations between these various risk factors increase. In any
event, accounting for correlations correctly is always important if overall risk
levels are to be calculated appropriately.

The inclusion of FX risk has little impact on the mean value of the bond
($104,426) however it further increases the standard deviation ($25,869), and
reduces the 95% confidence level ($53,230). Thus FX risk is, as expected, also a
significant risk factor.

To perform portfolio risk analyses, we form portfolios of 1, 2, 5, 7, 10, 15,
20, 24, and 100 B-rated bonds drawn from up to 24 economic sectors. The
results are found in Table 11. All bonds are assumed to have a ten-year ma-
turity and be non-callable. As possible each bond added to the portfolio is
from a different industry with equity index correlations found in Table 6.
Hence, our resulting estimates are for the maximum diversification available
for the number of bonds in the portfolio. The ending value of the portfolio is
simulated out one year, 10,000 times. For comparison purposes we include one
portfolio of 24 bonds that faces FX risk as well. We also include portfolios of
24 and 100 bonds drawn from a single industry.

As can be seen from Table 11, as the number of bonds included in the
portfolio increases there is little change in the mean portfolio value (i.e.
$104,200 to $104,500). More importantly from a risk analysis perspective, as
the number of bonds in the portfolio increases, the standard deviation de-
creases from $23,433 to $8,102 for portfolios with 100 bonds drawn from 24
sectors, or $9,518 for portfolios with 100 bonds drawn from one sector. Fur-
ther the minimum value and confidence levels increase (e.g. 95% confidence
level increases from $56,625 to $90,226 for portfolios with bonds drawn from
separate sectors, or $87,656 for portfolios with bonds drawn from one sector).
Firm and sector diversification clearly pays. However during periods when
correlations increase and systematic equity return risk increases relative to firm
specific risk such diversification benefits may prove to be less than expected.

As discussed previously interest rate and spread risk taken alone produce a
portfolio standard deviation of $6,450. With 24 bonds credit risk taken alone
produced a portfolio standard deviation of $6,810. With 24 bonds interest rate,
spread, and credit risk produced a standard deviation of $8,878. As would be



Table 11
Portfolio risk analysis

Distribution of simulated values for a $100,000 initial value portfolio of B-rated Bonds at a one-year time step facing various risks

Risk included in analysis
Interest rate  Yes
risk
Interest rate  Yes
spread risk

Credit risk Yes
FX risk No
Number of 1
sectors
Number of 1
bonds
Mean value 104,225
Std. dev. 23,433

Change in std. n.a.
dev.

Maximum value 164,057
Minimum value 21

VaR confidence levels

99% level 8,844
97.5% level 29,791
95% level 56,736

104,373
17,860
—5,573

156,231
3,591

46,461
57,522
65,747

Yes

Yes

104,425
11,948
-5912

140,689
48,410

71,385
71,336
82,185

104,291
10,733
—1,215

134,290
50,843

76,005
80,258
84,897

10

104,320
9,686
—1,047

133,147
51,979

78,283
83,542
87,131

104,285
9,026
—660

132,428
64,674

80,545
85,323
88,379

20

104,232
8,995
-31

131,366
64,684

80,436
84,827
88,312

24

104,279
8,878
—117

130,604
66,434

80,786
85,032
88,766

No

No

24

104,093
6,810
—2,068

125,907
69,835

84,826
88,761
91,553

Yes
Yes

Yes
Yes

24
24

104,282
13,825
7,015

166,716
51,741

73,479
78,729
82,159

24

104,464
9,853
-3,972

133,943
45,175

78,108
82,652
86,407

100

104,547
9,518
—335

137,339
53,956

79,217
83,950
87,656

Yes
Yes

Yes
No

24
100

104,419
8,102
—1,416

131,448
58,754

83,625
87,192
90,226

To perform portfolio risk analyses, we form portfolios of 1, 2, 5, 7, 10, 15, 20, 24, and 100 B-rated bonds. All bonds are assumed to have a ten-year
maturity, are non-callable, and face interest rate, interest rate spread, and credit risk. We also include one portfolio of 24 bonds that faces FX risk as
well. For portfolios drawn from more than one sector the correlations are based upon the historical estimates found in Table 6. Hence, our resulting
estimates are for the maximum diversification available for the number of bonds in the portfolio. The ending value of the portfolio is simulated out one
year, 10,000 times. The ending value includes the value of the bonds plus the coupon payment. The mean, standard deviation, maximum, and minimum

simulated portfolio value, and the 99%, 97.5%, and 95% confidence levels are the resulting output statistics from the model.
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expected interest rate, spread, and credit risk are clearly not additive. The
importance of integrated risk analysis that accounts for the correlations in
these risk factors is apparent.

The results also have implications for the number of bonds necessary to
diversify away credit risk. There is a significant reduction in risk as bonds are
added to the portfolio. However, the gains from diversification are relatively
small after 15 bonds. The implication is that a bond investor diversifies away
much of the unsystematic risk with 15 bonds in 15 different industries. How-
ever, larger portfolios of 100 bonds drawn from a variety of industries do have
somewhat better risk characteristics.

Adding FX risk again has little impact on the mean value of the 24-bond
portfolio ($104,282). However it substantially increases portfolio standard
deviation ($13,825 versus $8,878) and reduces the 95% confidence level
($82,159 versus $88,766).

4.4. Comparison of simulated risk analysis versus historical risk analysis

To check the validity of the simulation model, we compute common risk
measures for a B-rated bond and portfolios of B-rated bonds using historical
data. We use two different methodologies to estimate historical risk measures.
We then examine the differences between the simulated and historical risk
measures.

First, to compare our simulation results for a portfolio of single B bonds
with historical risk measures, we calculated the one-year holding period returns
on a monthly basis from 1987 through 1998 for the Lehman Brothers B-rated
long-term bond index. We then determined the 99%, 97.5%, and 95% confi-
dence levels for a $100,000 investment over a one-year time frame which are
$87,416, $89,855, and $94,906 respectively. The historical results are then
compared to the simulation results found in Table 11 for a 100-bond portfolio
with interest rate, spread risk, and credit risk. The simulated confidence levels
are $83,625, $87,192, and $90,226 at the 99%, 97.5%, and 95% confidence levels
respectively.

This moderately higher risk level in the simulation results is appropriate for
two reasons. First, the simulations are for 100 bonds as compared to the larger
portfolio of bonds in the index. Second and more importantly, the Lehman
Brothers index is refreshed every month with single B bonds. Thus if a bond is
downgraded, it would effect the index return for that month, but the bond is
then removed from the index for the following month. Hence, the bond index
only catches one downgrade, while in the simulation model multiple down-
grades (including defaults) in a single year are possible. This comparison be-
tween simulated results and analytical results suggests that the simulation
model produces results consistent with historical measures.
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Table 12
Historical versus simulated VaR analysis for B-rated bond portfolios

Distribution of values for a $100,000 initial value for a single bonds and a portfolio of B-rated Bonds
at a one-year time step facing various risks
Risk included in analysis

Interest rate risk Yes Yes Yes Yes Yes Yes

Interest rate spread Yes Yes Yes Yes Yes Yes

risk

Credit risk Yes Yes Yes Yes Yes Yes

FX risk No No No No No No
Type of analysis Historical Simulated Difference Historical Simulated Difference
Number of bonds 1 1 1 15 15 15
Mean value 102,034 104,225 (2,191) 102,052 104,285 (22,330)
Std. dev. 20,370 23,433 (3,063) 8,198 9,026 (828)
Change in std. dev. n.a. n.a. n.a. (12,172) (14,407) 2,235
Maximum value 191,265 164,057 27,208 114,887 132,428 (17,541)
Minimum value 3,440 21 3,418 74,746 64,674 10,072
VaR confidence levels

99% level 23,494 8,844 14,650 80,147 80,545 —398

97.5% level 36,586 29,791 6,795 88,248 85,323 2,925

95% level 67,250 56,736 10,514 89,765 88,379 1,386

Historical values reflect total returns (coupon plus price change) for actual B-rated bonds over the
1998-1999 period. We perform a historical analysis based on 625 B-rated bonds, which are iden-
tified from data available from Chase Manhattan Bank and Moody’s bond record as of 12/31/97.
Simulated values are based on the model calculated for December 1998.

Second, we perform a historical analysis, Table 12, based on 625 B-rated
bonds, which are identified from data available from Chase Manhattan Bank
and Moody’s bond record as of 12/31/97. These bonds are divided randomly
into 12 groups. Each of these groups of bonds is assigned to a month (i.e.
January to December). Then the annual total return on each bond and port-
folios of bonds are calculated (e.g. January 1998 to January 1999,..., De-
cember 1998 to December 1999). Total return is defined as the price change of
the bond plus the coupon. If the bond defaulted, then it is assumed that the
coupon is not received.

The information in Table 12 indicates that the simulation model provides a
VaR analysis for B-rated bonds reasonably similar to historical levels. For a
single B-rated bond, the historical standard deviation of the value of the bond
is $20,370 versus $23,433 simulated. The historical maximum and minimum are
$191,265 and $3,440 respectively versus $164,057 and $21 simulated. The 99%
and 95% VaR points on a historical basis are $23,494 and $67,250 versus
$8,844 and $56,736 simulated.

For B-rated portfolios of approximately 15 bonds the historical and simu-
lated value at risk analyses are remarkably close. Table 12 indicates that for a
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portfolio of approximately 15 bonds, the historical standard deviation of the
value of the portfolio is $8,198 versus $9,026 simulated. The historical maxi-
mum and minimum are $114,887 and $74,746 versus $132,428 and $64,674
simulated. The 99% and 95% value at risk points on a historical basis are
$80,147 and $89,765 versus $80,545 and $88,379 simulated. More extensive
comparisons of historical and simulated value at risk analyses are an important
area for future work.

5. Conclusion

Current portfolio risk estimation methodologies calculate market and credit
risk in separate analyses. There is no reliable method for combining these risk
measures into one overall portfolio risk assessment. Such risk estimation errors
have significant implications for many types of financial decisions including
financial institution capital adequacy requirements.

This paper provides a methodology to assess correlated market and credit
risk. These risks are jointly estimated by simulating both the future financial
environment in which financial instruments will be valued and the credit rating
of specific firms. The fundamental basis of this methodology is a reduced form
of the CCA proposed by Merton (1974). Given the number of stochastic
variables and the complexity of the relationships no closed form analytical
solution for calculating the needed risk measures is available. Thus the analysis
is undertaken with a simulation model.

The viability of the model is tested by comparing simulated credit rating
transition probabilities to historical transition probabilities, simulated and
analytical bond prices, and simulated and historical portfolio VaR analyses.
Simulated credit rating transition probabilities are shown to reasonably ap-
proximate historical patterns, but the model does underestimate the frequency
of large jumps in credit ratings over a one-year time frame. The bond valuation
tests show that the model works better for investment grade than non-invest-
ment grade bonds. However the overpricing of non-investment grade bonds is
consistent with the findings of risk and liquidity premiums by other authors.

The risk assessment methodology applied to a single bond demonstrates that
while all four risk factors (interest rate, spread, credit, and FX risk) are im-
portant the most important for non-investment grade bonds is credit risk. Thus
a crucial data requirement for any risk assessment is the credit quality of the
security.

The portfolio analysis capabilities of the model highlight the importance of
diversification of credit risk across a number of firms and sectors of the
economy. Simulated and historical VaR risk measures for B-rated bond
portfolios are shown to be very similar.
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The model can be extended to deal with other types of financial instruments
such as mortgages, variable rate loans, equities, and derivatives. Potential
applications extend beyond valuing and modeling bond portfolios to under-
taking financial institution risk assessments, evaluating alternative hedging
strategies, assessing capital adequacy, and undertaking financial system sys-
temic risk analyses.
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