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Abstract

The goal of this communication is to suggest an alternative implementation of the k-way

Ncut approach for image segmentation. We believe that our implementation alleviates a prob-

lem associated with the Ncut algorithm for some types of images: its tendency to partition re-

gions that are nearly uniform with respect to the segmentation parameter. Previous

implementations have used the k-means algorithm to cluster the data in the eigenspace of

the affinity matrix. In the k-means based implementations, the number of clusters is estimated

by minimizing a function that represents the quality of the results produced by each possible

value of k. Our proposed approach uses the clustering algorithm of Koontz and Fukunaga in

which k is automatically selected as clusters are formed (in a single iteration). We show com-

parison results obtained with the two different approaches to non-parametric clustering. The

Ncut generated oversegmentations are further suppressed by a grouping stage—also Ncut

based—in our implementation. The affinity matrix for the grouping stage uses similarity based

on the mean values of the segments.
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1. Introduction

Image segmentation is an important first step in much of computer vision. Several

algorithms have been introduced to tackle this problem. Among them are ap-

proaches based on graph partitioning [9,19,21,22,26]. The graph approaches carry
the appeal of strong theoretical basis and the advantage of being applicable not only

to the segmentation of images, but also to other low, mid, and high level vision tasks

dealing with mid-level grouping and model-fitting [9,17,18].

For grouping pixels into regions with a graph-theoretic approach, a graph is usu-

ally defined as G ¼ ðV ;EÞ, where the nodes V represent the pixels (one node per pix-

el) and the edges E represent the weights wði; jÞ that connect pairs of nodes. E is

generally represented by an n� n matrix, where n is the number of pixels in the im-

age. One of the most frequently used techniques to partition a graph is by means of
the cut cost function [1,26]. The goal of the cut algorithm is to find two sub-graphs A
and B of G that minimize the value of
1 T

is all o

in the

interpr

stands

in the
cutðA;BÞ ¼
X

i2A;j2B
wði; jÞ ð1Þ
and with the obvious constraints A [ B ¼ V , A \ B ¼ ;, and A 6¼ ;, B 6¼ ;. Several
alternatives to the above criterion have been proposed to date [4,5,11,20,21,24,25].

Of particular note is the normalized cut criterion (Ncut) of Shi and Malik [21], which

attempts to rectify the tendency of the cut algorithm to prefer isolated nodes of the

graph (as shown in Fig. 1A). The Ncut criterion consists of minimizing
NcutðA;BÞ ¼ cutðA;BÞ
assocðA; V Þ þ

cutðA;BÞ
assocðB; V Þ ; ð2Þ
where assocðA; V Þ ¼
P

i2A;j2V wði; jÞ, which intuitively represents the connection cost

from the nodes in the sub-graph A to all nodes in the graph V .
By dividing the graph into two disjoint parts as given by the eigenvector corre-

sponding to the second smallest eigenvalue1 of the Laplacian [7,12], we obtain a

2-way partition of the graph. In most cases, however, we usually want to partition

(segment) an image into a larger number of parts; i.e., we want a k-way partitioning

algorithm which divides our image into k parts. We can achieve this hierarchically by
dividing each resulting sub-graph into two other disjoint groups until no further di-

vision is necessary (which will happen when the vertices of that subgroup are similar

enough to each other) [1,21,26].

The method described in the preceding paragraph although adequate is time con-

suming because we need to apply our algorithm at each new iteration of the hierar-
he smallest eigenvalue of the Laplacian matrix is always zero and its associated smallest eigenvector

nes. The magnitude of the second smallest eigenvalue is related to the ‘‘fullness’’ of the connections

graph (in the sense of the nodes being connected with large values of wði; jÞ). With regard to the

etation to be given to the corresponding eigenvector, note that each element of the eigenvector

for a pixel location in the image. The ith element of this eigenvector tells us how much the ith pixel

image is connected with the rest of the image [7,15].



Fig. 1. (A) Cut tends to prefer isolated vectors (adapted from [21]). (B) Ncut can produce more-or-less bal-

anced partitions. (C)An example ofNcut producing partitions at areaswith constant brightness. (D)Graph-

ical representation of Eq. (4); for which the minimum is 48—the corresponding result is shown in (C).
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chy. Ideally, we would like to have a direct k-way algorithm which outputs the k dis-

joint areas in a single iteration [3,6,10]. A common solution is to make use of more

than one single eigenvector for classification [1,12]. By using e eigenvectors starting

from the second smallest, we can convert our partitioning problem into a clustering
problem. Intuitively, while the second smallest eigenvector divides the graph into two

parts, consecutive eigenvectors will add extra possible partitions (i.e., we will obtain

more detailed segmentations as the number of eigenvectors increases). Indeed, it has

been proven for the cut algorithm [2] that the more eigenvectors one uses, the better

the results are (in the sense of finer results).2

Shi and Malik [21] define a new criterion that can be used in a k-way algorithm,
2 In

G. The
NcutkðA1;A2; . . . ;AkÞ ¼
cutðA1; V � A1Þ
assocðA1; V Þ

þ cutðA2; V � A2Þ
assocðA2; V Þ

þ � � �

þ cutðAk; V � AkÞ
assocðAk; V Þ

; ð3Þ
tuitively, one can view the eigenvector decomposition as an approximation of the original space of

more eigenvectors we add to our eigenspace, the closer we will get to the original representation.
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where Ai is the ith sub-graph of G. Tal and Malik [23] used the k-means algorithm to

find a pre-selected number of clusters within the space spanned by the non-zero,

smallest e eigenvectors. For those cases where the number of clusters is not known,

the authors proposed using several values of k and then selecting that k which

minimized the criterion
NcutkðA1; . . . ;AkÞ=k2: ð4Þ

While the Ncut criterion alleviates the tendency of the cut algorithm to isolate in-
dividual nodes if they are ‘‘distant’’ from the rest, it appears to have its own

shortcomings, some of them we believe caused by the structure of the Ncut criterion

and some by issues related to how this criterion would generally be implemented.

There is the tendency of the Ncut criterion to fragment image areas that are nearly

homogeneous with respect to the segmentation parameter, as we show in Fig. 1B.

This problem becomes exacerbated in the k-way approach, especially as the dimen-

sionality of the eigenspace increases and if the correct number of clusters is not

known. An example of this problem is shown in Fig. 1C where the fragmentation
of the peppers is caused by this phenomenon. The number of clusters used for the

segmentation in Fig. 1C was estimated by minimizing the expression in Eq. (4).

The value of this expression as a function of the number of clusters is shown in

Fig. 1D. The minimum was obtained for k ¼ 48. The results shown in Figs. 1C

and D were obtained by using the similarity of pixels in brightness for the wði; jÞ ma-

trix in the code made available by the Berkeley group. The value of k was varied

from 5 to 50. The reader may wonder how good the result showed in Fig. 1C is

as compared to those obtained with other values of k. Actually, this result is among
the best one can obtain when using the k-means clustering approach. Although

the result is oversegmented, most of the important segments are also present in

the image.

As demonstrated by the results shown above, the k-means approach may not al-

ways rectify the fragmentation tendency of the Ncut algorithm. This is despite the

fact that one can try to find the correct value of k by the minimization of an objective

function, such as the one in Eq. (4). This has led us to investigate other approaches to

non-parametric clustering in the eigenspace of the affinity matrix. Obviously, each
different approach to clustering entails its own method for finding the number of

clusters. For example, the method of Koontz and Fukunaga [13] has the advantage

of automatically determining the optimal value of k as the data are grouped into

clusters. Our work with the Koontz and Fukunaga algorithm shows that it is less

sensitive to the Ncut problem introduced above. The comparative results for the

‘‘pepper’’ image are shown in Figs. 2A and B. Note how the new result shown in

(A) is less oversegmented than the one shown in (B). Details of how we implemented

the Koontz and Fukunaga algorithm are in Section 2.
Although the use of the non-parametric method of Koontz and Fukunaga can

help to alleviate the Ncut problem mentioned above, it does not solve this com-

pletely. As the reader might have already noted in the result shown in Fig. 2A, there

still exist some divisions that are caused by this problem; some of them have been

highlighted in Fig. 2C. To solve these remaining cases, we propose to include a
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grouping stage that attempts to correct the oversegmentation obtained by the Ncut

algorithm. By oversegmentation, we refer to the undesirable, extra segments ob-

tained when using the Ncut criterion.

This grouping stage will thus regroup those areas that would otherwise be divided

into two or more partitions. To achieve this though, we will need to modify the
weights of our graph with a measure that is tailored to the Ncut problem discussed

here. This we will describe in Section 3.

In Section 4, we generalize and simplify the new approach defined in this commu-

nication. Experimental results are in Section 5. We will conclude in Section 6.
2. Segmentation as a clustering problem

So far, we have seen how to define the segmentation problem as a graph partition-

ing one. The problem remains though as how to assign similarity values to the edges

in the graph G. Several solutions have been proposed to tackle this. One that was

recently shown to work well for a large number of images of different types is defined

by
wði; jÞ ¼ e
�

kIi�Ijk
r2
1 � e

�dði;jÞ
r2
2 ; dði; jÞ < R;

0; otherwise;

(
ð5Þ
where Ii is the brightness value of image I at pixel i, dði; jÞ the Euclidean distance

from pixel i to pixel j in the image plane, and r a control parameter [16,19,21,26].

Once the weights are set, we can use the cut or the Ncut criterion to obtain a par-

tition of the original graph defined by G. For the cut algorithm, this is achieved by

first carrying out an eigen-analysis of the Laplacian matrix:
Ql ¼ kl; ð6Þ

where Q ¼ D� W , with Dði; jÞ ¼ degðviÞ ¼

Pn
j¼1 wði; jÞ. W is the matrix whose ele-

ments are wði; jÞ [1,26]. For the Ncut approach, the eigenvectors are solutions of the

generalized eigenvalue decomposition [21]:
ðD� W Þl ¼ kDl: ð7Þ

In both cases, one then retains a certain number, e, of those eigenvectors whose

eigenvalues are the smallest except the one whose eigenvalue is zero. Image segmen-

tation is achieved by clustering in such an eigenspace.

A natural way to achieve clustering is by finding the valleys of the densities in the

eigenspace. Since, we often cannot assume a parametric form for these densities, a

non-parametric method is called for. The method we will use is based on the val-

ley-seeking algorithm advanced by Koontz and Fukunaga [13].
What we accomplish by clustering is the mapping of the set of pixels fx1; . . . ; xng

in the eigenspace to a set of labels fz1; . . . ; zng; where zi is an integer between 1 and m
(the number of classes) and m6 n.

Koontz and Fukunaga non-parametric method is based on the estimate of the

density gradient, which is defined as the direction of a sample towards the center
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of its cluster. To compute this density gradient, it is common to define a local region

area CðX Þ,

CðX Þ ¼ fY : dðY ;X Þ6 rg; ð8Þ
where r is the radius of the local region where search for the gradient of the density

takes place, and, d2ðY ;X Þ ¼ ðY � X ÞTH�1ðY � X Þ is a distance measure with metric

H . In most cases H ¼ I , to represent an Euclidean search.

The local region as defined above has an associated expected vector (local mean)

which we can define as,
MðX Þ ¼ E½ðY � X ÞjCðX Þ� ¼
Z
CðX Þ

ðY � X Þ f ðY Þ
u0

dY ; ð9Þ
where
u0 ¼
Z
CðX Þ

f ðY ÞdY � f ðX Þv: ð10Þ
The term u0 is used as a normalizing factor given CðX Þ, v is the volume of CðX Þ and
f ð�Þ stands for the density function [8]. The local mean can now be used to define the

direction of the gradient in C. Finally, this can be used to search for the valleys,

which are opposite to the gradient.
An easy way to achieve this is to start with an initial classification of the sample

vectors and then move the initial ‘‘valleys’’ of each class (or, similarly, the class as-

signment of each sample vector) opposite to the direction of the gradient of the den-

sities [13].

Formally, given the set of vectors X ¼ fx1; . . . ; xng (xi 2 ½a; b�), we calculate an

initial classification z0 ¼ fz1; . . . ; zng as given by a set of equally separated classes.

For each vector, xi, we set a local area CðxiÞ and compute the direction of the gra-

dient of the density. A simple way to accomplish this is by counting the number of
samples within the local region CðxiÞ for each possible class. The vector xi is then re-

classified as belonging to that class which has the largest number of votes in CðxiÞ.
This procedure is repeated until convergence is reached, meaning that no vector is

re-assigned to a different class. During this process several classes will merge into

one, and at the end the method will have the actual number of classes (clusters) of

our representation.

The Euclidean distance between vectors is generally used as a measure of similar-

ity in the graph partitioning approach. Nonetheless, alternatives exist, as for exam-
ple, the angle between each pair of vectors [4].

Figs. 2A and B show a comparison between the results obtained by using the ap-

proach presented above and the k-means clustering algorithm as defined in [14,23].

These results were computed on an eigenspace of 100 dimensions, r ¼ 0:5 for the ra-

dius of the C region, R ¼ 5, r1 ¼ 0:1, and r2 ¼ 4.

As to what number of eigenvectors to use, in Fig. 2D we show the segmentation

results obtained by clustering (using the method introduced above) in a 10, 20, 30,

40, 50, and 100 dimensional eigenspace (r ¼ 0:5 in all cases). We see that the larger
the dimensionality, the finer the results. We have experimentally observed, though,



Fig. 2. (A,B) Comparison of the results obtained using the Koontz–Fukunaga clustering algorithm in our

approach and the k-means algorithm as described in [14,22]. (C) Some of the problems associated with the

Koontz–Fukunaga based implementation are highlighted in the image. (D) Shown here are the segmenta-

tion results obtained with Koontz–Fukunaga clustering in the eigenspace spanned by the e smallest eigen-

vectors. The value e for each segmentation is as shown below the image.

Fig. 3. The results get finer as we modify the value of r.
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that increasing the number of eigenvectors over 100 does not result in a much more

detailed segmentation for many of our images.

It is interesting to observe (because it is somewhat non-intuitive) from the figures

that large blob-like objects do not necessarily show up as individual segments when

the eigenspace has low-dimensionality. Such objects, in some cases, are hidden in the
higher-dimensions of the eigenspace. So, as with practically all eigenspace based sys-

tems, one would want to use the highest possible dimensionality for the eigenspace,

subject of course to the limitations imposed by computational burden associated

with clustering in very high dimensional spaces.

While the dimensionality of the eigenspace has a great bearing on the granular-

ity of the segments produced, another important influencing factor is the value of

r, the radius of the search region. The larger the value of r, the fewer the number

of clusters we will have in our e-dimensional space. By the same token, the smaller
r is, the finer the results will be. This effect is depicted in Fig. 3 with values of r
varying from 1 to 0:5 for a fixed dimensionality of the eigenspace, which was set

at 100.

Based on what the theory says and our experimental observations, we believe that

one should choose the largest possible value for the dimensionality of the eigenspace

and a small enough value for r so as to result in an over-segmentation of the image.

Obviously, an over-segmentation is to be preferred to an under-segmentation, be-

cause the former contains all of the fragments that when grouped together would
yield semantically meaningful objects. This then sets the stage for the next step,

which is grouping.
3. Grouping stage

As mentioned in Section 1, the segmentation achieved by Ncut has a tendency to

fragment an area of similar brightness into two or more segments. This problem is
illustrated by the marked circles in the Ncut-based results in Fig. 2C.

To correct for this over-fragmentation, we will use a grouping stage to the overall

segmentation algorithm. As we show in this section, this grouping can be achieved by

a second application of the Ncut algorithm, but with each node in the graph repre-

senting one segment produced by the first application of Ncut. We now associate

with each node the mean gray level of all the pixels that are in the segment corre-

sponding to that node. Using the mean gray level at each node takes advantage of

the Ncut�s main tendency, which is to group together nodes that are similar.
For the regrouping application of Ncut, we will use the following similarity func-

tion for the adjacency nodes:
wði; jÞ ¼ e
�ðkSi�SjkÞ

r ; if nodes i and j share boundary pixels in the image;
0; otherwise;

(

ð11Þ

where Si is the mean value of the brightness of all pixels in segment i.
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As was shown previously with the help of the results in Fig. 2C, Ncut even with

the non-parametric clustering incorporated in it tends to divide large constant areas

into multiple segments. The reader might say that we could improve upon the Ncut

results by choosing a larger value for R. But, unfortunately, as shown by the segmen-

tation in Fig. 4, the larger the value of this parameter, the smaller the precision in the
delineation of the segments. This is where the second stage of grouping comes in.

As was the case with the first application of Ncut, we are again faced with the

question of how many eigenvectors to use in the eigen-representation of the new

graph for the second-stage grouping. There is obviously no categorical answer to this

question—which was also the case for the first application of Ncut. Nonetheless, it is

interesting to explore the output of the second stage grouping as the number of ei-

genvectors is increased. Obviously again, the larger the number of eigenvectors,

the more likely that the final output will correspond to visually different objects in
the image.

We will now show the effect of the number of eigenvectors chosen on the quality

of the grouping stage. But first note that the number of eigenvectors is now limited to

the number of segments obtained after the first application of Ncut. If the first ap-

plication of Ncut results in m segments, our new affinity matrix (given by Eq.

(11)), of size m� m, will possess a maximum of m� 1 eigenvectors with associated

non-zero eigenvalues. Recall from our previous discussion that it is a property of

the affinity matrix that the smallest eigenvalue is always zero.
For this study, we chose for our first-stage processing the segments obtained with

the 100 eigenvectors to give the grouping stage a sufficiently fine decomposition of

the image. The 100-eigenvector segmentation produced by the first stage was shown

earlier in Fig. 2A. The number of segments shown in the figure is 48, implying that

the eigenvector decomposition of the grouping-stage adjacency matrix will be limited

to a maximum of 47 non-zero eigenvalues. Fig. 5 shows the results obtained from the

grouping stage for different values of the number of eigenvectors retained as this

number is increased to 30. In this figure, the number of eigenvectors used for the
grouping stage is indicated by the symbol e2. To distinguish this number from the

number of eigenvectors used for the first application of Ncut, the previous (first)

number will be represented by the symbol e1.
4. Sub-images for computational efficiency

The main computational burden of the processing described so far is in the first
stage—the first application of Ncut. Even a small image, say of size 100� 100, results

in a 10,000� 10,000 adjacency matrix—a very large matrix indeed for eigen-analysis.

To get around the difficulty of dealing with such large matrices, Malik et al. [14] have

suggested first dividing an image into sub-images, applying the Ncut to each sub-im-

age separately, and then applying Ncut to the segments obtained in a second-stage

grouping process.

In this section, we will now pull the approach of Malik et al. [14] into our frame-

work and arrive at a scheme that has the advantage of being computationally



Fig. 5. Results obtained after the second step with an eigenrepresentation of 100 vectors in the first step

and e2 eigenvectors in the second.

Fig. 6. (A) e1 ¼ 10 and r ¼ 0:3, (B) e1 ¼ 20, and r ¼ 0:4, (C) e1 ¼ 30 and r ¼ 0:5, (D) e1 ¼ 40 and r¼ 0:5.

Fig. 4. In an attempt to overcome the problems associated with Ncut, we make larger the value of the

neighborhood factor, R, to suppress the division of an area of constant brightness. However, this results

in another problem, which is the loss of accuracy in the delineation of the segments.

Fig. 7. e1 ¼ 40, r1 ¼ 0:5, e2 ¼ 30, and r2 ¼ 0:9.
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efficient and at the same time that benefits from our non-parametric clustering and

grouping criterion.

Fig. 6 illustrates this approach. Note that the boundaries that connect each of the

sub-images are now preserved in the output of the first application of Ncut. Our sec-

ond-stage grouping treats the sub-image boundaries like any other boundaries be-
tween the segments produced by the first stage. The rest of the processing

proceeds just as before. The final result is shown in Fig. 7.
5. Experimental results

To explain the various steps of our approach, the discussion so far used only one im-

age. In this section, we show several additional results on different types of images. We
will compare the segmentations obtained using our approach with those obtained with

the method described in [14,23]. As we did before, all the results shown will use an af-

finity matrix that measures pixel similarities on the basis of the brightness levels.

All of the experimental work shown in this section first partitions an image into

2� 3 sub-images. In light of our previously mentioned rationale for partitioning

an image into sub-images before the first application of Ncut, we retain only the

smallest 50 eigenvector for this phase of our overall approach. Our experiments show

that retaining fewer eigenvectors at this stage noticeably degrades the segmentations,
in the sense that even large segments may disappear. And retaining more eigenvec-

tors does not significantly improve the quality of the final segmentation.

For the Koontz and Fukunaga clustering algorithm for the first application of

Ncut, we used r1 ¼ 0:3. This value for the radius works well for the dimensionality

of 50 for the eigenspace. Ordinarily, the larger the dimensionality of the space used

for data representation, the larger the mean distance between the data points. This

means that the value of r would increase with the dimensionality of the eigenspace.

This brings us to the experimental parameters used for the second application of
Ncut for the grouping stage. As the reader will recall from Section 3, the full dimen-

sionality of the eigenspace here is limited by the total number of segments produced

by the first application of Ncut in all of the 6 sub-images. In the comparative results

shown, we have used the dimensionality of 100 for all the images. However, we have

also shown comparative results when all of the eigenvectors with non-zero eigen-

values are retained.

Fig. 8A shows three images on which we will compare the performance of Koo-

ntz–Fukunaga clustering with k-means clustering. Fig. 8B shows the results pro-
duced for the images using the Koontz–Fukunaga algorithm with the maximum

number of eigenvectors retained in the grouping stage. Fig. 8C shows the results ob-

tained when only 100 eigenvectors are retained. And, to compare, Fig. 8D shows the

results produced with the k-means approach as described in [14,23].

Finally, to show the versatility achieved when clustering is carried out with the

Koontz–Fukunaga algorithm, we show additional comparative results in Figs. 9

and 10. For the comparisons shown in these figures, we have used only 100 eigenvec-

tors in the grouping-stage application of Ncut for our approach.



Fig. 8. (A) Original images. (B) Segmentation with Koontz–Fukunaga clustering using all eigenvectors

corresponding to non-zero eigenvalues and with r2 ¼ 2:0. (C) Same as in (B) but with the number of ei-

genvectors e2 equal to 100. (D) Segmentation results obtained with k-means clustering and with e2 ¼ 100.

Fig. 9. For the two images shown, it is necessary to extract several segments corresponding to highly lo-

calized detail. (A) Original images. (B) Segmentations obtained using Koontz–Fukunaga clustering with

e2 ¼ 100. (C) Segmentations obtained using k-means clustering with e2 ¼ 100.
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6. Conclusions

This paper presented an alternative implementation of the k-way Ncut graph-

partitioning approach to image segmentation [14,21,23]. In our implementation,



Fig. 10. These two images possess a large number of visually similar sub-structures. (A) Original images.

(B) Segmentations obtained using Koontz–Fukunaga clustering with e2 ¼ 100. (C) Segmentations with k-

means clustering with e2 ¼ 100.
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the clustering in the eigenspace is carried out by using the Koontz–Fukunaga

non-parametric algorithm, as opposed to the k-means algorithm used in

[14,23]. Additionally, we use a two-stage application of Ncut, with the second

stage meant for the grouping of the fragments produced by the first application

of Ncut. The affinity matrix for the grouping stage uses the similarity of mean

values for the image fragments.
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