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t. Broad
ast proto
ols are systems 
omposed of a �nite but ar-bitrarily large number of pro
esses that 
ommuni
ate by rendezvous (twopro
esses ex
hange a message) or by broad
ast (a pro
ess sends a mes-sage to all other pro
esses). The paper des
ribes an optimized algorithmfor the automati
 veri�
ation of safety properties in broad
ast proto-
ols. The algorithm 
he
ks whether a property holds for any number ofpro
esses.1 Introdu
tionBroad
ast proto
ols [EN98℄ are systems 
omposed of a �nite but arbitrarily largenumber of pro
esses that 
ommuni
ate by rendezvous (two pro
esses ex
hangea message) or by broad
ast (a pro
ess sends a message to all other pro
esses).They are a natural model for problems involving readers and writers, su
h as
a
he-
oheren
e problems.From a mathemati
al point of view, broad
ast proto
ols 
an be regarded asan extension of ve
tor addition systems or Petri nets. Their operational seman-ti
s is a transition system whose states are tuples of integers. Moves betweentransitions are determined by a �nite set of aÆne transformations with guards.Ve
tor Addition Systems 
orrespond to the parti
ular 
ase in whi
h the matrixof the aÆne transformation is the identity matrix.In [EFM99℄, Esparza, Finkel and Mayr show that the problem of de
idingwhether a broad
ast proto
ol satis�es a safety property 
an be redu
ed to aspe
ial rea
hability problem, and using results by Abdulla et al., [ACJ+96℄ (seealso [FS98℄), they prove that this problem is de
idable. They propose an ab-stra
t algorithm working on in�nite sets of states. The algorithm starts with theset of states to be rea
hed, and repeatedly adds to it the set of its immediateprede
essors until a �xpoint is rea
hed.As shown e.g. in [Kin99,DP99℄, linear arithmeti
 
onstraints 
an be used to�nitely represent in�nite sets of states in integer valued systems. Symboli
 model
he
king algorithms 
an be de�ned using the `satis�ability' and the `entailment'test to symboli
ally 
ompute the transitive 
losure of the prede
essor relationde�ned over sets of states. However, in order to obtain an eÆ
ient algorithm itis 
ru
ial to 
hoose the right format for the 
onstraints.



In this paper we dis
uss di�erent 
lasses of 
onstraints, and propose linear
onstraints with disjoint variables as a very suitable 
lass for broad
ast proto-
ols. We show that the operations of 
omputing the immediate prede
essors and
he
king if the �xpoint has been rea
hed 
an both be eÆ
iently implemented.We also propose a 
ompa
t data stru
ture for these 
onstraints.We have implemented a spe
ialized 
he
ker based on our ideas, and usedit to de�ne a symboli
 model 
he
king pro
edure for broad
ast proto
ols. Asexpe
ted, the solver leads to a signi�
ant speed-up with respe
t to pro
eduresusing general purpose 
onstraint solvers (HyTe
h [HHW97℄ and Bultan, Gerberand Pugh's model 
he
ker based on the Omega library [BGP97℄). We presentsome experimental results for both broad
ast proto
ols and weighted Petri Nets.2 Broad
ast Proto
ols: Syntax and Semanti
s2.1 SyntaxA broad
ast proto
ol is a triple (S;L;R) where{ S is a �nite set of states.{ L is a set of labels, 
omposed of a set �l of lo
al labels, two sets �r�f?g and�r �f!g of input and output rendez-vous labels, and two sets �b�f??g and�b � f!!g of input and output broad
ast labels, where �l; �r; �b are disjoint�nite sets. The elements of � = �l [�r [�b are 
alled a
tions.{ R � S � L � S is a set of transitions satisfying the following property: forevery a 2 �b and every state s 2 S, there exists a state s0 2 S su
h thats a??�! s0. Intuitively, this 
ondition guarantees that a pro
ess is always willingto re
eive a broad
asted message.We denote (s; l; s) 2 R by s l! s0. The letters a; b; 
; : : : denote a
tions. Ren-dezvous and broad
ast labels like (a; ?) or (b; !!) are shortened to a? and b!!. Werestri
t our attention to broad
ast proto
ols satisfying the following additional
onditions: (i) for ea
h state s and ea
h broad
ast label a?? there is exa
tly onestate s0 su
h that s a??�! s0 (determinism); (ii) ea
h label of the form a, a!, a?and a!! appears in exa
tly one transition.Consider the following example:
lock??

unlock??

lock!!unlock!!

think

use

idle

wait

lock??

busy

lock??
unlock??

unlock??



The �nite-state automata in the �gure models the behaviour of a system of iden-ti
al pro
esses that ra
e for using a shared resour
e. Initially, all pro
esses are inthe state think. Before a

essing its own 
riti
al se
tion, a pro
ess broad
aststhe request lo
k!!. In reply to the broad
ast (lo
k??) the remaining pro
essesare for
ed to move to the state wait (an abstra
tion of a queue). After using theresour
e, the pro
ess in the 
riti
al se
tion broad
asts the message unlo
k!! inorder to restore the initial 
on�guration. The key point here is that the des
rip-tion of the proto
ol is independent of the number of pro
esses in the network.2.2 Semanti
sLet B = (S;L;R) be a broad
ast proto
ol, and let S = fs1; : : : ; sng. A 
on�g-uration is a ve
tor 
 = h
1; : : : ; 
ni where 
i denotes the number of pro
esses instate si for i : 1; : : : ; n.Moves between 
on�gurations are either lo
al (a pro
ess moves in isolationto a new state), rendezvous (two pro
esses ex
hange a message and move tonew states), or broad
asts (a pro
ess sends a message to all other pro
esses; allpro
esses move to new states). Formally, the possible moves are the smallestsubset of INn��� INn satisfying the three 
onditions below, where ui denotesthe 
on�guration su
h that ui(si) = 1 and ui(sj) = 0 for j 6= i, and where 
 a! 
0denotes (
; a; 
0) 2 R.{ If si a! sj , then 
 a! 
0 for every 
, 
0 su
h that 
(si) � 1 and 
0 = 
�ui+uj .I.e. one pro
ess is removed from si, and one pro
ess is added to sj .{ If si a!! sj and sk a?! sl, then 
 a! 
0 for every 
, 
0 su
h that 
(si) � 1,
(sk) � 1 and 
0 = 
� ui � uk + uj + ul.I.e. one pro
ess is removed from si and sk, and one pro
ess is added to sjand sl.{ If si a!!�! sj , then 
 a! 
0 for every 
, 
0 su
h that 
(si) � 1 and 
0 
an be
omputed from 
 in the following three steps:
1 = 
� ui (1)
2(sk) = Xfsljsl a??�!skg 
1(sl) (2)
0 = 
2 + uj (3)I.e. the sending pro
ess leaves si (1), all other pro
esses re
eive the broad
astand move to their destinations (2), and the sending pro
ess rea
hes sj (3).Thanks to the 
onditions (i) and (ii) of Se
tion 2.1, the 
on�guration 
0 is
ompletely determined by 
 and the a
tion a.We denote by � the pointwise order between 
on�gurations, i.e. 
 � 
0 ifand only if 
(si) � 
0(si) for every i : 1; : : : ; n. A parameterized 
on�guration isa partial fun
tion p:S ! IN . Loosely speaking, p(s) = ? denotes that the num-ber of pro
esses on state s is arbitrary. Formally, a parameterised 
on�gurationdenotes a set of 
on�gurations, namely those extending p to a total fun
tion.



2.3 Che
king safety propertiesIn this paper we study the rea
hability problem for broad
ast proto
ols, de�nedas follows:Given a broad
ast proto
ol B, a parameterized initial 
on�guration p0and a set of 
on�gurations C, 
an a 
on�guration 
 2 C be rea
hed fromone of the 
on�gurations of p0?In [EFM99℄ this problem is shown to be de
idable for upwards-
losed sets C.1A set C is upwards-
losed if 
 2 C and 
0 � 
 implies 
0 2 C. The mutual ex
lu-sion property of the example in the introdu
tion 
an be 
he
ked by showing thatno 
on�guration satisfying Use � 2 (an upwards-
losed set) is rea
hable from aninitial 
on�guration satisfying Wait = 0;Use = 0. It is shown in [EFM99℄ thatthe model-
he
king problem for safety properties 
an be redu
ed to the rea
ha-bility problem for upwards-
losed sets. (Here we follow the automata-theoreti
approa
h to model-
he
king [VW86℄, in whi
h a safety property is modelled asa regular set of dangerous sequen
es of a
tions the proto
ol should not engagein.)The algorithm of [EFM99℄ for the rea
hability problem in the upwards-
losed
ase is an \instantiation" of a general ba
kwards rea
hability algorithm presentedin [ACJ+96℄ (see also [FS98℄). De�ne the prede
essor operator as follows:pre(C) = f
 j 
 a�! 
0; 
0 2 Cg:I.e., pre takes a set of 
on�gurations C0, and delivers its set of immediate pre-de
essors. The algorithm repeatedly applies the prede
essor operator until a�xpoint is rea
hed, 
orresponding to the set of all prede
essors of C0. If this set
ontains some initial 
on�gurations, then C0 is rea
hable.Pro
 Rea
h(C0 : upwards-
losed set of 
on�gurations)C := C0;repeatold C := C;C := old C [ pre(old C);until C = old C;return CThe algorithm works be
ause of the following properties: (i) if C is upwards-
losed, then so is pre(C); (ii) the set of minimal elements of an upwards-
losedset with respe
t to the pointwise order is �nite (see also Se
tion 4); (iii) therepeat loop terminates. To prove property (i), we observe that we 
an asso
iateto ea
h label a 2 � [EFM99℄:{ The set of 
on�gurations O

a from whi
h a 
an o

ur.In the 
ase of lo
al moves and broad
asts there is a state si su
h that O

a =f
 j 
(si) � 1g. In the 
ase of rendezvous there are states si; sj su
h thatO

a = f
 j 
(si) � 1 and 
(sj) � 1g.1 On the other hand, the problem is unde
idable for singleton sets!.



{ An aÆne transformation Ta(x) = Ma � x + ba su
h that if 
 a! 
0, then
0 = Ta(
).Ma is a matrix whose 
olumns are unit ve
tors, and b is a ve
tor of integers.(A
tually, the 
omponents of b belong to f�1; 0; 1g, but our results 
an beextended without 
hanges to the 
ase in whi
h they are arbitrary integernumbers. An example is dis
ussed in Se
tion 8.)It follows that pre(C) 
an be 
omputed by the equationpre(C) = [a2�(O

a \T�1a (C)) (4)Hen
e if C is upwards-
losed then so is pre(C). Properties (ii) and (iii) are animmediate 
onsequen
e of the well-knownLemma 1 (Di
kson's Lemma). Let v1;v2; : : : be an in�nite sequen
e of ele-ments of INk. There exists i < j su
h that vi � vj (pointwise order).The only known upper-bound for the number of iterations until terminationis non-primitive re
ursive [M
A84℄. However, despite this result, the algorithm
an still be applied to small but interesting examples.3 Symboli
 Representation via ConstraintsA linear arithmeti
 
onstraint (or 
onstraint for short) is a (�nite) �rst-orderformula �1^ : : :^�n. with free variables (impli
itly existentially quanti�ed), andsu
h that ea
h �i is an atomi
 formula (
onstraint) built over the predi
ates=;�;�; >;< and over arithmeti
 expressions (without multipli
ation betweenvariables) built over +;�; �; 0; 1, et
.The solutions (assignments of values to the free variables that make theformula true) of a 
onstraint � over the domain D are denoted by [[�℄℄D . In thesequel we always take D = ZZ, and abbreviate [[�℄℄ZZ to [[�℄℄. We often representthe disjun
tion of 
onstraints �1 _ : : : _ �n as the set f�1; : : : ; �ng.Constraints 
an be used to symboli
ally represent sets of 
on�gurations of abroad
ast proto
ol. Given a proto
ol with states fs1; : : : ; sng, let x = x1; : : : ; xnbe a ve
tor of variables, where xi is intended to stand for the number of pro
esses
urrently in state si. We assume that variables range over positive values (i.e.,ea
h variable xi 
omes with an impli
it 
onstraint xi � 0). A 
on�guration 
 =h
1; : : : ; 
ni is simply represented as the 
onstraint Vni=1 xi = 
i. A parametri

on�guration p = hp1; : : : ; pni is represented as the 
onstraint Vni=1 �i where: ifpi 2 IN then �i is the atomi
 
onstraint xi = 
i, and if pi = ? then �i is theatomi
 
onstraint xi � 0.As an example, the 
ow of pro
esses 
aused by the lo
k broad
ast in theproto
ol of the introdu
tion is des
ribed by the inequality below (where, for
larity, we use Think ;Wait ;Use instead of x1; x2; x3 and we omit the equalitiesof the form x0i = xi).Think � 1 ^ Think 0 = 0 ^Wait 0 = Think +Wait � 1 ^ Use 0 = Use + 1



Let C be a 
lass of 
onstraints denoting exa
tly the upwards-
losed sets, i.e.,if a set S is upwards-
losed then there is a set of 
onstraints � � C su
h that[[�℄℄ = S, and vi
eversa. We 
an use any su
h 
lass C to derive a symboli
 versionSymb-Rea
hC of the pro
edure Rea
h:Pro
 Symb-Rea
hC(�0 : set of 
onstraints of C)� := �0;repeatold � := �;� := old � [ preC(old �);until EntailC(�; old �);return �where (a) C is 
losed under appli
ation of preC , (b) [[preC(�)℄℄ = pre([[�℄℄), and(
) EntailC(�; 	) = true if and only if [[�℄℄ � [[	 ℄℄.Condition (b) on preC 
an be reformulated in synta
ti
 terms. Let � be a setof 
onstraints, and for ea
h a
tion a let Ga be a 
onstraint su
h that [[Ga℄℄ = O

a(we 
all Ga the guard of the a
tion a). We have T�1a ([[�℄℄) = [[�[x=Ta(x)℄℄℄. Byequation (4) we obtainpreC(�) � _a2�;�2�Ga ^ �[x=Ta(x)℄ (5)where � denotes logi
al equivalen
e of 
onstraints.In the next se
tions we investigate whi
h 
lasses of 
onstraints are suitablefor Symb-Rea
hC . We 
onsider only 
lasses C denoting exa
tly the upwards-
losed sets. In this way, the termination of Symb-Rea
hC follows dire
tly fromthe termination of Rea
h, under the proviso that there exist pro
edures for
omputing preC(�) and for de
iding EntailC(�; 	).The suitability of a 
lass C is measured with respe
t to the following param-eters:(1) The 
omputational 
omplexity of de
iding EntailC(�; 	).(2) The size of the set preC(�) as a fun
tion of the size of �.A note about terminology. Given two sets of 
onstraints �, 	 , we refer to the
ontainment problem as the de
ision problem Entail(�; 	) = true for two setsof 
onstraints �, 	 , whereas we refer to the entailment problem as the de
isionproblem Entail(f�g; f g) = true for 
onstraints � and  .4 NA-
onstraints: No AdditionA NA-
onstraint is a 
onjun
tion of atomi
 
onstraints of the form xi � k, wherexi 2 fx1; : : : ; xng and k is a positive integer.The 
lass of NA-
onstraints denotes exa
tly the upwards 
losed sets. If � is aset of NA-
onstraints then [[�℄℄ is 
learly upwards-
losed. For the other dire
tion,observe �rst that an upwards-
losed set C is 
ompletely 
hara
terised by its set of



minimal elementsM , where minimality is taken with respe
t the pointwise order�. More pre
isely, we have C = [m2MUp(m), where Up(m) = f
 j 
 � mg.The set M is �nite by Di
kson's lemma, and Up(m) 
an be represented by the
onstraint x1 � m(s1) ^ : : : ^ xn � m(sn). So the set C 
an be represented bya set of NA-
onstraints.4.1 Complexity of the 
ontainment problem in NAThe 
ontainment problem 
an be solved in polynomial time. In fa
t, the followingproperties hold. Let �, 	 be sets of NA-
onstraints. Then,{ � entails 	 if and only if for every 
onstraint � 2 � there is a 
onstraint 2 	 su
h that � entails  .{ Vni=1 xi � ki entails Vni=1 xi � li if and only if ki � li for i : 1; : : : ;m.Thus, the worst-
ase 
omplexity of the test `� entails 	 ' is O(j�j � j	 j �n), wheren is the number of variables in � and 	 .4.2 Size of the set preNA(�)Let � be a set of NA-
onstraints. By equation (5), preNA(�) must be equivalentto the setWa2�;�2�Ga^�[x=Ta(x)℄. Unfortunately, we 
annot 
hoose preNA(�)equal to this set, be
ause it may 
ontain 
onstraints of the form xi1 + : : :+xim �k. However, when evaluating variables on positive integers, a 
onstraint of theform xi1 + : : :+ xim � k is equivalent to the following set (disjun
tion) of NA-
onstraints: _hk1;:::;kmixi1 � k1 ^ : : : ^ xim � km;where ea
h tuple of positive integers hk1; : : : ; kmi represents an ordered partitionof k, i.e. k1 + : : :+ km = k. (Moreover, it is easy to see that this is the smallestrepresentation of xi1+: : :+xim � k with NA-
onstraints.) We de�ne the operatorpreNA as the result of de
omposing all 
onstraints with additions of (5) into NA-
onstraints.The 
ardinality of preNA(�) depends on the number of ordered partitions ofthe 
onstants appearing in 
onstraints with additions. For x1+ : : :+xm � k, thisnumber, denoted by �(m; k), is equal to the number of subsets of f1; 2; : : : ; k +m� 1g 
ontaining m� 1 elements, i.e.,�(m; k) = �k +m� 1n� 1 � = �k +m� 1k � :If 
 is the biggest 
onstant o

urring in 
onstraints of �, and n, a are thenumber of states and a
tions of the broad
ast proto
ol, we get jpreNA(�)j 2O(j�j �a��(n; 
)). This makes NA-
onstraints inadequate for 
ases in whi
h the
onstants 
 � n, initially or during the iteration of algorithm Symb-Rea
hNA. Inthis 
ase we get �(n; 
) � 4np�n , whi
h leads to an exponential blow-up.



4.3 Con
lusion.NA-
onstraints have an eÆ
ient entailment algorithm, but they are inadequateas data stru
ture for Symb-Rea
h. Whenever the 
onstants in the 
onstraintsrea
h values similar to the number of states, the number of 
onstraints growsexponentially.The blow-up is due to the de
omposition of 
onstraints with additions intoNA-
onstraints. In the following se
tion we investigate whether 
onstraints withadditions are a better data stru
ture.5 AD-
onstraints: With AdditionAn AD-
onstraint is a 
onjun
tion of atomi
 
onstraints xi1 + : : : + xim � kwhere xi1 ; : : : ; xim are distin
t variables of fx1; : : : ; xng, and k is a positive in-teger. A 
onstraint in AD 
an be 
hara
terized as the system of inequalitiesA � x � b where A is a 0-1 matrix.It is easy to see that AD-
onstraints denote exa
tly the upwards-
losedsets. Sin
e AD-
onstraints are equivalent to disjun
tions of NA-
onstraints, theyonly denote upwards-
losed sets, and sin
e they are more general than NA-
onstraints, they denote them all.5.1 Complexity of the 
ontainment problem in AD.The following result shows that even the entailment test between two AD-
onstraints is diÆ
ult to de
ide.Proposition 1 (Entailment in AD is 
o-NP 
omplete). Given two AD-
onstraints � and  , the problem `� entails  ' is 
o-NP 
omplete.Proof. By redu
tion from HITTING SET [GJ78℄. An instan
e of HITTING SET
onsists of a �nite set S = fs1; : : : ; sng, a �nite family S1; : : : ; Sm of subsets ofS, and a 
onstant k � n. The problem is to �nd T � S of 
ardinality at most kthat hits all the Si, i.e., su
h that Si \ T 6= ;.Take a 
olle
tion of variables X = fx1; : : : ; xng. Let � be a 
onjun
tion ofatomi
 
onstraints �i, one for ea
h set Si, given by: If Si = fsi1 ; : : : ; sini g, then�i = xi1 + : : :+ xini � 1. Let  = x1 + : : :+ xn � k + 1.If � does not entail  , then there is a valuation V :X ! IN that satis�es �but not  . Let T be the set given by: si 2 T if and only V (xi) > 0. Sin
e Vsatis�es �, T is a hitting set. Sin
e V does not satisfy  , it 
ontains at most kelements.If T is a hitting set with at most k elements, then the valuation V :X ! INgiven by V (xi) = 1 if si 2 T , and 0 otherwise, satis�es � but not  .This implies that entailment of AD-
onstraints is 
o-NP-hard. Completenessfollows by noting that the 
ontainment problem for sets of linear arithmeti
s
onstraints is 
o-NP 
omplete [Sri92℄. utThe following 
orollary immediately follows.



Corollary 1 (Containment in AD is 
o-NP 
omplete). Given two sets ofAD-
onstraints � and 	 , the problem `� entails 	 ' is 
o-NP 
omplete.5.2 Size of the set preAD(�)We 
an de�ne preAD(�) = _a2�;�2�Ga ^ �[x=Ta(x)℄sin
e the right hand side is a set of AD-
onstraints whenever � is. If a is thenumber of a
tions of the broad
ast proto
ol, then jpreAD(�)j 2 O(j�j � a).5.3 Con
lusionAD-
onstraints are not a good data stru
ture for Symb-Rea
h either, due to thehigh 
omputational 
ost of 
he
king 
ontainment and entailment. This resultsuggests to look for a 
lass of 
onstraints between NA and AD.6 DV-
onstraints: With Distin
t VariablesDV-
onstraints are AD-
onstraints of the formx1;1 + : : :+ x1;n1 � k1 ^ : : : ^ xm;1 + : : :+ xm;nm � km ;where xi;j and xi0;j0 are distin
t variables (DV) for all i; j; i0; j0. In other words,a DV-
onstraint 
an be represented as A � x � b where A is a 0-1 matrix withunit ve
tors as 
olumns.Sin
e DV-
onstraints are more general than NA-
onstraints, but a parti
ular
ase of AD-
onstraints, they denote exa
tly the upwards-
losed sets.6.1 Complexity of the 
ontainment problem in DV.Entailment between sets of DV-
onstraints 
an still be very expensive, as shownby the following result.Proposition 2 (Containment in DV is 
o-NP 
omplete). Given two setsof DV-
onstraints � and 	 , the problem `� entails 	 ' is 
o-NP 
omplete.Proof. By redu
tion from INDEPENDENT SET [GJ78℄. An instan
e of INDE-PENDENT SET 
onsists of a �nite graph G = (V;E) and a 
onstant k � jV j.The problem is to �nd I � V of 
ardinality at most k su
h that for every u; v 2 Ithere is no edge between u and v.Assume V = fv1; : : : ; vng. Take a 
olle
tion of variables X = fx1; : : : ; xng.The set � 
ontains a 
onstraint xi � 1 for i : 1 : : : n, and xi + xj � 1 for everyedge (vi; vj) 2 E. The set 	 is the singleton f g, where  = x1+: : :+xn � k+1.If � does not entail  , then there is a valuation V :X ! IN that satis�es �but not  . Let I be the set given by: si 2 I if and only V (xi) > 0. Sin
e V



satis�es �, I is an independent set. Sin
e V does not satisfy  , it 
ontains atmost k elements.If I is an independent set with at most k elements, then the valuation V :X !IN given by V (xi) = 1 if si 2 I , and 0 otherwise, satis�es � but not  . utHowever, and di�erently from the AD-
ase, 
he
king entailment between twoAD-
onstraints 
an be done in polynomial time. Let V ar(�) denote the set offree variables o

urring in the 
onstraint �, and let Cons(
) denote the 
onstanto

urring in the atomi
 
onstraint 
. We have the following result:Proposition 3. Let � and 
 be an arbitrary and an atomi
 DV-
onstraint,respe
tively. Let � be the largest set of atomi
 
onstraints Æ in � su
h thatVar(Æ) � Var(
). Then, � entails 
 if and only if �Æ2�Cons(Æ) � Cons(
).Proof. ()): Assume �Æ2�Cons(Æ) < Cons(
). Then, any valuation that assignsCons(Æ) to one variable in Æ and 0 to the others, and 0 to the remaining variablesof Var(
), satis�es � but not 
.((): Clearly � entails �. Sin
e � is a DV-
onstraint, � entails the 
onstraintPxi2Var(Æ) xi � �Æ2�Cons(Æ). Sin
e Var(Æ) � Var(
) and PÆ2� Cons(Æ) �Cons(
), it also entails Pxi2Var(
) xi � Cons(
), whi
h is the 
onstraint 
. utFor instan
e, we have that x1 + x2 � a ^ x3 � b entails x1 + x2 + x3 + x4 � 
 ifand only if a+ b � 
.Sin
e � entails  if and only if � entails ea
h atomi
 
onstraint of  , we getthe followingCorollary 2 (Entailment in DV is in P). Given two DV-
onstraints � and , it 
an be 
he
ked in polynomial time whether � entails  .Sin
e the symboli
 pro
edure for the rea
hability problem requires to 
he
k
ontainment, and not entailment, Corollary 2 does not seem to be of mu
h use at�rst sight. However, it allows to de�ne a new rea
hability pro
edure by repla
ingthe EntailC(�; old �) test in Symb-Rea
h by the lo
al 
ontainment test:forall � 2 � exists  2 old �Clearly, the lo
al 
ontainment test implies the 
ontainment test, and so the newpro
edure is partially 
orre
t. The risk of weakening the �xpoint test is that wemay end up with a non-terminating algorithm. Fortunately, this turns out notto be the 
ase, as shown by the following proposition.Proposition 4. The pro
edure Symb-Rea
hDV terminates.Proof. Let X be a set of variables. Given Y � X , let Y � k denote the 
onstraintPxi2Y xi � k.Let � be a DV-
onstraint on X . We de�ne the fun
tion f� whi
h assigns toY � X a natural number as follows:f�(Y ) = �k if � 
ontains the 
onstraint Y � k0 otherwise



Observe that f� is well de�ned be
ause � is a DV-
onstraint. De�ne the pointwiseordering � on these fun
tions, given by f� � f if f�(Y ) � f (Y ) for everysubset Y of X . We prove that the lo
al 
ontainment test 
orresponds exa
tlyto the pointwise ordering. I.e., for DV-
onstraints, � entails  if and only iff�(Y ) � f (Y ).{ If f� � f , then � entails  .Let Y � k be an atomi
 
onstraint of  . It follows from f�(Y ) � f (Y ) that� 
ontains a 
onstraint Y � k0 su
h that k0 � k. So every solution of � is asolution of Y � k.{ If � entails  , then f� � f .We prove the 
ontraposition. Let Y � X su
h that f�(Y ) < f (Y ). Then  
ontains a 
onstraint Y � k, and � 
ontains a 
onstraint Y � k0 su
h thatk0 < k (if � 
ontains no 
onstraint Y � k0 we 
an assume that it 
ontainsthe 
onstraint Y � 0). Sin
e � is a DV-
onstraint, it has a solution X0 su
hthat Y0 = k0. So X0 does not satisfy Y � k, and so � does not entail  .Assume now that Symb-Rea
hDV does not terminate. Then, the i-th iteration ofthe repeat loop generates at least one 
onstraint �i su
h that �i does not entail�j for any i > j. By the result above, the sequen
e of fun
tions f�i satis�esf�i 6� f�j for any i > j. This 
ontradi
ts Di
kson's lemma (
onsider a fun
tionf� as a ve
tor of IN2jXj). ut6.2 Size of the set preDV(�)If � is a set of DV-
onstraints, then the set of 
onstraints (5) may 
ontainAD-
onstraints with shared variables. However, ea
h 
onstraint in set (5) iseither a DV-
onstraint or has one of the two following forms: � ^ xi � 1 or� ^ xi � 1 ^ xj � 1, where � is a DV-
onstraint with at most one o

urren
e ofxi and xj . The 
onstraints of the form xi � 1 
orrespond to the `guards' of thetransition rules of the proto
ol. Thus, in order to maintain 
onstraints in DV-form, all we have to do is to merge the `guards' and the remaining DV-
onstraint(i.e. �). The operator preDV is de�ned as the result of applying the followingnormalization: Given a 
onstraint x � 1 ^ x+ y1 + : : :+ ym � k ^ � where, byhypothesis, x does not o

ur in �, repla
e it by the equivalent set of 
onstraintsk�1_i=0(x � k � i ^ y1 + : : :+ ym � i ^ �) :In the worst 
ase, it is ne
essary to redu
e ea
h new 
onstraint with respe
t totwo guards, possibly generating O(k2) new 
onstraints. Thus, if a is the numberof a
tions of the proto
ol and 
 is the maximum 
onstant o

urring in the set �of DV-
onstraints, we have jpreDV(�)j 2 O(j�j � a � 
2).



6.3 Con
lusionDV-
onstraints are a good 
ompromise between AD and NA-
onstraints. Theappli
ation of preDV does not 
ause an exponential blow up as in the 
ase ofNA-
onstraints. Furthermore, though the 
ontainment test is 
o-NP 
omplete, it
an be relaxed to an entailment of low polynomial 
omplexity, unlike the 
ase ofAD-
onstraints. Moreover, as shown in the next se
tion, sets of DV-
onstraints
an be 
ompa
tly represented.7 EÆ
ient Representation of Sets of ConstraintsDV-
onstraints 
an be manipulated using very eÆ
ient data-stru
tures and op-erations. We 
onsider 
onstraints over the variables fx1; : : : ; xng.Ea
h atomi
 DV-
onstraint �xi2Y xi � k 
an be represented as a pair hb; ki,where b is a bit-ve
tor, i.e., b = hb1; : : : ; bni and bi = 1 if xi 2 Y , and 0otherwise. Thus, a DV-
onstraint 
an be represented as a set of pairs. Basedon this en
oding, the de
ision pro
edure of Corollary 2 
an be de�ned usingbitve
tor operations not and or . (1 denotes the bitve
tor 
ontaining only 1's.)Pro
 Entails(
str1 ; 
str2 : 
odings of DV-
onstraints)var s : integerfor all pairs hb2; k2i in 
str2s := 0;for all pairs hb1; k1i in 
str1if (not(b1) or b2) = 1 then s := s+ k1 endifendforif s < k2 then return false endifendfor;return true8 ExamplesIn this se
tion we present and dis
uss some experimental results. We �rst showsome examples of systems and properties that we were able to verify automat-i
ally, and then we 
ompare the exe
ution times obtained by using di�erent
onstraint systems.The proto
ol shown in Fig. 1 models a network of pro
esses a

essing twoshared �les (
alled `a' and `b') under the last-in �rst-served poli
y. When apro
ess wants to write on one of the �les all pro
esses reading it are redire
tin the initial state I. In the state I a pro
ess must send a broad
ast beforestarting reading a �le: in this 
ase all writers are sent ba
k to the state I (last-in �rst-served). Note that pro
esses operating on `b' simply skip the broad
ast
on
erning operations on `a' and vi
e versa. The proto
ol must ensure mutual
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Fig. 1. Last-in �rst-served a

ess to two resour
es.ex
lusion between readers and writers. The initial parameterized 
on�gurationof the proto
ol isI � 1; Sa = 0; Sb = 0; Ea = 0; Eb = 0;Ma = 0;Mb = 0 :We prove that the unsafe 
on�gurations Sa � 1;Ma � 1 are not rea
hable.In Fig. 2, we des
ribe a 
entral server model [ABC+95℄. Pro
esses in statethink represent thinking 
lients that submit jobs to the CPU. A number ofpro
esses may a

umulate in state wait
pu. The �rst job requesting the CPU�nds it idle and starts using it. A job that 
ompletes its servi
e pro
eeds toa sele
tion point where it 
ontinues requesting the I/O subsytem or leaves the
entral system. No spe
i�
 poli
y is spe
i�ed for the queues of waiting jobs. In theinitial state of the broad
ast proto
ol in Fig. 2 an arbitrary number of pro
essesare in state think, whereas one pro
ess is respe
tively in state idle
pu, idledisk,noint. The proto
ol must ensure that only one job at a time 
an use the CPU andthe I/O subsytem. The 
ow of pro
esses is represented by a 
olle
tion of rulesover 17 variables (one for ea
h state). The initial parameterized 
on�guration ofthe proto
ol is Think � 1; Idle
pu = 1; Idledisk = 1; No-int = 1;
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Fig. 2. Central Server System.with all other variables equal to zero. We prove that the unsafe 
on�gurationsUse
pu � 2 is not rea
hable.Petri Nets 
an be seen as a spe
ial 
ase of broad
ast proto
ols where the 
on-straints generated during the analysis are in NA-form. Consider the Petri net of[Ter94℄ shown in Fig. 3, whi
h des
ribes a system for manufa
turing tables (forinstan
e, transition t4 assembles a table by taking a board from the pla
e p6and four legs from the pla
e p5). The 
onstraint-based representation introdu
esa variable for ea
h pla
e and for ea
h transition. The variables 
orrespondingto transitions 
ount the number of times a transition is �red during the exe
u-tion. There is a rule for ea
h transition. For instan
e, the rule 
orresponding totransition t4 isP6 � 1; P5 � 4; P 06 = P6 � 1; P 05 = P5 � 4; P 07 = P7 + 1; T 04 = T4 + 1In [Ter94℄ it is shown that an initial marking of this is deadlo
k-free (i.e.,no sequen
e of transition o

urren
es 
an lead to a deadlo
k) if and only if itenables a sequen
e of transition o

urren
es 
ontaining t1 at least three timesand all other transitions at least twi
e. Based on this preliminary result we 
anthen 
ompute all deadlo
k-free initial states. They are exa
tly the prede
essorsstates of the statesT1 � 3; T2 � 2; T3 � 2; T4 � 2; T5 � 2; T6 � 2
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Fig. 3. Manufa
turing System modeled as a Choi
e-free Petri Net.interse
ted with the initial states of the system, i.e., those su
h that Ti = 0 forall i and P5 = P6 = P7 = 0. The result of the �xpoint 
omputation is given bythe following set of 
onstraintsP1 � 10; P2 � 1; P3 � 2 P1 � 8; P2 � 3 P1 � 12; P3 � 2P1 � 6; P2 � 5; P3 � 2 P1 � 8; P3 � 1; P4 � 1 P1 � 6; P4 � 2P1 � 6; P2 � 1; P3 � 1; P4 � 18.1 Comparison of exe
ution timesWe have tested the previous examples on HyTe
h (polyhedra representation ofsets of 
on�gurations, full entailment test), on Bultan, Gerber and Pugh's model
he
ker based on the Omega library for Presburger arithmeti
 [BGP97℄, and onthe spe
ialized model 
he
ker we have introdu
ed in the paper (DV-
onstraintrepresentation of sets of states, lo
al entailment test). HyTe
h works on realarithmeti
, i.e., it employs eÆ
ient 
onstraint solving for dealing with linear
onstraints. The results are shown in the following table, where `Presb' refers tothe model 
he
ker of [BGP97℄, and `BitVe
tor' to our 
he
ker.Fig Rules Unsafe States Steps BitVe
tor1 HyTe
h1 Presb21 21 Sa � 1,Ma � 1 2 <1s <1s not testedUse
pu � 2 7 <1s 5.5s 40sUse
pu � 3 10 <1s 16s 290s2 9 Use
pu � 4 13 <1s 40s 1558sUse
pu � 8 25 15s 578s not testedUse
pu � 10 31 76s 1738s not tested3 6 T1 � 3, ^i>1Ti � 2 24 1090s >6h 19h50m1 On a Sun Spar
 5.6. 2 On a Sun Ultra Spar
.



9 Related workThe �rst algorithm for testing safety properties of broad
ast proto
ols was pro-posed by Emerson and Namjoshi in [EN98℄. Their approa
h is based on an ex-tension of the Karp and Miller's 
over graph 
onstru
tion (used for Petri Nets)[KM69℄. In [EFM99℄, Esparza, Finkel and Mayr show that the algorithm maynot terminate and propose a ba
kwards-rea
hability pro
edure. The 
orre
tnessof the pro
edure follows from general results on the de
idability of in�nite statesystems by Abdulla et al. [ACJ+96℄. In [Kin99℄, Kindahl uses 
onstraints assymboli
 representation of upwards-
losed sets for Petri Nets and lossy 
hannelsystems, but does not dis
uss the issue of �nding adequate 
lasses of 
onstraints.Finally, Delzanno and Podelski [DP99℄, and B�erard and Fribourg [BF99℄ havere
ently applied real-arithmeti
s to model 
he
king of integer systems.10 Con
lusionWe have proposed linear 
onstraints with disjoint variables as a good symboli
representation for upwards-
losed sets of 
on�gurations of broad
ast proto
ols.Experimental results shown that even a prototype implementation 
an beat toolsfor more general 
onstraints.A
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