
[Bun88] A. Bundy. The Use of Explicit Plans to Guide Inductive Proofs. In R. Luck andR. Overbeek, editors, CADE9. Springer-Verlag, 1988. Longer version availableas DAI Research Paper No. 349, Dept. of Arti�cial Intelligence, Edinburgh.[BvHH+89] A. Bundy, F. van Harmelen, J. Hesketh, A. Smail, and A. Stevens. A RationalReconstruction and Extension of Recursion Analysis. In Proc. 11th IJCAIconference. International Joint Conference on Arti�cial Intelligence, 1989.[BW81] A. Bundy and B. Welham. Using meta-level inference for selective applica-tion of multiple rewrite rules in algebraic manipulation. Arti�cial Intelligence,16(2):189{212, 1981. Also available as DAI Research Paper 121, Dept. Arti�cialIntelligence, Edinburgh.[CAB+86] R.L. Constable, S.F. Allen, H.M. Bromley, et al. Implementing Mathematicswith the NuPRL Proof Development System. Prentice Hall, 1986.[DS79] M. Davis and T. Schwartz. Metamathematical extensibility for theorem veri�ersand proof-checkers. Computer and Matemathics with Applications, 5:217{230,1979.[GMW79] M.J. Gordon, A.J. Milner, and C.P. Wadsworth. Edinburgh LCF - A mecha-nised logic of computation, volume 78 of Lecture Notes in Computer Science.Springer Verlag, 1979.[GSnt] F. Giunchiglia and A. Smaill. Reection in constructive and non-constructiveautomated reasoning. In J. Lloyd, editor, Proc. Workshop on Meta-Programming in Logic Programming. MIT Press, In print. Also available asDAI Research Paper 375, Dept. of Arti�cial Intelligence, Edinburgh.[GT90] F. Giunchiglia and P. Traverso. GETFOL Manual - version 1 release 1. Tech-nical report, IRST, Forthcoming 90.[How88] D. J. Howe. Computational metatheory in Nuprl. In R. Lusk and R. Overbeek,editors, CADE9, 1988.[KC86] T.B. Knoblock and R.L. Constable. Formalized Metatheory in Type The-ory. Technical Report TR 86-742, Dept. Computer Science, Cornell University,1986.[SS86] L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, 1986.[Tar36] A. Tarski. Der Wahrheitsbegri� in den formalisierten Sprachen. Studia Philo-sophica, 1:261{405, 1936. English translation in [Tarski 56].[Tar56] A. Tarski. Logic, Semantics, Metamathematics. Oxford University Press, 1956.[Wey80] R.W. Weyhrauch. Prolegomena to a theory of Mechanized Formal Reasoning.Arti�cial Intelligence. Special Issue on Non-monotonic Logic, 13(1), 1980.[Wey82] R.W.Weyhrauch. An example of FOL using Metatheory. Formalizing reasoningsystems and introducing derived inference rules. In Proc. 6th Conference onAutomatic Deduction, 1982.

7 ConclusionIn this paper we have shown how a metatheory of a mechanized logic can be de�ned andused to reason about proof plans. In particular proof plans can be� built by theorem proving. Doing so we are guaranteed that, provided that themetatheory is correct and truthful proof plans are built correct.� executed without adding or modifying the underlying code. The resulting system isthus able to acquire new theorem proving capabilities without any addition and/ ormodi�cation of the underlying code.The resulting architecture is uniform in the sense that a tower of metatheories can bede�ned, each using the same code and the same commands (natural deduction and derivedinference rules), each such that plan formation at one level can be obtained by plan executionone level up. Note that the commands are used to reason about the code that implementsthem.Currently, work is in progress to prove the correctness (we have a proof of this) and otherproperties of the system using the reection principle, but without considering the issue ofmechanization. A truthful metatheory of a mechanized logic is currently being studied.Possible extensions of the work described in this paper are to study how proof plans canbe compiled down into the code; how to optimize the planning part (a related issue is toconsider proof plans representing possibly failing tactics) and how to take advantage (ifpossible and feasible) of the tower of metatheories by reasoning at an arbitrary level.AcknowledgementsThis work started when the �rst author was at the AI Department of Edinburgh Univer-sity. The research described in this paper owes a lot to the openess and sharing of ideaswhich exists in the Mathematical Reasoning group in Edinburgh and Mechanized Reasoninggroup in Trento. Alan Bundy and Richard Weyhrauch have provided, in di�erent moments,invaluable support; without them the research described in this paper could have neverbeen done. The authors also thank Alessandro Armando, Alessandro Cimatti, Frank vanHarmelen, Luciano Sera�ni, Alex Simpson, Alan Smaill, Andrew Stevens, Caroline Talcottand Toby Walsh.References[BM81] R.S. Boyer and J.S. Moore. Metafunctions: proving them correct and usingthem e�ciently as new proof procedures. In R.S. Boyer and J.S. Moore, editors,The correctness problem in computer science, pages 103{184. Academic Press,1981.[BSG+88] A. Bundy, D. Sannella, F. Giunchiglia, F. Van Harmelen, J. Hesketh, P. Mad-den, A. Smaill, A. Stevens, and L. Wallen. Proving properties of logic programs:A progress report. In 1988 Alvey Conference, pages 131{133, 1988. Also DAIresearch paper No. 361, Dept. Arti�cial Intelligence, Edinburgh.

predicates (such as Prov) and terms (such as d�e) [GSnt]; the explicit link in the code doesnot exist.As Boyer and Moore do [BM81], we use functions de�ned in the underlying code. On theother hand, in our approach the underlying code is not modi�ed and/ or extended 16. InBoyer and Moore's approach, the search strategies are proved correct by theorem proving.In our approach, provided that the metatheory is correct and truthful, proof plans are builtcorrect by theorem proving.The work most closely related to ours is Alan Bundy's [Bun88] and Richard Weyhrauch's[Wey82]. In the Mathematical Reasoning Group in Edinburgh a metatheoretic proof planner(called CLAM) has been built on top of OYSTER, the Edinburgh re- implementation ofthe NuPrl system [CAB+86]. One way of seeing this work is as follows [Bun88]: given abasic set of metatheoretic tactics, described declaratively with \methods", how can they becomposed at run time (namely with the knowledge of the goal to be proved) to build a globalstrategy (the proof plan)? Before performing any object level theorem proving activity, aphase of proof planning in the metatheory is performed. The motivations underlying ourwork are very similar to those described in [Bun88]. In both cases the goal is to understand(mathematical) reasoning. On the other hand, so far, the work in Edinburgh has been moreconcentrated on (and been successful in) increasing the library of proved theorems, (see also[BvHH+89]) while we have focused more on representational issues. We have focused onobtaining uniformity and using the same logic at all levels (while the Clam's metalogic isdi�erent from the object logic) and have studied how plan formation can be done by theoremproving. From the point of view of (proof) planning, even if the information carried by PP-w�s is similar to that carried by the methods used in Clam, there are some di�erences. In ourapproach the structure of the object level deduction is explicitly represented in the metalogic(by the proof plan term) thus possibly allowing bottom up reasoning. Clam's methods havea tactic slot. Clam's proof plans have weakened preconditions (to achieve e�ciency atplanning time) and may fail (at running time). PP-w�s are metalevel representations ofderived inference rules. This maybe a problem as, in certain applications (mathematicalreasoning is one of these), top down proof planning with derived inference rules seems ascostly as performing the search directly in the object space. That this is always the case,for instance with bottom up proof planning, is not obvious. We are currently investigatingthe problem.The approach used in this paper is clearly strictly connected to the fact that we are using(a re-implementation of) the FOL system [Wey80] and builds on the work described in[Wey82]. The major improvements we see with respect to the work described in [Wey82]are as follows. We have explained why (something very similar to) the old FOL evaluatoris the correct machinery to \execute" a proof plan (this topic is much more general and isnot totally faced here). We have introduced a metatheory for deducibility in a mechanizedlogic and provided a general methodology for using it to plan (e�ectively and e�ciently)object level proofs by theorem proving. Notice that in [Wey82] the metatheoretic functionswere \attached" [Wey80] to expression manipulation routines and not to the inference rulefunctions. This shift is substantial since, because of that, we have been able to make e�ectiveuse of the notion of mechanization and to argue for the correctness of the proof plans. Thishas required an almost total re-thinking of the old FOL expression manipulation routinesand inference rules' code.16Not considering the possibility, not exploited yet, of compiling proof plans into code.

BASIC_PLAN2:forall f1 f2 tb1 tb2 succ t1 t2 t3 v t. (T(f1) and T(f2) andFORALL(wof(f1)) and BASEEQ(wof(f1),ZERO) andFORALL(wof(f2)) and STEPEQ(wof(f2),succ) andEQWFF(allewff(mkforall(v,hypot(matrix(mk-ripple-wff(wof(f2),succ,t1,t2,t3)))),ZERO),mk-base-wff(wof(f1),tb1,tb2)) andEQWFF(allewff(mkforall(v,hypot(matrix(mk-ripple-wff(wof(f2),succ,t1,t2,t3)))),t),concl(matrix(mk-ripple-wff(wof(f2),succ,t1,t2,t3))))imp T(basic-plan(f1,f2,tb1,tb2,succ,t1,t2,t3,v,t)))We can now execute BASIC PLAN2 (or its less e�cient version BASIC PLAN1) to derive theobject level theorem:GETFOL:: reflect BASIC_PLAN2,plus-base,plus-step,y,y + z,s,x,y,z,x,s(x);1 forall x y z. (x + (y + z) = (x + y) + z)6 Related workOne of the key issues faced in the literature of metatheoretic theorem proving has been thatof extensibility, namely of how, by using metatheoretic capabilities, the inference mechanismcould be improved without endangering the soundness of the system. Following a distinction�rst made in [BM81] all the attempts can be divided in two broad classes. In the �rst class(containing [BM81, DS79, KC86, Wey82]), to preserve soundness, the procedures should beproved correct in a formalized metatheory, in the second (containing [CAB+86, GMW79])a mechanism is provided which guarantees that any added metatheoretic tactic, written interms of primitive inference rules, will preserve correctness.From this perspective our approach can be seen as part of class two above: provided thatthe metatheory is correct and correctly de�nes the object theory (from [GSnt] we call thisproperty truthfulness) the newly built metalevel strategies, which are derived inferencerules and extend the theorem proving capabilities of the system, are guaranteed to becorrect.Our metatheory is fully declarative and based on a logical (�rst order) formalism. This iswhere we di�er from all the work based on the use of tactics and ML [CAB+86, GMW79].In our approach we are able to reason about the explicit representation of search strategiesby metatheoretic theorem proving.The major di�erence with the other work on formalized logical metatheories (such as[How88, KC86]) is that in our axiomatization the issue of mechanization is central. Inthe work described in [How88, KC86] the metatheory is independent of how the underly-ing code is structured. It is important to remember that it is because we have de�ned ametatheory of the mechanized logic that we are able to see the implementation code as itsnatural procedural interpretation. This has been achieved (among other things) by hav-ing the link name-object explicit (in GETFOL's code). In classical approaches everythingworks correctly (ie. the reection principle) because of the properties carried by the various

GETFOL:: reflect INDUCTION 1 2 x s(x);3 forall x y z. (x + (y + z) = (x+ y) + z)We �rst execute the base and the ripple out PP-w� on the base equation and on the stepequation. The induction step is executed on the facts created at the object level by the twoprevious reections (the facts labeled 1 and 2).In the example above the control was still (partially) at the object level. The third (andlast) approach is to plan by metalevel theorem proving (following the methodology de-scribed previously). The proof of the composition of the three PP-w�s BASE, RIPPLEand INDUCTION has the general structure described in section 3: two 8Es are performedon INDUCTION, the �rst substituting f1 with base(f1,tb1,tb2), the second substitut-ing f2 with ripple(f2,succ,t1,t2,t3). A 8E is then applied to BASE and RIPPLE topropagate back the INDUCTION preconditions (this is done by a sequence of applicationsof �Es and then of �Is). The �nal step is to apply 8Is to obtain the �rst version of thebasic plan:BASIC_PLAN1:forall f1 f2 tb1 tb2 succ t1 t2 t3 v t. (T(f1) and T(f2) andFORALL(wof(f1)) and BASEEQ(wof(f1),ZERO) andFORALL(wof(f2)) and STEPEQ(wof(f2),succ) andFORALL(wof(ripple(f2,succ,t1,t2,t3))) andIMP(matrix(wof(ripple(f2,succ,t1,t2,t3)))) andEQWFF(allewff(mkforall(v,hypot(matrix(wof(ripple(f2,succ,t1,t2,t3))))),ZERO),wof(base(f1,tb1,tb2))) andEQWFF(allewff(mkforall(v,hypot(matrix(wof(ripple(f2,succ,t1,t2,t3))))),t),concl(matrix(wof(ripple(f2,succ,t1,t2,t3)))))impT(induction(base(f1,tb1,tb2),ripple(f2,succ,t1,t2,t3))))So far we have done theorem proving without postconditions. Using appropriate postcon-ditions for the ripple out deduction function the two conjunctsFORALL(wof(ripple(f2,succ,t1,t2,t3)))IMP(matrix(wof(ripple(f2,succ,t1,t2,t3))))can be matched and eliminated. Then, by using further postconditions, ripple and basecan be replaced with alternative functions on their w�s (mk-ripple-wff, mk-base-wff).At this point it is possible to de�ne the deduction function basic-plan as the compositionof base, ripple and induction.GETFOL:: forall f1 f2 tb1 tb2 succ t1 t2 t3 v t.(basic-plan(f1,f2,tb1,tb2,succ,t1,t2,t3,v,t) =induction(base(f1,tb1,tb2),ripple(f2,succ,t1,t2,t3)))The result of this phase of metalevel theorem proving with postconditions is the followingnew version of the basic plan:

8v8w(k(s(v); w) = s(k(v; w)))8x(8y8z(k(x; k(y; z)) = k(k(x; y); z))� (8y8z(k(s(x); k(y; z)) = k(k(s(x); y); z))) (20)A[x; 0] 8x(A � A[x; succ(x)])8xA (21)The base and ripple out rules are de�ned to generate the base and step cases of the inductiontactic. In the induction rule, the notation A[x; t] means that A[x; t] is the formula obtainedfrom A substituting the variable x with the term t.We have then represented these inference rules as PP-w�s in the metatheory as follows:GETFOL:: AXIOM BASE: forall f t1 t2.(T(f) and FORALL(wof(f)) and BASEEQ(wof(f),ZERO)imp T(base(f,t1,t2)));GETFOL:: AXIOM RIPPLE: forall f succ t1 t2 t3.(T(f) and FORALL(wof(f)) and STEPEQ(wof(f),succ)imp T(ripple(f,succ,t1,t2,t3)));GETFOL:: AXIOM INDUCTION: forall f1 f2 v t. (T(f1) and T(f2) andFORALL(wof(f2)) and IMP(matrix(wof(f2))) andEQWFF(allewff(mkforall(v,hypot(matrix(wof(f2)))), ZERO),wof(f1)) andEQWFF(allewff(mkforall(v,hypot(matrix(wof(f2)))),t),concl(matrix(wof(f2))))imp T(induction(f1,f2)));In the inductiom axiom, the �fth conjunct (EQWFF (.)) states that, if the �rst premiseis A[x; 0], then the hypothesis of the matrix of the second fact is A. The sixth conjunct(EQWFF(.)) states that A[x; succ(x)] is the conclusion of the matrix of the second fact.+ is then recursively de�ned as follows:GETFOL:: axiom plus-base : forall v. (zero + v = v);GETFOL:: axiom plus-step : forall v w. (s(v) + w = s(v + w));To prove the goal we can use di�erent strategies. The �rst obvious method is to work com-pletely at the object level and apply its inference rules. We do not consider this approach.The second, more interesting strategy, is to forget about the object level rules and, sittingin the object theory, build the proof by reecting down the metatheoretic PP-w�s describedabove 15. In GETFOL this can be done as follows:GETFOL:: reflect BASE plus-base y y + z;1 forall y z. (0 + (y + z) = (0 + y) + z)GETFOL:: reflect RIPPLE plus-step s x y z;2 forall x. ((forall y z. (x + (y + z) = (x + y) + z)) imp(forall y z. (s(x) + (y + z) = (s(x)+ y) + z)))15It can be proved that, de�ning the metatheory as described in this paper all the object level commandscan be simulated by reecting down certain metalevel PP-w�s.

2. compute the object level fact whose name is the argument of T . Note that this canbe performed by an interpreter I such that:I(\n") = nI(g(n1; :::; np)) = I(g)(I(n1); :::; I(np))I((hm � ::: � h1)(n1:::np)) = (I(hm) � ::: � I(h1))(I(n1); :::; I(np))Note that I performs exactly what is de�ned to be the interpretation of functionsymbols in a �rst order model;3. from ` T (\A") in the metatheory infer ` A in the object theory (in other words,apply a reection principle).The point is thus how to perform the basic interpretations, in other words I(\ni") andI(\hi"). In a metatheory of a mechanized theory the object level theory is seen intensionally,in how it is implemented. Thus the elements of the object level theory are the datastructures and code implementing it. If ni is a fact then it will be the data structureimplementing it, while I(hi) will be the code implementing the inference rule functiondenoted by hi.All this discussion can be generalized to give a procedural interpretation of proof plans intheir most general form (as in (6)). This is not done here for lack of space. One point isworth noting here. We have spoken of using a reection principle. Reection principles,it is well known, are dangerous and can make a theory inconsistent (provided it containsenough arithmetics) [GSnt]. We do not have here a full reection principle, in particularthe metatheory uses a language which is distinct from that of the object theory and it isimpossible to create dangerous self-references (a paper on the topic is forthcoming).Notice that, in order to implement I, the system must have in its code an explicit way toremember the pairs < quotation-mark name, denoted object >. The code performing theabove steps is implemented in GETFOL and can be run with the command REFLECT. In[GSnt] the details of the implementation in GETFOL of REFLECT are reported (but see also[Wey80]).5 An exampleLet us consider a simpli�ed version of the BMTP (as described in [Bun88] 13) as composedof the base tactic, the ripple out tactic and the induction tactic. The goal is to see how theBMTP can be used to prove the associativity of +. To implement the BMTP in GETFOLwe have developed three object level inference rules corresponding to the three tactics(GETFOL has no built-in theoretic axiom/inference rules). The base, ripple and inductioninference rules have been respectively implemented to perform as follows 14:8v(k(0; v) = v)8x8y(k(0; k(x; y)) = k(k(0; x); y)) (19)13With the di�erence that here inference rules are de�ned to work from the axioms to the goal.14For lack of space and sake of simplicity, the code of the inference rules and how dependencies are handledis not described here. Moreover base and ripple are described for how they work with + (not consideringthe general case).

the signs of which each single word is composed and the order in which these signs andwords follow one another. Thus if \A", \B" and \C" are names respectively of A, Band C then the structural- descriptive name of ((A � B) ^ (B � C)) � (A � C) ismkimp(mkand(mkimp(\A"; \B"); mkimp(\B"; \C")); mkimp(\A"; \C")), where,for instance, mkimp is a function symbol such that mkimp(\A"; \B") is understoodin the metalogic as saying that we have A followed by � and then by B (in otherwords mkimp(\A"; \B") represents A � B).Notice that for the basic symbols of the language (ie. predicate symbols) we can have onlyquotation-mark names while for composite ones (ie. w�s) we can have both kinds of names.Rewording what said above, structural-descriptive names describe how to obtain the de-noted object by \constructing" its name starting from quotation-mark names. All thecomponents of the name are structurally linked in a way which is isomorphicto the way the objects denoted by the components are composed to build theobject denoted by the name.The metatheory we are here interested in is concerned with deductions, namely with factsand with how to obtain new facts from old ones. Thus we will have quotation-mark andstructural-descriptive names of facts. It is easy to think of the quotation-mark name of afact, it can be for instance a string containing the w�, the assumptions, some notation forgiving it a position in the deduction tree, all of this between quotation marks. But whatis a structural-descriptive name of a fact? We have to �nd the operation denoted by themetatheoretic structural link. When building the name of an expression, the metatheoreticstructural links denote string concatenation (in fact, by string concatenation a new stringis obtained from old ones). When building a theorem, the metatheoretic structural linksdenote derivability (in fact, by applying an inference rule a new fact is obtained from oldones). Thus the structural- descriptive name of a fact is a function which says how to deduceit from some basic facts, it is the proof plan term, occurring as an argument of thepredicate symbol T . Thus, for instance, the name of the theorem ` ((A � B)^ (B � C)) �(A � C) is impi(\(A � B) ^ (B � C)"; impi(\A"; thirdr (thirdl(\A"; \(A � B) ^ (B �C)"); \(A � B) ^ (B � C)"))) (where impi is the inference rule function of �I) namelyPP TRANSITIVE's deduction function applied to A and (A � B) ^ (B � C).T (impi(\(A � B) ^ (B � C)"; impi(\A"; thirdr(thirdl(\A"; \(A� B) ^ (B � C)");\(A � B) ^ (B � C)"))))is thus an alternative notation for:T (\((A � B) ^ (B � C)) � (A � C)")More in general, the w� in equation 18 is an alternative notation for:T (\(Km � ::: �K1)(A1; :::; An)")We can thus use a metatheoretic proof plan to assert an object level theorem performingthe following steps:1. perform a 8E on the proof plan and substitute the bound variables with names ofobject level facts;

PP THIRDL from the postconditions of the IR-w�s that compose it (PP IMPE andPP ANDEL):IMPEWFF : 8f18f2(wof(impe(f1; f2)) = concl(wof(f2))) (15)ANDEWFF : 8f(wof(andel(f)) = lfand(wof(f))) (16)A 8E can be applied on IMPEWFF (15) substituting f2 with andel(f2). The consequencew� contains impe(f1; andel(f2)). It can be replaced by thirdl(f1; f2) for (7). The termwof(andel(f2)) can be replaced by lfand(wof(f2)) using ANDEWFF in (16). The provedpostcondition is thus:THIRDWFF : 8f18f2(wof(thirdl(f1; f2)) = concl(lfand(wof(f2)))) (17)4 Executing proof plansTo simplify matters let us consider a simple proof plan with no preconditions and no re-quirements on the premises:8f1:::8fnT ((km � ::: � k1)(f1; :::; fn))where km; :::; k1 are metatheoretic representations ofm deduction functions Km; :::; K1 suchthat (Km � ::: �K1)(f1; :::; fn) is a proof tree (all these hypotheses can be dropped and thetreatment generalized). Let us then suppose that a sequence of 8Es has been performed toobtain: T ((km � ::: � k1)(a1; :::; an)) (18)where a1; :::; an are metalevel individual constants which are representations of n factsA1; :::; An. The term (km � ::: � k1)(a1; :::; an) says that the result of the application ofthe composed function Km � ::: �K1 to the facts A1; :::An is an object level theorem.Now, let us concentrate on a (only apparently) di�erent topic. Tarski, in order to study thede�neability of the truth predicate in (certain) formalized languages, introduced the notionof formal metatheory [Tar36] . In order to state some properties of the object theory he gavehimself the ability to mention object level syntactic objects, namely he gave himself namesfor the elements of the lexicon. In doing so he distinguished between two particularkinds of names:� quotation mark names. By quotation-mark name he meant \... every name of anexpression which consists of quotation marks and such that the named expression liesbetween them". Thus the quotation mark name of the individual constant a is \a" 11,of the w� A^B is \A^B", that of the w� ((A � B) ^ (B � C)) � (A � C) (provedby PP TRANSITIVE) is \((A � B) ^ (B � C)) � (A � C)" 12.� structural-descriptive names. By structural- descriptive name he meant everyname ... which describes the words which compose the expression denoted, as well as11To be correct, throughout the paper we should have put an extra pair of quotes around connotative usesof (occurrences of) names.12The fact that a quotation- mark name has quotation marks in it is, of course, not relevant. What isrelevant is that it is uniquely de�ned (there cannot be two objects with the same quotation- mark name)and indivisible (in a logical language, it must be an individual constant).

� Independently of the level of metatheory and of the w� to be deduced, proof plans havealways the same shape. As a particular case, the representation of the metatheoreticPP-w�'s proof is a PP-w�, too. The formula in (13) is exactly of the form given in(6) (the de�nition of a generic PP-w�). PP PLANNING has the same syntacticalform as PP THIRDL, the deduction it represents. This argument can be iterated:independently of the level, all deductions can be represented as PP-w�s. The processof building proof plans is uniform over the levels.� We noticed above that the process of \appending" a deduction to another has somegeneral characteristics. The sequence of inference rule applications does not dependon the particular predicates in the formulae, but on their main symbols. Thus wenoticed that we have always a \symmetrical" sequence of 8Es, �Es, �Is and �nally8Is. The same code, implementing the appending of two proof plans can be useduniformly anywhere in the system. This fact, together with the fact that proof planshave always the same form at all levels, means that, not only can we use the samedeductive machinery at all levels, but also the same strategy. The di�erence is thatat the meta level the search space is composed of inference rules, one level up itis composed of inference rules on proof plans (namely on strategies for composinginference rules), two levels up of inference rules on strategies for composing strategiesfor composing inference rules etc. etc.We have preconditions about leaves, but nothing is explicitly stated about the properties ofthe endformula , the postconditions. In the planning literature (and here too) two (proof)plans are composed, inside a more complex (proof) plan, by (partially) \matching" thepreconditions of one with the postconditions of the other. The result of this process (whensuccessful) is the construction of a (proof) plan whose preconditions and postconditionsare satis�ed by the goal and the theory. In this framework proof plans' postconditionsare metatheoretic w�s. In order to show briey how this \matching" is performed,let us consider a simple deduction, a sequence of ^I and ^E. The composition withoutpostconditions would deduce:8f18f2(T (f1) ^ T (f2) ^ CONJ(wof(andi(f1; f2))) � T (andel(andi(f1f2))))One of ^I 's postcondition w�s is:ANDIWFF : 8f18f2(CONJ(wof(andi(f1; f2)))) (14)ANDIWFF can be \matched" with PP ANDEL (8) preconditions in order to obtain:8f18f2(T (f1)^ T (f2) � T (andel(andi(f1; f2))))Notice that this is exactly how redundant preconditions can be dropped in a proof plan thusmaking execution more e�cient. The precondition CONJ(wof(andi(f1f2))) is redundantas, forall f1 and forall f2 it is always true that the main symbol of the consequence of a ^Irule is a ^. By theorem proving on the postconditions, part of the process of plan executionis simulated and \pre-computed" (thus making execution more e�cient) at plan formation.The postconditions of newly formed proof plans can be derived by metalevel theorem prov-ing from the postconditions of the given proof plans (at the bottom level, the IR-w�s).Let us briey describe this process by an example. Let us derive some postconditions of

hypotheses are preconditions on leaf nodes of the former. These deductions are in normalform and \symmetrical" (as it should be, since all the PP-w�s have the same shape).To build the new PP-w� (PP THIRDL) we can use di�erent strategies. One method, ex-plained above, is to derive it by applying inference rules step by step at the metalevel. An-other approach is to represent the proof of the PP-w� PP THIRDL as we did for object the-ory proofs. This proof will be represented by a new PP-w�, let us call it PP PLANNING.Thus, as we briey said in the introduction (but see also section 4), PP THIRD L will beproved simply by \executing" PP PLANNING.In order to keep the explanation simpler, let us suppose that the hypotheses of the PP-w�sare written as a sequence of implications rather than as a conjunction 10. To make thereading easier we de�ne the following deduction functions:8f18f28f38x18x28x38p18p28p3(imp alle(f1; f2; f3; x1; x2; x3) =impi(f3; impe(impe(f3; alle(f1; x1; p1)); alle(alle(f2; x2; p2); x3; p3))))8f18f28f38x18x28x38p18p28p3(alli imp alle(f1; f2; f3; x1; x2; x3) =alli(imp alle(f1; f2; f3; x1; x2; x3); x2; p2))The proof of PP THIRDL, can thus be represented as follows:PP PLANNING :8f18f28f38x18x28x38p18p28p3 (T (f1) ^ T (f2)^ T (f3)^FORALL(wof(f1))^ FORALL(wof(f2))^IMP (wof(alle(f1; x1; p1)))^ HP (wof(f3); wof(alle(f1; x1; p1)))^IMP (wof(alle(alle(f2; x2; p2); x3; p3)))^HP (wof(impe(f3; alle(f1; x1; p1))); wof(alle(alle(f2; x2; p2); x3; p3)))^FREE(p2; wof(imp alle(f1; f2; f3; x1; x2; x3)))^:FREEIN(p2; wffsof(deps(imp alle(f1; f2; f3; x1; x2; x3))))^FREE(p1; wof(alli imp alle(f1; f2; f3; x1; x2; x3)))^:FREEIN(p1; wffsof(deps(alli imp alle(f1; f2; f3; x1; x2; x3))))� T (alli(alli imp alle(f1; f2; f3; x1; x2; x3); x3; p1))) (13)Of course the process could be iterated. Thus, for instance, to prove PP PLANNING wecan use the inference rules or use a proof plan. Plan execution at one level results inthe formation of a plan one level below.Three observations are worth making. All of them point out (with increasing strength) theuniformity of the approach.� The �rst point is the most obvious and it holds for most of the work previouslydone with formal metatheories. Deductions in the object theory are represented inthe metatheory as (metatheoretic) w�s. The proof theory is represented with objectswhich can be manipulated by the proof theory itself. From the point of view of theoremproving an interesting consequence is, on the other hand, that the same deduction/decision procedures (i.e inference rules and derived inference rules) can be used at anylevel.10To complete this proof we need the PP-w� in the former form. This hypothesis avoids carrying aroundthe deduction function of the proof that A ^B � C yields A � (B � C).

(some of which may be PP-w�s). Di�erent theorem proving strategies can be adopted.For instance deduction functions can be (functionally) composed (in a sort of top downapproach). This approach is similar to that used in [Bun88]. The idea is to do reasoning onthe preconditions and (when existing) on the postconditions (see later). Another possiblestrategy is (in a sort of bottom up approach) to look at proof plan terms, to reason on theirstructure and to derive (by some kind of reasoning by analogy) \similar" proof plans.We hint here only how the top down approach can be realized. In the �nal part of thissection we will also (briey) explain how postconditions can be used.Let us consider how PP THIRDL can be obtained from the composition of PP ANDELand PP IMPE. a1, a2 are parameters, PP ANDEL's proof plan is de�ned as:PP ANDEL : 8f(T (f) ^ CONJ(wof(f)) � T (andel(f))) (8)We apply �rst a 8E to PP IMPE (described in (1)) by substituting f1 with a1 and f2with andel(a2), thus obtaining (9). We apply then a 8E on (8) replacing f with a2 (thusobtaining (10).T (a1) ^ T (andel(a2))^ IMP (wof(andel(a2)))^HP (wof(a1); wof(andel(a2)))� T (impe(a1; andel(a2))) (9)T (a2) ^ CONJ(wof(a2)) � T (andel(a2)) (10)Notice we have T (andel(a2)) as the conclusion of (10) and as a conjunct of the hypothesesof (9). From (10) we can derive T (andel(a2)) depending on T (a2) ^ CONJ(wof(a2)). (9)can be rewritten as a sequence of implications, thus �E can be applied to T (andel(a2)) and(9) to obtain:T (a1) ^ IMP (wof(andel(a2))) ^HP (wof(a1); wof(andel(a2)))� T (impe(a1; andel(a2))) (11)depending on T (a2) ^ CONJ(wof(a2)). With an �I with arguments (11) and T (a2) ^CONJ(wof(a2)) (discharging T (a2) ^ CONJ(wof(a2))) and a subsequent 8I we obtain:8f18f2(T (f1)^ T (f2) ^ CONJ(wof(f2))^IMP (wof(andel(f2)))^HP (wof(f1); wof(andel(f2)))� T (impe(f1; andel(f2)))) (12)which is what we wanted. The proved theorem is a new PP-w�. It is an equivalent versionof PP THIRDL (5) (in our metatheory, if f is a fact then wof(andel(f)) = lfand(wof(f))holds).The shown proof has some characteristics which are valid in general. You usually haveto start with a sequence of 8Es and replace variables representing leaf nodes with termsrepresenting intermediate nodes (deduction functions applied to leaf nodes). This is howpreconditions on intermediate nodes \propagate back". The intermediate nodes appear inthe hypotheses of some PP-w�s and in the conclusions of others. In the next step a sequenceof �Es (possibly interleaved with other operations) must be performed. At this point thebasic parts have been extracted and the wanted PP-w�s can be constructed by a sequenceof �Is and then of 8Is. Notice that a deduction can be \appended" to another by assumingthe hypotheses of the former, applying �E twice and introducing an implication whose

where: km; :::; k1 are metatheoretic function symbols representing the rule functions of therules applied in the deduction and \�" means function composition 9. (km�:::�k1)(f1; :::; fn)is called the proof plan term. PREC(f1; :::; fn) is the conjunction of the preconditions ofthe rules applied in the deduction. The preconditions of a rule are applied to a term whosefunctional part takes into account the inference rule functions which map the leaves into theintermediate nodes. For instance, PP THIRDL's preconditions (see equation 5) are theconjunction of ^E's and �E's preconditions. �E is applied to an intermediate node, thus itspreconditions are applied to lfand(wof(f2)). Note �nally that IR-w�s are particular casesof PP-w�s (this is why we called PP IMPE the equation in (1)); generalizing IR-w�s,PP-w�s say that, if the preconditions hold, then the endformula is a node of the tree.Even if it is always possible to represent a deduction as a composition of rule functions, wewant to avoid to describe deductions any time from \�rst principles". Inference rules are too�ne grained to be e�ectively used in global strategies. This can be avoided by producing aconservative extension of the metatheory by de�ning a new function (called the deductionfunction) as follows: 8f1:::fn(g(f1; :::; fn) = (km � ::: � k1)(f1; :::; fn))The deduction function g is de�ned to behave as the composition of the inference ruleand/or deduction functions involved in the deduction it represents. Notice that deductionfunctions can be used in the representation of more complex deductions and thus in thede�nition of their deduction functions. Thus, for instance, the deduction function thirdlfor PP THIRDL can then be de�ned as:8f18f2(thirdl(f1; f2) = impe(f1; andel(f2))) (7)and then used (together with the dual function thirdr) to de�ne the deduction functiontransitive of PP TRANSITIVE:8f18f2(transitive(f1; f2) = impi(f2; impi(f1; thirdr(thirdl(f1; f2); f2))))The metalevel representation of the deduction becomes:PP TRANSITIVE :8f18f2((T (f1) ^ T (f2)^CONJ(wof(f2))^ IMP (lfand(wof(f2)) ^HP (wof(f1); lfand(wof(f2)))^IMP (rtand(wof(f2)))^HP (concl(lfand(wof(f2))); rtand(wof(f2))))� T (transitive(f1; f2))))Notice that the use of deduction functions allows reasoning at the desired level of detail.The \correct" level of detail can be chosen independently of the particular theorem provingstrategy.3 Proof planning as theorem provingAs proofs are represented as metalevel w�s, we can perform proof planning by metaleveltheorem proving. The goal is to deduce new PP-w�s from a set of generic metalevel formulae9The notation should be made precise explaining how to denote function composition with functions withmore than one argument. Since not relevant in this context, this issue is not faced.

More generally it can be shown inference rules can be represented as (we call w�s of thiskind \IR-w�s"):8f1:::8fn(T (f1) ^ ::::^ T (fn)^ PREC(f1; :::; fn) � T (k(f1; :::; fn)))where: f1 ... fn are variables ranging over facts of the object theory, T is an unary predicatesuch that T (x) holds when the metatheoretic term x represents a node in a deduction,PREC(x1; :::; xn) represents the preconditions for applicability of an inference rule (noticethat in some cases, eg. �I , there are no preconditions), k is a function symbol representingthe rule function.A deduction can be seen as a tree of inference rule applications, where the premises of therule applications are intermediate nodes or leaves of the tree. Thus the representation ofa deduction contains a mapping from the leaves into the endformula, the mapping beingperformed by a composition of inference rule functions. For instance, the representation offA; (A � B) ^ C)g ` B, with deduction tree8:^E�E (A � B) ^ CA A � BBis: PP THIRDL : 8f18f2(T (f1) ^ T (f2)^CONJ(wof(f2))^ IMP (lfand(wof(f2)))^HP (wof(f1); lfand(wof(f2)))� T (impe(f1; andel(f2)))) (5)while the representation of ` ((A � B) ^ (B � C)) � (A � C) with proof tree:^E�E �E �I�I(A � B) ^ (B � C)A A � B (A � B) ^ (B � C)B B � CCA � C((A � B) ^ (B � C)) � (A � C)^Eis: PP TRANSITIVE : 8f18f2(T (f1) ^ T (f2)^CONJ(wof(f2))^ IMP (lfand(wof(f2))) ^HP (wof(f1); lfand(wof(f2)))^IMP (rtand(wof(f2)))^HP (concl(lfand(wof(f2)))); rtand(wof(f2)))� T (impi(f2; impi(f1; impe(impe(f1; andel(f2)); ander(f2))))))Thus the generic representation of an object level deduction is (we call w�s of this kind\PP-w�s" or proof plans):8f1:::8fn(T (f1) ^ ::::^ T (fn) ^ PREC(f1; :::; fn) � T ((km � ::: � k1)(f1; :::; fn))) (6)8Note that, for simplicity, we write object level proof trees using a Natural Deduction notation ratherthan a sequent calculus style. The resulting formula pairs can be easily obtained by pre�xing each formulawith the set of assumptions it depends on.

1. (DEFLAM impe-rule (f1 f2)2. (IF (AND (T f1) (T f2))3. (IF (AND (IMP (wof f2)) (HP (wof f1) (wof f2)))4. (proof-add-node (impe f1 f2))5. (`` .. rule not applicable .."))6. (`` .. premises not correct ..")))Figure 1: The GETFOL implementation of Modus PonensA �rst component is the code implementing the requirement on the premises (in �gure 1,line 2, the two calls to the function \T"): a rule can be applied in a deduction if (at leastone of) the premises are nodes of the deduction tree. Nodes are pairs of the form < �; w >,where w is a w� depending on the set � of assumptions. We call these pairs formula pairsor facts (or simply w�s when no confusion arises). Preconditions are the next component.A rule can be applied subject to certain constraints on w and �. For instance �E can beapplied only if one of the two premises is an implication and such that its hypothesis is equalto the other w� (in �gure 1, line 3, the calls to IMP and HP. wof is a function which, givena fact, returns its w�). The (inference) rule function (\impe" in �gure 1, line 4) is thethird component. It maps the premises into a fact whose w� is their logical consequence.Thus for instance the �E rule function is de�ned as:kMP : (< �1; w1 >;< �2; w1 � w2 >) �!< �1 [�2; w2 >The fourth component is the proof tree operator which makes a logical consequence intoa node of the proof (\proof-add-node" in �gure 1, line 4). The proof tree operator alwaysperforms the same operation, independently of the inference rule (ie. it adds a new factto the proof tree). This operation is such that T holds of its argument ((impe f1 f2) in�gure 1). Thus the (declarative) metatheoretic representation of �E is 6 7:PP IMPE : 8f18f2(T (f1) ^ T (f2)^IMP (wof(f2))^HP (wof(f1); wof(f2)) � T (impe(f1; f2))) (1)In the same way, the representations of �I , 8E and 8I are:PP IMPI : 8f18f2(T (f1) ^ T (f2) � T (impi(f1; f2))) (2)PP ALLE : 8f8x8a(T (f) ^ FORALL(wof(f)) � T (alle(f; x; a))) (3)PP ALLI : 8f8x8a(T (f)^FREE(a; wof(f))^ :FREEIN(a; wffsof(deps(f)))� T (alli(f; x; a))) (4)6The intuitive meaning of the predicate and function symbols used (IMP, HP, impe) should be obvious.Their interpretation (as in all the examples listed in the rest of the paper) is left to the reader. For instanceimpe is the metalevel function symbol representing the object level inference rule function which performsthe implication elimination. IMP is a metalevel predicate true when its argument represents a object levelformula whose main symbol is the implication.7In this paper we do not consider errors. A complete metatheoretic description of inference rules (andthus of impe-rule) should also describe how the various errors (eg. \rule not applicable") are dealt with.

(just like tactics) to produce an object level theorem 2. A consequence of this last fact andof the possibility of memorizing previously built proof plans is that the proving ability ofa system can be incrementally increased with no modi�cation/ extension of the underlyingcode 3. Technically, proof plans are used to assert an object level theorem by using areection principle [GSnt] and the fact that a subexpression of a proof plan is a nameof an object level theorem.The architecture implemented using the two ideas above is uniform in that a tower ofmetatheories can be de�ned, each using the same logic (and thus the same code), each suchthat proof plan execution at one level results in proof plan formation one level below. Theonly exception is the bottom layer where proof plans are usually not de�ned. In generaleach theory has a distinct language.The paper follows this path. Section 2 introduces the notion of \mechanized logic" andshows how its declarative metatheory can be built; in this section the notion of proofplan is introduced. In section 3 it is hinted how an object level proof can be planned bymetatheoretic theorem proving on proof plans and other metalevel formulae. In this sectionthe uniformity of the architecture is pointed out. Section 4 shows how proof plans can beexecuted to prove the object level theorem. Finally section 5 presents an implementationin GETFOL [GT90] 4 of a simpli�ed version of the \Boyer and Moore Theorem Prover(BMTP from now on) based on the above ideas. Section 6 discusses the related work.2 A metatheory of a mechanized theoryWe informally speak of themechanization of logic 5 meaning that we think of logic not assomething used to describe reasoning but rather as something used to automate reasoning ona machine. Thus, for instance, we see a w� not as a string but, rather, as a data structure.As a consequence, not only does a metatheory of a \mechanized logic" describe the usualproperties (eg. being a w�, being a theorem), but also those (intensional) aspects whichare relevant to its implementation on a computer (eg. a w� is a list, an inference rule codecalls certain functions). Note that this is substantially di�erent from logicians' approachbut also, for instance, from the work done in the NuPrl project [CAB+86, KC86, How88]in which the metatheory is completely independent of the structure of the underlying code.Since we are here interested in a metatheory describing (mechanized) deducibility, one ofthe �rst problems to be faced is how to represent inference rules applications. Figure 1presents (a part of) the GETFOL implementation of modus ponens (�E). In the codereported in �gure 1 we can identify four basic components which exist for any inference rule(note that these components must exist, in some form, in any code implementing inferencerules).2This is di�erent from what happens, for instance, in Prolog where meta-interpreters [SS86] are writtenin terms of the object level logic (by exploiting its procedural interpretation). In our approach the objectlevel logic has no procedural interpretation; proof plans are interpreted in terms of the code implementingit. 3An interesting extension of this work is then to study how to compile the proof plans back into the code.4GETFOL is a complete re-implementation of the FOL system [Wey80].5In the following we use standard natural deduction conventions and terminology. This is done simplybecause the deductive machinery implemented in GETFOL is (a variation of) natural deduction (GETFOL'slogic is similar to sequent calculus in that assumptions are explicitly carried through at each deduction step).The ideas described in this paper are of course independent of the used logic.

Plan formation and execution in a uniform architecture ofdeclarative metatheoriesFausto GiunchigliaPaolo TraversoMechanized Reasoning GroupIRSTPovo, 38100 Trento, Italyfausto%irst@uunet.uu.netleaf%irst@uunet.uu.netAbstractWe show how explicit control strategies can be represented in a declarative (classical)metatheory as �rst order formulae (proof plans). Proof plans can be reasoned about(by metatheoretic theorem proving) to modify the search strategy and \executed" (bysuitably \interpreting" them in terms of the deductive machinery implementation code)to prove a theorem in the object theory. The resulting architecture is uniform as itbecomes possible to de�ne a tower of metatheories, each using the same deductivemachinery, each (but the lowest) being able to represent proof plans with formulae ofthe same shape. Plan formation at one level can be obtained by plan execution onelevel up. The realization of these ideas in the GETFOL system is briey described viathe implementation of a simpli�ed version of the Boyer and Moore theorem prover.1 IntroductionThe idea of using metatheories in theorem proving has been extensively studied in thepast, a not exhaustive list is [DS79, Wey82, BM81, BW81, Bun88, BSG+88, KC86, How88,GMW79]. The goal of the research described in this paper is to get a better understandingof (mathematical) reasoning and to automate it on a machine (partially) by the use ofmetatheoretic theorem proving. The work is based on two main ideas:(1): instead of directly performing search by object level theorem proving, it seems better toperform a step of planning in the metatheory (in other words \to do proof planning" 1).Doing so, one should be able to get some sense of direction, a \proof schema" and thus(partially) avoid the combinatorial explosion. In our approach proof plans are �rstorder w�s, proof planning is performed by metalevel theorem proving.(2): the metatheory should describe not only the object level logic but also how it isimplemented, the intensional properties of the code implementing it. If this result is achievedthen it is possible to link the (declarative) metatheory to the object level code. The codecan thus be used, under certain conditions, to give a procedural interpretation to someclasses of metatheoretic w�s (the proof plans). Proof plans can therefore be \executed"1The meanings of the terms \proof planning" and \proof plan" are very similar to those used in [Bun88],see section 6 on related work. 1

Istituto per la Ricerca Scientifica e TecnologicaI 38100 Trento � Loc. Pant�e di Povo � tel. 0461�314444Telex 400874 ITCRST � Telefax 0461�302040
Plan Formation and Executionin an Uniform Architecture of DeclarativeMetatheoriesF. Giunchiglia, P. TraversoMarch 1990Technical Report # 9003-12Published in Bruynooghe (ed.) Proceedings of the 2nd Workshop on Meta-Programming in Logic (META-90), MIT Press, pp. 306{322.Istituto Trentino di Cultura

