[Bun88]

[BVvHH*89]

[BWSI]

[CAB+86]

[DS79]

[GMW79]

[GSnt]

[GT90]

[How88]

[KC86]

[5586]

[Tar36]

[Tar56]

[Wey80]

[Wey&2]

A. Bundy. The Use of Explicit Plans to Guide Inductive Proofs. In R. Luck and
R. Overbeek, editors, CADFEY. Springer-Verlag, 1988. Longer version available
as DAI Research Paper No. 349, Dept. of Artificial Intelligence, Edinburgh.

A. Bundy, F. van Harmelen, J. Hesketh, A. Smail, and A. Stevens. A Rational
Reconstruction and Extension of Recursion Analysis. In Proc. 11th LJCAI
conference. International Joint Conference on Artificial Intelligence, 1989.

A. Bundy and B. Welham. Using meta-level inference for selective applica-
tion of multiple rewrite rules in algebraic manipulation. Artificial Intelligence,
16(2):189-212,1981. Also available as DAI Research Paper 121, Dept. Artificial
Intelligence, Edinburgh.

R.L. Constable, S.F. Allen, H.M. Bromley, et al. Implementing Mathematics
with the NuPRL Proof Development System. Prentice Hall, 1986.

M. Davis and T. Schwartz. Metamathematical extensibility for theorem verifiers
and proof-checkers. Computer and Matemathics with Applications, 5:217-230,
1979.

M.J. Gordon, A.J. Milner, and C.P. Wadsworth. Fdinburgh LCF - A mecha-
nised logic of computation, volume 78 of Lecture Notes in Computer Science.
Springer Verlag, 1979.

F. Giunchiglia and A. Smaill. Reflection in constructive and non-constructive
automated reasoning. In J. Lloyd, editor, Proc. Workshop on Meta-
Programming in Logic Programming. MIT Press, In print. Also available as
DAT Research Paper 375, Dept. of Artificial Intelligence, Edinburgh.

F. Giunchiglia and P. Traverso. GETFOL Manual - version 1 release 1. Tech-
nical report, IRST, Forthcoming 90.

D. J. Howe. Computational metatheory in Nuprl. In R. Lusk and R. Overbeek,
editors, CADFY, 1988.

T.B. Knoblock and R.L. Constable. Formalized Metatheory in Type The-
ory. Technical Report TR 86-742, Dept. Computer Science, Cornell University,
1986.

L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, 1986.

A. Tarski. Der Wahrheitsbegriff in den formalisierten Sprachen. Studia Philo-
sophica, 1:261-405, 1936. English translation in [Tarski 56].

A. Tarski. Logic, Semantics, Metamathematics. Oxford University Press, 1956.

R.W. Weyhrauch. Prolegomena to a theory of Mechanized Formal Reasoning.
Artificial Intelligence. Special Issue on Non-monotonic Logic, 13(1), 1980.

R.W. Weyhrauch. An example of FOL using Metatheory. Formalizing reasoning
systems and introducing derived inference rules. In Proc. 6th Conference on
Automatic Deduction, 1982.

7 Conclusion

In this paper we have shown how a metatheory of a mechanized logic can be defined and
used to reason about proof plans. In particular proof plans can be

e built by theorem proving. Doing so we are guaranteed that, provided that the
metatheory is correct and truthful proof plans are built correct.

o executed without adding or modifying the underlying code. The resulting system is
thus able to acquire new theorem proving capabilities without any addition and/ or
modification of the underlying code.

The resulting architecture is uniform in the sense that a tower of metatheories can be
defined, each using the same code and the same commands (natural deduction and derived
inference rules), each such that plan formation at one level can be obtained by plan execution
one level up. Note that the commands are used to reason about the code that implements
them.

Currently, work is in progress to prove the correctness (we have a proof of this) and other
properties of the system using the reflection principle, but without considering the issue of
mechanization. A truthful metatheory of a mechanized logic is currently being studied.

Possible extensions of the work described in this paper are to study how proof plans can
be compiled down into the code; how to optimize the planning part (a related issue is to
consider proof plans representing possibly failing tactics) and how to take advantage (if
possible and feasible) of the tower of metatheories by reasoning at an arbitrary level.

Acknowledgements

This work started when the first author was at the Al Department of IEdinburgh Univer-
sity. The research described in this paper owes a lot to the openess and sharing of ideas
which exists in the Mathematical Reasoning group in Edinburgh and Mechanized Reasoning
group in Trento. Alan Bundy and Richard Weyhrauch have provided, in different moments,
invaluable support; without them the research described in this paper could have never
been done. The authors also thank Alessandro Armando, Alessandro Cimatti, Frank van
Harmelen, Luciano Serafini, Alex Simpson, Alan Smaill, Andrew Stevens, Caroline Talcott

and Toby Walsh.

References

[BM81] R.S. Boyer and J.S5. Moore. Metafunctions: proving them correct and using
them efficiently as new proof procedures. In R.S. Boyer and J.S. Moore, editors,
The correctness problem in computer science, pages 103-184. Academic Press,
1981.

[BSGT88] A. Bundy, D. Sannella, F. Giunchiglia, F. Van Harmelen, J. Hesketh, P. Mad-
den, A. Smaill, A. Stevens, and L.. Wallen. Proving properties of logic programs:
A progress report. In 1988 Alvey Conference, pages 131-133, 1988. Also DAI
research paper No. 361, Dept. Artificial Intelligence, Edinburgh.

predicates (such as Prov) and terms (such as [¢]) [GSnt]; the explicit link in the code does
not exist.

As Boyer and Moore do [BM81], we use functions defined in the underlying code. On the
other hand, in our approach the underlying code is not modified and/ or extended '¢. In
Boyer and Moore’s approach, the search strategies are proved correct by theorem proving.
In our approach, provided that the metatheory is correct and truthful, proof plans are built
correct by theorem proving.

The work most closely related to ours is Alan Bundy’s [Bun88] and Richard Weyhrauch’s
[Wey82]. In the Mathematical Reasoning Group in Edinburgh a metatheoretic proof planner
(called CLAM) has been built on top of OYSTER, the Edinburgh re- implementation of
the NuPrl system [CABT86]. One way of seeing this work is as follows [Bun88]: given a
basic set of metatheoretic tactics, described declaratively with “methods”, how can they be
composed at run time (namely with the knowledge of the goal to be proved) to build a global
strategy (the proof plan)? Before performing any object level theorem proving activity, a
phase of proof planning in the metatheory is performed. The motivations underlying our
work are very similar to those described in [Bun88]. In both cases the goal is to understand
(mathematical) reasoning. On the other hand, so far, the work in Edinburgh has been more
concentrated on (and been successful in) increasing the library of proved theorems, (see also
[BvHH'89]) while we have focused more on representational issues. We have focused on
obtaining uniformity and using the same logic at all levels (while the Clam’s metalogic is
different from the object logic) and have studied how plan formation can be done by theorem
proving. From the point of view of (proof) planning, even if the information carried by PP-
wils is similar to that carried by the methods used in Clam, there are some differences. In our
approach the structure of the object level deduction is explicitly represented in the metalogic
(by the proof plan term) thus possibly allowing bottom up reasoning. Clam’s methods have
a tactic slot. Clam’s proof plans have weakened preconditions (to achieve efficiency at
planning time) and may fail (at running time). PP-wffs are metalevel representations of
derived inference rules. This maybe a problem as, in certain applications (mathematical
reasoning is one of these), top down proof planning with derived inference rules seems as
costly as performing the search directly in the object space. That this is always the case,
for instance with bottom up proof planning, is not obvious. We are currently investigating
the problem.

The approach used in this paper is clearly strictly connected to the fact that we are using
(a re-implementation of) the FOL system [Wey80] and builds on the work described in
[Wey82]. The major improvements we see with respect to the work described in [Wey82]
are as follows. We have explained why (something very similar to) the old FOL evaluator
is the correct machinery to “execute” a proof plan (this topic is much more general and is
not totally faced here). We have introduced a metatheory for deducibility in a mechanized
logic and provided a general methodology for using it to plan (effectively and efficiently)
object level proofs by theorem proving. Notice that in [Wey82] the metatheoretic functions
were “attached” [Wey80] to expression manipulation routines and not to the inference rule
functions. This shift is substantial since, because of that, we have been able to make effective
use of the notion of mechanization and to argue for the correctness of the proof plans. This
has required an almost total re-thinking of the old FOL expression manipulation routines
and inference rules’ code.

$Not considering the possibility, not exploited yet, of compiling proof plans into code.

BASIC_PLAN2:
forall f1 f2 tbl tb2 succ t1 t2 t3 v t. (T(f1) and T(f2) and
FORALL(wof(f1)) and BASEEQ(wof(f1),ZER0) and
FORALL(wof (£2)) and STEPEQ(wof(f2),succ) and
EQWFF (allewff
(mkforall(v,hypot (matrix(mk-ripple-wff (wof (£2),succ,t1,t2,t3)))),
ZERO),
mk-base-wff (wof (£f1),tb1,tb2)) and
EQWFF (allewff
(mkforall(v,hypot (matrix(mk-ripple-wff (wof (£2),succ,t1,t2,t3)))),
t),
concl (matrix(mk-ripple-wff (wof (£2),succ,t1,t2,t3))))
imp T(basic-plan(f1,f2,tbl,tb2,succ,t1,t2,t3,v,t)))

We can now execute BASIC_PLAN2 (or its less efficient version BASIC_PLAN1) to derive the
object level theorem:

GETFOL:: reflect BASIC_PLAN2,plus-base,plus-step,y,y + Z,8,X,y,Z,%x,5(x);
1 forallxyz. (x+ (y+2)=(x+y)+2)

6 Related work

One of the key issues faced in the literature of metatheoretic theorem proving has been that
of extensibility, namely of how, by using metatheoretic capabilities, the inference mechanism
could be improved without endangering the soundness of the system. Following a distinction
first made in [BM81] all the attempts can be divided in two broad classes. In the first class
(containing [BM81, DS79, KC86, Wey82]), to preserve soundness, the procedures should be
proved correct in a formalized metatheory, in the second (containing [CABYT86, GMWT79])
a mechanism is provided which guarantees that any added metatheoretic tactic, written in
terms of primitive inference rules, will preserve correctness.

From this perspective our approach can be seen as part of class two above: provided that
the metatheory is correct and correctly defines the object theory (from [GSnt] we call this
property truthfulness) the newly built metalevel strategies, which are derived inference
rules and extend the theorem proving capabilities of the system, are guaranteed to be
correct.

Our metatheory is fully declarative and based on a logical (first order) formalism. This is
where we differ from all the work based on the use of tactics and ML [CABT86, GMW79].
In our approach we are able to reason about the explicit representation of search strategies
by metatheoretic theorem proving.

The major difference with the other work on formalized logical metatheories (such as
[How88, KC86]) is that in our axiomatization the issue of mechanization is central. In
the work described in [How88, KC86] the metatheory is independent of how the underly-
ing code is structured. It is important to remember that it is because we have defined a
metatheory of the mechanized logic that we are able to see the implementation code as its
natural procedural interpretation. This has been achieved (among other things) by hav-
ing the link name-object explicit (in GETFOL’s code). In classical approaches everything
works correctly (ie. the reflection principle) because of the properties carried by the various

GETFOL:: reflect INDUCTION 1 2 x s(x);
3 forall xyz. (x+ (y+2z2)=(x+7y)+2z)

We first execute the base and the ripple out PP-wif on the base equation and on the step
equation. The induction step is executed on the facts created at the object level by the two
previous reflections (the facts labeled 1 and 2).

In the example above the control was still (partially) at the object level. The third (and
last) approach is to plan by metalevel theorem proving (following the methodology de-
scribed previously). The proof of the composition of the three PP-wffs BASE, RIPPLE
and INDUCTION has the general structure described in section 3: two VI's are performed
on INDUCTION, the first substituting £1 with base(f1,tb1,tb2), the second substitut-
ing £2 with ripple(£f2,succ,t1,t2,t3). A VFE is then applied to BASE and RIPPLE to
propagate back the INDUCTION preconditions (this is done by a sequence of applications
of DFs and then of DIs). The final step is to apply VIs to obtain the first version of the
basic plan:

BASIC_PLAN1:

forall f1 f2 tbl tb2 succ t1 t2 t3 v t. (T(f1) and T(f2) and
FORALL(wof(f1)) and BASEEQ(wof(f1),ZER0) and
FORALL(wof (£f2)) and STEPEQ(wof(f2),succ) and

FORALL (wof (ripple(f2,succ,t1,t2,t3))) and
IMP (matrix(wof (ripple(£f2,succ,t1,t2,t3)))) and
EQWFF (allewff
(mkforall(v,hypot(matrix(wof (ripple(f2,succ,t1,t2,t3))))),
ZERO),
wof (base(f1,tb1,tb2))) and
EQWFF (allewff
(mkforall(v,hypot (matrix(wof (ripple(£2,succ,t1,t2,t3))))),
t),
concl(matrix(wof (ripple(£f2,succ,t1,t2,t3)))))
imp

T(induction(base(f1,tb1,tb2) ,ripple(f2,succ,t1,t2,t3))))

So far we have done theorem proving without postconditions. Using appropriate postcon-
ditions for the ripple out deduction function the two conjuncts

FORALL (wof (ripple(f2,succ,t1,t2,t3)))
IMP (matrix (wof (ripple(f2,succ,t1,t2,t3))))

can be matched and eliminated. Then, by using further postconditions, ripple and base
can be replaced with alternative functions on their wffs (mk-ripple-wff, mk-base-wff).
At this point it is possible to define the deduction function basic-plan as the composition
of base, ripple and induction.

GETFOL:: forall f1 f2 tbl tb2 succ t1 t2 t3 v ©.
(basic-plan(f1,f2,tbl,tb2,succ,t1,t2,t3,v,t) =
induction(base(f1,tbl,tb2) ,ripple(f2,succ,t1,t2,t3)))

The result of this phase of metalevel theorem proving with postconditions is the following
new version of the basic plan:

VoVw(k(s(v),w) = s(k(v,w))) (20)
Vo (Vy¥=(k(a, Ky, 2)) = k(k(2,9),2)) O (F97=(k(s(2), k(y, 2)) = ME(s(2),), 2)))
Alz, Vae(A D Alx, succ(z
[, 0] (vxi [(2)]) (21)

The base and ripple out rules are defined to generate the base and step cases of the induction
tactic. In the induction rule, the notation A[xz,t] means that Alz,t] is the formula obtained
from A substituting the variable z with the term ¢.

We have then represented these inference rules as PP-wffs in the metatheory as follows:

GETFOL:: AXIOM BASE: forall f t1 t2.
(T(f) and FORALL(wof(f)) and BASEEQ(wof(f),ZERO)
imp T(base(f,t1,t2)));

GETFOL:: AXIOM RIPPLE: forall f succ t1 t2 t3.
(T(f) and FORALL(wof(f)) and STEPEQ(wof(f),succ)
imp T(ripple(f,succ,t1,t2,t3)));

GETFOL:: AXIOM INDUCTION: forall f1 f2 v t. (T(f1) and T(f2) and
FORALL (wof (£2)) and IMP(matrix(wof(f2))) and
EQWFF (allewff (mkforall(v,hypot(matrix(wof(£2)))), ZERO),
wof (f1)) and
EQWFF (allewff (mkforall(v,hypot(matrix(wof(£2)))),t),
concl(matrix(wof(£2))))
imp T(induction(f1,£2)));

In the inductiom axiom, the fifth conjunct (EQWFF (.)) states that, if the first premise
s Alxz,0], then the hypothesis of the matrix of the second fact is A. The sixth conjunct
(EQWFF(.)) states that A[z, succ(x)] is the conclusion of the matrix of the second fact.

+ is then recursively defined as follows:

GETFOL:: axiom plus-base : forall v. (zero + v = v);
GETFOL:: axiom plus-step : forall v w. (s(v) + w = s(v + w));

To prove the goal we can use different strategies. The first obvious method is to work com-
pletely at the object level and apply its inference rules. We do not consider this approach.
The second, more interesting strategy, is to forget about the object level rules and, sitting
in the object theory, build the proof by reflecting down the metatheoretic PP-wifs described
above 15, In GETFOL this can be done as follows:

GETFOL:: reflect BASE plus-base y y + z;
1 forally z. (0+ (y+2)=1(0+y)+2z)

GETFOL:: reflect RIPPLE plus-step s x y Z;
2 forall x. ((forall y z. (x + (y + 2) = (x +y) + z)) imp
(forall y z. (s(x) + (y + 2) = (s(x)+ y) + 2)))

151t can be proved that, defining the metatheory as described in this paper all the object level commands
can be simulated by reflecting down certain metalevel PP-wifs.

2. compute the object level fact whose name is the argument of T'. Note that this can
be performed by an interpreter I such that:

I(“n”)=n
I(g (n ey p)) = 1(g) (I (ma), ..oy 1(1y))
I((hp o ...0 hl)(nl...np)) = (I(hp)o...ol(hy))(I(n1),.... I(n,))

Note that I performs exactly what is defined to be the interpretation of function
symbols in a first order model;

3. from F T(“A”) in the metatheory infer - A in the object theory (in other words,
apply a reflection principle).

The point is thus how to perform the basic interpretations, in other words I(“n;”) and
I(“h;”). In a metatheory of a mechanized theory the object level theory is seen intensionally,
in how it is implemented. Thus the elements of the object level theory are the data
structures and code implementing it. If n; is a fact then it will be the data structure
implementing it, while I(h;) will be the code implementing the inference rule function

denoted by h;.

All this discussion can be generalized to give a procedural interpretation of proof plans in
their most general form (as in (6)). This is not done here for lack of space. One point is
worth noting here. We have spoken of using a reflection principle. Reflection principles,
it is well known, are dangerous and can make a theory inconsistent (provided it contains
enough arithmetics) [GSnt]. We do not have here a full reflection principle, in particular
the metatheory uses a language which is distinct from that of the object theory and it is
impossible to create dangerous self-references (a paper on the topic is forthcoming).

Notice that, in order to implement I, the system must have in its code an explicit way to
remember the pairs < quotation-mark name, denoted object >. The code performing the
above steps is implemented in GETFOL and can be run with the command REFLECT. In
[GSnt] the details of the implementation in GETFOL of REFLECT are reported (but see also
[Wey80]).

5 An example

Let us consider a simplified version of the BMTP (as described in [Bun88] 13) as composed
of the base tactic, the ripple out tactic and the induction tactic. The goal is to see how the
BMTP can be used to prove the associativity of +. To implement the BMTP in GETFOL
we have developed three object level inference rules corresponding to the three tactics
(GETFOL has no built-in theoretic axiom/inference rules). The base, ripple and induction
inference rules have been respectively implemented to perform as follows *:

Vo(k(0,v) = v)
VoV (R0, Kz, 3)) = F(k(0, 2), 7)) (19)

13With the difference that here inference rules are defined to work from the axioms to the goal.

MFor lack of space and sake of simplicity, the code of the inference rules and how dependencies are handled
is not described here. Moreover base and ripple are described for how they work with + (not considering
the general case).

the signs of which each single word is composed and the order in which these signs and
words follow one another. Thus if “A”, “B” and “C” are names respectively of A, B
and C' then the structural- descriptive name of ((4 D B)A(B D> C)) D (A D () is
mkimp(mkand(mkimp(“A”, “B”), mkimp(“B”,“C”)), mkimp(“A”, “C”)), where,
for instance, mkimp is a function symbol such that mkimp(“A”,“B”) is understood
in the metalogic as saying that we have A followed by D and then by B (in other
words mkimp(“A”,“B”) represents A O B).

Notice that for the basic symbols of the language (ie. predicate symbols) we can have only
quotation-mark names while for composite ones (ie. wifs) we can have both kinds of names.

Rewording what said above, structural-descriptive names describe how to obtain the de-
noted object by “constructing” its name starting from quotation-mark names. All the
components of the name are structurally linked in a way which is isomorphic
to the way the objects denoted by the components are composed to build the
object denoted by the name.

The metatheory we are here interested in is concerned with deductions, namely with facts
and with how to obtain new facts from old ones. Thus we will have quotation-mark and
structural-descriptive names of facts. It is easy to think of the quotation-mark name of a
fact, it can be for instance a string containing the wif, the assumptions, some notation for
giving it a position in the deduction tree, all of this between quotation marks. But what
is a structural-descriptive name of a fact? We have to find the operation denoted by the
metatheoretic structural link. When building the name of an expression, the metatheoretic
structural links denote string concatenation (in fact, by string concatenation a new string
is obtained from old ones). When building a theorem, the metatheoretic structural links
denote derivability (in fact, by applying an inference rule a new fact is obtained from old
ones). Thus the structural- descriptive name of a fact is a function which says how to deduce
it from some basic facts, it is the proof plan term, occurring as an argument of the
predicate symbol T'. Thus, for instance, the name of the theorem - ((A D> B)A(B D C)) D
(ADC)is impi(“(AD B)AN(B D C),impi(“A”, third, (third/(“A”,“(A D> B)A(B D
C)), “(AD B)AN(B D (C)))) (where impi is the inference rule function of DI) namely
PP TRANSITIVE’s deduction function applied to A and (A D B)A (B D C).

T(impi(“(A > B)A (B D C),impi(“A”, third,(thirdi(“A”,“(A> B) A (B > C)"),
“(ADB)A(B D))

is thus an alternative notation for:
T“(ADB)AN(BDC))D(ADCY)
More in general, the wil in equation 18 is an alternative notation for:
T(“(Kpo..oK1)(Ay,...,A.)")

We can thus use a metatheoretic proof plan to assert an object level theorem performing
the following steps:

1. perform a YFE on the proof plan and substitute the bound variables with names of
object level facts;

PP_THIRDy, from the postconditions of the IR-wffs that compose it (PP_IMPFE and
PP_ANDEL):

IMPEWFF : VfiVfo(wof(impe(fi, f2)) = concl(wof(f2))) (15)

ANDEWFF : Vf(wof(ande(f)) = 1fand(wof(f))) (16)

A VFE can be applied on IM PEW FF (15) substituting f, with ande;(f2). The consequence
wit contains impe(f1,andei(f3)). It can be replaced by thirdi(fi, f2) for (7). The term
wof(ande(f2)) can be replaced by [fand(wof(f)) using ANDEWEFF in (16). The proved

postcondition is thus:

THIRDWFF : VAV fa(wof(thirdi(fi, f2)) = concl(l fand(wof(f2)))) (17)

4 Executing proof plans

To simplify matters let us consider a simple proof plan with no preconditions and no re-
quirements on the premises:

Vf1anT((km 0...0 kl)(flv ceey fn))

where k,,, ..., k1 are metatheoretic representations of m deduction functions K,,, ..., K1 such
that (K., o...0 K1)(f1,..., fn) is a proof tree (all these hypotheses can be dropped and the
treatment generalized). Let us then suppose that a sequence of YEs has been performed to
obtain:

T((kpmo...oki)(ag,...,a,)) (18)

where a4, ...,a, are metalevel individual constants which are representations of n facts
Ay, ..., A, The term (ky, o ... 0 k1)(aq,...,a,) says that the result of the application of
the composed function K, o...o Ky to the facts Ay,...A,, is an object level theorem.

Now, let us concentrate on a (only apparently) different topic. Tarski, in order to study the
defineability of the truth predicate in (certain) formalized languages, introduced the notion
of formal metatheory [Tar36] . In order to state some properties of the object theory he gave
himself the ability to mention object level syntactic objects, namely he gave himself names
for the elements of the lexicon. In doing so he distinguished between two particular
kinds of names:

¢ quotation mark names. By quotation-mark name he meant “... every name of an
expression which consists of quotation marks and such that the named expression lies
between them”. Thus the quotation mark name of the individual constant a is “a” 11,

of the wif AA B is “AA B”, that of the wif (A D> B)A(B D C)) D (A D C) (proved
by PP.TRANSITIVE)is “(A> B)A (B> C)) D (AD C) 12,

¢ structural-descriptive names. By structural- descriptive name he meant every
name ... which describes the words which compose the expression denoted, as well as

"To be correct, throughout the paper we should have put an extra pair of quotes around connotative uses
of (occurrences of) names.

12The fact that a quotation- mark name has quotation marks in it is, of course, not relevant. What is
relevant is that it is uniquely defined (there cannot be two objects with the same quotation- mark name)
and indivisible (in a logical language, it must be an individual constant).

e Independently of the level of metatheory and of the wif to be deduced, proof plans have
always the same shape. As a particular case, the representation of the metatheoretic
PP-wif’s proof is a PP-wff, too. The formula in (13) is exactly of the form given in
(6) (the definition of a generic PP-wif). PP_PLANNING has the same syntactical
form as PP THIRDy, the deduction it represents. This argument can be iterated:
independently of the level, all deductions can be represented as PP-wffs. The process
of building proof plans is uniform over the levels.

o We noticed above that the process of “appending” a deduction to another has some
general characteristics. The sequence of inference rule applications does not depend
on the particular predicates in the formulae, but on their main symbols. Thus we
noticed that we have always a “symmetrical” sequence of VFEs, DFs, DIs and finally
VIs. The same code, implementing the appending of two proof plans can be used
uniformly anywhere in the system. This fact, together with the fact that proof plans
have always the same form at all levels, means that, not only can we use the same
deductive machinery at all levels, but also the same strategy. The difference is that
at the meta level the search space is composed of inference rules, one level up it
is composed of inference rules on proof plans (namely on strategies for composing
inference rules), two levels up of inference rules on strategies for composing strategies
for composing inference rules etc. etc.

We have preconditions about leaves, but nothing is explicitly stated about the properties of
the endformula , the postconditions. In the planning literature (and here too) two (proof)
plans are composed, inside a more complex (proof) plan, by (partially) “matching” the
preconditions of one with the postconditions of the other. The result of this process (when
successful) is the construction of a (proof) plan whose preconditions and postconditions
are satisfied by the goal and the theory. In this framework proof plans’ postconditions
are metatheoretic wifs. In order to show briefly how this “matching” is performed,
let us consider a simple deduction, a sequence of AI and AFE. The composition without
postconditions would deduce:

VAVHR(T(f1) NT(f2) NCON J(wof(andi(fi, f2))) D T(ande;(andi(f1f2))))

One of AI's postcondition wifs is:
ANDIWFF : YfiVfo(CONJ(wof(andi(fi, f2)))) (14)

ANDIW FF can be “matched” with PP_AN DFEp, (8) preconditions in order to obtain:

VAYL(T(f1) AT(f2) D T(andei(andi(fi, f2))))

Notice that this is exactly how redundant preconditions can be dropped in a proof plan thus
making execution more efficient. The precondition CON J(wof(andi(fif;))) is redundant
as, forall fi and forall f; it is always true that the main symbol of the consequence of a AT
rule is a A. By theorem proving on the postconditions, part of the process of plan execution
is simulated and “pre-computed” (thus making execution more efficient) at plan formation.

The postconditions of newly formed proof plans can be derived by metalevel theorem prov-
ing from the postconditions of the given proof plans (at the bottom level, the IR-wffs).
Let us briefly describe this process by an example. Let us derive some postconditions of

hypotheses are preconditions on leaf nodes of the former. These deductions are in normal
form and “symmetrical” (as it should be, since all the PP-wffs have the same shape).

To build the new PP-wif (PP I'HIRDy) we can use different strategies. One method, ex-
plained above, is to derive it by applying inference rules step by step at the metalevel. An-
other approach is to represent the proof of the PP-wif PP_ T HIR Dy, as we did for object the-
ory proofs. This proof will be represented by a new PP-wif, let us call it PP_PLANNING.
Thus, as we briefly said in the introduction (but see also section 4), PP T'HIRD_IL will be
proved simply by “executing” PP_PLANNING.

In order to keep the explanation simpler, let us suppose that the hypotheses of the PP-wifs
are written as a sequence of implications rather than as a conjunction '°. To make the
reading easier we define the following deduction functions:

Vfl Vngf3V$1V$2V$3Vp1Vp2Vp3
(imp—alle(flv f2, 3,21, 29, 903) =
impi(fg, imp@(impe(f:aa all@(fh 9017]71))7 alle(alle(fz, T2, Pz)a 3, P3))))

VflVngf3V$1V$2V$3Vp1Vp2Vp3
(a”i—imp—all@(flaf27f3790179027963) =
a”i(imp—alle(.flv f2, f3, 21, 29, 963)7 9627]72))

The proof of PP THIRDy, can thus be represented as follows:

PP_PLANNING :

VAV oV faVa VaoVasVp Vo Vps (T(fi) AT (f2) ANT(f3)A
FORALL(wof(f1)) N FORALL(wof(f2))A
IMP(wof(alle(fi,z1,p1))) N HP(wof(fs),wof(alle(f1,21,p1)))A
IMP(wof(alle(alle(fa, 22, p2), 23, p3)))A
H P(wof(impe(fs,alle(f1,21,p1))), wof(alle(alle(fa, 22, p2), 23, p3)))A (13)
FREE(pz, wof(tmp_alle(f1, fa, f3, 21,2, 23)))A
“FREFEIN (p2,wffsof(deps(imp_alle(f1, f2, f3, 21, %2, 23))))A
FREFE(py,wof(alliimp_alle(f1, fa, f3,21,22,23)))A
“FREEIN (p1,wffsof(deps(alliimp_alle(f1, fa, f3, 1, %2,23))))

D T(alli(allizmp_alle(f1, fa, f3, 21,22, 23),23,pl)))

Of course the process could be iterated. Thus, for instance, to prove PP_PLANNING we
can use the inference rules or use a proof plan. Plan execution at one level results in
the formation of a plan one level below.

Three observations are worth making. All of them point out (with increasing strength) the
uniformity of the approach.

e The first point is the most obvious and it holds for most of the work previously
done with formal metatheories. Deductions in the object theory are represented in
the metatheory as (metatheoretic) wffs. The proof theory is represented with objects
which can be manipulated by the proof theory itself. From the point of view of theorem
proving an interesting consequence is, on the other hand, that the same deduction/
decision procedures (i.e inference rules and derived inference rules) can be used at any
level.

1%T6 complete this proof we need the PP-wif in the former form. This hypothesis avoids carrying around
the deduction function of the proof that AA B D C yields A D (B D C).

(some of which may be PP-wffs). Different theorem proving strategies can be adopted.
For instance deduction functions can be (functionally) composed (in a sort of top down
approach). This approach is similar to that used in [Bun88]. The idea is to do reasoning on
the preconditions and (when existing) on the postconditions (see later). Another possible
strategy is (in a sort of bottom up approach) to look at proof plan terms, to reason on their
structure and to derive (by some kind of reasoning by analogy) “similar” proof plans.

We hint here only how the top down approach can be realized. In the final part of this
section we will also (briefly) explain how postconditions can be used.

Let us consider how PP_THIRDj, can be obtained from the composition of PP_AN DFEj,
and PP_IMPE. ay, ay are parameters, PP_AN DFE7y’s proof plan is defined as:

PP_ANDE;: V(T(f)NCONJ(wof(f)) D T(andelf))) (8)

We apply first a VE to PP_IMPFE (described in (1)) by substituting f; with a; and f;
with ande;(az), thus obtaining (9). We apply then a VI on (8) replacing f with ay (thus
obtaining (10).

T(a1) NT(andei(az)) N IM P(wof(ande(az))) N HP(wof(aq), wof(andelaz)))
D T(impe(ay,ande;(az)))

(9)

T(az) NCONJ(wof(az)) D T(ande(az)) (10)

Notice we have T'(andej(az)) as the conclusion of (10) and as a conjunct of the hypotheses
of (9). From (10) we can derive T'(ande;(ay)) depending on T'(az) A CONJ(wof(az)). (9)
can be rewritten as a sequence of implications, thus DE can be applied to T'(ande;(az)) and
(9) to obtain:

T(ar) N IMP(wof(ande(az))) N HP(wof(a), wof(andelaz)))
D T(impe(ay,ande;(az)))

(11)

depending on T'(az) AN CONJ(wof(az)). With an DI with arguments (11) and T'(ag) A
CON J(wof(asz)) (discharging T'(az) AN CON J(wof(az))) and a subsequent VI we obtain:
Vf1Vf2(T(f1) A T(fz) A CONJ(UJOf(fQ))/\

IMP(wof(andel(f2))) N HP(wof(f1), wof(andey f2))) (12)

D T'(impe(f1,ande(f2)))

which is what we wanted. The proved theorem is a new PP-wif. It is an equivalent version
of PP.THIRDy (5) (in our metatheory, if f is a fact then wof(ande;(f)) = [fand(wof(f))
holds).

The shown proof has some characteristics which are valid in general. You usually have
to start with a sequence of VFs and replace variables representing leaf nodes with terms
representing intermediate nodes (deduction functions applied to leaf nodes). This is how
preconditions on intermediate nodes “propagate back”. The intermediate nodes appear in
the hypotheses of some PP-wifs and in the conclusions of others. In the next step a sequence
of DFs (possibly interleaved with other operations) must be performed. At this point the
basic parts have been extracted and the wanted PP-wiffs can be constructed by a sequence
of DI's and then of VIs. Notice that a deduction can be “appended” to another by assuming
the hypotheses of the former, applying DF twice and introducing an implication whose

where: k,,, ..., k1 are metatheoretic function symbols representing the rule functions of the
rules applied in the deduction and “o” means function composition *. (k,,0...0k1)(f1, .-y f1)
is called the proof plan term. PREC(f1,..., f,) is the conjunction of the preconditions of
the rules applied in the deduction. The preconditions of a rule are applied to a term whose
functional part takes into account the inference rule functions which map the leaves into the
intermediate nodes. For instance, PP_T'HIRD/’s preconditions (see equation 5) are the
conjunction of AL’s and DF’s preconditions. DI is applied to an intermediate node, thus its
preconditions are applied to [fand(wof(f2)). Note finally that IR-wffs are particular cases
of PP-wifs (this is why we called PP_IM PE the equation in (1)); generalizing IR-wifs,

PP-wifs say that, if the preconditions hold, then the endformula is a node of the tree.

Even if it is always possible to represent a deduction as a composition of rule functions, we
want to avoid to describe deductions any time from “first principles”. Inference rules are too
fine grained to be effectively used in global strategies. This can be avoided by producing a
conservative extension of the metatheory by defining a new function (called the deduction
function) as follows:

vflfn(g(flv 7fn) = (km 0...0 kl)(flv 7fn))

The deduction function ¢ is defined to behave as the composition of the inference rule
and/or deduction functions involved in the deduction it represents. Notice that deduction
functions can be used in the representation of more complex deductions and thus in the
definition of their deduction functions. Thus, for instance, the deduction function third,
for PP_THIRDj can then be defined as:

VAV fo(thirdi(fi, f2) = impe(f1, ande(f2))) (7)

and then used (together with the dual function third,) to define the deduction function
transitive of PP TRANSITIVE:

ViV fa(transitive(f1, f2) = impi(fo, impi(fr, third,(thirdi(f1, f2), f2))))

The metalevel representation of the deduction becomes:

PP TRANSITIVE :
VAYL((T(f1) ANT(f2)N
CON J(wof(fy)) N IMP(lfand(wof(fo)) A HP(wof(f1),lfand(wof(f2)))A
IM P(rtand(wof(f2))) A H P(concl(lfand(wof(f2))), rtand(wof(f2))))
D T(transitive(f1, f2))))

Notice that the use of deduction functions allows reasoning at the desired level of detail.
The “correct” level of detail can be chosen independently of the particular theorem proving
strategy.

3 Proof planning as theorem proving

As proofs are represented as metalevel wils, we can perform proof planning by metalevel
theorem proving. The goal is to deduce new PP-wifs from a set of generic metalevel formulae

°The notation should be made precise explaining how to denote function composition with functions with
more than one argument. Since not relevant in this context, this issue is not faced.

More generally it can be shown inference rules can be represented as (we call wifs of this

kind “IR-wffs”):

VI NflT(f) N ie NT(fo) N PREC(f1y ey fr) D T(k(f1, s 1))

where: fi ... f, are variables ranging over facts of the object theory, T is an unary predicate
such that T(z) holds when the metatheoretic term z represents a node in a deduction,
PREC(z4,...,2,) represents the preconditions for applicability of an inference rule (notice
that in some cases, eg. DI, there are no preconditions), k is a function symbol representing
the rule function.

A deduction can be seen as a tree of inference rule applications, where the premises of the
rule applications are intermediate nodes or leaves of the tree. Thus the representation of
a deduction contains a mapping from the leaves into the endformula, the mapping being
performed by a composition of inference rule functions. For instance, the representation of

{A,(AD B)AC)} F B, with deduction tree®:

(ADB)AC
A M TS

£
= B

is:

PP_THIRDy: VAV f(T(f) AT(f2)A
CONJ(wof(f2)) NIMP(lfand(wof(f2))) N HP(wof(f1),lfand(wof(f2))) (5)
D T(impe(f1,ande;(f2))))

while the representation of - ((A D B) A (B D C')) D (A D () with proof tree:

(ADB)AN(BDC)

. AMTISB o (ADBA(BOC)
= B B>C
E
v ¢
7 ADC

((ADB)A(BDC))D(ADC)

PP TRANSITIVE : YAV f(T(f1) AT(f2)A
CONJ(wof(f2)) NIMP(Ifand(wof(f2))) AN HP(wof(f1),lfand(wof(f2)))A
IM P(rtand(wof(f2))) A HP(concl(lfand(wof(f3)))), rtand(wof(f3)))
D T(empi(f2, impi(f1, impe(impe(f1, andei(f2)), ande,(f2))))))

Thus the generic representation of an object level deduction is (we call wifs of this kind
“PP-wifs” or proof plans):

VI T A e AT(f) A PREC(f1y ooy 1) D T((p © o0 k) (f1s s f2))) (6)

8Note that, for simplicity, we write object level proof trees using a Natural Deduction notation rather

than a sequent calculus style. The resulting formula pairs can be easily obtained by prefixing each formula
with the set of assumptions it depends on.

(DEFLAM impe-rule (f1 £2)
(IF (AND (T £1) (T £2))
(IF (AND (IMP (wof £2)) (HP (wof f1) (wof £2)))
(proof-add-node (impe f1 £2))
(¢¢ .. rule not applicable .."))
(¢¢ .. premises not correct ..")))

DO W

Figure 1: The GETFOL implementation of Modus Ponens

A first component is the code implementing the requirement on the premises (in figure 1,
line 2, the two calls to the function “T”): a rule can be applied in a deduction if (at least
one of) the premises are nodes of the deduction tree. Nodes are pairs of the form < 7, w >,
where w is a wif depending on the set 7 of assumptions. We call these pairs formula pairs
or facts (or simply wffs when no confusion arises). Preconditions are the next component.
A rule can be applied subject to certain constraints on w and ?. For instance DF can be
applied only if one of the two premises is an implication and such that its hypothesis is equal
to the other wif (in figure 1, line 3, the calls to IMP and HP. wof is a function which, given
a fact, returns its wff). The (inference) rule function (“impe” in figure 1, line 4) is the
third component. It maps the premises into a fact whose wif is their logical consequence.
Thus for instance the DF rule function is defined as:

kMp:(< T,wy >, < Ty, wy D wy >) —< T U Ty, wy >

The fourth component is the proof tree operator which makes a logical consequence into
a node of the proof (“proof-add-node” in figure 1, line 4). The proof tree operator always
performs the same operation, independently of the inference rule (ie. it adds a new fact
to the proof tree). This operation is such that T holds of its argument ((impe £1 £2) in
figure 1). Thus the (declarative) metatheoretic representation of DF is ¢ 7:

PPIMPE : YAYH(T(f) AT(f2)A "
IMP(wof(f2)) AN HP(wof(f1),wof(f2)) D T(impe(f1, f2)))

In the same way, the representations of I, VE and VI are:
PPIMPI: NAVR(T(f1) ANT(f2) D T(impi(fi, f2))) (2)
PP_ALLE: VfVaVa(T(f) AN FORALL(wof(f)) D T(alle(f,x,a))) (3)
PP_ALLT : Y fYaVa(T(f)A

FREE(a,wof(f))N-FREEIN(a,wf fsof(deps(f))) (4)
D T(alli(f,z,a)))

5The intuitive meaning of the predicate and function symbols used (IMP, HP, impe) should be obvious.
Their interpretation (as in all the examples listed in the rest of the paper) is left to the reader. For instance
tmpe 1s the metalevel function symbol representing the object level inference rule function which performs
the implication elimination. I M P is a metalevel predicate true when its argument represents a object level
formula whose main symbol is the implication.

"In this paper we do not consider errors. A complete metatheoretic description of inference rules (and
thus of impe-rule)should also describe how the various errors (eg. “rule not applicable”) are dealt with.

(just like tactics) to produce an object level theorem 2. A consequence of this last fact and
of the possibility of memorizing previously built proof plans is that the proving ability of
a system can be incrementally increased with no modification/ extension of the underlying
code 2. Technically, proof plans are used to assert an object level theorem by using a
reflection principle [GSnt] and the fact that a subexpression of a proof plan is a name
of an object level theorem.

The architecture implemented using the two ideas above is uniform in that a tower of
metatheories can be defined, each using the same logic (and thus the same code), each such
that proof plan execution at one level results in proof plan formation one level below. The
only exception is the bottom layer where proof plans are usually not defined. In general
each theory has a distinct language.

The paper follows this path. Section 2 introduces the notion of “mechanized logic” and
shows how its declarative metatheory can be built; in this section the notion of proof
plan is introduced. In section 3 it is hinted how an object level proof can be planned by
metatheoretic theorem proving on proof plans and other metalevel formulae. In this section
the uniformity of the architecture is pointed out. Section 4 shows how proof plans can be
executed to prove the object level theorem. Finally section 5 presents an implementation
in GETFOL [GT90] * of a simplified version of the “Boyer and Moore Theorem Prover
(BMTP from now on) based on the above ideas. Section 6 discusses the related work.

2 A metatheory of a mechanized theory

We informally speak of the mechanization of logic ® meaning that we think of logic not as
something used to describe reasoning but rather as something used to automate reasoning on
a machine. Thus, for instance, we see a wif not as a string but, rather, as a data structure.
As a consequence, not only does a metatheory of a “mechanized logic” describe the usual
properties (eg. being a wif, being a theorem), but also those (intensional) aspects which
are relevant to its implementation on a computer (eg. a wif is a list, an inference rule code
calls certain functions). Note that this is substantially different from logicians” approach
but also, for instance, from the work done in the NuP1l project [CAB*86, KC86, HowS8§]
in which the metatheory is completely independent of the structure of the underlying code.

Since we are here interested in a metatheory describing (mechanized) deducibility, one of
the first problems to be faced is how to represent inference rules applications. Figure 1
presents (a part of) the GETFOL implementation of modus ponens (DE). In the code
reported in figure 1 we can identify four basic components which exist for any inference rule
(note that these components must exist, in some form, in any code implementing inference
rules).

2This is different from what happens, for instance, in Prolog where meta-interpreters [SS86] are written
in terms of the object level logic (by exploiting its procedural interpretation). In our approach the object
level logic has no procedural interpretation; proof plans are interpreted in terms of the code implementing
it.

7 An interesting extension of this work is then to study how to compile the proof plans back into the code.

*GETFOL is a complete re-implementation of the FOL system [Wey80].

®In the following we use standard natural deduction conventions and terminology. This is done simply
because the deductive machinery implemented in GETFOL is (a variation of) natural deduction (GETFOL’s
logic is similar to sequent calculus in that assumptions are explicitly carried through at each deduction step).
The ideas described in this paper are of course independent of the used logic.

Plan formation and execution in a uniform architecture of
declarative metatheories

Fausto Giunchiglia
Paolo Traverso
Mechanized Reasoning Group
IRST
Povo, 38100 Trento, Italy
fausto%irst@uunet.uu.net
leaf%irst@uunet.uu.net

Abstract

We show how explicit control strategies can be represented in a declarative (classical)
metatheory as first order formulae (proof plans). Proof plans can be reasoned about
(by metatheoretic theorem proving) to modify the search strategy and “ezecuted” (by
suitably “interpreting” them in terms of the deductive machinery implementation code)
to prove a theorem in the object theory. The resulting architecture i1s uniform as it
becomes possible to define a tower of metatheories, each using the same deductive
machinery, each (but the lowest) being able to represent proof plans with formulae of
the same shape. Plan formation at one level can be obtained by plan execution one
level up. The realization of these ideas in the GETFOL system is briefly described via
the implementation of a simplified version of the Boyer and Moore theorem prover.

1 Introduction

The idea of using metatheories in theorem proving has been extensively studied in the
past, a not exhaustive list is [DS79, Wey82, BM81, BWS81, Bun88, BSGT88, KC86, HowSss,
GMWT79]. The goal of the research described in this paper is to get a better understanding
of (mathematical) reasoning and to automate it on a machine (partially) by the use of
metatheoretic theorem proving. The work is based on two main ideas:

(1): instead of directly performing search by object level theorem proving, it seems better to
perform a step of planning in the metatheory (in other words “to do proof planning” 1).
Doing so, one should be able to get some sense of direction, a “proof schema” and thus
(partially) avoid the combinatorial explosion. In our approach proof plans are first
order wifs, proof planning is performed by metalevel theorem proving.

(2): the metatheory should describe not only the object level logic but also how it is
implemented, the intensional properties of the code implementing it. If this result is achieved
then it is possible to link the (declarative) metatheory to the object level code. The code
can thus be used, under certain conditions, to give a procedural interpretation to some
classes of metatheoretic wifs (the proof plans). Proof plans can therefore be “executed”

!The meanings of the terms “proof planning” and “proof plan” are very similar to those used in [Bun88],
see section 6 on related work.

[IesT

ISTITUTO PER LA RICERCA SCIENTIFICA E TECNOLOGICA

I 38100 TRENTO — Loc. PANTE DI POvOo — TEL. 0461—314444
TELEX 400874 ITCRST — TELEFAX 0461—302040

PLAN FORMATION AND EXECUTION
IN AN UNIFORM ARCHITECTURE OF DECLARATIVE
METATHEORIES

F. Giunchiglia, P. Traverso

March 1990
Technical Report # 9003-12

Published in Bruynooghe (ed.) Proceedings of the 2nd Workshop on Meta-
Programming in Logic (META-90), MIT Press, pp. 306-322.

T,
1 C

IsTiITUTO TRENTINO DI CULTURA

