[22] M.J. Gordon, R. Milner, L. Morris, and C. Wadsworth. A Metalanguage for Interactive Proof
in LCF. CSR report series CSR-16-77, Department of Artificial Intelligence, Dept. of Computer
Science, University of Edinburgh, 1977.

[23] D. J. Howe. Computational metatheory in Nuprl. In R. Lusk and R. Overbeek, editors,
CADEY, 1988.

[24] M. Kerber and M. Kohlhase. A Mechanization of Strong Kleene Logic for Partial Functions.
In A. Bundy, editor, Proc. of the 12th Conference on Automated Deduction, pages 371-385.
Springer-Verlag, 1994.

[25] Z. Manna. Mathematical Theory of Computation. McGraw-Hill, New York, 1974.

[26] E. Melis. A model of analogy-driven proof-plan construction. In Proc. of the 14th International
Joint Conference on Artificial Intelligence, 1995.

[27] L. Paulson. Tactics and Tacticals in Cambridge LCF. Technical Report 39, Computer Labo-
ratory, University of Cambridge, 1979.

[28] L. Paulson. The Foundation of a Generic Theorem Prover. Journal of Automated Reasoning,
5:363-396, 1989.

[29] L. Paulson. Designing a Theorem Prover. In S. Abramsky, D. Gabbay, and T. S. E. Maibaum,
editors, Handbook of Logic in Computer Science, volume 11, pages 416-475. Oxford University
Press, 1992.

[30] D. Prawitz. Natural Deduction - A proof theoretical study. Almquist and Wiksell, Stockholm,
1965.

[31] J. von Wright. Representing higher-order logic proofs in HOL. Technical Report jan-18-94,
Abo Akademi University, Turku, Finland, 1994.

[32] R.W. Weyhrauch. Prolegomena to a Theory of Mechanized Formal Reasoning. Artificial
Intelligence, 13(1):133-176, 1980.

27

[10] A. Felty and D. Howe. Tactic Theorem Proving with Refinement Tree Proofs and Metavari-
ables. In A. Bundy, editor, Proc. of the 12th Conference on Automated Deduction, pages
605-619. Springer-Verlag, 1994.

[11] A. Felty and D. Miller. Specifying Theorem Provers in a Higher-Order Logic Programming
Language. In R. Luck and R. Overbeek, editors, Proc. of the 9th Conference on Automated
Deduction, pages 61-80. Springer-Verlag, 1988.

[12] F. Giunchiglia. The GETFOL Manual - GETFOL version 1. Technical Report 92-0010, DIST -
University of Genova, Genoa, Italy, 1992.

[13] F. Giunchiglia and A. Armando. A Conceptual Architecture for Introspective Systems. Forth-
coming TRST-Technical Report, 1993.

[14] F. Giunchiglia and A. Cimatti. HGKM Manual - a revised version. Technical Report 8906-22,
IRST, Trento, Italy, 1989.

[15] F. Giunchiglia and A. Cimatti. Introspective Metatheoretic Reasoning. In Proc. of META-94,
Workshop on Metaprogramming in Logic, Pisa, Italy, June 19-21, 1994. Also IRST-Technical
Report 9211-21, IRST, Trento, Italy.

[16] F. Giunchiglia and P. Traverso. Reflective reasoning with and between a declarative metatheory
and the implementation code. In Proc. of the 12th International Joint Conference on Artificial
Intelligence, pages 111-117, Sydney, 1991. Also IRST-Technical Report 9012-03, IRST, Trento,
Italy.

[17] F. Giunchiglia and P. Traverso. A Metatheory of a Mechanized Object Theory. Artificial
Intelligence, to appear, 1995. IRST-Technical Report 9211-24, IRST, Trento, Italy, 1992.

[18] J. Goguen. Higher-order functions considered unnecessary for higher-order programming. In
D. A. Turner, editor, Research Topics in Functional Programming, pages 309-351. Addison
Wesley, 1990.

[19] J. Goguen, A. Stevens, H. Hilbrdink, and K. Hobley. 20BJ: a metalogical framework theorem
prover based on equational logic. Phil. Trans. R. Soc. Lond., 339:69-86, 1992.

[20] J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J. Jouannaud. Introducing OBJ. In
J. Goguen, D. Coleman, and R.Gallimore, editors, Applications of algebraic specification using

OBJ. Cambridge, 1992.
[21] M.J. Gordon, A.J. Milner, and C.P. Wadsworth. Fdinburgh LCF - A mechanized logic of

computation, volume 78 of Lecture Notes in Computer Science. Springer Verlag, 1979.

26

2. 1I; is not a proof. From the induction hypotheses we have that H;r 7, = fail. If s¢ is

either an axiom or an assumption, then 7, is apply(then(t,,, “t,”), “so”) and bkyr Tac(“so”).
If so is neither an axiom nor an assumption, then 7, is apply(then(t.,,“t,”), fail) with
bur Tac(fail). In both cases, from axiom (A9), the induction hypotheses and by applying
1fE we have kyr 7 = fail

Q.E.D.

References

[1]

[2]

[3]

[4]

A. Armando. Architetture Riflessive per la Deduzione Automatica. PhD thesis, DIST - Uni-
versity of Genoa, 1993.

D. Basin and R. Constable. Metalogical Frameworks. In Proceedings of the Second Workshop
on Logical Frameworks, Edinburgh, Scotland, 1991. To Appear as a chapter in a Cambridge
University Press book.

R.S. Boyer and J.S. Moore. A Computational Logic. Academic Press, 1979. ACM monograph
series.

R.S. Boyer and J.S. Moore. Metafunctions: proving them correct and using them efficiently
as new proof procedures. In R.S. Boyer and J.S. Moore, editors, The correctness problem in
computer science, pages 103-184. Academic Press, 1981.

R.S. Boyer and J.S. Moore. A theorem prover for a computational logic. In Proceedings of the
10th Conference on Automated Deduction, Lecture Notes in Computer Science 449, Springer-
Verlag, pages 1-15, 1990.

A. Bundy. The Use of Explicit Plans to Guide Inductive Proofs. In R. Luck and R. Overbeek,
editors, Proc. of the 9th Conference on Automated Deduction, pages 111-120. Springer-Verlag,
1988. Longer version available as DAI Research Paper No. 349, Dept. of Artificial Intelligence,
Edinburgh.

R. Cartwright and J. McCarthy. Recursive Programs as Functions in a First Order Theory,
March 1979. SAIL MEMO AIM-324. Also available as CS Dept. Report No. STAN-CS-79-17.

R.L. Constable, S.F. Allen, H.M. Bromley, et al. Implementing Mathematics with the NuPRL
Proof Development System. Prentice Hall, 1986.

A. Felty. Implementing Tactics and Tacticals in a Higher-Order Logic Programming Language.
Journal of Automated Reasoning, 11:43-81, 1993.

25

Theorem C.1 Let Il be a sequent tree of s. Let 7, be a sequential tactic application of I1. If 11 s

a proof of s, then bkyr 7 = “s” and by T(“s”).

Proof : Base Case: If II is s, then it must be either an axiom or an assumption. Then
T(“s”) is an axiom of MT. 7, is apply(“idtac”,“s”). From axioms (A7) and (A5) we have

(1)

bur apply(“idtac”,“s”) = “s7.

[13

Step Case: 7, is apply(then(t,, ,“t,”), “so”) and 7, is apply(t.,, “so”), since 1l and Il are proofs.
From the induction hypotheses byr 7r, = “s1” and byr 7(“s1”). From axiom (A9):

e T = if (4817 = fail) (9)
then fail else apply(“t,”, “s1”)

Since byr “s1” # fail, we apply I f F_ and obtain

hur Tr = apply(“1,7, “s17)) (10)

From axiom (A4) and (A3), we have

bur 7r = if (2 Fail(“s17) A Py(“s

1”)
We have byp 2 Fail(“sy”) from axiom (A2) and by P,(“s17) and by f(“s17) = “s” (since p must
be applicable to s1). Therefore (rule if F) byp 7 = “s”. From axiom (A1) we have

) then f,(“s1”) else fail (11)

Fur (T(%517) A Pp(“s17)) D T(f,(“517)) (12)
and then Ky T'(f,(“s17)). Therefore byp T'(“s”). Q.E.D.

Theorem C.2 Let Il be a sequent tree of s. Let 7, be a sequential tactic application of I1. If 11 s
not a proof, then Kur 70 = fail

Proof : Base Case: If Il is s, then it is neither an axiom nor an assumption. Then 7, is
apply(“idtac”, fail) that is provably equal to fail (axioms (A7) and (A5)).

Step Case: We have two cases.

1. II4 is a proof. 7, is apply(then(t.,, “t,”), “so”) and byr T'(“so”) (since sg is either an axiom
or an assumption). From theorem C.1 we have that by 7, = “s1” and by T(“s1”). From
axioms (A9), (A4), (A3) and by applying rule [f E-, we obtain (11). by = P,(“s1”) since p
must not be applicable to s;. Then (rule I f E_) kyr 7 = fail.

24

B Proof of theorem 3.2

We prove theorem 3.2 by showing that M is a model of MT (theorem B.1).
Theorem B.1 M is a model of MT.

Proof : We prove that any axiom of MT is true in M. Axioms (A1) are trivially true from the
interpretation of T', P, and f,. Axiom (A2) is true since F is distinct from any sequent of OT.
Consider axiom (A3). Let z be assigned to d € Tor U{F}. If d # F and d € g(F,), then both
t,(x) and the conditional term are interpreted into p,(d). If d = F or d ¢ ¢(P,), then both ¢,(z)
and the conditional term are interpreted into F. Consider now axiom (A4). Let z be assigned to
d € Tor U{F}. apply(“t,”,x)is interpreted into F,(d). The interpretation of ¢,(z) is exactly F,(d).
Therefore (A4) is true in M. The proof is analogous for (A5) and (A6).

Then we prove that the axioms about tacticals are true in M. Let z, ¢; and ¢; be assigned to
d € Tor U{F}, di € Dy and d; € Dy, respectively. The proof for axioms (A7), (A8) is trivial.
Consider axiom (A9). then(t;,t;) is interpreted into Fype,[d;,d;] € Dy. apply(then(t;, t;), z) is
interpreted into

9(apply)(Finenld;, d;], d) = { ;lj(di(d)) i %; i i

If d;(d) # F, the conditional term is interpreted into d;(d;(d)). If d;(d) = F, it is interpreted into F.
The proof for axioms (A10), (All), (A12) is similar to the proof for axiom (A9).

We prove now that (A13)is true in M. repeat(t;) is interpreted into Fjepeqt[di] € Dy. apply(repeat(t;)
is interpreted into Fiepeqt[d;](d). But the right hand of the equality in (A13) is interpreted into
Frepeat|d;](d) as well. Indeed, if d;(d) # F, then the interpretation of the conditional term is
the interpretation of apply(repeat(t;), apply(t;,z)), i.e. Frepeat[di](di(d)); but Foepeat[d;](di(d)) =
Q4 (Frepeat[di])(d) = Frepeat|di](d). If d;(d) = F, then its interpretation is d and Frepeqr[d;](d) = d.
Axioms (A14)-(A21) are trivially true from the definition of Dy. Q.E.D.

C Proof of theorem 4.1

Theorem C.1 proves parts (1)(a) < and (1)(b) =, theorem C.2 corresponds to part (2)(a) <. In
the proofs, we call II the sequent tree of s built by applying an inference rule p to the sequent sy
end sequent of II;. We call the leaf of II;, sq. We call ¢,,, 7r,, t; and 7, the sequential tactics
and the sequential tactic applications of IIy and I, respectively. (2)(b) = is a trivial corollary of
theorem C.2. (1)(a) =, (1)(b) <, (2)(a) = and (2)(b) < are trivial corollaries of theorems C.1
and C.2 and theorem 3.2 (proofs by contradiction).

23

started to develop the family of rewriting functions implemented in Cambridge LCF and described
in [29]. A major future goal is to provide MT with induction principles. Induction principles are
necessary in order to synthesize or prove the correctness of certain derived inference rules (see for
instance [4, 23]). Some preliminary experiments of theorem proving in such extensions of MT have
been performed. [1] describes a proof of the theorem about formulas containing only equivalences
stated in [32] (the same theorem is also stated and proved in [2]).

Acknowledgments

The authors thank the Mechanized Reasoning Groups in Trento and Genoa. Members of these
groups are working on related issues. Massimo Benerecetti has mechanized MT (extended to allow
the use of tacticals) in GETFOL. We thank also Alessandro Armando, Alessandro Cimatti, David
Basin, Alan Bundy, Luciano Serafini, Alan Smaill, Carolyn Talcott, Toby Walsh and Richard

Weyhrauch for feedback on various aspects of the work described in this paper.

Appendix:

A Proof of theorem 3.1

Proof : We prove that @4 is a monotonic function acting on the partial ordering C, i.e. 1 C ¢
implies ®4(¢1) C ®4(p2), where o1, 9 € Ds. We have that

e1(d(z)) ifd(z)#F and 2 #E
Si(p1)(x) =< @ ifdlz)=Fand 2 #E
E ifz=E
and
pa(d(z)) ifd(z)#F and 2 #E
Sy(p2)(z)=< @ ifdlz)=Fand 2 #E
E ifz=E

If d(z) # F and @ # E, then ®4(p1)(2) = p1(d(z)) C pa(d(z)) = ®a(p2)(x). If d(z) = F and = #
E,or 2 = E, then ®4(p1)(2) =2 C 2 = ®4(p2)(x). Therefore ®4(p1) C ®g(¢p2).

Q.E.D.

22

equational logic. Like MT, 20BJ supports a first order treatment of tactics. In 20BJ, tactics are
programmed in its equational logic. However, there is no relation between tactics in 20BJ and the
implementation of OBJ3. Moreover the metatheory of 20BJ has no explicit notion of failure.

From a technical point of view, MT has some features which make it somewhat unusual. Some of
these features are the following: Inference rules are functions and not predicates, as it happens for
instance in [31]; inference rules do not take theories and signatures as arguments, as it happens for
instance in [31] (this in GETFOL is solved using the multicontext machinery [12]); even if MT can
reason about proofs this notion is not explicitly axiomatized, as it happens for instance in [31, 2].
Finally, the notion of failure (F) is explicit, and kept distinct from the notion of partialness (E).
This is not what happens in most of the approaches which deal with partialness, e.g. [7, 25] (see
also [24]).

As stated in the introduction, our ultimate goal (still far from being achieved) is to prove the
correctness of the theorem prover within the theorem prover itself. We share this goal with the work
in progress on Acl2 [5]. There are various differences between the two approaches. One difference,
which is relevant to this paper, is that in Acl2 the logic language and the implementation language
are the same. Keeping Logic Tactics and Program Tactics distinct, as we do, seems to provide
some advantages, for instance for what concerns how to deal with state. For example, it is possible
for us to store in a global variable the set of proven theorems and to reason declaratively about
it. The idea is to see state (e.g. the current proof) as storing partial computations relative to a
function or predicate (e.g. the provability predicate T'). This allows us to lift the code that updates
and reads state into axioms which formalize the function and predicate whose computations are
approximately represented by the state itself. Some of the details about this issue are in [15, 13].
Another advantage is that we may have Program Tactics which are not translated into Logic Tactics
or vice versa. This is a necessary feature in the presence of non-terminating Program Tactics (see
the motivations in the introduction).

7 Conclusion and future work

We have described a first order metatheory, called MT, which is expressive enough to represent
tactics and tacticals. Tactics are terms of MT (called Logic Tactics) and tacticals are function
symbols of MT. MT is expressive enough to represent a proof strategy which does not correspond
to a finite composition of proof steps. Moreover, MT can express soundly tactics which do not
terminate. MT has been constructed so that it is possible to define a relation between Logic
Tactics and GETFOL Program Tactics.

At the moment we are studying some more general sufficient conditions for a characterization
of recursive (possibly “non terminating”) Logic Tactics which preserve consistency. We are also
studying the possibility for MT to construct powerful proof strategies as Logic Tactics. We have

21

tacticals and, in particular, can soundly express strategies based on the recursive application of
tactics (through the tactical repeat). This has been achieved by several technical extensions to
the metatheory presented in [17]. In order to express tacticals in a first order setting, we have
extended the logic with names of tactics and the function symbol apply (see for instance axiom
(A4)) which has allowed us to axiomatize Logic Tacticals (see axioms (A7)-(A13))and Logic Tactics
(see axioms (A14)-(A21)). As a consequence, the model of MT has been extended too. Indeed,
in [17] the domain of the model is simply the union of the set of terms, wifs and sequents (Dg)
with the elements to handle partialness and failure (E and F). In order to interpret tacticals, we
have extended the domain with Dy (see definition 3.1) and the model with functions defined over
Dy (see definition 3.2). Notice that, the model has been extended in a way to allow for a possible
extension of the results presented in [17], keeping and extending the correspondence between Logic
and Program Tactics. Moreover, in this paper we have dealt with the problem of (possibly non
terminating) recursive applications of tactics by proving that the interpretation of repeat is the
least fixed point over the partial ordering C (see theorem 3.1). As an example of the significance
of this extension, notice that all the proofs of the form (3) and (4), which have been synthetically
expressed by the only Logic Tactic (2), should have to be expressed in [17] with one tactic for each
possible resulting sequent tree schema (i.e. in this case an infinite number of tactics). This is an
example of how this work makes it feasible in practice to express tactics in a logical first order
metatheory.

Program Tactics have been mostly implemented in ML [22] and used successfully in several theorem
provers, like LCF [21, 27], Isabelle [28] and NuPRL [8]. Logic Tactics have been encoded in higher
order logical theories and logic programming languages. In [23], the higher order NuPRL type
theory is used as a language for constructing theorem proving procedures. In [11, 9], tactics and
tacticals are implemented in AProlog, an extended higher-order logic programming language. In
[10], proof trees are represented in a logical theory where “justifications” of proof steps can be
representations of tactics. There are two main differences with our work. First, MT is first order.
Reasoning about tactics can be done entirely in first order logic. We do not discuss here the
advantages of working in a first order setting, see for instance [18, 7]. Second, neither [23] nor
[11, 9, 10] provide a relation between Logic Tactics and programs that implement the theorem
prover. NuPRL and AProlog cannot reason about and extend/modify their own system code.
Beside these main facts, there are also technical (but important) differences between Logic Tactics
in MT and tactics in AProlog. Tactics in AProlog specify proof search strategies by providing an
interpreter on top of AProlog which is itself interpreted under the fixed AProlog search strategy.
As a consequence of this and of the fact that tactics are relational, failure is treated as falsity (the
tactical orelse is defined as disjunction) and failure handling is performed by backchaining using a
depth first search paradigm. Similarly, then is defined as conjunction. In MT, the axiomatization
of then and orelse is fully declarative and independent of any system underlying search strategy.

Some work closely related to ours (but which seems at an earlier stage) is the work on 20BJ [19].
20BJ is a tactic-based theorem prover built upon OBJ3 [20], a term rewriting implementation of

20

Va t(z) = if ()= apply(“idtac”, z)) (7)
then apply(* failtac”, x)
else apply(“idtac”, z)

is provable, then MT is inconsistent. Indeed, for any sequent s, from (7), under the assumption

t(“s”) = “s”, we prove “s” = fail and therefore L, the sentential constant for falsity. From

7) and the assumption —t(“s”) = “s”, we prove {(“s”) = “s” and therefore L. Hence from
P s P

1(“s7) = “s” vV at(“s”) = “s” we prove L. Notice that the wif above defines a recursive tactic ¢

which corresponds to a Program Tactic that does not terminate. Intuitively, it states that if the
tactic ¢t succeeds, then it fails, and if it fails, it succeeds.

Our goal is therefore to provide some sufficient condition for a characterization of recursive (possibly
“non terminating”) Logic Tactics which preserve consistency. For instance, we have extended MT
with axioms which correspond to a particular class of recursive definitions of Program Tactics:

Vo Tac(z) D f(x) = if Py(z) (8)
then f5(f,(x))

else x

Intuitively, any f; corresponds to a recursive application of the tactic which applies p until the
conditions of applicability (P,) are not satisfied. For instance, consider the following recursive
definition of fandeltac*.

Va Tac(x) O fandeltac™(z) = if Conj(x)
then fandeltac*(fandel(x))

else x

fandeltac* recursively applies the left conjunction elimination rule until it fails. We can show that
fandeltac*(x) is equivalent to apply(repeat(“fandeltac”),z).

The proof that recursive definitions of the form (8) preserve the consistency of MT is trivial. Notice
however that (8) captures a still very limited set of possible recursive definitions. At the moment
we are studying some more general sufficient conditions for a characterization of recursive (possibly
“non terminating”) Logic Tactics which preserve consistency.

6 Related work

This work builds on the results presented in [17]. In this paper we have extended significantly
the set of tactics which can be expressed in MT. MT can now express tactics composed through

19

4. If « is an individual variable of MT and 7,7 € T A, then let x =7 in ™ € TA.

7 A includes logic tactic applications as defined in section 4 (item 1. in the definition above), it
allows for terms with variables (item 2.), conditionals (item 3.) and an environment term construc-
tor let (item 4.). The elimination and introduction rules for conditionals have been given in section
2, figure 1. In figure 3, we extend MR with inference rules to eliminate and introduce let. The
correctness of these rules is proved in [1]. Notice that let can be used to axiomatize tacticals. For

P(tz[tl]) P(let r = tl n t2[$])
Plet =1 in ala]) ! Plia[t])

let £

with the restriction on the let I rule that x does not appear free in ts.

Figure 3: let inference rules

instance, (A13) can be replaced with the following axiom:

VaVyvt; (Tac(z) A LTac(t;) D
apply(repeat(t;),z) = let y = apply(t;,x) in
if (y= fail)

then x
else apply(repeat(t;),y))

As a further example, consider the following axiom:

VaVyvtVit; (Tac(z) N LTac(t;) N LTac(t;) D
apply(1(t;,t;),x) = let y = apply(t;,z) in
if (y= fail)
then apply(X(t;, t;), apply(t;, z))
else y)

The construct ! applies iteratively ¢; and ¢; till ¢; succeeds. It has a similar behaviour to the ML
construct ! [22]. It allows for failure trap with re-iteration.

Second, we consider the problem of recursive definitions. The tactical repeat is not the only way
to construct repeated applications of tactics. Program Tactics can also be defined recursively.
On the other hand, in general, allowing for recursive definitions of Logic Tactics and logic tactic
applications in MT may not preserve consistency. For instance, if the following wif

18

Corollary 4.1 (failure and success for logic tactic applications) Let Il be a sequent tree of
s. Let 7 be the sequential tactic application of I1. Let T be a tactic application. If kyr T = 7, then

bur 7= “s” <= 1l is a proof of s. <= b 7'(7)
bur T = fail <= 1l is not a proof. <= hyp ~T(7)

A Program Tactic succeeds iff it builds a sequent tree (II) which is a proof of a theorem (s). A
Logic Tactic application (7) is provably equal to the constant denoting the theorem (“s”) iff it
corresponds to a sequent tree Il which is a proof of s. A Program Tactic fails when it tries to apply
some inference rule that is not applicable, i.e. when it tries to build a sequent tree II that is not a
proof. A Logic Tactic application is provably equal to failure (fail) iff it corresponds to a sequent
tree II which is not a proof.

Notice that, under the hypotheses of corollary 4.1, we can prove that by T(7) V Fail(r), i.e.
bur Tac(7), that is that 7 either succeeds or fails. This is actually what happens with Program
Tactics that terminate. However, this may not be the case. Consider, for instance, the Logic Tactic
repeat(“idtac”). Since “idtac” applied to a given sequent always succeeds, the corresponding
Program Tactic applies “?¢dtac” an infinite number of times. In other words, the sequential tactic
application apply(repeat(“idtac”),“s”) does not correspond to any sequent tree. Any sequential
tactic application 7, corresponds to a finite number of applications of inference rules. Therefore,
a 7. such that kyr apply(repeat(“idtac”),“s”) = 7. does not exist and corollary 4.1 cannot be
applied. The condition Hyr 7 = 7, of corollary 4.1 captures the fact that the Program Tactic
corresponding to 7 terminates. A lot of work has been done on providing conditions for and on
proving the termination of recursive programs (e.g. see [3]). Our approach is different. We allow
for Logic Tactics which correspond to Program Tactics which are not guaranteed to terminate.
Then, when needed and when possible, we prove that a logic tactic application corresponds to an

application of a Program Tactic which terminates (b 7 = 7).

5 Some extensions

Tacticals constitute a powerful and well-tested mechanism for composing Program Tactics. Never-
theless, Program Tactics are written using also traditional programming language constructs, e.g.
conditionals, environment constructors, loops and recursive definitions. We want the same ability
in MT. First, we extend logic tactic applications. We call the extended set, 7 .A.

1. If t € 7 and s is a sequent of OT, then apply(t,“s”) € TA.
2. If t € 7 and z is an individual variable of MT, then apply(t,z) € T A.

3. If Ais a wit of MT and 71,7 € TA, then if A then 7 else 75 € TA.

17

—)((A1($1) A) A An—Q(xn—Z)) A An—l(xn—l)) A An(xn)

= (el Ma0) A o) A Analtna)) A Apmalem) vE
: VE
—)A1($1) A A2($2)
—)A1(961) vE (6)

We associate to every object level sequent tree Il a sequential (logic) tactic t. in M'T. Sequential logic
tactics of object level sequent trees are defined inductively over the structure of sequent trees. In
the base case, a sequent tree is a single sequent. If the sequent is either an axiom or an assumption,
then the sequent tree is a proof. If it is neither an axiom nor an assumption, then the sequent tree
is not a proof. In both cases, its sequential tactic is “idtac”. In the step case, if ¢, is the sequential
tactic of 1l;, and II is built from II; by applying p to the end sequent of Il;, then then(t,,, “t,”)
is the sequential tactic of II. For instance, if a sequent tree is built by applying first the rule p; to
an axiom or an assumption, and then py and p3 are applied in the sequent tree in the given order,
then the corresponding sequential tactic is then(then(then(“idtac”, “t,”), “t,,”), “t,,).

Program Tactics, when executed, are applied to given arguments. Similarly, in MT, we define a
sequential (logic) tactic application 7, of 1I. Let s be the leaf of II. Let ¢, is the sequential tactic
of Il. 7 is apply(t,, “s”),if s is an axiom or an assumption. 7. is apply(t,, fail), if s is neither an
axiom nor an assumption. A (logic) tactic application 7 is a term of the form apply(t, “s”), where
t € 7 and s is a sequent. We say that Il is a sequent tree of s if s is the end sequent of II. We
prove that sequential tactic applications have the right behaviour.

Theorem 4.1 (failure and success for sequential logic tactic applications) Let Il be a se-
quent tree of s. Let 7 be the sequential tactic application of I1. Then

(1) hur 7 = “s" = (o) llisaproofofs. <=) Fur T(7r)
(2) hyr 7 = fail <= (@) Il isnot a proof. <=) htur =T(7,)

Part (1) of theorem 4.1 states that a successful tactic corresponding to a proof can be proved equal
to the name of a sequent (part (1)(a)) that is a theorem of OT (part (1)(b)). (hyr T(“s”) <= tor s,
where ¢ stands for provability in OT, is a corollary of theorems 3.2 and 4.1). Part (2) states that
a tactic that does not correspond to a proof can be proved equal to failure (part (2)(a)) and it does
not denote an object level theorem (part (2)(b)). Notice that the fact that a Program Tactic fails
to prove a sequent does not imply that the sequent is not provable. Analogously, part (2) states
that the tactic does not denote a theorem (=7'(7,)), but does not state the much stronger fact that
s is not a theorem (=7'(“s”)). Theorem 4.1 can be generalized to logic tactic applications.

16

the standard approaches and the approach undertaken here is that we have two distinct special
elements, E and F. From a theoretical point of view, we could construct a metatheory and a model
where E and F are collapsed in a unique element. Nevertheless, the distinction between E and F is
important in order to define a correspondence between Logic and Program Tactics. E is not denoted
by any symbol in the language of M'T and is not implemented by any data structure in the GETFOL
code. It is used to capture in the model “defined on paper” the fact that some programs must
be partial. On the contrary, F is denoted by fail in MT and is implemented by a data structure
in the GETFOL code. This data structure is a witness of observable failures. It is returned by and
passed as argument to Program Tactics. Fr, F,, Fipenldi, da], Foretseldi, da], Frepeat[di], Firyldi]
and F,ogress[dq] specify how Program Tactics and tacticals must deal with this data structure.

Logic Tacticals are assigned to functions (e.g. g(then), g(orelse) and g(repeat)) that, given elements
of Dy (denoted by Logic Tactics), return an element of the same set Dy. Therefore, intuitively,
tacticals are interpreted according to their original intended meaning, i.e. as functions that given
tactics return tactics. Moreover, notice that elements of Dy C D are functions over (To7U{F}) C D.
g(apply) allows us to apply these functions to their arguments. This fact, plus the fact that Logic
Tactics denote elements of Dy, allows us to interpret Logic Tactics and Tacticals in a first order
setting.

4 Success and failure of logic tactic applications

In this section we prove some general properties of Logic Tactics. First we provide a formal notion
of “logic tactic application”, i.e. the logical analogous of applications of Program Tactics to some
arguments. Then we prove the following facts: a logic tactic application is provably equal to the
name of a theorem of OT iff it corresponds to a proof of the theorem in OT; it is provably equal
to failure iff it corresponds to a tree of rule applications that is not a proof; (non) termination of
logic tactic applications is captured formally in MT by the (un)provability of certain statements.

Program Tactics, when executed, build trees of inference rule applications where either all the rules
are applicable (the tactic succeeds) or there is a rule which is not applicable (the tactic fails). If all
the rules are applicable, the sequent tree is a proof. If there exists a rule which is not applicable,
the sequent tree is not a proof. A sequent tree 1l is defined formally as a tree of sequents, each
labeled by an inference rule. OT proofs (3) adn (4) are examples of sequent trees. An example of
a sequent tree which is not a proof is the following:

15

Fre ea d Zf d S D
g(repeat)(d) - { E ’ t[] otherwisef

16. g(try) is a function over D such that

g(try)(d) = { E otherwise

17. g(progress) is a function over D such that

F, TOgress d Zf deD
g(progress)(d) = { Ep ’ . otherwisef

18. g(apply) is a function over D X D such that

di(d if dy€Dsanddy € Tor U{F
glapply)(dy,dy) :{ El(2) Oftherlwise f 2 € Tor U {F}

Wits and terms get interpreted according to the usual standard Tarskian semantics. The semantics
of conditional terms is as follows. If A is true, then the value of if A then t; else t5 is the value of
t1. Otherwise it is the value of 5.

Theorem 3.2 MT is consistent.

We prove the consistency of MT by showing that M =< D, g > is a model of MT.

M has been built to identify some requirements that the code implementing Program Tactics must
satisfy in order to allow for a relation with Logic Tactics. E has been introduced to handle non
termination and totalize function symbols (e.g. f,) that otherwise would be partially defined. f,
corresponds to a function in the GETFOL code that is undefined for some inputs. For instance,
universal specialization is implemented by means of a function that, given a (data structure cor-
responding to) a universally quantified wff, returns (a data structure corresponding to) its matrix.
This function is partial since it is undefined for (data structures corresponding to) wifs that are
not universally quantified. Partialness is a general characteristic of a large amount of the code of
GETFOL (and of any running system). For instance, this is the case also for tacticals, which are
defined only over tactics, and for apply, which is defined only over pairs of tactics and theorems or
failures. Partialness allows us to achieve efficiency (the code does not have to test and decide for all
the possible inputs). Extending the domain with E to handle partial functions and non termination
is a well known standard technique (see, for instance, [7, 25]). One essential difference between

14

. g(=) is the identity relation over D.
. g(LTac) = Dy.
. g(P,) is the subset of sequents p is applicable to.

g(f,) is the function over D that returns the conclusion of p, if p is applicable to d € D. It
returns E, otherwise. Let p, be the partial function, defined only over g(P,), that returns the
conclusion of p. Then

o)) = {f’p<d> i deglp)

E otherwise
. g(t,) is the function over D such that,

,Op(d) ifd € Tor N g(P)
gltp)d) =4 F if d € (Tor L g(F,)) U{F}
E otherwise

g(idtac) is the function over D such that

. d ifdeTorU{F
g(zdtac)(d):{ E otherwise Y

g(failtac) is the function over D such that

F ifdeTor U{F}
E otherwise

g(failtac)(d) = {
g(“idtac”) = Fiq, g(“failtac”) = Fp and g(“t,”) = F,.
g(then) is a function over D X D such that

Lipen d 7d U d ’d €D
g(then)(dy, dy) :{ Eth i 2] ojlherlwz'sz !

. g(orelse) is a function over D X D such that

Foresedvd i d’d €D
g(orelse)(dy, d) :{ E el) o];herlwz'sz !

. g(repeat) is a function over D such that

13

d(z) ifd(z)# 2z andz # E
7. Forogressld](z) =< F ifd(z)=2 andz # E
E ife = E

8. Frepeatld)(z) = fo,, where fg, is the least fizpoint of the functional ®4 over [TorU{F}U{E} —
Tor U{F} U{E}/, defined as

p(d(z)) ifd(z)# F and x # E
Pa(p)(x) = @ if d(z) =F
E ifr =E
with ¢ being a function variable, and the partial ordering C on Top U{F} U{E} is defined as

EC dandd C d foralld € Tor U{F} U{E}

Some explanations are in order. We use the notation f[] to denote elements of Ds. For each
di,dy € Dy, we have an element Fipe,[dr, da], Forerseldr, da], Frepeat[di], Frryldi] and Firogress[di] in
Ds. We use the notation f() to denote function application. If dy,ds € Dy and z € TorU{F}U{E},
then di(z) stands for “the function dy applied to the argument z”, and dy(di(z)) stands for the
composition dsy o dy applied to z.

The following theorem proves that ®4 is monotonic, and therefore has a least fixpoint.

Theorem 3.1 ¢, is monotonic over the partial ordering C on Tor U{F} U {E} defined as

EC dandd C d foralld € Tor U{F} U{E}

The next step is to define the interpretation function g¢.
Definition 3.2 (Interpretation function g of M)

1. g(“s”) = s, g(“w”) = w and g(“t”) = t, where s, w and t are any sequent, wff and term of
OT, respectively.

2. g(fail)=F.

3. g(Seq) is the set of sequents of OT.

4. g(T)= Tor, where Tor is the set of theorems of OT.

12

The domain of interpretation D includes a set (called D,) of objects of the object theory OT, e.g. the
sequent I' =Yz A(z). These objects are denoted by terms of MT, e.g. the constant “I' =»Vz A(z)”.
The domain contains the two special elements E and F. E intuitively means “undefined” and is used
to handle partialness and non termination. F is used to interpret failure, i.e. the constant fail
of MT. The domain includes a further subset, called D, which is used to interpret Logic Tactics.
Tacticals are interpreted as functions defined over elements of D;.

Definition 3.1 (Domain D of M) D = D, U{E} U{F} UDy. D, is the set of terms, wffs and
sequents of OT. E and F are distinct from any other element of D.

Dy 1s constructed inductively as follows.
1. Fiq € Dy, Fr € Dy, {Fp}ng.

2. If dl and d2 € Df; then Fthen[dlde] € Df; Forelse[dlde] € Df; Frepeat[dl] € Df; Ftry[dl] S
Df and Fpmgmss[dl] € Df.

where we have an element I, for each p € R. The members of Dy are functions over the set of
theorems of OT union the element F union E, i.e. functions from Tor U{F}U{E} to TorU{F}U{E},
where Tor is the set of theorems of OT. They are defined as follows.

Let x € Tor U{F} U{E}:

1. Fylz)==
_J F ifv #E
° FF(w)_{E ife=E
Yy if v # F, 2 #E, p is applicable to x and
9. F(a) = y 1s the conclusion of the application of p to x
AT F if x # E and p is not applicable to x
E ifr =E
dy(di(2)) if di(x) # F and x # E
4. Fipenldy,dg)(z) = ¢ F if di(z) = F
E ife = E
di(z) if di(z) # F and x # E
5. Forelse[dladQ](x) = d2($) Zf d1($) =F
E if e =E
d(z) ifd(z)# F and x # E
6. Fryldl(z) =< = ifd(z)=F
E ife = E

11

then(repeat(“ falletac”), repeat(“ fandeltac”)) which eliminates all the outermost universal quan-
tifiers (repeat(“falletac”)) and then returns recursively the left conjunct (repeat(“fandeltac”)).
As a simple example, the Program Tactic corresponding to (2) can be used to perform the following
proof:

—)((A1($1) A) A An—Q(wn—Q)) A An—l(xn—l)) A An(xn) N
—)((A1($1) A) A An—Q(xn—Z)) A An—l(xn—l)

ANE

: NE
—)A1($1) N A2($2)

Sa(ey M (3)

In this case only AF is recursively executed. The same Program Tactic can also be used to perform
the following proof:

—)V$1V$2 . V$n(((141($1) A) A An—Q(wn—Q)) A An—l(xn—l)) A An(xn))
—)V$2 . V$n(((141($1) A) A An—Q(xn—Z)) A An—l(xn—l)) A An(xn))

VE
(A1) A) A Apa(29—2)) A An—1 (En-1)) A An(2n) :g
—)((A1($1) A) A An—Q(xn—Z)) A An—l(xn—l)) A An(xn)
—)((A1($1) A) A An—?(xn—Z)) A An—l(xn—l) N
—)A1($1): N A2($2) NE
—)A1($1) (4)

In this case VFE first and AFE afterwards are recursively executed. We can prove in MT the following
theorem:

apply(
orelse(progress(repeat(“ fandeltac”)), then(repeat(“ falletac”), repeat(“ fandeltac™))), (5)
“V$1V$2 . V$n(((141($1) AN An—Q(wn—Q)) A An—l(xn—l)) A An(xn))”) = “A1($1)”

3 A model of MT

We define an interpretation M = (D, g) of ML, where D is the domain of interpretation and g is
the interpretation function.

10

tacticals implemented in LCF and NuPRL [8]. Their axiomatization is given in figure 2. Intuitively,
LTac holds over terms that are Logic Tactics (see axioms (A14)-(A21)). then is used to apply
tactics sequentially. It applies its first argument; if it succeeds, it applies the second, it fails
otherwise. orelse captures failure. It applies the first tactic; if it fails, it applies the second. An
alternative proof strategy can thus be applied when the first strategy fails. Notice that, in LCF,
ORELSE is defined by means of ?,i.e. let (T1 ORELSE T2)g = Ti(g) ? T2(g) [22]. Analogously,
axiom (A10) states the relation between orelse and I. try applies the tactic to the argument. If it
fails, it returns the argument. try is used to apply proof strategies without having failure. progress
applies the tactic to the argument. If the result is equal to the argument (no progress in the proof
has been obtained) then it fails. repeat applies the tactic until the tactic fails. repeat can be used
to express repeated applications of tactics.

Logic Tactics can be formally defined as follows. They are a subset of the terms of MT. This set is
based upon the set of constants “t,”: 7o = {“t,” : p € R}. From 7y, we inductively construct the
set of Logic Tactics 7.

1. “dtac” € T, “failtac” €T, T,CT.

2. If t1,t2 € T, then then(t1,t3) € T, orelse(ty,t3) € T, repeat(ty) € T,
try(ty) € T, and progress(ty) € 7.

The following set of axioms circumscribes the set of terms that are Logic tactics.

(A14) LTac(“idtac”)

(A15) LTac(“failtac”)

(A16) LTac(“t,”), for any “t,” € Ty

(A17) V¥ty LTac(ty) A LTac(ty) D LTac(then(ty,t2))
(A18) V1Vty LTac(ty) A LTac(ty) O LTac(orelse(ty,13))
(A19) Vvt LTac(t) D LTac(try(t))

(A20) ¥Vt LTac(t) D LTac(progress(t))

(A21) ¥Vt LTac(t) D LTac(repeat(t))

As an example of Logic Tactic, consider the following:

orelse(progress(repeat(“ fandeltac”)), (2)
then(repeat(“falletac”), repeat(* fandeltac”)))

repeat(“ fandetac”) applies AE till it fails. If the result is different from the argument it has
been applied to, i.e. if progress(repeat(“fandeltac”)) succeeds, then orelse terminates execution.
If no progress in the proof has been made, i.e. the argument which is applied to is not a con-
junction, then progress(repeat(“fandeltac”)) fails and orelse recovers from failure by executing

(A7) idtac :
(A8) failtac :
(A9) then :

(A10) orelse :

(All) try :

(Al12) progress :

(A13) repeat :

Va (Tac(z) D apply(“idtac”, x) = idtac(z))
Va (Tac(z) D apply(“ failtac”,) = failtac(x))
Vavit;Vt; (Tac(z) AN LTac(t;) AN LTac(t;) D
apply(then(t;,t;),z) = if (apply(t;,z) = fail)
then fail
else apply(t;, apply(t;, z)))
Vavit;Vt; (Tac(z) AN LTac(t;) AN LTac(t;) D
apply(orelse(t;, t;), x) =Napply(t;, x), apply(t;, x)))

Vavt; (Tac(z) N LTac(t;) D

apply(try(t;), x) = apply(orelse(t;, “idtac”), z))
VaVt; (Tac(x) A LTac(t;) D

apply(progress(t;),z) = if (apply(t;,z) = x)

then fail

else apply(t;,v))
Vavt; (Tac(z) N LTac(t;) D
apply(repeat(t;),z) = if (apply(t;,z) = fail)

then x
else apply(repeat(t;), apply(t;, v)))

where x, t; and t; are variables of MT.

Figure 2: Axiomatization of tacticals

where f,(“s”) denotes the conclusion of the application of p. If p is not applicable to s, then we have
bur = P,(“s”), and therefore kyp ¢,(“s”) = fail (rule ¢f E-). Finally, we have failure propagation,
ie. by t,(fail) = fail.

As examples, consider the function symbols fandeltac, falletac and fallitac which correspond to
t, for AE, VE and VI, respectively:

(A3,r) Va (Tac(z) D fandeltac(x) = if (=Fail(z) A Conj(z))
then fandel(x)
else fail)
(A3yg) Va (Tac(z) D falletac(z) = if (- Fail(z) A Forall(z))
then falle(x)
else fail)
(A3yr) VaVy (Tac(z) D fallitac(z,y) = if (=Fail(z)A\Var(y) AN NoFree(y,z))
then falli(z,y)
else fail)

Let us now consider Program Tactics that are built as compositions of simpler Program Tactics.
GETFOL, like most tactic-based theorem provers [21, 27, 28, 8], provides the ability to combine Pro-
gram Tactics by means of tacticals. Tacticals are implemented by control constructs that compose
tactics in a principled manner. For instance, tacticals are used to control sequential and repeated
applications of tactics and to handle failure in the application of tactics. Tacticals compose tactics
by taking tactics as arguments and returning tactics as results. In ML, this is achieved by using
a higher order syntax where tactics are passed as arguments to programs. In MT (which is first
order) we obtain a similar result by adding to ML the constants “¢,”, i.e. for each function symbol
t, € ML we have a constant “¢,” € ML. We say that “¢,” is the name of ¢,. For each “¢,”, we
have in MT an axiom stating the relation between the function symbol and its name.

(A4) Ve (Tac(a) > apply(“t,”,2) = 1,(2))

where, apply is a function symbol. Notice that “¢,” is a name of an object of MT rather than of
OT. We have constants (“idtac” and “failtac”) and function symbols (idtac and failtac) for trivial
tacticals that return the argument unchanged and that generate failure, respectively. We also have
the following axioms:

(A5) Va (Tac(x) D idtac(z) =)
(A6) Va (Tac(z) D failtac(x) = fail)

In MT, tacticals are function symbols. We call these function symbols, Logic Tacticals. The Logic
Tacticals considered in this paper are then, orelse, try, progress and repeat. They correspond to

GETFOL Program Tactics either construct a theorem or fail®>. In the former case, they construct a
data structure that memorizes a sequent. In the latter, they construct a data structure for failure.
The basic assumption underlying computations of Program Tactics is that these data structures
cannot be confused, i.e. the interpreter of Program Tactics is always able to distinguish between
(a data structure memorizing) failure and (a data structure memorizing) a sequent. This fact is
asserted in MT by the following axiom:

(A2) VY =(Seq(z) A Fail(z))

Moreover, a Program Tactic never asserts failure as a theorem. Analogously, in MT, from axiom
(A2) and the axiom stating V(7T (z) D Seg(x)) we can prove

= T(fail) (1)

Since Program Tactics construct either theorems or failures, they must accept as arguments either
theorems or failures, and nothing more. This allows us to compose them. Being a well sorted
argument for a tactic is expressed by the predicate Tac.

(D3) Va (Tac(z) < T(z)V Fail(z))

Let us consider Program Tactics that apply a single inference rule p. If p is applicable, the Program
Tactic succeeds and constructs a theorem, i.e. the conclusion of the application of p. If p is not
applicable, then the Program Tactic fails. If a failure is given in input, the Program Tactic that
applies p fails, i.e. it “propagates” failure. For each p € R, we extend MT with the function symbol
t, and the following axiom

(A3) Va (Tac(x) D t,(x) =if (mFail(z)A Py(z))
then f,(x)
else fail)

Notice that the function symbol ¢, corresponds intuitively to a Program Tactic that applies a
single inference rule p. If p is applicable to a given premise s which is a theorem of OT, then
bur Tac(“s”), byr ~Fail(“s”) and ko P,(“s”). Hence, we have byp £,(“s”) = f,(“s”) (rule of E),

? Actually GETFOL allows for both “backward tactics” (which compose backward rules, e.g. backward “conjunction
left elimination”) and “forward tactics” (which compose forward rules, e.g. forward “conjunction left elimination”).
Roughly speaking, backward tactics are functions from goals to lists of subgoals, while forward tactics are functions
from lists of theorems to theorems. In this paper, we consider only forward rules and tactics. The axiomatization of
backward rules and tactics is conceptually similar, even if technically different from that of forward rules and tactics.

[A] [A] A P(if A then ty else t3)
S Plin) v
Pt) P(t2) if I —A P(if A thenty elsety)
P(if A then t; else t3) Pta) of I

Figure 1: Conditional inference rules

Program Tactics may encode proof strategies that are not guaranteed to succeed, i.e. they may
attempt to apply a rule that is not applicable. If this is the case, the Program Tactic fails. The
ability of handling failure is an essential feature of programming languages (like ML) that are
used to encode Program Tactics. In ML, for instance, the user can specify that, under certain
conditions, a program fails and that, when a program fails, an alternative program can be tried.
This is achieved in ML with the construct 7. The value of the expression el ? 2 is the value of
el if el does not fail, otherwise it is the value of e2. MT must have the same capability. To obtain
this, we add to the language a predicate Fa:l which holds of failures in the application of object
level inference rules. This predicate symbol corresponds to a program in GETFOL which implements
a boolean function which returns TRUE when its argument computes a data structure that encodes
failure. We therefore extend the language of MT with a constant, fail that corresponds to the data
structure for failure, and define the predicate Fail in terms of fail as follows:

(D1) Va (Fail(z) < z = fail)

For simplicity, we suppose that we have only one constant for failure?. We can now define a function
symbol T

(D2) Vayze Ny, 29) = if (21 = fail)
then x4
else a1

which has a behaviour analogous to the ML construct 7. Indeed, if kyr 21 # fail, then
(21, 22) = 21 (where kyr stands for provability in MT). If by 21 = fail |, then Hypl{2q, 22) = 22.

?Program Tactics distinguish different failures depending on the tactic which fails. In ML this is achieved by
means of a “failure token” passed as argument to the expression that generates failure, i.e. failwith. In the actual
GETFOL code different data structures are generated depending on the tactic that fails. MT can be easily extended
with a set of constants each denoting a different failure and with constructs similar to the ML constructs for “selective
failure trapping”, e.g. the ML construct 77 [22].

introduction rule, then we have that —=P,(“A(z) — A(x)”) is provable in MT. T is the provability
predicate. We have an axiom 7'(“s”), for any sequent s which is an object level axiom (s € A)
or assumption (of the form A — A). These axioms state in MT the provability in OT of axioms
and assumptions. Therefore, (A1) states that, if the rule p is applicable [P,(z)] to a provable se-
quent [1'(x)], then the conclusion [f,(z)] is a provable sequent [T'(f,(z))]. As an example, consider
the following ND rules for left conjunction elimination (AZ), universal specialization (VE) and
introduction (V1):

I =AAB I'—= Ve A(z) I'— Afz)
r-4 M TS5am P TSoveawm !

where VI has the restriction that z must not occur free in T'.

The corresponding axioms are the following:

(Alag) Ya((T(xz) A Conj(x)) D T(fandel(x)))
(Alyg) Va((T(x)A Forall(z)) D T(falle(z)))
(Alyr) VaVy((T(x) AVar(y) AN NoFree(y,z)) D T(falli(z,y)))

where, we write P, and f, as C'onj and fandel when p is AE, Forall and falle when p is VFE,
Var(y)ANNofree(y,z) and falli when pis VI. Intuitively, C'onj holds over sequents whose formula
is a conjunction, Forall holds over sequents whose formula is universally quantified, Var holds
over individual variables, and Nofree(y,z) holds if y denotes a variable which does not appear
free in the dependencies of the sequent denoted by z. fandel, falle and fallv stand for “forward
and left elimination”, “forward forall elimination” and “forward forall introduction”, respectively.
Intuitively, their intended meaning is the function that, given the premises, returns the conclusion
of the corresponding rule.

Finally, MT has axioms about the syntactic categories of OT, e.g. Seq(“s”) and Var(“z”) for any
sequent s and individual variable z of OT, respectively, and about the relations between sequents
and theorems, i.e. Vo (T'(2) D Seq(z)). A detailed description of the metatheory described so far
and of its relation with the GETFOL code can be found in [17] (see also [16]).

In the following, we extend MT to be expressive enough to represent Logic Tactics which can be put
in correspondence with Program Tactics. Program Tactics make extensive use of conditional con-
structs. We therefore extend MT’s language with conditional term constructors if A then 11 else t3,
where A is a wif and ¢y, 5 are terms, and its deductive machinery with the relevant elimination and
introduction rules (reported in figure 1). Rule i f E [¢f E_] states that from P(if A then ty else t3)
and A [-A], we can derive P(t1) [P(t2)]. Rule ¢f I states that, given a deduction of P(t;) from A
and a deduction of P(t3) from ~A, we can prove P(if A then t; else t3) ([A] denotes the fact that
A is discharged). The resulting theory is a conservative extension of MT.

fails. In Section 5 we extend MT in order to express the logical analogous of programming constructs
(like conditionals and environment constructors) which may be used in the definition of Program
Tactics. In Section 6 we discuss the related work. Some conclusions and future developments are
in Section 7. In this paper, we do not formally describe GETFOL Program Tactics. They are similar
to the ML Program Tactics developed in other theorem provers [21, 27, 28, 8]. Moreover, we do not
discuss how expressions in MT can be translated into GETFOL Program Tactics and vice versa. This
non-trivial issue is addressed in other papers, in particular in [15, 13] and partly in [17] (for the
version of MT which does not express tacticals). The proofs of the theorems are in the appendix.

2 Logic Tactics

Let OT be a first order object theory, defined as a triple < £, A, R >, L being the language, A the
set of axioms and R the set of inference rules of OT. We assume that inference rules p € R apply
to pairs < I'; A >, written I' = A, where A is a formula and I' a finite set of formulas. We call
I' = A, a sequent, A the formula of I' = A and I' the dependencies of I' = A. We also call sequents
of the form A — A, assumptions. We assume that R contains rules which are a sequent version
of the Natural Deduction (ND) rules [30, 16, 17]. (ND is the logic of GETFOL.) Nevertheless, the
work described in this paper is largely independent of the specific inference rules considered. We
take the notion of deduction defined in [30]. We call a deduction of a formula A depending on the
possibly empty set I' of formulas, a proof of the sequent I' = A. We say that I' = A is a theorem
of OT, or that I' = A is provable in OT, iff there exists a proof in OT of I' — A.

We define a distinct first order logical theory MT = < ML, MA, MR > to be the metatheory
of OT. The set of rules of MT, MR includes ND rules and rules for equality. We fix a naming
relation between MT and the objects of OT, i.e. ML contains names of sequents, wifs and terms
of OT. For instance, the constants “I' = Vo A(2)”, “VozA(z)” and “2” are the names of the sequent
I'=VzA(z), of the wif Vo A(z) and of the variable z, respectively. For each object level n-ary
inference rule p, ML has a n-ary function symbol (that we write as f,), and a n-ary predicate
symbol (that we write as P,). (For simplicity, in the general description of MT, we consider unary
inference rules only. As shown by the examples, the extension for n-ary rules is trivial.) For each
p € R, MA has the following axiom:

(A1) Va((T(x) A Pp(z)) D T(fp()))

MT has axioms about f, and P,. For instance, if p is (a form of)) universal specialization that re-
places the outermost universally quantified variable with a free variable, we have that f,(“I' = VzA(z)”) =
“I' = A(2)”, Py(“I' =VzA(z)”) and =P, (“I' = A(2)”) are theorems of MT. This intuitively means
that the application of p to I' =Vz A(2) gives I' = A(z), and that p is applicable to I' =Vz A(2),
and not to I' = A(z). P, may express inference rule restrictions. For instance, if p is the universal

The importance of having tactics as expressions of a logical language (property 1.) has been largely
recognized in the literature (see for instance [2, 6, 9, 11, 19, 23, 26, 31]). First, the logic can be used
to reason about proof strategies [6, 19, 31] and to reduce the burden of establishing their correctness
[23]. Second, a declarative account of proof strategies can be used to build new strategies, e.g by
proof planning [6], by analogy [26] and by proof reuse [10].

The link between Logic and Program Tactics (property 2.) is motivated by the desire of using
logical deduction to automatically and safely synthesize/optimize Program Tactics, and to reason
about and extend/modify the GETFOL system code. The work presented in this paper is part of a
long term project whose ultimate goal is to implement a provably correct theorem prover (the idea
is to use GETFOL to proof check correctness statements about its own code). This work builds on

some first significative results presented in [17]. In [17] we have proposed a metatheory (also called
MT) where:

(a) There is a precise correspondence between certain wifs (called in [17], “primitive tactics”) of
the metatheory and the code implementing primitive Program Tactics in GETFOL, i.e. possibly
failing applications of basic inference rules.

(b) It is possible to prove wffs (called in [17], “tactics”) which specify how to build finite sequential
compositions of primitive tactics.

¢) It is possible to give tactics a procedural content, i.e. to use them to assert object level
P g P) J
theorems, either by interpreting or compiling them into GETFOL code.

In this paper, we extend MT to be expressive enough to represent the kind of Program Tactics
used in most tactic-based interactive theorem provers (e.g. [21, 27, 28, 8]). We axiomatize the most
interesting tacticals, 7.e. then, orelse, try, progress and repeat. Tacticals provide a powerful and
well tested mechanism for controlling proof search. As a consequence, MT can be used to express
useful and complex tactics. In particular, the axiomatization of the tactical repeat, the standard
tactical used to write strategies based on recursive applications of tactics, is very important. A single
Logic Tactic constructed using repeat, in [17] may have to be expressed with an infinite number of
tactics. Moreover, Logic Tactics constructed through repeat may correspond to Program Tactics
which are not guaranteed to terminate, e.g. Program Tactics which do not terminate when applied
to certain arguments. This kind of Program Tactics may still be very useful, i.e. they can be
actually used to prove theorems in the cases when they terminate. In this paper, we show that this
kind of Logic Tactics is safely represented, i.e. MT is consistent. Notice that, in most interactive
theorem provers (see for instance [3]) the user is required instead to prove the termination of
recursive definitions.

The paper is structured as follows. In Section 2 we define Logic Tactics. In Section 3 we construct
a model of MT, thus proving its consistency. We also discuss some of the requirements that this
model imposes on Program Tactics. In Section 4 we prove some interesting properties of Logic
Tactics, namely that deduction in MT can be used to prove when a tactic succeeds and when it

Program Tactics and Logic Tactics®

Fausto Giunchiglia'? and Paolo Traverso!

TRST - Istituto per la Ricerca Scientifica e Tecnologica
38050 Povo, Trento, Italy
2University of Trento, Via Inama 5, 38100 Trento, Italy
fausto@irst.it leaf@irst.it

Abstract

In this paper we present a first order classical metatheory, called MT, with the following
properties: (1) tactics are terms of the language of MT (we call these tactics, Logic Tactics);
(2) there exists a mapping between Logic Tactics and the tactics developed as programs within
the GETFOL theorem prover (we call these tactics, Program Tactics). MT is expressive enough to
represent the most interesting tacticals, i.e. then, orelse, try, progress and repeat. repeat allows
us to express Logic Tactics which correspond to Program Tactics which may not terminate. This
work is part of a larger project which aims at the development and mechanization of a metatheory
which can be used to reason about, extend and, possibly, modify the code implementing Program
Tactics and the GETFOL basic inference rules.

1 Introduction

GETFOL [12] ! is a tactic-based interactive theorem prover. In GETFOL, tactics can be developed as
programs of the GETFOL programming language [14, 12, 16]. These kinds of tactics are conceptually
similar to the tactics developed in ML [22] and used in LCF and its descendants [21, 27, 28, 8]. We
call these tactics, Program Tactics.

This paper describes a first order classical metatheory, called MT, with the following properties:

1. Tactics are terms of the language of MT. We call these tactics, Logic Tactics.

2. There exists a precise correspondence between Logic Tactics and Program Tactics.

*Some parts of this paper are preliminarly discussed in a paper appeared in the proceedings of the Fifth Interna-
tional Conference on Logic Programming and Automated Reasoning (LPAR’94).
!GETFOL has been developed on top of a reimplementation of the FOL system [32].

IRST

ISTITUTO PER LA RICERCA SCIENTIFICA E TECNOLOGICA

I 38100 TRENTO — Loc. PANTE DI Povo — TEL. 0461—814444
TELEX 400874 ITCRST — TELEFAX 0461—810851

PrograM TAacTIiCs AND LogIic TAcTICS

Fausto Giunchiglia
Paolo Traverso

January 1993
Technical Report # 9301-01

Publication Notes: In Proceedings "LPAR’94, 5th International Conference on Logic Program-
ming and Automated Reasoning”, Kiev, Ukraine, July 16-21, 1994. Also presented at the ”Third
International Symposium on Artificial Intelligence and Mathematics”, Fort Lauderdale, Florida,
January 1994.

T,
1 C

IsTiITUTO TRENTINO DI CULTURA

