
[22] M.J. Gordon, R. Milner, L. Morris, and C. Wadsworth. A Metalanguage for Interactive Proofin LCF. CSR report series CSR-16-77, Department of Arti�cial Intelligence, Dept. of ComputerScience, University of Edinburgh, 1977.[23] D. J. Howe. Computational metatheory in Nuprl. In R. Lusk and R. Overbeek, editors,CADE9, 1988.[24] M. Kerber and M. Kohlhase. A Mechanization of Strong Kleene Logic for Partial Functions.In A. Bundy, editor, Proc. of the 12th Conference on Automated Deduction, pages 371{385.Springer-Verlag, 1994.[25] Z. Manna. Mathematical Theory of Computation. McGraw-Hill, New York, 1974.[26] E. Melis. A model of analogy-driven proof-plan construction. In Proc. of the 14th InternationalJoint Conference on Arti�cial Intelligence, 1995.[27] L. Paulson. Tactics and Tacticals in Cambridge LCF. Technical Report 39, Computer Labo-ratory, University of Cambridge, 1979.[28] L. Paulson. The Foundation of a Generic Theorem Prover. Journal of Automated Reasoning,5:363{396, 1989.[29] L. Paulson. Designing a Theorem Prover. In S. Abramsky, D. Gabbay, and T. S. E. Maibaum,editors, Handbook of Logic in Computer Science, volume II, pages 416{475. Oxford UniversityPress, 1992.[30] D. Prawitz. Natural Deduction - A proof theoretical study. Almquist and Wiksell, Stockholm,1965.[31] J. von Wright. Representing higher-order logic proofs in HOL. Technical Report jan-18-94,Abo Akademi University, Turku, Finland, 1994.[32] R.W. Weyhrauch. Prolegomena to a Theory of Mechanized Formal Reasoning. Arti�cialIntelligence, 13(1):133{176, 1980.
27

[10] A. Felty and D. Howe. Tactic Theorem Proving with Re�nement Tree Proofs and Metavari-ables. In A. Bundy, editor, Proc. of the 12th Conference on Automated Deduction, pages605{619. Springer-Verlag, 1994.[11] A. Felty and D. Miller. Specifying Theorem Provers in a Higher-Order Logic ProgrammingLanguage. In R. Luck and R. Overbeek, editors, Proc. of the 9th Conference on AutomatedDeduction, pages 61{80. Springer-Verlag, 1988.[12] F. Giunchiglia. The GETFOL Manual - GETFOL version 1. Technical Report 92-0010, DIST -University of Genova, Genoa, Italy, 1992.[13] F. Giunchiglia and A. Armando. A Conceptual Architecture for Introspective Systems. Forth-coming IRST-Technical Report, 1993.[14] F. Giunchiglia and A. Cimatti. HGKM Manual - a revised version. Technical Report 8906-22,IRST, Trento, Italy, 1989.[15] F. Giunchiglia and A. Cimatti. Introspective Metatheoretic Reasoning. In Proc. of META-94,Workshop on Metaprogramming in Logic, Pisa, Italy, June 19-21, 1994. Also IRST-TechnicalReport 9211-21, IRST, Trento, Italy.[16] F. Giunchiglia and P. Traverso. Reective reasoning with and between a declarative metatheoryand the implementation code. In Proc. of the 12th International Joint Conference on Arti�cialIntelligence, pages 111{117, Sydney, 1991. Also IRST-Technical Report 9012-03, IRST, Trento,Italy.[17] F. Giunchiglia and P. Traverso. A Metatheory of a Mechanized Object Theory. Arti�cialIntelligence, to appear, 1995. IRST-Technical Report 9211-24, IRST, Trento, Italy, 1992.[18] J. Goguen. Higher-order functions considered unnecessary for higher-order programming. InD. A. Turner, editor, Research Topics in Functional Programming, pages 309{351. AddisonWesley, 1990.[19] J. Goguen, A. Stevens, H. Hilbrdink, and K. Hobley. 2OBJ: a metalogical framework theoremprover based on equational logic. Phil. Trans. R. Soc. Lond., 339:69{86, 1992.[20] J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J. Jouannaud. Introducing OBJ. InJ. Goguen, D. Coleman, and R.Gallimore, editors, Applications of algebraic speci�cation usingOBJ. Cambridge, 1992.[21] M.J. Gordon, A.J. Milner, and C.P. Wadsworth. Edinburgh LCF - A mechanized logic ofcomputation, volume 78 of Lecture Notes in Computer Science. Springer Verlag, 1979.26

2. �1 is not a proof. From the induction hypotheses we have that M̀T ��1 = fail. If s0 iseither an axiom or an assumption, then �� is apply(then(t�1 ; \t�"); \s0") and M̀T Tac(\s0").If s0 is neither an axiom nor an assumption, then �� is apply(then(t�1 ; \t�"); fail) withM̀T Tac(fail). In both cases, from axiom (A9), the induction hypotheses and by applyingifE we have M̀T �� = fail Q.E.D.References[1] A. Armando. Architetture Riessive per la Deduzione Automatica. PhD thesis, DIST - Uni-versity of Genoa, 1993.[2] D. Basin and R. Constable. Metalogical Frameworks. In Proceedings of the Second Workshopon Logical Frameworks, Edinburgh, Scotland, 1991. To Appear as a chapter in a CambridgeUniversity Press book.[3] R.S. Boyer and J.S. Moore. A Computational Logic. Academic Press, 1979. ACM monographseries.[4] R.S. Boyer and J.S. Moore. Metafunctions: proving them correct and using them e�cientlyas new proof procedures. In R.S. Boyer and J.S. Moore, editors, The correctness problem incomputer science, pages 103{184. Academic Press, 1981.[5] R.S. Boyer and J.S. Moore. A theorem prover for a computational logic. In Proceedings of the10th Conference on Automated Deduction, Lecture Notes in Computer Science 449, Springer-Verlag, pages 1{15, 1990.[6] A. Bundy. The Use of Explicit Plans to Guide Inductive Proofs. In R. Luck and R. Overbeek,editors, Proc. of the 9th Conference on Automated Deduction, pages 111{120. Springer-Verlag,1988. Longer version available as DAI Research Paper No. 349, Dept. of Arti�cial Intelligence,Edinburgh.[7] R. Cartwright and J. McCarthy. Recursive Programs as Functions in a First Order Theory,March 1979. SAIL MEMO AIM-324. Also available as CS Dept. Report No. STAN-CS-79-17.[8] R.L. Constable, S.F. Allen, H.M. Bromley, et al. Implementing Mathematics with the NuPRLProof Development System. Prentice Hall, 1986.[9] A. Felty. Implementing Tactics and Tacticals in a Higher-Order Logic Programming Language.Journal of Automated Reasoning, 11:43{81, 1993.25

Theorem C.1 Let � be a sequent tree of s. Let �� be a sequential tactic application of �. If � isa proof of s, then M̀T �� = \s" and M̀T T (\s").Proof : Base Case: If � is s, then it must be either an axiom or an assumption. ThenT (\s") is an axiom of MT. �� is apply(\idtac"; \s"). From axioms (A7) and (A5) we haveM̀T apply(\idtac"; \s") = \s".Step Case: �� is apply(then(t�1 ; \t�"); \s0") and ��1 is apply(t�1 ; \s0"), since � and �1 are proofs.From the induction hypotheses M̀T ��1 = \s1" and M̀T T (\s1"). From axiom (A9):M̀T �� = if (\s1" = fail)then fail else apply(\t�"; \s1") (9)Since M̀T \s1" 6= fail, we apply If E: and obtainM̀T �� = apply(\t�"; \s1")) (10)From axiom (A4) and (A3), we haveM̀T �� = if (:Fail(\s1") ^ P�(\s1")) then f�(\s1") else fail (11)We have M̀T :Fail(\s1") from axiom (A2) and M̀T P�(\s1") and M̀T f�(\s1") = \s" (since � mustbe applicable to s1). Therefore (rule if E) M̀T �� = \s". From axiom (A1) we haveM̀T (T (\s1")^ P�(\s1")) � T (f�(\s1")) (12)and then M̀T T (f�(\s1")). Therefore M̀T T (\s"). Q.E.D.Theorem C.2 Let � be a sequent tree of s. Let �� be a sequential tactic application of �. If � isnot a proof, then M̀T �� = failProof : Base Case: If � is s, then it is neither an axiom nor an assumption. Then �� isapply(\idtac"; fail) that is provably equal to fail (axioms (A7) and (A5)).Step Case: We have two cases.1. �1 is a proof. �� is apply(then(t�1 ; \t�"); \s0") and M̀T T (\s0") (since s0 is either an axiomor an assumption). From theorem C.1 we have that M̀T ��1 = \s1" and M̀T T (\s1"). Fromaxioms (A9), (A4), (A3) and by applying rule If E: we obtain (11). M̀T :P�(\s1") since �must not be applicable to s1. Then (rule If E:) M̀T �� = fail.24

B Proof of theorem 3.2We prove theorem 3.2 by showing that M is a model of MT (theorem B.1).Theorem B.1 M is a model of MT.Proof : We prove that any axiom of MT is true in M. Axioms (A1) are trivially true from theinterpretation of T , P� and f�. Axiom (A2) is true since F is distinct from any sequent of OT.Consider axiom (A3). Let x be assigned to d 2 TOT [fFg. If d 6= F and d 2 g(P�), then botht�(x) and the conditional term are interpreted into �p(d). If d = F or d 62 g(P�), then both t�(x)and the conditional term are interpreted into F. Consider now axiom (A4). Let x be assigned tod 2 TOT [fFg. apply(\t�"; x) is interpreted into F�(d). The interpretation of t�(x) is exactly F�(d).Therefore (A4) is true in M. The proof is analogous for (A5) and (A6).Then we prove that the axioms about tacticals are true in M. Let x, ti and tj be assigned tod 2 TOT [f F g, di 2 Df and dj 2 Df , respectively. The proof for axioms (A7), (A8) is trivial.Consider axiom (A9). then(ti; tj) is interpreted into Fthen[di; dj] 2 Df . apply(then(ti; tj); x) isinterpreted intog(apply)(Fthen[di; dj]; d) = (dj(di(d)) if di(d) 6= FF if di(d) = FIf di(d) 6= F, the conditional term is interpreted into dj(di(d)). If di(d) = F, it is interpreted into F.The proof for axioms (A10), (A11), (A12) is similar to the proof for axiom (A9).We prove now that (A13) is true inM. repeat(ti) is interpreted into Frepeat[di] 2 Df . apply(repeat(ti); x)is interpreted into Frepeat[di](d). But the right hand of the equality in (A13) is interpreted intoFrepeat[di](d) as well. Indeed, if di(d) 6= F, then the interpretation of the conditional term isthe interpretation of apply(repeat(ti); apply(ti; x)), i.e. Frepeat[di](di(d)); but Frepeat[di](di(d)) =�di(Frepeat[di])(d) = Frepeat[di](d). If di(d) = F, then its interpretation is d and Frepeat[di](d) = d.Axioms (A14)-(A21) are trivially true from the de�nition of Df . Q.E.D.C Proof of theorem 4.1Theorem C.1 proves parts (1)(a) (and (1)(b)), theorem C.2 corresponds to part (2)(a) (. Inthe proofs, we call � the sequent tree of s built by applying an inference rule � to the sequent s1end sequent of �1. We call the leaf of �1, s0. We call t�1 , ��1 , t� and �� the sequential tacticsand the sequential tactic applications of �1 and �, respectively. (2)(b)) is a trivial corollary oftheorem C.2. (1)(a)), (1)(b) (, (2)(a)) and (2)(b) (are trivial corollaries of theorems C.1and C.2 and theorem 3.2 (proofs by contradiction).23

started to develop the family of rewriting functions implemented in Cambridge LCF and describedin [29]. A major future goal is to provide MT with induction principles. Induction principles arenecessary in order to synthesize or prove the correctness of certain derived inference rules (see forinstance [4, 23]). Some preliminary experiments of theorem proving in such extensions of MT havebeen performed. [1] describes a proof of the theorem about formulas containing only equivalencesstated in [32] (the same theorem is also stated and proved in [2]).AcknowledgmentsThe authors thank the Mechanized Reasoning Groups in Trento and Genoa. Members of thesegroups are working on related issues. Massimo Benerecetti has mechanized MT (extended to allowthe use of tacticals) in GETFOL. We thank also Alessandro Armando, Alessandro Cimatti, DavidBasin, Alan Bundy, Luciano Sera�ni, Alan Smaill, Carolyn Talcott, Toby Walsh and RichardWeyhrauch for feedback on various aspects of the work described in this paper.Appendix:A Proof of theorem 3.1Proof : We prove that �d is a monotonic function acting on the partial ordering v, i.e. '1 v '2implies �d('1) v �d('2), where '1; '2 2 Df . We have that�d('1)(x) = 8><>: '1(d(x)) if d(x) 6= F and x 6= Ex if d(x) = F and x 6= EE if x = Eand �d('2)(x) = 8><>: '2(d(x)) if d(x) 6= F and x 6= Ex if d(x) = F and x 6= EE if x = EIf d(x) 6= F and x 6= E, then �d('1)(x) = '1(d(x)) v '2(d(x)) = �d('2)(x). If d(x) = F and x 6=E, or x = E, then �d('1)(x) = x v x = �d('2)(x). Therefore �d('1) v �d('2). Q.E.D.22

equational logic. Like MT, 2OBJ supports a �rst order treatment of tactics. In 2OBJ, tactics areprogrammed in its equational logic. However, there is no relation between tactics in 2OBJ and theimplementation of OBJ3. Moreover the metatheory of 2OBJ has no explicit notion of failure.From a technical point of view, MT has some features which make it somewhat unusual. Some ofthese features are the following: Inference rules are functions and not predicates, as it happens forinstance in [31]; inference rules do not take theories and signatures as arguments, as it happens forinstance in [31] (this in GETFOL is solved using the multicontext machinery [12]); even if MT canreason about proofs this notion is not explicitly axiomatized, as it happens for instance in [31, 2].Finally, the notion of failure (F) is explicit, and kept distinct from the notion of partialness (E).This is not what happens in most of the approaches which deal with partialness, e.g. [7, 25] (seealso [24]).As stated in the introduction, our ultimate goal (still far from being achieved) is to prove thecorrectness of the theorem prover within the theorem prover itself. We share this goal with the workin progress on Acl2 [5]. There are various di�erences between the two approaches. One di�erence,which is relevant to this paper, is that in Acl2 the logic language and the implementation languageare the same. Keeping Logic Tactics and Program Tactics distinct, as we do, seems to providesome advantages, for instance for what concerns how to deal with state. For example, it is possiblefor us to store in a global variable the set of proven theorems and to reason declaratively aboutit. The idea is to see state (e.g. the current proof) as storing partial computations relative to afunction or predicate (e.g. the provability predicate T). This allows us to lift the code that updatesand reads state into axioms which formalize the function and predicate whose computations areapproximately represented by the state itself. Some of the details about this issue are in [15, 13].Another advantage is that we may have Program Tactics which are not translated into Logic Tacticsor vice versa. This is a necessary feature in the presence of non-terminating Program Tactics (seethe motivations in the introduction).7 Conclusion and future workWe have described a �rst order metatheory, called MT, which is expressive enough to representtactics and tacticals. Tactics are terms of MT (called Logic Tactics) and tacticals are functionsymbols of MT. MT is expressive enough to represent a proof strategy which does not correspondto a �nite composition of proof steps. Moreover, MT can express soundly tactics which do notterminate. MT has been constructed so that it is possible to de�ne a relation between LogicTactics and GETFOL Program Tactics.At the moment we are studying some more general su�cient conditions for a characterizationof recursive (possibly \non terminating") Logic Tactics which preserve consistency. We are alsostudying the possibility for MT to construct powerful proof strategies as Logic Tactics. We have21

tacticals and, in particular, can soundly express strategies based on the recursive application oftactics (through the tactical repeat). This has been achieved by several technical extensions tothe metatheory presented in [17]. In order to express tacticals in a �rst order setting, we haveextended the logic with names of tactics and the function symbol apply (see for instance axiom(A4)) which has allowed us to axiomatize Logic Tacticals (see axioms (A7){(A13)) and Logic Tactics(see axioms (A14){(A21)). As a consequence, the model of MT has been extended too. Indeed,in [17] the domain of the model is simply the union of the set of terms, w�s and sequents (D0)with the elements to handle partialness and failure (E and F). In order to interpret tacticals, wehave extended the domain with Df (see de�nition 3.1) and the model with functions de�ned overDf (see de�nition 3.2). Notice that, the model has been extended in a way to allow for a possibleextension of the results presented in [17], keeping and extending the correspondence between Logicand Program Tactics. Moreover, in this paper we have dealt with the problem of (possibly nonterminating) recursive applications of tactics by proving that the interpretation of repeat is theleast �xed point over the partial ordering v (see theorem 3.1). As an example of the signi�canceof this extension, notice that all the proofs of the form (3) and (4), which have been syntheticallyexpressed by the only Logic Tactic (2), should have to be expressed in [17] with one tactic for eachpossible resulting sequent tree schema (i.e. in this case an in�nite number of tactics). This is anexample of how this work makes it feasible in practice to express tactics in a logical �rst ordermetatheory.Program Tactics have been mostly implemented in ML [22] and used successfully in several theoremprovers, like LCF [21, 27], Isabelle [28] and NuPRL [8]. Logic Tactics have been encoded in higherorder logical theories and logic programming languages. In [23], the higher order NuPRL typetheory is used as a language for constructing theorem proving procedures. In [11, 9], tactics andtacticals are implemented in �Prolog, an extended higher-order logic programming language. In[10], proof trees are represented in a logical theory where \justi�cations" of proof steps can berepresentations of tactics. There are two main di�erences with our work. First, MT is �rst order.Reasoning about tactics can be done entirely in �rst order logic. We do not discuss here theadvantages of working in a �rst order setting, see for instance [18, 7]. Second, neither [23] nor[11, 9, 10] provide a relation between Logic Tactics and programs that implement the theoremprover. NuPRL and �Prolog cannot reason about and extend/modify their own system code.Beside these main facts, there are also technical (but important) di�erences between Logic Tacticsin MT and tactics in �Prolog. Tactics in �Prolog specify proof search strategies by providing aninterpreter on top of �Prolog which is itself interpreted under the �xed �Prolog search strategy.As a consequence of this and of the fact that tactics are relational, failure is treated as falsity (thetactical orelse is de�ned as disjunction) and failure handling is performed by backchaining using adepth �rst search paradigm. Similarly, then is de�ned as conjunction. In MT, the axiomatizationof then and orelse is fully declarative and independent of any system underlying search strategy.Some work closely related to ours (but which seems at an earlier stage) is the work on 2OBJ [19].2OBJ is a tactic-based theorem prover built upon OBJ3 [20], a term rewriting implementation of20

8x t(x) = if (t(x) = apply(\idtac"; x))then apply(\failtac"; x)else apply(\idtac"; x) (7)is provable, then MT is inconsistent. Indeed, for any sequent s, from (7), under the assumptiont(\s") = \s", we prove \s" = fail and therefore ?, the sentential constant for falsity. From(7) and the assumption :t(\s") = \s", we prove t(\s") = \s" and therefore ?. Hence fromt(\s") = \s" _ :t(\s") = \s" we prove ?. Notice that the w� above de�nes a recursive tactic twhich corresponds to a Program Tactic that does not terminate. Intuitively, it states that if thetactic t succeeds, then it fails, and if it fails, it succeeds.Our goal is therefore to provide some su�cient condition for a characterization of recursive (possibly\non terminating") Logic Tactics which preserve consistency. For instance, we have extended MTwith axioms which correspond to a particular class of recursive de�nitions of Program Tactics:8x Tac(x) � f�� (x) = if P�(x)then f�� (f�(x))else x (8)Intuitively, any f�� corresponds to a recursive application of the tactic which applies � until theconditions of applicability (P�) are not satis�ed. For instance, consider the following recursivede�nition of fandeltac�.8x Tac(x) � fandeltac�(x) = if Conj(x)then fandeltac�(fandel(x))else xfandeltac� recursively applies the left conjunction elimination rule until it fails. We can show thatfandeltac�(x) is equivalent to apply(repeat(\fandeltac"); x).The proof that recursive de�nitions of the form (8) preserve the consistency of MT is trivial. Noticehowever that (8) captures a still very limited set of possible recursive de�nitions. At the momentwe are studying some more general su�cient conditions for a characterization of recursive (possibly\non terminating") Logic Tactics which preserve consistency.6 Related workThis work builds on the results presented in [17]. In this paper we have extended signi�cantlythe set of tactics which can be expressed in MT. MT can now express tactics composed through19

4. If x is an individual variable of MT and �1; �2 2 T A, then let x = �1 in �2 2 T A.T A includes logic tactic applications as de�ned in section 4 (item 1. in the de�nition above), itallows for terms with variables (item 2.), conditionals (item 3.) and an environment term construc-tor let (item 4.). The elimination and introduction rules for conditionals have been given in section2, �gure 1. In �gure 3, we extend MR with inference rules to eliminate and introduce let. Thecorrectness of these rules is proved in [1]. Notice that let can be used to axiomatize tacticals. ForP (t2[t1])P (let x = t1 in t2[x]) let I P (let x = t1 in t2[x])P (t2[t1]) let Ewith the restriction on the let I rule that x does not appear free in t2.Figure 3: let inference rulesinstance, (A13) can be replaced with the following axiom:8x8y8ti (Tac(x)^ LTac(ti) �apply(repeat(ti); x) = let y = apply(ti; x) inif (y = fail)then xelse apply(repeat(ti); y))As a further example, consider the following axiom:8x8y8ti8tj (Tac(x)^ LTac(ti) ^ LTac(tj) �apply(!(ti; tj); x) = let y = apply(ti; x) inif (y = fail)then apply(!(ti; tj); apply(tj; x))else y)The construct ! applies iteratively ti and tj till ti succeeds. It has a similar behaviour to the MLconstruct ! [22]. It allows for failure trap with re-iteration.Second, we consider the problem of recursive de�nitions. The tactical repeat is not the only wayto construct repeated applications of tactics. Program Tactics can also be de�ned recursively.On the other hand, in general, allowing for recursive de�nitions of Logic Tactics and logic tacticapplications in MT may not preserve consistency. For instance, if the following w�18

Corollary 4.1 (failure and success for logic tactic applications) Let � be a sequent tree ofs. Let �� be the sequential tactic application of �. Let � be a tactic application. If M̀T � = ��, thenM̀T � = \s" () � is a proof of s: () M̀T T (�)M̀T � = fail () � is not a proof: () M̀T :T (�)A Program Tactic succeeds i� it builds a sequent tree (�) which is a proof of a theorem (s). ALogic Tactic application (�) is provably equal to the constant denoting the theorem (\s") i� itcorresponds to a sequent tree � which is a proof of s. A Program Tactic fails when it tries to applysome inference rule that is not applicable, i.e. when it tries to build a sequent tree � that is not aproof. A Logic Tactic application is provably equal to failure (fail) i� it corresponds to a sequenttree � which is not a proof.Notice that, under the hypotheses of corollary 4.1, we can prove that M̀T T (�) _ Fail(�), i.e.M̀T Tac(�), that is that � either succeeds or fails. This is actually what happens with ProgramTactics that terminate. However, this may not be the case. Consider, for instance, the Logic Tacticrepeat(\idtac"). Since \idtac" applied to a given sequent always succeeds, the correspondingProgram Tactic applies \idtac" an in�nite number of times. In other words, the sequential tacticapplication apply(repeat(\idtac"); \s") does not correspond to any sequent tree. Any sequentialtactic application �� corresponds to a �nite number of applications of inference rules. Therefore,a �� such that M̀T apply(repeat(\idtac"); \s") = �� does not exist and corollary 4.1 cannot beapplied. The condition M̀T � = �� of corollary 4.1 captures the fact that the Program Tacticcorresponding to � terminates. A lot of work has been done on providing conditions for and onproving the termination of recursive programs (e.g. see [3]). Our approach is di�erent. We allowfor Logic Tactics which correspond to Program Tactics which are not guaranteed to terminate.Then, when needed and when possible, we prove that a logic tactic application corresponds to anapplication of a Program Tactic which terminates (M̀T � = ��).5 Some extensionsTacticals constitute a powerful and well-tested mechanism for composing Program Tactics. Never-theless, Program Tactics are written using also traditional programming language constructs, e.g.conditionals, environment constructors, loops and recursive de�nitions. We want the same abilityin MT. First, we extend logic tactic applications. We call the extended set, T A.1. If t 2 T and s is a sequent of OT, then apply(t; \s") 2 T A.2. If t 2 T and x is an individual variable of MT, then apply(t; x) 2 T A.3. If A is a w� of MT and �1; �2 2 T A, then if A then �1 else �2 2 T A.17

!!!(:::(A1(x1) ^ :::)^An�2(xn�2)) ^An�1(xn�1))^ An(xn)!!!(:::(A1(x1) ^ :::)^ An�2(xn�2)) ^An�1(xn�1) 8E... 8E!!!A1(x1) ^A2(x2) 8E!!!A1(x1) 8E (6)We associate to every object level sequent tree � a sequential (logic) tactic t� in MT. Sequential logictactics of object level sequent trees are de�ned inductively over the structure of sequent trees. Inthe base case, a sequent tree is a single sequent. If the sequent is either an axiom or an assumption,then the sequent tree is a proof. If it is neither an axiom nor an assumption, then the sequent treeis not a proof. In both cases, its sequential tactic is \idtac". In the step case, if t�1 is the sequentialtactic of �1, and � is built from �1 by applying � to the end sequent of �1, then then(t�1 ; \t�")is the sequential tactic of �. For instance, if a sequent tree is built by applying �rst the rule �1 toan axiom or an assumption, and then �2 and �3 are applied in the sequent tree in the given order,then the corresponding sequential tactic is then(then(then(\idtac"; \t�1"); \t�2"); \t�3).Program Tactics, when executed, are applied to given arguments. Similarly, in MT, we de�ne asequential (logic) tactic application �� of �. Let s be the leaf of �. Let t� is the sequential tacticof �. �� is apply(t�; \s"), if s is an axiom or an assumption. �� is apply(t�; fail), if s is neither anaxiom nor an assumption. A (logic) tactic application � is a term of the form apply(t; \s"), wheret 2 T and s is a sequent. We say that � is a sequent tree of s if s is the end sequent of �. Weprove that sequential tactic applications have the right behaviour.Theorem 4.1 (failure and success for sequential logic tactic applications) Let � be a se-quent tree of s. Let �� be the sequential tactic application of �. Then(1) M̀T �� = \s" () (a) � is a proof of s: () (b) M̀T T (��)(2) M̀T �� = fail () (a) � is not a proof: () (b) M̀T :T (��)Part (1) of theorem 4.1 states that a successful tactic corresponding to a proof can be proved equalto the name of a sequent (part (1)(a)) that is a theorem of OT (part (1)(b)). (M̀T T (\s") () ÒT s,where ÒT stands for provability in OT, is a corollary of theorems 3.2 and 4.1). Part (2) states thata tactic that does not correspond to a proof can be proved equal to failure (part (2)(a)) and it doesnot denote an object level theorem (part (2)(b)). Notice that the fact that a Program Tactic failsto prove a sequent does not imply that the sequent is not provable. Analogously, part (2) statesthat the tactic does not denote a theorem (:T (��)), but does not state the much stronger fact thats is not a theorem (:T (\s")). Theorem 4.1 can be generalized to logic tactic applications.16

the standard approaches and the approach undertaken here is that we have two distinct specialelements, E and F. From a theoretical point of view, we could construct a metatheory and a modelwhere E and F are collapsed in a unique element. Nevertheless, the distinction between E and F isimportant in order to de�ne a correspondence between Logic and Program Tactics. E is not denotedby any symbol in the language of MT and is not implemented by any data structure in the GETFOLcode. It is used to capture in the model \de�ned on paper" the fact that some programs mustbe partial. On the contrary, F is denoted by fail in MT and is implemented by a data structurein the GETFOL code. This data structure is a witness of observable failures. It is returned by andpassed as argument to Program Tactics. FF , F�, Fthen[d1; d2], Forelse[d1; d2], Frepeat[d1], Ftry[d1]and Fprogress[d1] specify how Program Tactics and tacticals must deal with this data structure.Logic Tacticals are assigned to functions (e.g. g(then), g(orelse) and g(repeat)) that, given elementsof Df (denoted by Logic Tactics), return an element of the same set Df . Therefore, intuitively,tacticals are interpreted according to their original intended meaning, i.e. as functions that giventactics return tactics. Moreover, notice that elements of Df � D are functions over (TOT[fFg) � D.g(apply) allows us to apply these functions to their arguments. This fact, plus the fact that LogicTactics denote elements of Df , allows us to interpret Logic Tactics and Tacticals in a �rst ordersetting.4 Success and failure of logic tactic applicationsIn this section we prove some general properties of Logic Tactics. First we provide a formal notionof \logic tactic application", i.e. the logical analogous of applications of Program Tactics to somearguments. Then we prove the following facts: a logic tactic application is provably equal to thename of a theorem of OT i� it corresponds to a proof of the theorem in OT; it is provably equalto failure i� it corresponds to a tree of rule applications that is not a proof; (non) termination oflogic tactic applications is captured formally in MT by the (un)provability of certain statements.Program Tactics, when executed, build trees of inference rule applications where either all the rulesare applicable (the tactic succeeds) or there is a rule which is not applicable (the tactic fails). If allthe rules are applicable, the sequent tree is a proof. If there exists a rule which is not applicable,the sequent tree is not a proof. A sequent tree � is de�ned formally as a tree of sequents, eachlabeled by an inference rule. OT proofs (3) adn (4) are examples of sequent trees. An example ofa sequent tree which is not a proof is the following:15

g(repeat)(d) = (Frepeat[d] if d 2 DfE otherwise16. g(try) is a function over D such thatg(try)(d) = (Ftry [d] if d 2 DfE otherwise17. g(progress) is a function over D such thatg(progress)(d) = (Fprogress[d] if d 2 DfE otherwise18. g(apply) is a function over D �D such thatg(apply)(d1; d2) = (d1(d2) if d1 2 Df and d2 2 TOT [fFgE otherwiseW�s and terms get interpreted according to the usual standard Tarskian semantics. The semanticsof conditional terms is as follows. If A is true, then the value of if A then t1 else t2 is the value oft1. Otherwise it is the value of t2.Theorem 3.2 MT is consistent.We prove the consistency of MT by showing that M =< D; g > is a model of MT.M has been built to identify some requirements that the code implementing Program Tactics mustsatisfy in order to allow for a relation with Logic Tactics. E has been introduced to handle nontermination and totalize function symbols (e.g. f�) that otherwise would be partially de�ned. f�corresponds to a function in the GETFOL code that is unde�ned for some inputs. For instance,universal specialization is implemented by means of a function that, given a (data structure cor-responding to) a universally quanti�ed w�, returns (a data structure corresponding to) its matrix.This function is partial since it is unde�ned for (data structures corresponding to) w�s that arenot universally quanti�ed. Partialness is a general characteristic of a large amount of the code ofGETFOL (and of any running system). For instance, this is the case also for tacticals, which arede�ned only over tactics, and for apply, which is de�ned only over pairs of tactics and theorems orfailures. Partialness allows us to achieve e�ciency (the code does not have to test and decide for allthe possible inputs). Extending the domain with E to handle partial functions and non terminationis a well known standard technique (see, for instance, [7, 25]). One essential di�erence between14

5. g(=) is the identity relation over D.6. g(LTac) = Df .7. g(P�) is the subset of sequents � is applicable to.8. g(f�) is the function over D that returns the conclusion of �, if � is applicable to d 2 D. Itreturns E, otherwise. Let �p be the partial function, de�ned only over g(P�), that returns theconclusion of �. Theng(f�)(d) = (�p(d) if d 2 g(P�)E otherwise9. g(t�) is the function over D such that,g(t�)(d) = 8><>: �p(d) if d 2 TOT \ g(P�)F if d 2 (TOT � g(P�))[fFgE otherwise10. g(idtac) is the function over D such thatg(idtac)(d) = (d if d 2 TOT [f F gE otherwise11. g(failtac) is the function over D such thatg(failtac)(d) = (F if d 2 TOT [f F gE otherwise12. g(\idtac") = Fid, g(\failtac") = FF and g(\t�") = F�.13. g(then) is a function over D �D such thatg(then)(d1; d2) = (Fthen [d1; d2] if d1; d2 2 DfE otherwise14. g(orelse) is a function over D �D such thatg(orelse)(d1; d2) = (Forelse [d1; d2] if d1; d2 2 DfE otherwise15. g(repeat) is a function over D such that 13

7. Fprogress[d](x) = 8><>: d(x) if d(x) 6= x and x 6= EF if d(x) = x and x 6= EE if x = E8. Frepeat[d](x) = f�d , where f�d is the least �xpoint of the functional �d over [TOT [fFg[fEg !TOT [fFg [fEg], de�ned as�d(')(x) = 8><>: '(d(x)) if d(x) 6= F and x 6= Ex if d(x) = FE if x = Ewith ' being a function variable, and the partial ordering v on TOT [fFg [fEg is de�ned asE v d and d v d for all d 2 TOT [fFg [fEgSome explanations are in order. We use the notation f [] to denote elements of Df . For eachd1; d2 2 Df , we have an element Fthen[d1; d2], Forelse[d1; d2], Frepeat[d1], Ftry [d1] and Fprogress[d1] inDf . We use the notation f() to denote function application. If d1; d2 2 Df and x 2 TOT[fFg[fEg,then d1(x) stands for \the function d1 applied to the argument x", and d2(d1(x)) stands for thecomposition d2 � d1 applied to x.The following theorem proves that �d is monotonic, and therefore has a least �xpoint.Theorem 3.1 �d is monotonic over the partial ordering v on TOT [fFg [fEg de�ned asE v d and d v d for all d 2 TOT [fFg [fEgThe next step is to de�ne the interpretation function g.De�nition 3.2 (Interpretation function g of M)1. g(\s") = s, g(\w") = w and g(\t") = t, where s, w and t are any sequent, w� and term ofOT, respectively.2. g(fail) = F.3. g(Seq) is the set of sequents of OT.4. g(T) = TOT , where TOT is the set of theorems of OT.12

The domain of interpretation D includes a set (called Do) of objects of the object theory OT, e.g. thesequent �!!!8xA(x). These objects are denoted by terms of MT, e.g. the constant \�!!!8xA(x)".The domain contains the two special elements E and F. E intuitively means \unde�ned" and is usedto handle partialness and non termination. F is used to interpret failure, i.e. the constant failof MT. The domain includes a further subset, called Df , which is used to interpret Logic Tactics.Tacticals are interpreted as functions de�ned over elements of Df .De�nition 3.1 (Domain D of M) D = Do [fEg [fFg [Df . Do is the set of terms, w�s andsequents of OT. E and F are distinct from any other element of D.Df is constructed inductively as follows.1. Fid 2 Df ; FF 2 Df ; fF�g � Df .2. If d1 and d2 2 Df , then Fthen[d1; d2] 2 Df , Forelse[d1; d2] 2 Df , Frepeat[d1] 2 Df , Ftry [d1] 2Df and Fprogress[d1] 2 Df .where we have an element F� for each � 2 R. The members of Df are functions over the set oftheorems of OT union the element F union E, i.e. functions from TOT [fFg[fEg to TOT [fFg[fEg,where TOT is the set of theorems of OT. They are de�ned as follows.Let x 2 TOT [fFg [fEg:1. Fid(x) = x2. FF (x) = (F if x 6= EE if x = E3. F�(x) = 8>>><>>>: y if x 6= F, x 6= E, � is applicable to x andy is the conclusion of the application of � to xF if x 6= E and � is not applicable to xE if x = E4. Fthen[d1; d2](x) = 8><>: d2(d1(x)) if d1(x) 6= F and x 6= EF if d1(x) = FE if x = E5. Forelse[d1; d2](x) = 8><>: d1(x) if d1(x) 6= F and x 6= Ed2(x) if d1(x) = FE if x = E6. Ftry[d](x) = 8><>: d(x) if d(x) 6= F and x 6= Ex if d(x) = FE if x = E 11

then(repeat(\falletac"); repeat(\fandeltac")) which eliminates all the outermost universal quan-ti�ers (repeat(\falletac")) and then returns recursively the left conjunct (repeat(\fandeltac")).As a simple example, the Program Tactic corresponding to (2) can be used to perform the followingproof: !!!(:::(A1(x1)^ :::)^ An�2(xn�2))^ An�1(xn�1)) ^An(xn)!!!(:::(A1(x1) ^ :::)^An�2(xn�2))^ An�1(xn�1) ^E... ^E!!!A1(x1) ^ A2(x2) ^E!!!A1(x1) ^E (3)In this case only ^E is recursively executed. The same Program Tactic can also be used to performthe following proof:!!!8x18x2 : : :8xn((:::(A1(x1) ^ :::)^ An�2(xn�2))^An�1(xn�1)) ^An(xn))!!!8x2 : : :8xn((:::(A1(x1) ^ :::)^An�2(xn�2)) ^An�1(xn�1))^ An(xn)) 8E... 8E!!!8xn((:::(A1(x1) ^ :::)^ An�2(xn�2))^An�1(xn�1)) ^An(xn)) 8E!!!(:::(A1(x1) ^ :::)^An�2(xn�2)) ^An�1(xn�1))^ An(xn) 8E!!!(:::(A1(x1) ^ :::)^ An�2(xn�2)) ^An�1(xn�1) ^E... ^E!!!A1(x1) ^A2(x2) ^E!!!A1(x1) ^E (4)In this case 8E �rst and ^E afterwards are recursively executed. We can prove in MT the followingtheorem:apply(orelse(progress(repeat(\fandeltac")); then(repeat(\falletac"); repeat(\fandeltac")));\8x18x2 : : :8xn((:::(A1(x1) ^ :::^ An�2(xn�2))^An�1(xn�1)) ^An(xn))") = \A1(x1)" (5)3 A model of MTWe de�ne an interpretation M = hD; gi of ML, where D is the domain of interpretation and g isthe interpretation function. 10

tacticals implemented in LCF and NuPRL [8]. Their axiomatization is given in �gure 2. Intuitively,LTac holds over terms that are Logic Tactics (see axioms (A14){(A21)). then is used to applytactics sequentially. It applies its �rst argument; if it succeeds, it applies the second, it failsotherwise. orelse captures failure. It applies the �rst tactic; if it fails, it applies the second. Analternative proof strategy can thus be applied when the �rst strategy fails. Notice that, in LCF,ORELSE is de�ned by means of ?, i.e. let (T1 ORELSE T2)g = T1(g) ? T2(g) [22]. Analogously,axiom (A10) states the relation between orelse and ?. try applies the tactic to the argument. If itfails, it returns the argument. try is used to apply proof strategies without having failure. progressapplies the tactic to the argument. If the result is equal to the argument (no progress in the proofhas been obtained) then it fails. repeat applies the tactic until the tactic fails. repeat can be usedto express repeated applications of tactics.Logic Tactics can be formally de�ned as follows. They are a subset of the terms of MT. This set isbased upon the set of constants \t�": T0 = f\t�" : � 2 Rg. From T0, we inductively construct theset of Logic Tactics T .1. \idtac" 2 T , \failtac" 2 T , T0 � T .2. If t1; t2 2 T , then then(t1; t2) 2 T , orelse(t1; t2) 2 T , repeat(t1) 2 T ,try(t1) 2 T , and progress(t1) 2 T .The following set of axioms circumscribes the set of terms that are Logic tactics.(A14) LTac(\idtac")(A15) LTac(\failtac")(A16) LTac(\t�"); for any \t�" 2 T0(A17) 8t18t2 LTac(t1) ^ LTac(t2) � LTac(then(t1; t2))(A18) 8t18t2 LTac(t1) ^ LTac(t2) � LTac(orelse(t1; t2))(A19) 8t LTac(t) � LTac(try(t))(A20) 8t LTac(t) � LTac(progress(t))(A21) 8t LTac(t) � LTac(repeat(t))As an example of Logic Tactic, consider the following:orelse(progress(repeat(\fandeltac"));then(repeat(\falletac"); repeat(\fandeltac"))) (2)repeat(\fandetac") applies ^E till it fails. If the result is di�erent from the argument it hasbeen applied to, i.e. if progress(repeat(\fandeltac")) succeeds, then orelse terminates execution.If no progress in the proof has been made, i.e. the argument which is applied to is not a con-junction, then progress(repeat(\fandeltac")) fails and orelse recovers from failure by executing9

(A7) idtac : 8x (Tac(x) � apply(\idtac"; x) = idtac(x))(A8) failtac : 8x (Tac(x) � apply(\failtac"; x) = failtac(x))(A9) then : 8x8ti8tj (Tac(x)^ LTac(ti) ^ LTac(tj) �apply(then(ti; tj); x) = if (apply(ti; x) = fail)then failelse apply(tj; apply(ti; x)))(A10) orelse : 8x8ti8tj (Tac(x)^ LTac(ti) ^ LTac(tj) �apply(orelse(ti; tj); x) =?(apply(ti; x); apply(tj; x)))(A11) try : 8x8ti (Tac(x)^ LTac(ti) �apply(try(ti); x) = apply(orelse(ti; \idtac"); x))(A12) progress : 8x8ti (Tac(x)^ LTac(ti) �apply(progress(ti); x) = if (apply(ti; x) = x)then failelse apply(ti; x))(A13) repeat : 8x8ti (Tac(x)^ LTac(ti) �apply(repeat(ti); x) = if (apply(ti; x) = fail)then xelse apply(repeat(ti); apply(ti; x)))where x, ti and tj are variables of MT.Figure 2: Axiomatization of tacticals
8

where f�(\s") denotes the conclusion of the application of �. If � is not applicable to s, then we haveM̀T :P�(\s"), and therefore M̀T t�(\s") = fail (rule if E:). Finally, we have failure propagation,i.e. M̀T t�(fail) = fail.As examples, consider the function symbols fandeltac, falletac and fallitac which correspond tot� for ^E, 8E and 8I , respectively:(A3^E) 8x (Tac(x) � fandeltac(x) = if (:Fail(x)^ Conj(x))then fandel(x)else fail)(A38E) 8x (Tac(x) � falletac(x) = if (:Fail(x)^ Forall(x))then falle(x)else fail)(A38I) 8x8y (Tac(x) � fallitac(x; y) = if (:Fail(x)^ V ar(y)^NoFree(y; x))then falli(x; y)else fail)Let us now consider Program Tactics that are built as compositions of simpler Program Tactics.GETFOL, like most tactic-based theorem provers [21, 27, 28, 8], provides the ability to combine Pro-gram Tactics by means of tacticals. Tacticals are implemented by control constructs that composetactics in a principled manner. For instance, tacticals are used to control sequential and repeatedapplications of tactics and to handle failure in the application of tactics. Tacticals compose tacticsby taking tactics as arguments and returning tactics as results. In ML, this is achieved by usinga higher order syntax where tactics are passed as arguments to programs. In MT (which is �rstorder) we obtain a similar result by adding toML the constants \t�", i.e. for each function symbolt� 2 ML we have a constant \t�" 2 ML. We say that \t�" is the name of t�. For each \t�", wehave in MT an axiom stating the relation between the function symbol and its name.(A4) 8x (Tac(x) � apply(\t�"; x) = t�(x))where, apply is a function symbol. Notice that \t�" is a name of an object of MT rather than ofOT. We have constants (\idtac" and \failtac") and function symbols (idtac and failtac) for trivialtacticals that return the argument unchanged and that generate failure, respectively. We also havethe following axioms: (A5) 8x (Tac(x) � idtac(x) = x)(A6) 8x (Tac(x) � failtac(x) = fail)In MT, tacticals are function symbols. We call these function symbols, Logic Tacticals. The LogicTacticals considered in this paper are then, orelse, try, progress and repeat. They correspond to7

GETFOL Program Tactics either construct a theorem or fail3. In the former case, they construct adata structure that memorizes a sequent. In the latter, they construct a data structure for failure.The basic assumption underlying computations of Program Tactics is that these data structurescannot be confused, i.e. the interpreter of Program Tactics is always able to distinguish between(a data structure memorizing) failure and (a data structure memorizing) a sequent. This fact isasserted in MT by the following axiom:(A2) 8x :(Seq(x)^ Fail(x))Moreover, a Program Tactic never asserts failure as a theorem. Analogously, in MT, from axiom(A2) and the axiom stating 8x(T (x) � Seq(x)) we can prove: T (fail) (1)Since Program Tactics construct either theorems or failures, they must accept as arguments eithertheorems or failures, and nothing more. This allows us to compose them. Being a well sortedargument for a tactic is expressed by the predicate Tac.(D3) 8x (Tac(x)$ T (x)_ Fail(x))Let us consider Program Tactics that apply a single inference rule �. If � is applicable, the ProgramTactic succeeds and constructs a theorem, i.e. the conclusion of the application of �. If � is notapplicable, then the Program Tactic fails. If a failure is given in input, the Program Tactic thatapplies � fails, i.e. it \propagates" failure. For each � 2 R, we extend MT with the function symbolt� and the following axiom(A3) 8x (Tac(x) � t�(x) = if (:Fail(x)^ P�(x))then f�(x)else fail)Notice that the function symbol t� corresponds intuitively to a Program Tactic that applies asingle inference rule �. If � is applicable to a given premise s which is a theorem of OT, thenM̀T Tac(\s"), M̀T :Fail(\s") and M̀T P�(\s"). Hence, we have M̀T t�(\s") = f�(\s") (rule if E),3Actually GETFOL allows for both \backward tactics" (which compose backward rules, e.g. backward \conjunctionleft elimination") and \forward tactics" (which compose forward rules, e.g. forward \conjunction left elimination").Roughly speaking, backward tactics are functions from goals to lists of subgoals, while forward tactics are functionsfrom lists of theorems to theorems. In this paper, we consider only forward rules and tactics. The axiomatization ofbackward rules and tactics is conceptually similar, even if technically di�erent from that of forward rules and tactics.6

[A]...P (t1) [:A]...P (t2)P (if A then t1 else t2) if I A P (if A then t1 else t2)P (t1) if E:A P (if A then t1 else t2)P (t2) if E:Figure 1: Conditional inference rulesProgram Tactics may encode proof strategies that are not guaranteed to succeed, i.e. they mayattempt to apply a rule that is not applicable. If this is the case, the Program Tactic fails. Theability of handling failure is an essential feature of programming languages (like ML) that areused to encode Program Tactics. In ML, for instance, the user can specify that, under certainconditions, a program fails and that, when a program fails, an alternative program can be tried.This is achieved in ML with the construct ?. The value of the expression e1 ? e2 is the value ofe1 if e1 does not fail, otherwise it is the value of e2. MT must have the same capability. To obtainthis, we add to the language a predicate Fail which holds of failures in the application of objectlevel inference rules. This predicate symbol corresponds to a program in GETFOL which implementsa boolean function which returns TRUE when its argument computes a data structure that encodesfailure. We therefore extend the language of MT with a constant, fail that corresponds to the datastructure for failure, and de�ne the predicate Fail in terms of fail as follows:(D1) 8x (Fail(x)$ x = fail)For simplicity, we suppose that we have only one constant for failure2. We can now de�ne a functionsymbol ? (D2) 8x1x2 ?(x1; x2) = if (x1 = fail)then x2else x1which has a behaviour analogous to the ML construct ?. Indeed, if M̀T x1 6= fail, then M̀T?(x1; x2) = x1 (where M̀T stands for provability in MT). If M̀T x1 = fail , then M̀T?(x1; x2) = x2.2Program Tactics distinguish di�erent failures depending on the tactic which fails. In ML this is achieved bymeans of a \failure token" passed as argument to the expression that generates failure, i.e. failwith. In the actualGETFOL code di�erent data structures are generated depending on the tactic that fails. MT can be easily extendedwith a set of constants each denoting a di�erent failure and with constructs similar to the ML constructs for \selectivefailure trapping", e.g. the ML construct ?? [22]. 5

introduction rule, then we have that :P�(\A(x)!!!A(x)") is provable in MT. T is the provabilitypredicate. We have an axiom T (\s"), for any sequent s which is an object level axiom (s 2 A)or assumption (of the form A!!!A). These axioms state in MT the provability in OT of axiomsand assumptions. Therefore, (A1) states that, if the rule � is applicable [P�(x)] to a provable se-quent [T (x)], then the conclusion [f�(x)] is a provable sequent [T (f�(x))]. As an example, considerthe following ND rules for left conjunction elimination (^E), universal specialization (8E) andintroduction (8I): �!!!A ^B�!!!A ^E �!!!8xA(x)�!!!A(x) 8E �!!!A(x)�!!!8xA(x) 8Iwhere 8I has the restriction that x must not occur free in �.The corresponding axioms are the following:(A1^E) 8x((T (x)^ Conj(x)) � T (fandel(x)))(A18E) 8x((T (x)^ Forall(x)) � T (falle(x)))(A18I) 8x8y((T (x)^ V ar(y)^NoFree(y; x)) � T (falli(x; y)))where, we write P� and f� as Conj and fandel when � is ^E, Forall and falle when � is 8E,V ar(y)^Nofree(y; x) and falli when � is 8I . Intuitively, Conj holds over sequents whose formulais a conjunction, Forall holds over sequents whose formula is universally quanti�ed, V ar holdsover individual variables, and Nofree(y; x) holds if y denotes a variable which does not appearfree in the dependencies of the sequent denoted by x. fandel, falle and falli stand for \forwardand left elimination", \forward forall elimination" and \forward forall introduction", respectively.Intuitively, their intended meaning is the function that, given the premises, returns the conclusionof the corresponding rule.Finally, MT has axioms about the syntactic categories of OT, e.g. Seq(\s") and V ar(\x") for anysequent s and individual variable x of OT, respectively, and about the relations between sequentsand theorems, i.e. 8x (T (x) � Seq(x)). A detailed description of the metatheory described so farand of its relation with the GETFOL code can be found in [17] (see also [16]).In the following, we extend MT to be expressive enough to represent Logic Tactics which can be putin correspondence with Program Tactics. Program Tactics make extensive use of conditional con-structs. We therefore extend MT's language with conditional term constructors if A then t1 else t2,where A is a w� and t1, t2 are terms, and its deductive machinery with the relevant elimination andintroduction rules (reported in �gure 1). Rule if E [if E:] states that from P (if A then t1 else t2)and A [:A], we can derive P (t1) [P (t2)]. Rule if I states that, given a deduction of P (t1) from Aand a deduction of P (t2) from :A, we can prove P (if A then t1 else t2) ([A] denotes the fact thatA is discharged). The resulting theory is a conservative extension of MT.4

fails. In Section 5 we extend MT in order to express the logical analogous of programming constructs(like conditionals and environment constructors) which may be used in the de�nition of ProgramTactics. In Section 6 we discuss the related work. Some conclusions and future developments arein Section 7. In this paper, we do not formally describe GETFOL Program Tactics. They are similarto the ML Program Tactics developed in other theorem provers [21, 27, 28, 8]. Moreover, we do notdiscuss how expressions in MT can be translated into GETFOL Program Tactics and vice versa. Thisnon-trivial issue is addressed in other papers, in particular in [15, 13] and partly in [17] (for theversion of MT which does not express tacticals). The proofs of the theorems are in the appendix.2 Logic TacticsLet OT be a �rst order object theory, de�ned as a triple < L;A;R >, L being the language, A theset of axioms and R the set of inference rules of OT. We assume that inference rules � 2 R applyto pairs < �; A >, written �!!!A, where A is a formula and � a �nite set of formulas. We call�!!!A, a sequent, A the formula of �!!!A and � the dependencies of �!!!A. We also call sequentsof the form A!!!A, assumptions. We assume that R contains rules which are a sequent versionof the Natural Deduction (ND) rules [30, 16, 17]. (ND is the logic of GETFOL.) Nevertheless, thework described in this paper is largely independent of the speci�c inference rules considered. Wetake the notion of deduction de�ned in [30]. We call a deduction of a formula A depending on thepossibly empty set � of formulas, a proof of the sequent �!!!A. We say that �!!!A is a theoremof OT, or that �!!!A is provable in OT, i� there exists a proof in OT of �!!!A.We de�ne a distinct �rst order logical theory MT = < ML;MA;MR > to be the metatheoryof OT. The set of rules of MT, MR includes ND rules and rules for equality. We �x a namingrelation between MT and the objects of OT, i.e. ML contains names of sequents, w�s and termsof OT. For instance, the constants \�!!!8xA(x)", \8xA(x)" and \x" are the names of the sequent�!!!8xA(x), of the w� 8xA(x) and of the variable x, respectively. For each object level n-aryinference rule �, ML has a n-ary function symbol (that we write as f�), and a n-ary predicatesymbol (that we write as P�). (For simplicity, in the general description of MT, we consider unaryinference rules only. As shown by the examples, the extension for n-ary rules is trivial.) For each� 2 R,MA has the following axiom:(A1) 8x((T (x)^ P�(x)) � T (f�(x)))MT has axioms about f� and P�. For instance, if � is (a form of) universal specialization that re-places the outermost universally quanti�ed variable with a free variable, we have that f�(\�!!!8xA(x)") =\�!!!A(x)", P�(\�!!!8xA(x)") and :P�(\�!!!A(x)") are theorems of MT. This intuitively meansthat the application of � to �!!!8xA(x) gives �!!!A(x), and that � is applicable to �!!!8xA(x),and not to �!!!A(x). P� may express inference rule restrictions. For instance, if � is the universal3

The importance of having tactics as expressions of a logical language (property 1.) has been largelyrecognized in the literature (see for instance [2, 6, 9, 11, 19, 23, 26, 31]). First, the logic can be usedto reason about proof strategies [6, 19, 31] and to reduce the burden of establishing their correctness[23]. Second, a declarative account of proof strategies can be used to build new strategies, e.g byproof planning [6], by analogy [26] and by proof reuse [10].The link between Logic and Program Tactics (property 2.) is motivated by the desire of usinglogical deduction to automatically and safely synthesize/optimize Program Tactics, and to reasonabout and extend/modify the GETFOL system code. The work presented in this paper is part of along term project whose ultimate goal is to implement a provably correct theorem prover (the ideais to use GETFOL to proof check correctness statements about its own code). This work builds onsome �rst signi�cative results presented in [17]. In [17] we have proposed a metatheory (also calledMT) where:(a) There is a precise correspondence between certain w�s (called in [17], \primitive tactics") ofthe metatheory and the code implementing primitive Program Tactics in GETFOL, i.e. possiblyfailing applications of basic inference rules.(b) It is possible to prove w�s (called in [17], \tactics") which specify how to build �nite sequentialcompositions of primitive tactics.(c) It is possible to give tactics a procedural content, i.e. to use them to assert object leveltheorems, either by interpreting or compiling them into GETFOL code.In this paper, we extend MT to be expressive enough to represent the kind of Program Tacticsused in most tactic-based interactive theorem provers (e.g. [21, 27, 28, 8]). We axiomatize the mostinteresting tacticals, i.e. then, orelse, try, progress and repeat. Tacticals provide a powerful andwell tested mechanism for controlling proof search. As a consequence, MT can be used to expressuseful and complex tactics. In particular, the axiomatization of the tactical repeat, the standardtactical used to write strategies based on recursive applications of tactics, is very important. A singleLogic Tactic constructed using repeat, in [17] may have to be expressed with an in�nite number oftactics. Moreover, Logic Tactics constructed through repeat may correspond to Program Tacticswhich are not guaranteed to terminate, e.g. Program Tactics which do not terminate when appliedto certain arguments. This kind of Program Tactics may still be very useful, i.e. they can beactually used to prove theorems in the cases when they terminate. In this paper, we show that thiskind of Logic Tactics is safely represented, i.e. MT is consistent. Notice that, in most interactivetheorem provers (see for instance [3]) the user is required instead to prove the termination ofrecursive de�nitions.The paper is structured as follows. In Section 2 we de�ne Logic Tactics. In Section 3 we constructa model of MT, thus proving its consistency. We also discuss some of the requirements that thismodel imposes on Program Tactics. In Section 4 we prove some interesting properties of LogicTactics, namely that deduction in MT can be used to prove when a tactic succeeds and when it2

Program Tactics and Logic Tactics�Fausto Giunchiglia1;2 and Paolo Traverso11IRST - Istituto per la Ricerca Scienti�ca e Tecnologica38050 Povo, Trento, Italy2University of Trento, Via Inama 5, 38100 Trento, Italyfausto@irst.it leaf@irst.itAbstractIn this paper we present a �rst order classical metatheory, called MT, with the followingproperties: (1) tactics are terms of the language of MT (we call these tactics, Logic Tactics);(2) there exists a mapping between Logic Tactics and the tactics developed as programs withinthe GETFOL theorem prover (we call these tactics, Program Tactics). MT is expressive enough torepresent the most interesting tacticals, i.e. then, orelse, try, progress and repeat. repeat allowsus to express Logic Tactics which correspond to Program Tactics which may not terminate. Thiswork is part of a larger project which aims at the development and mechanization of a metatheorywhich can be used to reason about, extend and, possibly, modify the code implementingProgramTactics and the GETFOL basic inference rules.1 IntroductionGETFOL [12] 1 is a tactic-based interactive theorem prover. In GETFOL, tactics can be developed asprograms of the GETFOL programming language [14, 12, 16]. These kinds of tactics are conceptuallysimilar to the tactics developed in ML [22] and used in LCF and its descendants [21, 27, 28, 8]. Wecall these tactics, Program Tactics.This paper describes a �rst order classical metatheory, called MT, with the following properties:1. Tactics are terms of the language of MT. We call these tactics, Logic Tactics.2. There exists a precise correspondence between Logic Tactics and Program Tactics.�Some parts of this paper are preliminarly discussed in a paper appeared in the proceedings of the Fifth Interna-tional Conference on Logic Programming and Automated Reasoning (LPAR'94).1GETFOL has been developed on top of a reimplementation of the FOL system [32].1

Istituto per la Ricerca Scientifica e TecnologicaI 38100 Trento � Loc. Pant�e di Povo � tel. 0461�814444Telex 400874 ITCRST � Telefax 0461�810851
Program Tactics and Logic TacticsFausto GiunchigliaPaolo TraversoJanuary 1993Technical Report # 9301-01

Publication Notes: In Proceedings "LPAR'94, 5th International Conference on Logic Program-ming and Automated Reasoning", Kiev, Ukraine, July 16-21, 1994. Also presented at the "ThirdInternational Symposium on Arti�cial Intelligence and Mathematics", Fort Lauderdale, Florida,January 1994. Istituto Trentino di Cultura

