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Abstract

A new algorithm for 3D head tracking under partial occlusion from 2D monocular image sequences is proposed. The
extended superquadric (ESQ) is used to generate a geometric 3D face model in order to reduce the shape ambiguity during
tracking. Optical 5ow is then regularized by this model to estimate the 3D rigid motion. To deal with occlusion, a new
motion segmentation algorithm using motion residual error analysis is developed. The occluded areas are successfully
detected and discarded as noise. Furthermore, accumulation error is heavily reduced by a new post-regularization process
based on edge 5ow. This makes the algorithm more stable over long image sequences. The algorithm is applied to both
synthetic occlusion sequence and real image sequences. Comparisons with the ground truth indicate that our method
is e9ective and is not sensitive to occlusion during head tracking. ? 2002 Pattern Recognition Society. Published by
Elsevier Science Ltd. All rights reserved.

Keywords: 3D Head tracking; Face model; Occlusion detection; Motion estimation

1. Introduction

The estimation of 3D head rigid motion is crucial in
many face related applications such as expression analy-
sis, lip motion analysis, face recognition, etc. With appro-
priate compensation of head rigid motion, face non-rigid
motion analysis and recognition are more accurate and
stable. 3D head position also re5ects human attention,
thus providing important cues for natural user interfaces
in interactive environments. Furthermore, head tracking
is useful for accurately determining model-based facial
image coding parameters (e.g., MPEG-4 FAPs), which
are very important in low-bandwidth teleconferenc-
ing. Numerous applications call for an unrestricted and
robust head tracking system from 2D monocular image
sequences.
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In this paper, we propose a novel algorithm which can
robustly track 3D head position from 2D monocular im-
age sequences. In particular, our algorithm focuses on
how to track 3D head position when the head is par-
tially occluded in the input 2D image sequence and how
to make the tracking algorithm robust in the presence of
both large head motion and occlusion. First, we construct
a generic face model by using the extended superquadric
(ESQ). Compared with simple geometric models (e.g.,
ellipsoid), the ESQ face model achieves better approx-
imation of facial shapes. It reduces shape ambiguities
while keeping the advantages of simple geometric mod-
els. Second, we use this model to regularize optical 5ow
Deld. Residual error analysis is used to detect the oc-
cluded areas. The regularization process is then carried
out only on the unoccluded areas. To improve robustness,
we further utilize the image information by applying a
post-regularization process based on edge 5ow.
Compared with previous work in 3D head tracking,

the greatest advantage of our algorithm is the ability
to robustly track head under partial occlusion. Since
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occlusion is very common in practice, our algorithm is
less restrictive. Our algorithm was Drst presented in Ref.
[1]. In this paper, we fully describe the formulation and
report our recent extensive experimental evaluation on
real image sequences.

1.1. Previous work

In recent years considerable progress has been made
on the problem of head=face tracking from 2D monoc-
ular image sequences. Some systems extract the 2D
position of the head [2–6], while others retrieve the 3D
motion parameters [7–15]. In 3D head tracking, some
approaches do not use any face model, such as the work
done by Azarbeyajani et al. [10] and Jebara et al. [8].
They determined 3D head position through salient facial
feature tracking. The feature trajectories were processed
by extended kalman Dlter (EKF) to recover the 3D struc-
ture, camera geometry and facial pose. The recovered 3D
structure was further constrained by parameterized mod-
els (eigenheads). However, their methods experienced
diKculties when the tracked points were not visible over
the entire image sequence. Also, these methods are very
sensitive to noise. An alternative approach for head track-
ing uses an explicit face model. Li et al. [7] used an aKne
model to describe both rigid and non-rigid facial motion.
A parameterized face model, Candide model, is used to
provide further constraints on motion parameters. Their
approach was characterized by a render-feedback loop
connecting computer vision and computer graphics. The
recovered aKne parameters were used in model-based fa-
cial image coding. The methodology developed by Black
et al. [9] is more stable than the previous work described
above. It tracked rigid head motion by using a planar
model to intepret optical 5ow. But the use of a planar
model limited the amount of motion that can be tracked
by their system. To extract relatively large 3D motions
over extended image sequences, Basu et al. [13] used a
full 3D rigid model (ellipsoid) to regularize the optical
5ow. More recently, DeCarlo et al. [11] designed a more
sophisticated deformable model and integrated it with op-
tical 5ow for both motion and shape estimation. Tao [14]
proposed a special face model (PBVD) to track the head
motion. Cascia et al. [12] modeled the head as a texture
mapped cylinder and formulated the head tracking pro-
blem as image registration in the texture map. Cascia’s
system also dealt with varying illumination by using a
set of trained illumination templates.
Some of the above systems achieve very good results.

Some are also surprisingly eKcient. However, few stud-
ies have been done to robustly track the head under par-
tial occlusion. Furthermore, since many head tracking
systems are based on the minimization of the sum of
squared di9erences (SSD), the accumulation error can be
serious for long image sequences with large motion and
occlusion.

1.2. Our approach

Our algorithm uses a special explicit face model with
a closed-form formula—an ESQ face model. We Drst
warp the ESQ face model onto the Drst frame of the im-
age sequence. Then we compute an optimal set of rigid
motion parameters between two successive frames based
on the optical 5ow. The residual error Deld is used to
Dnd the occluded areas. The optimization process is car-
ried on recursively and occluded areas are continuously
discarded by the algorithm. To improve robustness, the
Dnal results are further adjusted by using edge 5ow.
The method we describe here relates to the work of

Basu et al. [13], where optical 5ow is employed to con-
strain a rigid 3D surface model by minimizing motion
residual error. But our emphasis is very di9erent in that
we focus on robustly tracking head under partial occlu-
sion. Our method includes the following novel features:

(1) The system is built to robustly track the head under
partial occlusion. Occluded areas are detected by a
new motion segmentation algorithm which is inte-
grated within the head motion estimation algorithm.

(2) A new post-regularization method based on edge
5ow is designed to reduce the accumulation error.

(3) A novel geometric face model is developed based
on the extended superquadric (ESQ). It reduces the
shape ambiguity while keeping all the advantages
(e.g. closed-form formula representation) of simple
geometric models.

In this paper, we Drst introduce the ESQ face model in
Section 2.1. After brie5y discussing the rigid motion for-
mulation in Section 2.2, we then describe our integrated
motion estimation and occlusion detection algorithm in
Section 2.3. To cope with the error accumulation, we in-
troduce a post-regularization strategy using edge 5ow in
Section 2.4. In Section 3, we present our experiments on
both synthetic and real sequences to show that our sys-
tem is not sensitive to occlusion and works robustly over
long image sequences. Finally, the conclusions and fu-
ture plans are discussed in Section 4.

2. Framework

Our system formulates head tracking as a model-based
least-squares problem (similar to Ref. [13]). Extended
algorithms are developed to detect occlusion and reduce
the accumulation error. The 5ow diagram of our system
is illustrated in Fig. 1. Each component of our system is
discussed in the rest of this section.

2.1. ESQ face model

There are many ways of modeling a face. In head
tracking systems, simple geometric models are pre-
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Fig. 1. Flow diagram of the system.

ferred for rigid motion. Ellipsoid [13] and cylinder
[12] models have been successfully applied before.
However, those models cannot achieve good approx-
imation to face shape. Since the shape ambiguity is
one of the reasons for the motion ambiguity, it is
desirable for a face model to achieve better approxi-
mation while keeping the advantages of simple geo-
metric models. This is our motivation to choose the
ESQ to model a face. Another beneDt is that by using
the ESQ model, we know the position of important
features on the face once the tracking is complete.
For example, the 3D position of the nose is known
via the ESQ face model, which can be used to lo-
cate the other 3D MPEG-4 facial deDnition parameters
(FDPs).
Superquadrics [16] are widely used in geometric

modeling because of the following advantages: they can
model a diverse set of objects, they provide compact
representation and they are robust in recovery of 3D
models. However, their intrinsical symmetry becomes
a problem in modeling many real-world objects. Zhou
et al. [17] extended superquadrics with exponent func-
tions, thus improving their ability to model more com-
plex objects including human faces. Essentially, the
extended superquadric (ESQ) provides us an economic
way to reduce shape ambiguity while keeping all the
advantages of simple geometric models.
An extended superquadric can be deDned as a set of

points X =[x; y; z]T satisfying:

X =



a1sign(c�sc
s)||c�s ||f2(�p)||c
s ||f1(
p)

a2sign(s
s)||s
s ||f1(
p)

a3sign(s�sc
s)||s�s ||f2(�p)||c
s ||f1(
p)


 ; (1)

where cos(�s); sin(
s); etc. have been abbreviated as
c�s ; s
s ; etc. The exponents f1(
p); f2(�p) are functions
of 
p and �p. �p; 
p represent the latitude and longitude
angles, respectively, in the spherical coordinate system,

and �s; 
s represent the superquadric angles. Thus we
have

�p =arctan
(

x
y

)
;


p =arctan
( z
x

)
: (2)

From Eqs. (1) and (2), a parameterized ESQ surface
X(�p; 
p) can be easily computed from the latitude and
longitude angles. This representation greatly increases
the controllability of the face model and makes some
implementation tasks such as sampling very easy.
In our system, the ESQ face model is constructed by

semi-automatically Dtting an ESQ to generic face range
data. First, we need to deDne an error-of-Dt function to
measure the di9erence between a modeled shape and the
face data set [17]. Then the Dtting becomes a proce-
dure to Dnd a model that minimizes the error-of-Dt func-
tion. For extended superquadrics, there is no closed-form
error-of-Dt function based on the true Euclidean distance.
However, we can easily deDne the error-of-Dt function as

EOF =
N data∑
i=1

[
1− F(xi; yi; zi)f1(arctan(zi=

√
x2i +y2

i ))
]2

; (3)

where F(x; y; z) is an inside–outside function which
can be deDned by using the implicit representation of
Eq. (1). During Dtting, the exponent functions are Drst
set as initial Bezier curves with two control points.
Then EOF is minimized and F(x; y; z) is computed by
using the Levenberg–Marquardt non-linear optimization
method. This process continues recursively and each
time a new Bezier control point is added to the exponent
functions. The optimal ESQ face model (as shown in Fig.
2) is obtained when a speciDc error threshold is reached.
More details on ESQ Dtting can be found in Ref. [17].
At initialization, the ESQ model is scaled and warped

to the face image in the Drst frame of the image sequence.
Assuming that the Drst frame is a frontal view, we can
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Fig. 2. ESQ face model: shaded and mesh representations. (a) Shaded face ESQ model. (b) Mesh face ESQ model.

do the initialization automatically by using a feature ex-
traction algorithm (e.g. Ref. [13]).

2.2. Rigid motion formulation

The rigid head motion for each frame t with respect to
frame 0 is represented as a vector mt with six elements:

mt =[rx; ry; rz; tx; ty; tz]; (4)

where rx; ry; rz; respectively, represent the rotations about
the x; y; and z axes of the local coordinate frame of
the ESQ face model. Accordingly, tx; ty; tz represent the
translations of the model. The 4× 4 homogeneous trans-
formation matrix Mt is deDned as

Mt =TRxRyRz ; (5)

where Rx;Ry;Rz are rotation matrices corresponding to
rx; ry; rz . T is the translation matrix. In frame t; the face
model can be computed as

X(�p; 
p; t)=MtX(�p; 
p; 0): (6)

Though we are using 3D face model, the image sequence
is in 2D. So we must project the parameterized ESQ face
surface onto the image plane. The projection matrix P
can be given as follows:

P=



1 0 0 0

0 1 0 0

0 0 1
f 1


 ; (7)

where f is the focal length of the camera which has
been given. Thus in frame t, a model point’s projective

location (Ix; Iy) on the image plane can be obtained by
computing

[x′; y′; w′]T =PM tX(�p; 
p; 0); (8)

where (Ix; Iy)= (x′=w′; y′=w′).
Now we can easily compute the model displacement

DM =[Um; VM ] on the image place between frames t and
t + 1:

[U ′
M ; V ′

M ;W ′
M ]T =P(Mt+1 −Mt)X(�p; 
p; 0); (9)

where DM =[U ′
M=W ′

M ; V ′
M=W ′

M ].
Since we only have 2D information, only the points

which are visible in both frames t and t + 1 are respon-
sible for the rigid motion estimation. Given the camera
position and point normal N , we can estimate whether
a point X is self-occluded or not by computing the fol-
lowing dot product:

v=(X − C)N; (10)

where C is the camera position vector. Note that we
can assume majority of the face is convex. Therefore, if
v¿ 0, the point is self-occluded, otherwise it is not.

2.3. Rigid motion estimation under partial occlusion

Head tracking is usually formulated as a model-based
SSD problem. Our system follows this approach. Optical
5ow at image points that correspond to the visible part
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of the face model is used to guide the model motion es-
timation. Obviously if the occluded points are projected
onto the image plane, their optical 5ow cannot re5ect
the correct 3D head motion. Self-occluded points can be
found by Eq. (10). However, in a real video stream, there
are many occasions where human heads are occluded by
other objects. To be unrestricted and stable, a head track-
ing system should be able to locate these occlusion areas
and discard them as noise. Our algorithm integrates the
head motion estimation and occlusion detection through
motion residual error analysis.
In our system, it is assumed that the occluded areas are

not too large (generally less than 50% of the face area).
This is to ensure that we have suKcient information for
correct 3D rigid motion estimation. Theoretically speak-
ing, since no model can perfectly describe every detail
of the face, there always exist motion ambiguities due to
shape ambiguities. However, if the occlusion areas are
not too large, we can still get fairly stable results.
Given the 3D motion vector mt of frame t and the op-

tical 5ow between frames t and t + 1, we must measure
how good a candidate motion vector mt+1 is for frame
t+1. We deDne this measurement on a set of visible (nei-
ther self-occluded nor occluded by other objects) points
V̇ in both frames t and t + 1. V̇ is a subset of sample
points set Q on the ESQ face model.
If the optical 5ow Deld is represented byDo =[Uo; Vo],

the error-of-Dt (EOF) function is then deDned as follows:

dx = ||DM −Do||2;

ex =

{
dx if dx ¡dt;

dt if dx¿dt;

EOF(V̇ ;mt ;mt+1;Do)=
1
N

∑
x∈V̇

ex; (11)

where N is the number of points in set V̇ and dt is the er-
ror threshold which is used to prevent outliers in the op-
tical 5ow Deld from overwhelming the whole algorithm.
The question is how to determine the points in V̇ un-

der occlusion. If the non-self-occluded subsets of Q in
frames t and t + 1 are represented by Vt and Vt+1, re-
spectively, we can initially let V̇ =Vt ∩Vt+1, then min-
imize Eq. (11) to Dnd an optimal m∗

t+1. We believe that
the motion residual errors for points in the occluded ar-
eas are bigger due to the following two reasons: (1) The
unoccluded areas are larger, thus contributing more to
the minimization. (2) The motion Deld on occluding ob-
jects cannot be well regularized because the occluding
objects are normally not of the same shape as the face
model. Based on these observations, our integrated mo-
tion estimation and occlusion detection algorithm can be
described as shown in Algorithm 1.
In our system, we use mt+1 =mt as an initial guess.

The Levenberg–Marquardt algorithm is used to solve the
equation in Step 4a of Algorithm 1. During minimization,

penalties are also added on very large motion candidates.
The penalty term can be represented as

P(mt ;mt+1)= "max(||mt+1 −mt || − #; 0:0); "; #¿ 0;
(12)

where " is a positive constant and # is the possible maxi-
mal motion. The values of " and # are determined empir-
ically. In our experiments, the above algorithm normally
converges in 3–4 iterations. Note that, if the 2D motion
of the occluding object is very similar to that of the oc-
cluded areas, our algorithm may not Dnd the occluded
areas. However, in this case the occluded areas do not
harm the motion estimation process. The results of our
occlusion detection algorithm are illustrated in Figs. 4,
6, 7 and 8.

Algorithm 1: Algorithm for 3D Head Tracking
under Partial Occlusion

begin
1. Sample a set of points Q on the parameterized

surface X(�p; 
p) and compute their normals.
2. Compute Vt and Vt+1 from Q according

to Eq. (10).
3. Construct a 5ag vector Ft =[f0; f1; : : : ; fN ]

corresponding to the points in set Vt ∩ Vt+1.
fx =1 means point x is not occluded while fx =0
means occluded. Initially, set F0 = [1; 1; : : : ; 1].

4. while (5ag vector Ft is changed and maximum
iteration number is not exceeded)

do
a. Compute V̇ by discarding those points

whose corresponding fx is 0 from Vt ∩ Vt+1.
Then solve:

m∗
t+1 = arg(min(EOF(V̇ ;mt ;mt+1;Do))).

b. Compute the motion residual error ex at
each point x in set Vt ∩ Vt+1 using m∗

t+1.
c. Re-set 5ag vector F by:

fx =

{
0 if ex ¿"dt;

1 otherwise;
where " is initially set as 0.9 in our
experiments. To prevent the discarding of
unoccluded areas, it is adjusted automatically
in an adaptive fashion.

end

2.4. Post-regularization

Inaccurate optical 5ow estimation and lack of 3D in-
formation generate accumulation error in head track-
ing systems that are based on SSD minimization. Large
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Fig. 3. Tracking results without=with post-regularization. (a) Without post-regularizaiton. (b) With post-regularization.

motion and occlusion make the problem even worse. This
means that the tracking algorithm may not be robust over
long image sequences. Dealing with accumulation error
becomes necessary. One possible solution is to use both
image Deld and motion Deld information (i.e. edge force
and optical 5ow force) simultaneously to constrain a de-
formable face model [11]. Our algorithm, however, uses
edge information di9erently.
The idea is to use edge 5ow as a post-regularization

heuristic. After we getm∗
t+1 from the integrated algorithm

introduced in Section 2.3, edge 5ow is used to reDnemt+1

in a small neighborhood around m∗
t+1 until the optimal

motion vector is found. We believe that the quality of
our edge 5ow (computed by the following algorithm) is
generally more reliable than optical 5ow because edge
5ow strictly captures the motion of the salient features
(i.e. edge points) while optical 5ow smoothes out some
useful information. Evidence of the e9ectiveness of the
edge information can be found in Ref. [18] where edge
matching alone is used to extract the camera motion. We
compute edge 5ow based on this matching technique. The
post-regularization algorithm can be described as shown
in Algorithm 2.

Algorithm 2: Post-regularization algorithm

begin
1. Detect edge points in the areas of interest (face

areas) in frames t and t + 1.
2. Detect edge features in frame t.
3. Detect the perfect matches for the frame t features

in frame t+1. Finally we Dnd a set of edge features
P in frame t. Each point Et in set P has a perfectly
matched point Et+1 in frame t + 1.

4. Compute the edge 5ow DE =[UE; VE] at point Et

as follows:

DE =Et+1 − Et .

5. Remove the “outliers” in edge 5ow based on the
motion vector m∗

t+1. The motion residual error at
each edge point P is given by:

e′x = ||DM −DE ||2.
If the error is larger than a threshold, we consider it
as outlier and remove it from P. The EOF function
for post-regularization can be deDned as:

EOF ′(P;mt ;mt+1;DE)= 1
N ′

∑
x∈P e′x.

6. Using m∗
t+1 as the initial guess, solve

m∗∗
t+1 = arg(min(EOF ′(P;mt ;mt+1;DE))).

end

In Step 1 of Algorithm 2, the area of interest in frame
t is the face model’s projective area, while in frame t+1
the area of interest should be large enough to cover the
face area in frame t and the possible large motion. In
Step 2, we refer to an 8× 8 block as an “edge feature” if
it contains more than eight edge points. To avoid aper-
ture ambiguity, blocks with strictly vertical and horizon-
tal edges are discarded. In Step 3, two edge features are
said to be perfectly matched if they are identical in the
binary edge domain. It can be easily seen that the big-
ger the observing window, the more strict the matching
criterion is. For those features where we could not Dnd
the perfect matches we simply discard them. The rea-
son we remove “outliers” in Step 5 is that we believe



Y. Zhang, C. Kambhamettu / Pattern Recognition 35 (2002) 1545–1557 1551

Fig. 4. Experimental results on the synthetic image sequence. The Drst row includes some key frames of the original synthetic
sequence. The second row indicates the occlusion detection results. The third row shows the tracking results (black dots indicate
the nose position in each frame). The graphs show the ground truth validation.

that we have found a reasonably good solution before
post-regularization (Algorithm 1). It is not possible to
get a very large error on any edge point unless the edge
5ow is wrong. Essentially, the post-regularization pro-
cess tries to Dnd an optimal solution m∗∗

t+1 in a small
neighborhood around m∗

t+1 to minimize EOF ′ based on
image information.

Our experiments have shown that Algorithm 2 heav-
ily reduces the accumulation error. The tracking results
of our system without=with post-regularization are il-
lustrated in Fig. 3. We can see that the tracking result
on frame 87 without post-regularization has a larger ac-
cumulation error when compared with the result with
post-regularization.
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Fig. 5. Experimental setup for collecting real occlusion sequence with ground truth.

3. Experiments

To show the accuracy and robustness, our algorithm
has been tested on extensive synthetic and real occlusion
image sequences. The experimental setup and compar-
isons with the ground truth are reported in the following
sections.

3.1. Data acquisition

First, we applied our algorithm on a synthetic occlu-
sion sequence so that we can see how the algorithm
behaves under ideal conditions (i.e., with less noise,
complete and accurate camera parameters, etc.). The
synthetic sequence (Fig. 4) was generated by using a set
of known motion vectors to animate real face range data.
The occluding object, a sphere undergoing a sine-like
motion, was added to the scene.
Second, we did experiments on extensive real occlu-

sion sequences to show the applicability of our algorithm
in practice. The real image sequences were collected
from two di9erent sources: one is a Sony DCR-TRV900
digital camcorder, the other is a Sony EVI-D30 analog
camera. When we collected image sequences by using
digital camcorder, ground truth data for those sequences
were simultaneously collected by using a Motion Anal-
ysis EVA HiRes system (Fig. 5). The subjects wore a
hat with six retrore5ective markers attached on it. The
six calibrated cameras of the EVA HiRes system were

then used to track the position of the markers in real
time (30 fps). The positional accuracy is within 1 mm.
The 3D head position is computed accurately from the
marker positions. Note that the marker hat has no in5u-
ence on our algorithm because it does not block any face
area.

3.2. Evaluation and discussion

We quantitatively evaluated our algorithm on both syn-
thetic and real data. The occlusion detection and tracking
results in some key frames of the synthetic sequence are
shown in Fig. 4. The black dots in the tracked frames
indicate the nose position of the ESQ face model. The
graphs in Fig. 4 show the comparisons between the six
estimated parameters and the ground truth (note that the
motion parameters shown in Ref. [1] correspond to rel-
ative motion between two successive frames, while the
motion parameters shown in this paper correspond to
global motion relative to the Drst frame). Through the
graphs we can see that our system tracked the motion ac-
curately during occlusion. We have also found that the
estimation of the translation along the z-axis has a slightly
larger error, which is due to lack of 3D information.
In the synthetic experiment, we also substituted the

ESQ face model with a simple ellipsoid model. We
found that the ESQ face model outperformed the ellip-
soid model (Fig. 4), demonstrating the e9ectiveness of
using the ESQ face model. The better performance of
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Fig. 6. Experimental results on real image sequence. The image sequence was collected by using a Sony digital camcorder. The
graphs show the ground truth validation. Black dots indicate the nose position in each frame.

the ESQ face model is due to its better approximation
of human facial shapes.
The tracking results and validation of our algorithm on

two real image sequences collected by using the digital
camcorder are shown in Figs. 6 and 7. In Fig. 6, the sub-
ject freely did some natural movements which occluded
the face. The image sequence is 822 frames long (approx-
imately 27 s). In Fig. 7, the subject was told to do not
only some natural occluding movements, but also some
non-rigid expressions (surprise, smile, etc.). The image

sequence is 800 frames long (approximately 26 s). The
graphs in Figs. 6 and 7 also show the comparisons be-
tween the six estimated parameters and the ground truth
(note that the motion parameters shown here correspond
to global motion relative to the Drst frame). We also show
some tracking results on the image sequences collected
by using the analog camera in Fig. 8. Our various exper-
imental results show that the proposed algorithm is able
to robustly track long occlusion image sequences. The
average time to Dnd the 3D head position for one frame
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Fig. 7. Experimental results on real image sequence. The image sequence was collected by using Sony digital camcorder. The graphs
show the ground truth validation. Black dots indicate the nose position in each frame.

is around 50–60 s on a 195 MHz R10000 SGI Octane.
Most of the computational burden is due to optical 5ow
computation and recursive optimization.
Note that due to lack of 3D information, head tracking

algorithms always experience diKculties when large rota-
tion or z translation exist, let alone when occlusion exists.
One of the most important advantages of our algorithm is
that it can robustly track the head even when there exist
both occlusion and relatively large rotation or z transla-
tion in the image sequences. This is achieved by using

our occlusion detection and post-regularization schemes.
However, from the ground truth evaluation on both syn-
thetic and real image sequences (Figs. 4, 6 and 7), we can
still see that the larger errors happen to depth-sensitive
parameters (i.e., Ry; Rx; Tz). If we have multiview image
sequences, or if we utilize some depth heuristics (e.g.,
structure fromX), we may achieve better results. Another
possible solution is to incorporate the z scaling factor of
the ESQ face model into the motion estimation frame-
work. This makes the system more stable. Generally, the
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Fig. 8. Experimental results on two real image sequences. The image sequences were collected by using a Sony analog camera.
Black dots indicate the nose position in each frame. (a) Tracking results of a 266 frame sequence. (b) Tracking results of a 199
frame sequence.

performance of our system degrades with the increase in
the occluded area. However, we found that the perfor-
mance of our system is not very sensitive to the percent-
age of the occluded area when the percentage is less than
a certain threshold. As we can see in Figs. 6 and 7, if the
occluded area is not too large, the performance is fairly
stable.
In Fig. 6, we can see that the Tx parameter has a con-

stant shift compared with the ground truth. This is an
example of initial warping error: when we warp the ESQ
model onto the Drst frame, we did not Dnd the value of
Tx accurately. However, this initial error did not do much
harm to our algorithm. Our algorithm is not very sensi-
tive to initial warping errors.
Another note worth mentioning here is that the

algorithm is not sensitive to non-rigid motion of the face
(Fig. 7). Actually if the non-rigid motion is too large,

the algorithm classiDes the face areas related to non-
rigid motion as occluded areas. This obviously helps to
make the algorithm more robust.

4. Conclusions and future plans

In this paper, we have presented an algorithm which
can robustly track occluded heads from 3D monocular
image sequences. We have designed a face model with a
closed-form formula based on the ESQ and used it in our
system. We have also demonstrated a method that can
successfully detect the occluded areas on the face by inte-
grating 3D motion estimation and motion segmentation.
Furthermore, we have developed a post-regularization
method that heavily reduces the accumulation error in-
curred by motion ambiguities and occlusion. The experi-



1556 Y. Zhang, C. Kambhamettu / Pattern Recognition 35 (2002) 1545–1557

ments in Section 3 clearly show that our system is robust
and reliable. It is also possible to apply our occlusion de-
tection and post-regularization algorithms to other track-
ing systems.
From our experiments, we can see that one potential

advantage of the ESQ model is that we can also track
the nose position in each frame accurately, thus e9ec-
tively constraining facial non-rigid motion analysis. This
is extremely useful when we perform facial motion track-
ing to extract the MPEG-4 FAPs from a video sequence
in image encoding. Since our algorithm requires optical
5ow computation and recursive optimization, it is not
real-time. However, the ability to robustly track the face
under partial occlusion makes our algorithm very useful.
Our future directions include improving the eKciency of
our algorithm.
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