
Topi Detetion and Traking withSpatio-Temporal EvideneJuha Makkonen, Helena Ahonen-Myka, and Marko SalmenkiviDepartment of Computer Siene, University of Helsinki, Finlandfjamakkon,hahonen,salmenkig�s.helsinki.fi,WWW home page: http://www.s.helsinki.fi/group/doremiAbstrat. Topi Detetion and Traking is an event-based informationorganization task where online news streams are monitored in order tospot new unreported events and link douments with previously detetedevents. The detetion has proven to perform rather poorly with tradi-tional information retrieval approahes. We present an approah thatformalizes temporal expressions and augments spatial terms with on-tologial information and uses this data in the detetion. In addition,instead using a single term vetor as a doument representation, we splitthe terms into four semanti lasses and proess and weigh the lassesseparately. The approah is motivated by experiments.1 IntrodutionTopi Detetion and Traking (TDT) is fairly reent area of information re-trieval. It aims to monitor the online news stream in order to automatially spotnew unreported news events (�rst story detetion) and assigning douments topreviously deteted events (topi traking, luster detetion)(see e.g. [1{3℄ ). Forexample, think of an information worker or a speialist who has to deal with sev-eral inoming news-streams that report various things taking plae in the world.The information worker might want to follow the ourse of events regarding bush�res in Australia, the development of the presidential eletions in Frane, or justbe informed if anything new takes plae in Portugal or in the metal industry,for example. Given a news story, a TDT system would have to be able to attahit to any previous disussions about the event portrayed in the story { else thestory would be regarded as new. The proess of deteting new events has beenonsidered diÆult and the existing information retrieval methodology has haddiÆulties in this kind of event-based information organization [4℄.We present an approah for TDT that exploits semanti lasses, i.e., lassesonsisting terms that have similar meaning: loations, proper names, temporalexpressions and general terms. Instead of the traditional doument vetor, ourrepresentation has four vetors that reside in disparate spaes. In addition, weformalize temporal expressions and provide them an interpretation on a globaltime-line and we evaluate the relevane of two spatial referenes with respetto an ontology. We outline a simple approah utilizing this kind of omplexrepresentations and ompare it with single-vetor methods.



This paper is organized as follows: Setion 2 gives a short introdution tothe previous results in TDT. The event vetors are presented in Setion 3 andSetion 4 deals with the omparing these vetors. Setion 5 illustrates our ex-periments. Setion 6 is a onlusion.2 Previous WorkTDT related researh begun in 1996 with DARPA funded pilot study [1℄. Theresearhers set out to experiment the feasibility of TDT systems using existingtehnology. Quite soon the traditional methods for information retrieval werefound more or less inadequate for online detetion purposes. First story dete-tion was haraterized queryless information retrieval as we do not know whatwe are looking for, i.e., we want to detet the unexpeted, new. Thus, query-based retrieval methods seemed insuÆient [2℄. The traking task is similar toinformation �ltering but with very few examples to work with. Sine the tasksare interrelated, the poor performane in detetion results in poor traking per-formane. Allan, Lavrenko and Jin redued the topi detetion to topi traking,and showed that the performane of traking is unaeptably low for eÆient�rst story detetion. They onluded that \e�etive �rst story detetion is eitherimpossible or requires substantially di�erent approahes" [4℄.Furthermore, the onept of event is problemati: though it appears to beintuitively quite lear, it is diÆult to establish a solid de�nition. Usually, it isunderstood as \something happening in a ertain plae at a ertain time" [5℄.Soon after the launhing of TDT program, the sope was on�ned to eventdetetion and traking (e.g. [6℄), but reently the fous has returned to spottingdynami topis that enter around a seminal events [3, 7℄. However, the de�nitionone adopts has an impat on the performane of the system [8℄.The methods applied in TDT over a good portion of the prevailing IR meth-ods: the majority of the approahes in TDT have relied on some sort of luster-ing: Single-Pass Clustering [1, 2, 8℄ or hierarhial Group-Average Clustering [2℄.Also, Hidden Markov Models [9℄, Rohio [10℄, k-Nearest Neighbours [10℄, naiveBayes [11℄, probabilisti Expetation-Maximization models [12℄ and Kullbak{Leibler divergene [7℄ have been used.In these approahes, the douments are represented as vetors while theevents are either entroids, i.e., ompilations of the vetors assigned to the event,or a set of doument vetors without generalization, as is the ase with kNN.The terms have been weighted with tf-idf variants [4, 10℄, surprisingness [6℄, andTime Deay [1℄, for instane. Allan et al. investigated the use of named entities(NE) in the vetor model [13℄. Similarly, Yang et al. [14℄ extrated loations,names of individuals and organizations, time and date referenes, and sums ofmoney and perentages for NE-weighting.



3 Event VetorMaking the distintion between two di�erent air disasters or train aidents hasnot been easy. The terms of two douments disussing the same kind of eventtend to onverge and therefore a term vetor is not able to represent the deliatedistintion between douments regarding similar but not the same event [1℄.However, Allan, Lavrenko and Papka suspet that only a small number of termsis adequate to make the distintion between di�erent news events [6℄. Intuitively,it would be temporal expressions, loations and names that would vary morethan other terms.A news doument regarding an event reports at the barest what happened,where it happened, when it happened, and who was involved. Previous dete-tion and traking approahes have tried to enapsulate these fats in a singlevetor. In order to attain the deliate distintions mentioned above, to avoidthe problems with the term-spae maintenane and still maintain robustness,we assign eah of the questions a semanti lass [8℄, i.e., the words that havemeaning of the same type. The semanti lass of loations ontains all theplaes mentioned in the doument, and thus gives an idea, where the event tookplae. Similarly, temporals, i.e., the temporal expressions name a logial ob-jet, that is, a point of on a global time-line, and bind the doument onto thetime-axis. names are proper names and tell who was involved. What happenedis represented by 'normal' words whih we all terms. These omprise nouns,adjetives and verbs.The representation of the doument using semanti lasses is illustrated inFigure 1. This event vetor omprises four sub-vetors that reside in distintspaes due to the semantial dissimilarity. If two douments oinide in temporalexpressions and loations, for example, it would suggest that they are disussingthe same event. Obviously, news events are reported quite promptly, and thus thetemporal similarity would be quite high for the news published on the same day.Likewise, the spatial similarity based solely on large areas, suh as ontinents, isof ourse weaker than similarity based on more spei� loations.
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Fig. 1. An example of event vetor.\The U.S. Navy diesel researh submarine thatholds the world's deep-diving reord aught �re in the Pai� Oean o� California onWednesday and all 43 people aboard were resued, the Navy said." (Washington Post,May 22, 2002)



4 Measuring SimilarityThe use of semanti lasses enables us to perform the similarity omparisonslass-wise, i.e., examining the orresponding sub-vetors of two event vetors ata time. This results in slight di�erene in the ways of determining the similarity.First, we present a general term weighting approah, whih is elaborated fromour previous work [8℄. Then, we outline omparison of temporal and spatialreferenes, and �nally our detetion and traking algorithm.4.1 General Term WeightTypially, the short online news di�er from detetive stories in that they giveaway story in the �rst few sentenes. We aim to exploit this strutural featurein term weighting. Thus, we use the ranking of eah ourrene of the term,i.e., the ordinal of the sentene in whih the term takes plae in measuring theimportane of the term. The rank-sore of a term t ourring m times isrs(t) = mXk=1 12 ln tk ; (1)where tk is the ranking of the kth instane of term t. With rank-soring,the instanes of terms in the �rst sentene (or title) are assigned weight 12ln1 =11 = 1. The rank-sore deays as the ranking of the sentene grows, but the(natural) logarithm is there to modify the di�erene between two onseutiverankings: instanes in the eighth and ninth sentenes have a di�erene only of0:019 (= 0:237� 0:218).In order to determine the weight of the intersetion of two douments, wealulate the ratio between the rank-sore of the intersetion and the rank-soresof the douments. Naturally, the informativeness of the terms themselves variesas well. Thus, loyal to the traditions of IR, we multiply the rank-sores withinverted doument frequeny, IDF. For example, let X and Y be sets of terms.Then their ranking-weighted similarity (RWS) equals toRWS(X;Y ) = PjX\Y jk=1 rs(tk) � IDF (tk)PjXjj=1 rs(tj) +PjY jl=1 rs(tl) (2)The intersetion jX \ Y j ontains all the ourrenes of terms ommon toboth douments. Thus, if word 'airport' ours twie in X and one in Y , thereare three ourrenes in the intersetion. Therefore, the weight of the intersetionequals to 1, if the two douments are idential, and 0 if the douments have noommon terms.4.2 Temporal SimilarityTemporal expressions often onvey their information impliitly. This means thatby examining the surfae forms is seldom of any avail. For example, �nding the



expression 'last Monday' in two douments tells little of their similarity, sine thereferent of the expression hanges with respet to the moment of utterane. Weonstrut automata for temporal expression pattern reognition similarly to [15℄.The found patterns do not make sense without augmented information, and thuswe anonize the expressions with a formalized alendar [16℄ and a set of shift andspan operations [17℄. As a result, we provide eah reognized expression with asemantial interpretation as an interval on a global time-line T with respet tothe publiation date-stamp.In our approah, the temporal similarity of two douments is a result of apair-wise omparison of the expressions: eah start-end pair of one doument isompared to eah of the start-end pairs of the other. Krippendor� has ondutedvarious investigations with intervals [18℄ and motivated by his work we proposea ross-tabulation illustrated in Figure 2. It shows intervals of two sets A =fA1; A2; A3g and B = fB1; B2; B3; B4g on time-axis t. The diagonal representsthe synhronous points between the two time-axis. The shaded areas orrespondto the overlapping intervals. For example, A3 and B4 have mathing startingpoint on the time-axis, but mismathing end points. Thus, B4 overs A3 onlypartially.
A3

A2

A1

B1 B2 B3 B4

t

t

Fig. 2. A ross-tabulation of two sets of intervals A and B.If the two sets ontain the same intervals, they over eah other ompletely.In suh ase, all of the intervals would be shaded ompletely along the diagonalin Figure 2. In ase there are disparate intervals, the larger intervals provideweaker overage than shorter ones. As an example, onsider omparing a dayand a year versus a day and a weekend.Galton lists 13 possible relations for two intervals [19℄. In Table 4.2, we arenot onerned, whether A is before B or vie versa, and hene the numberof relations is dereased down to seven. We want to take these relations into



Table 1. The possible relations of two intervals. Note that the �rst six relations alsohave the onverse. [ti; tj ℄ is before [tk; tl℄ if tj < tk[ti; tj ℄ meets [tk; tl℄ if tj = tk[ti; tj ℄ overlaps [tk; tl℄ if ti < tk < tj < tl[ti; tj ℄ begins [tk; tl℄ if ti = tk ^ tj < tl[ti; tj ℄ falls within [tk; tl℄ if ti < tk ^ tj < tl[ti; tj ℄ �nishes [tk; tl℄ if ti < tk ^ tj = tl[ti; tj ℄ equals [tk; tl℄ if ti = tk ^ tj = tlaount while omparing the temporal evidene of two douments. The morethe intervals overlap eah other with respet to their lengths, the higher thesimilarity. We employ a simple weight funtion �t : T � T ! IR suh that�t([ti; tj ℄; [tk; tl℄) = 2�([ti; tj ℄ \ [tk; tl℄)�(ti; tj) +�(tk; tl) ; (3)where � : T � T ! IR; �(ti; ti) = 1 is the duration (in days) of the giveninterval. The weight funtion results in 1 if the expressions are an exat mathand 0 if the expressions are distint. All of the relations presented above areontained within the �t-funtion, sine they an be represented in terms of theintersetion.In Figure 2, the intersetions A3 \B4 and A2 \B3 would result in higher �t-value than the any of the intersetionsA1\B1, A1\B3, and A1\B2, beause thesizes of A3 \B4 and A2 \B3 are loser to the sizes of the union of the intervals,i.e., jA3 [ B4j and jA2 [ B3j, and thus there is less unovered area.In pratie, the pair-wise �t-weights are alulated in what we all a overmatrix illustrated in Table 2. The overage of an interval Ti;j is alulated byhoosing the maximum vi;j of the weights for that term. If an interval T1;i isovered with an interval T2;j of equal weight, the maximum value is v1;i = 1. Onthe ontrary, if it is not overed at all, the maximum value yields v1;j = 0. Inases of partial or weak over the value varies in (0; 1) depending on the sizes ofthe intervals.Table 2. A over matrix. The maximum overage for the interval T1;1 would yieldv1;1 = maxj�m(�t(T1;1; T2;j)). T2;1 . . . T2;m maxT1;1 �t(T1;1; T2;1) . . . �t(T1;1; T2;m) v1;1... ... ...T1;n �t(T1;n; T2;1) . . . �t(T1;n; T2;m) v1;nmax v2;1 v2;m



The total overage of the two sets of intervals is the sum of all the maximumvalues vi;j divided by the number of intervals. Let T1 and T2 be sets of intervalssuh that T1 ontains n intervals and T2 ontains m intervals. The overage ofthe intervals is overt(T1; T2) = Pni=1 v1;i +Pmj=1 v2;jn+m : (4)Beause �t = 1 stands for the perfet math, vi;j 2 [0; 1℄ and, sine overt(T1; T2)is really an average of the maximums, also overt(T1; T2) 2 [0; 1℄We want to weight the temporal expressions with respet to the their ranking-weighted similarity of Equation 2, but without the IDF-weight. Thus the tem-poral similarity of douments X and Y yieldssimt(X;Y ) = overt(Xt; Yt) �RWS0(Xt; Yt) (5)where Xt and Yt are the temporal expressions in X and Y , respetively, andRWS0(Xt; Yt) is the ranking sore without the IDF-value.4.3 Spatial SimilarityThe introdution of a geographial ontology enables measuring similarity of thespatial referenes on a �ner sale than just binary deision math{mismath.For example, when reporting oods in Siberia, the terms suh as Russia, Lena,Vilyuy, Lensk and Yakutsk have nothing in ommon in the surfae forms, buttheir geographial proximity and relevane an be understood by the virtue ofan ontology. In other words, we tie eah spatial expression to a global strutureand thus provide it with a meaning that relates to other spatial expressions.We employ a 5-level hierarhy in our knowledge of the world as portrayed inTable 3. The levels involved depend on the type of the loation. As to land, thelevels are ontinent, region, ountry, administrative region (e.g., provine, state,ommune, muniipality, muniipio, gemeente, kommun), and ity. In additionto administrative region, level 4 an also be mountains, seas, lakes and (larger)rivers that inlude or onnet to mountain peaks and (smaller) rivers.Table 3. An example of ontology.Loation Type Level 1 Level 2 Level 3 Level 4 Level 5Delft ity Europe W.Europe Netherlands Zuid-Holland DelftEurope ontinent Europe { { { {Haag ity Europe W.Europe Netherlands Zuid-Holland HaagMain river Europe W.Europe Germany Rhine MainNetherlands ountry Europe W.Europe Netherlands { {North Sea sea Atlanti North Sea { { {Rhine river Europe W.Europe Switzerland, North Sea RhineGermany,Frane,Netherlands



Figure 3 shows a simpli�ed taxonomy ontaining a number of plaes. Eahnode in the tree stands for a loation. In ase we want to measure the similarityof two suh loations, we ompare the length of the ommon path to the sum ofthe lengths of the paths to the elements, and hene the spatial similarity �s oftwo spatial terms l1 and l2 yields�s(l1; l2) = (level(l1 \ l2))(level(l1) + level(l2)) (6)In ase of identity, we assign �s(l1; l1) = 1. Now, omparing Frane and Germanywould result in 1=(2 + 2) = 1=4 sine the length of the ommon path (Europe)is 1 and the length of path to both Frane and Germany equals to 2. Similarly,omparing China and Paris would result in 0=(2+3) = 0. Paris and Frane havesimilarity of 2=(2 + 3) = 2=5.
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Fig. 3. A simpli�ed ontologial taxonomy.Sine all the spatial referenes of one doument are to be ompared with allof the spatial referenes of another, we employ the over matrix presented inSetion 4.2. For eah term we hoose only the maximum similarity, and let theaverage of maximums stand for the spatial similarity of two douments analo-gously to temporal overage. Let L1 and L2 be sets of spatial terms suh thatL1 ontains n terms and L2 ontainsm terms, respetively. The spatial overageis de�ned as followsovers(L1; L2) = Pni=1 v1;i +Pmj=1 v2;jn+m : (7)Analogously to Equation 5, although here we employ IDF, the spatial similarityof douments X and Y issims(X;Y ) = overs(Xs; Ys) �RWS(Xs; Ys) (8)where Xs and Ys are the spatial referenes in X and Y .



4.4 TDT AlgorithmAs stated in Setion 2, the detetion of �rst stories relies on the traking. In otherwords, if a doument is not found suÆiently similar to any of the previouslydeteted ones, it is onsidered a �rst story. This kind of method is alled single-pass lustering [20℄, as the luster of a new data point is resolved in a single run.We employ two kinds of approahes: one using Kullbak-Leibler divergene andanother of heuristi kind.Skew Divergene Kullbak-Leibler divergene measures the distane betweentwo probability mass funtions. It has been used with relevane models in TDTwith some suess [7℄. We adopt it in a di�erent manner: in order to determinethe relative signi�ane of the evidene of eah semanti lass, we build a modelfor similarity,myes, and a model for dissimilarity,mno. The models are averagedistributions of pair-wise omparisons in the training material. The underlyingassumption is that the model for similaritymyes has higher values in eah of thesemanti lasses than those of the model of dissimilarity mno. Therefore, whenomparing two douments that disuss the same event, the distribution of thelass-wise omparison should be loser to the modelmyes than to the modelmnoWe utilize the Kullbak-Leibler divergene to measure the distane to both ofthe models to see whether the output of the omparison is loser to the averagedistribution between two douments on the same or di�erent event. Thus, wewrite D(mjjr) =X m()(logm()� log r()) (9)where  is a semanti lass, m is the model, and r is the distribution of thesimilarity per semanti lass. Sine the results of the semanti lass omparisonsdo not neessarily yield a probability distribution, we need to takle the zerovalues. Instead of smoothing, we adopt the Skew Divergene [21℄,s�(r;m) = D(mjj�r + (1� �)m) (10)where � 2 [0; 1℄. Now, the algorithm desribed in Figure 4 uses the ratio of theSkew Divergene with the similarity and dissimilarity models, i.e.,s�(r;myes)s�(r;mno) ; (11)in determining to whih the omparison result r is loser to. The suitable thresh-old value � is obtained by empirial experiments with the training data.The algorithm proeeds as follows: Initially, the set of events is empty as westart proessing the inoming douments one by one. The doument vetor v hasa sub-vetor v for eah semanti lass . The doument vetor is then omparedto eah of the found events, and the results from the lass-wise omparisons arestored in distribution dist. If the maximum of Equation 11 exeeds the threshold�, the vetor of the resulting event is updated (line 16). Otherwise, the doumentis onsidered a �rst story and is added to the found events.



1 found  ();2 for eah new doument d3 v  buildVetor(d);4 max  0; event  ();5 for eah found e6 dist  ();7 for eah semanti lass 8 add(sim(v; e); dist);9 end;10 if ( s�(dist,myes)/ s�(dist,mno) > max )11 then max  s�(dist,myes)/ s�(dist,mno));12 event  e;13 �;14 end;15 if ( max > � )16 then update(event, v);17 else add(v, found);18 �;19 end;Fig. 4. A single-pass lustering algorithm using Skew Divergene.Heuristi Thresholding Another approah is to assign heuristially foundweights to semanti lasses. The di�erene to the algorithm of Figure 4 is thaton lines 10 and 11 there is a sum of the similarity sores of the semanti lasses,X2C � � sim(v; e); (12)instead of Equation 11. The � reets the importane of semanti lass  withrespet to the others, for we do not onsider semanti lasses equally important.That is, we multiply the similarity of the loations, names, terms and tem-poral with �loations = 2:0; �names = 2:0; �terms = 0:8 and �temporal = 1:0,respetively. temporal evidene is the least important sine it tends to be highfor the douments published on the same day. On the average, terms o-ourmore frequently than names and loations, and hene the latter two havehigher weights. A proper optimization would be an obvious improvement. How-ever, the optimization riteria would be rather triky, beause the evaluation ofa TDT is system is not straight-forward.We also reward for having positive values in any three of the lasses names,loations, temporal and terms, and espeially if there non-zero values in allof them. On the ontrary, we do not want to determine two douments similarbased only on loations, temporals or names, and therefore we punish forthe absene of evidene of terms. In pratie, rewarding means multiplying with1.5 and punishing by 0.5.



5 Experiments5.1 CorpusOur orpus onsists of 10384 Finnish online news douments from April 1st 2001to Deember 31st, 2001. We have manually assigned 5807 douments to events.The training material onsisting of 1918 douments yields 79 events and thetesting material omprises 3909 douments with 85 events. The events in thetesting set vary from the Siberian oods and the prolonged dotors' strike inFinland to the �rst spae tourist, the presidental eletions in Peru and the riotsof June 2001 in Gothenburg, Sweden.We employ Connexor's 1 funtional dependeny grammar based parser in ex-trating terms, i.e., nouns, adjetives and verbs. The details of our approah toreognizing and resolving temporal expressions are reported in [17℄. In extratingloations and names we rely on Connexor's Named Entity reognizer. Table 4desribes the average doument in the orpus. There are less than 5 instanes ofloations and over 6 instanes of names in eah doument on the average. Theportion of terms is onsiderably larger than that of any of the other lasses.Table 4. Test  orpus statistis: Exp(X) is the expetation, V ar(X) the variane andStd(X) the standard deviation of the size X of the given semanti lass.semanti lass Exp(X) V ar(X) Std(X)loations 4.460 16.698 4.086names 6.541 37.629 6.134terms 56.363 576.363 24.008temporals 2.669 5.013 2.239total words 105.578 1773.370 42.285In addition, we have manually lassi�ed the testing douments to 17 ate-gories that form the �rst level of the International Press and TeleommuniationsCounil (IPTC) taxonomy 2. The distribution of the lasses is illustrated in Fig-ure 5. On the average, a doument is assigned to 1.46 ategories. The largestlasses are number 4, eonomy, business and �nane, and number 11, politis.This lassi�ation has been done in order to derease the number of pair-wise omparisons. Although our orpus at present does not enourage to builda lassi�er, the reported performane of automati text ategorization, however,makes the use of the lasses highly feasible. There are four douments in thetest set that are lassi�ed outside of the lass of the �rst story, and they annotbe orretly traked. In other words, these four douments do not have mutualategories with the rest of the douments dealing with the same events.1 http://www.onnexor.om2 http://www.ipt.org
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Fig. 5. The distribution of IPTC lasses in the test orpus.The ontents of our ontology is listed in Table 5. The data is based on mate-rial provided by Statistis Finland 3. Sine the orpus ontains a good number ofdomesti events, we have added another ontology from the same soure in addi-tion to the global one. The domesti loations ontain all the ounties, provinesand ommunes of Finland.5.2 Detetion and Traking ResultsWe have made the following assumptions: The douments that do not have anevent assigned to them in the orpus do not ount as �rst stories. In addition, iftwo douments that are not assigned to any event are found to disuss the sameevent, it does not a�et the results. These unlabeled douments interfere withthe traking, if they are assigned to some event or if some labeled doument isfound similar to them.The methods were evaluated with preision, reall, and their ombinationF1-measure. The evaluation measures omply with the following formulas:Preision = P = relevants foundall foundReall = R = relevants foundall relevantF1-measure = F1 = 2PRP+R3 http://www.stat.fi Table 5. Ontology statistis.type typeontinents 6 mountain peaks 269regions 23 mountains 116ountries 270 rivers 369administrative distrits 1422 domesti loations 576ities 4116 oeans/seas 77deserts 35 lakes 276



An event is represented by a entroid, or atually the average of the �rst andthe last doument assigned to an event.We ran experiments with Skew Divergene and Heuristi Thresholding. Inaddition, in order to provide a baseline, we ran test also with Cosine oeÆ-ient [20℄, with and without the semanti lasses. Table 5.2 shows the resultsof the experiments. In order to ompare the methods, we ombined the F1-measures to indiate overall eÆieny of eah method. The average is listed onthe right. The overall F1-measure was maximized to obtain the results. Eah rowis produed by one threshold value, i.e., the same threshold is used in both thetraking and the detetion. The onsiderable di�erene between preision andreall shows the diÆulty of optimizing both tasks at the same time. Beausethe tasks are so interrelated, it is hard to ome up with a good optimizationriteria.Seondly, the performane of Skew Divergene seems very poor. Either thereis something wrong with the model, or four variables is not enough for measuringdivergene. Presumably, this kind of modeling requires larger masses of dataand variables. However, the result does not ontradit those reported in [22℄:Kullbak-Leibler, though applied in di�erent way, performed onsistently worsepreision and reall than Cosine.Table 6. The results of detetion and trakingDetetion Trakingmethod P R F1D P R F1T F1D+F1T2Cosine 0.473 0.237 0.315 0.214 0.766 0.334 0.325Cosine (SC) 0.531 0.294 0.379 0.286 0.500 0.363 0.371Skew Divergene 0.400 0.190 0.258 0.207 0.545 0.300 0.279Heuristi 0.551 0.905 0.685 0.688 0.450 0.544 0.620Another striking observation is the high performane of the heuristi ap-proah. Simple rules based on intuition and observations outperform all of theother methods by far. The high reall in detetion is probably due to the lowerpreision: sine there are more douments onsidered �rst stories, there are moreorret ones. A deent preision in traking also helps.Uniformly through out the results, there seems to be a onnetion betweenthe detetion preision and the traking reall as well as between the detetionreall and the traking preision. A high value in one results in a high value inthe other.In all, the results, though modest, are at least not onsiderably worse thanthose reported by Papka [5℄, for example. They are still less than what Allan etal. would all aeptable.
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