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t. Topi
 Dete
tion and Tra
king is an event-based informationorganization task where online news streams are monitored in order tospot new unreported events and link do
uments with previously dete
tedevents. The dete
tion has proven to perform rather poorly with tradi-tional information retrieval approa
hes. We present an approa
h thatformalizes temporal expressions and augments spatial terms with on-tologi
al information and uses this data in the dete
tion. In addition,instead using a single term ve
tor as a do
ument representation, we splitthe terms into four semanti
 
lasses and pro
ess and weigh the 
lassesseparately. The approa
h is motivated by experiments.1 Introdu
tionTopi
 Dete
tion and Tra
king (TDT) is fairly re
ent area of information re-trieval. It aims to monitor the online news stream in order to automati
ally spotnew unreported news events (�rst story dete
tion) and assigning do
uments topreviously dete
ted events (topi
 tra
king, 
luster dete
tion)(see e.g. [1{3℄ ). Forexample, think of an information worker or a spe
ialist who has to deal with sev-eral in
oming news-streams that report various things taking pla
e in the world.The information worker might want to follow the 
ourse of events regarding bush�res in Australia, the development of the presidential ele
tions in Fran
e, or justbe informed if anything new takes pla
e in Portugal or in the metal industry,for example. Given a news story, a TDT system would have to be able to atta
hit to any previous dis
ussions about the event portrayed in the story { else thestory would be regarded as new. The pro
ess of dete
ting new events has been
onsidered diÆ
ult and the existing information retrieval methodology has haddiÆ
ulties in this kind of event-based information organization [4℄.We present an approa
h for TDT that exploits semanti
 
lasses, i.e., 
lasses
onsisting terms that have similar meaning: lo
ations, proper names, temporalexpressions and general terms. Instead of the traditional do
ument ve
tor, ourrepresentation has four ve
tors that reside in disparate spa
es. In addition, weformalize temporal expressions and provide them an interpretation on a globaltime-line and we evaluate the relevan
e of two spatial referen
es with respe
tto an ontology. We outline a simple approa
h utilizing this kind of 
omplexrepresentations and 
ompare it with single-ve
tor methods.



This paper is organized as follows: Se
tion 2 gives a short introdu
tion tothe previous results in TDT. The event ve
tors are presented in Se
tion 3 andSe
tion 4 deals with the 
omparing these ve
tors. Se
tion 5 illustrates our ex-periments. Se
tion 6 is a 
on
lusion.2 Previous WorkTDT related resear
h begun in 1996 with DARPA funded pilot study [1℄. Theresear
hers set out to experiment the feasibility of TDT systems using existingte
hnology. Quite soon the traditional methods for information retrieval werefound more or less inadequate for online dete
tion purposes. First story dete
-tion was 
hara
terized queryless information retrieval as we do not know whatwe are looking for, i.e., we want to dete
t the unexpe
ted, new. Thus, query-based retrieval methods seemed insuÆ
ient [2℄. The tra
king task is similar toinformation �ltering but with very few examples to work with. Sin
e the tasksare interrelated, the poor performan
e in dete
tion results in poor tra
king per-forman
e. Allan, Lavrenko and Jin redu
ed the topi
 dete
tion to topi
 tra
king,and showed that the performan
e of tra
king is una

eptably low for eÆ
ient�rst story dete
tion. They 
on
luded that \e�e
tive �rst story dete
tion is eitherimpossible or requires substantially di�erent approa
hes" [4℄.Furthermore, the 
on
ept of event is problemati
: though it appears to beintuitively quite 
lear, it is diÆ
ult to establish a solid de�nition. Usually, it isunderstood as \something happening in a 
ertain pla
e at a 
ertain time" [5℄.Soon after the laun
hing of TDT program, the s
ope was 
on�ned to eventdete
tion and tra
king (e.g. [6℄), but re
ently the fo
us has returned to spottingdynami
 topi
s that 
enter around a seminal events [3, 7℄. However, the de�nitionone adopts has an impa
t on the performan
e of the system [8℄.The methods applied in TDT 
over a good portion of the prevailing IR meth-ods: the majority of the approa
hes in TDT have relied on some sort of 
luster-ing: Single-Pass Clustering [1, 2, 8℄ or hierar
hi
al Group-Average Clustering [2℄.Also, Hidden Markov Models [9℄, Ro

hio [10℄, k-Nearest Neighbours [10℄, naiveBayes [11℄, probabilisti
 Expe
tation-Maximization models [12℄ and Kullba
k{Leibler divergen
e [7℄ have been used.In these approa
hes, the do
uments are represented as ve
tors while theevents are either 
entroids, i.e., 
ompilations of the ve
tors assigned to the event,or a set of do
ument ve
tors without generalization, as is the 
ase with kNN.The terms have been weighted with tf-idf variants [4, 10℄, surprisingness [6℄, andTime De
ay [1℄, for instan
e. Allan et al. investigated the use of named entities(NE) in the ve
tor model [13℄. Similarly, Yang et al. [14℄ extra
ted lo
ations,names of individuals and organizations, time and date referen
es, and sums ofmoney and per
entages for NE-weighting.



3 Event Ve
torMaking the distin
tion between two di�erent air disasters or train a

idents hasnot been easy. The terms of two do
uments dis
ussing the same kind of eventtend to 
onverge and therefore a term ve
tor is not able to represent the deli
atedistin
tion between do
uments regarding similar but not the same event [1℄.However, Allan, Lavrenko and Papka suspe
t that only a small number of termsis adequate to make the distin
tion between di�erent news events [6℄. Intuitively,it would be temporal expressions, lo
ations and names that would vary morethan other terms.A news do
ument regarding an event reports at the barest what happened,where it happened, when it happened, and who was involved. Previous dete
-tion and tra
king approa
hes have tried to en
apsulate these fa
ts in a singleve
tor. In order to attain the deli
ate distin
tions mentioned above, to avoidthe problems with the term-spa
e maintenan
e and still maintain robustness,we assign ea
h of the questions a semanti
 
lass [8℄, i.e., the words that havemeaning of the same type. The semanti
 
lass of lo
ations 
ontains all thepla
es mentioned in the do
ument, and thus gives an idea, where the event tookpla
e. Similarly, temporals, i.e., the temporal expressions name a logi
al ob-je
t, that is, a point of on a global time-line, and bind the do
ument onto thetime-axis. names are proper names and tell who was involved. What happenedis represented by 'normal' words whi
h we 
all terms. These 
omprise nouns,adje
tives and verbs.The representation of the do
ument using semanti
 
lasses is illustrated inFigure 1. This event ve
tor 
omprises four sub-ve
tors that reside in distin
tspa
es due to the semanti
al dissimilarity. If two do
uments 
oin
ide in temporalexpressions and lo
ations, for example, it would suggest that they are dis
ussingthe same event. Obviously, news events are reported quite promptly, and thus thetemporal similarity would be quite high for the news published on the same day.Likewise, the spatial similarity based solely on large areas, su
h as 
ontinents, isof 
ourse weaker than similarity based on more spe
i�
 lo
ations.
U.S. NAVY

WEDNESDAY

CALIFORNIA PACIFIC OCEAN

SUBMARINE RECORD FIRE RESEARCH

NAMES
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TEMPORALS

LOCATIONS

Fig. 1. An example of event ve
tor.\The U.S. Navy diesel resear
h submarine thatholds the world's deep-diving re
ord 
aught �re in the Pa
i�
 O
ean o� California onWednesday and all 43 people aboard were res
ued, the Navy said." (Washington Post,May 22, 2002)



4 Measuring SimilarityThe use of semanti
 
lasses enables us to perform the similarity 
omparisons
lass-wise, i.e., examining the 
orresponding sub-ve
tors of two event ve
tors ata time. This results in slight di�eren
e in the ways of determining the similarity.First, we present a general term weighting approa
h, whi
h is elaborated fromour previous work [8℄. Then, we outline 
omparison of temporal and spatialreferen
es, and �nally our dete
tion and tra
king algorithm.4.1 General Term WeightTypi
ally, the short online news di�er from dete
tive stories in that they giveaway story in the �rst few senten
es. We aim to exploit this stru
tural featurein term weighting. Thus, we use the ranking of ea
h o

urren
e of the term,i.e., the ordinal of the senten
e in whi
h the term takes pla
e in measuring theimportan
e of the term. The rank-s
ore of a term t o

urring m times isrs(t) = mXk=1 12 ln tk ; (1)where tk is the ranking of the kth instan
e of term t. With rank-s
oring,the instan
es of terms in the �rst senten
e (or title) are assigned weight 12ln1 =11 = 1. The rank-s
ore de
ays as the ranking of the senten
e grows, but the(natural) logarithm is there to modify the di�eren
e between two 
onse
utiverankings: instan
es in the eighth and ninth senten
es have a di�eren
e only of0:019 (= 0:237� 0:218).In order to determine the weight of the interse
tion of two do
uments, we
al
ulate the ratio between the rank-s
ore of the interse
tion and the rank-s
oresof the do
uments. Naturally, the informativeness of the terms themselves variesas well. Thus, loyal to the traditions of IR, we multiply the rank-s
ores withinverted do
ument frequen
y, IDF. For example, let X and Y be sets of terms.Then their ranking-weighted similarity (RWS) equals toRWS(X;Y ) = PjX\Y jk=1 rs(tk) � IDF (tk)PjXjj=1 rs(tj) +PjY jl=1 rs(tl) (2)The interse
tion jX \ Y j 
ontains all the o

urren
es of terms 
ommon toboth do
uments. Thus, if word 'airport' o

urs twi
e in X and on
e in Y , thereare three o

urren
es in the interse
tion. Therefore, the weight of the interse
tionequals to 1, if the two do
uments are identi
al, and 0 if the do
uments have no
ommon terms.4.2 Temporal SimilarityTemporal expressions often 
onvey their information impli
itly. This means thatby examining the surfa
e forms is seldom of any avail. For example, �nding the



expression 'last Monday' in two do
uments tells little of their similarity, sin
e thereferent of the expression 
hanges with respe
t to the moment of utteran
e. We
onstru
t automata for temporal expression pattern re
ognition similarly to [15℄.The found patterns do not make sense without augmented information, and thuswe 
anonize the expressions with a formalized 
alendar [16℄ and a set of shift andspan operations [17℄. As a result, we provide ea
h re
ognized expression with asemanti
al interpretation as an interval on a global time-line T with respe
t tothe publi
ation date-stamp.In our approa
h, the temporal similarity of two do
uments is a result of apair-wise 
omparison of the expressions: ea
h start-end pair of one do
ument is
ompared to ea
h of the start-end pairs of the other. Krippendor� has 
ondu
tedvarious investigations with intervals [18℄ and motivated by his work we proposea 
ross-tabulation illustrated in Figure 2. It shows intervals of two sets A =fA1; A2; A3g and B = fB1; B2; B3; B4g on time-axis t. The diagonal representsthe syn
hronous points between the two time-axis. The shaded areas 
orrespondto the overlapping intervals. For example, A3 and B4 have mat
hing startingpoint on the time-axis, but mismat
hing end points. Thus, B4 
overs A3 onlypartially.
A3

A2

A1

B1 B2 B3 B4

t

t

Fig. 2. A 
ross-tabulation of two sets of intervals A and B.If the two sets 
ontain the same intervals, they 
over ea
h other 
ompletely.In su
h 
ase, all of the intervals would be shaded 
ompletely along the diagonalin Figure 2. In 
ase there are disparate intervals, the larger intervals provideweaker 
overage than shorter ones. As an example, 
onsider 
omparing a dayand a year versus a day and a weekend.Galton lists 13 possible relations for two intervals [19℄. In Table 4.2, we arenot 
on
erned, whether A is before B or vi
e versa, and hen
e the numberof relations is de
reased down to seven. We want to take these relations into



Table 1. The possible relations of two intervals. Note that the �rst six relations alsohave the 
onverse. [ti; tj ℄ is before [tk; tl℄ if tj < tk[ti; tj ℄ meets [tk; tl℄ if tj = tk[ti; tj ℄ overlaps [tk; tl℄ if ti < tk < tj < tl[ti; tj ℄ begins [tk; tl℄ if ti = tk ^ tj < tl[ti; tj ℄ falls within [tk; tl℄ if ti < tk ^ tj < tl[ti; tj ℄ �nishes [tk; tl℄ if ti < tk ^ tj = tl[ti; tj ℄ equals [tk; tl℄ if ti = tk ^ tj = tla

ount while 
omparing the temporal eviden
e of two do
uments. The morethe intervals overlap ea
h other with respe
t to their lengths, the higher thesimilarity. We employ a simple weight fun
tion �t : T � T ! IR su
h that�t([ti; tj ℄; [tk; tl℄) = 2�([ti; tj ℄ \ [tk; tl℄)�(ti; tj) +�(tk; tl) ; (3)where � : T � T ! IR; �(ti; ti) = 1 is the duration (in days) of the giveninterval. The weight fun
tion results in 1 if the expressions are an exa
t mat
hand 0 if the expressions are distin
t. All of the relations presented above are
ontained within the �t-fun
tion, sin
e they 
an be represented in terms of theinterse
tion.In Figure 2, the interse
tions A3 \B4 and A2 \B3 would result in higher �t-value than the any of the interse
tionsA1\B1, A1\B3, and A1\B2, be
ause thesizes of A3 \B4 and A2 \B3 are 
loser to the sizes of the union of the intervals,i.e., jA3 [ B4j and jA2 [ B3j, and thus there is less un
overed area.In pra
ti
e, the pair-wise �t-weights are 
al
ulated in what we 
all a 
overmatrix illustrated in Table 2. The 
overage of an interval Ti;j is 
al
ulated by
hoosing the maximum vi;j of the weights for that term. If an interval T1;i is
overed with an interval T2;j of equal weight, the maximum value is v1;i = 1. Onthe 
ontrary, if it is not 
overed at all, the maximum value yields v1;j = 0. In
ases of partial or weak 
over the value varies in (0; 1) depending on the sizes ofthe intervals.Table 2. A 
over matrix. The maximum 
overage for the interval T1;1 would yieldv1;1 = maxj�m(�t(T1;1; T2;j)). T2;1 . . . T2;m maxT1;1 �t(T1;1; T2;1) . . . �t(T1;1; T2;m) v1;1... ... ...T1;n �t(T1;n; T2;1) . . . �t(T1;n; T2;m) v1;nmax v2;1 v2;m



The total 
overage of the two sets of intervals is the sum of all the maximumvalues vi;j divided by the number of intervals. Let T1 and T2 be sets of intervalssu
h that T1 
ontains n intervals and T2 
ontains m intervals. The 
overage ofthe intervals is 
overt(T1; T2) = Pni=1 v1;i +Pmj=1 v2;jn+m : (4)Be
ause �t = 1 stands for the perfe
t mat
h, vi;j 2 [0; 1℄ and, sin
e 
overt(T1; T2)is really an average of the maximums, also 
overt(T1; T2) 2 [0; 1℄We want to weight the temporal expressions with respe
t to the their ranking-weighted similarity of Equation 2, but without the IDF-weight. Thus the tem-poral similarity of do
uments X and Y yieldssimt(X;Y ) = 
overt(Xt; Yt) �RWS0(Xt; Yt) (5)where Xt and Yt are the temporal expressions in X and Y , respe
tively, andRWS0(Xt; Yt) is the ranking s
ore without the IDF-value.4.3 Spatial SimilarityThe introdu
tion of a geographi
al ontology enables measuring similarity of thespatial referen
es on a �ner s
ale than just binary de
ision mat
h{mismat
h.For example, when reporting 
oods in Siberia, the terms su
h as Russia, Lena,Vilyuy, Lensk and Yakutsk have nothing in 
ommon in the surfa
e forms, buttheir geographi
al proximity and relevan
e 
an be understood by the virtue ofan ontology. In other words, we tie ea
h spatial expression to a global stru
tureand thus provide it with a meaning that relates to other spatial expressions.We employ a 5-level hierar
hy in our knowledge of the world as portrayed inTable 3. The levels involved depend on the type of the lo
ation. As to land, thelevels are 
ontinent, region, 
ountry, administrative region (e.g., provin
e, state,
ommune, muni
ipality, muni
ipio, gemeente, kommun), and 
ity. In additionto administrative region, level 4 
an also be mountains, seas, lakes and (larger)rivers that in
lude or 
onne
t to mountain peaks and (smaller) rivers.Table 3. An example of ontology.Lo
ation Type Level 1 Level 2 Level 3 Level 4 Level 5Delft 
ity Europe W.Europe Netherlands Zuid-Holland DelftEurope 
ontinent Europe { { { {Haag 
ity Europe W.Europe Netherlands Zuid-Holland HaagMain river Europe W.Europe Germany Rhine MainNetherlands 
ountry Europe W.Europe Netherlands { {North Sea sea Atlanti
 North Sea { { {Rhine river Europe W.Europe Switzerland, North Sea RhineGermany,Fran
e,Netherlands



Figure 3 shows a simpli�ed taxonomy 
ontaining a number of pla
es. Ea
hnode in the tree stands for a lo
ation. In 
ase we want to measure the similarityof two su
h lo
ations, we 
ompare the length of the 
ommon path to the sum ofthe lengths of the paths to the elements, and hen
e the spatial similarity �s oftwo spatial terms l1 and l2 yields�s(l1; l2) = (level(l1 \ l2))(level(l1) + level(l2)) (6)In 
ase of identity, we assign �s(l1; l1) = 1. Now, 
omparing Fran
e and Germanywould result in 1=(2 + 2) = 1=4 sin
e the length of the 
ommon path (Europe)is 1 and the length of path to both Fran
e and Germany equals to 2. Similarly,
omparing China and Paris would result in 0=(2+3) = 0. Paris and Fran
e havesimilarity of 2=(2 + 3) = 2=5.
FRANCE GERMANY NETHERLANDS

OCEANIA EUROPEASIA

PARIS LYON

CHINA JAPAN

Fig. 3. A simpli�ed ontologi
al taxonomy.Sin
e all the spatial referen
es of one do
ument are to be 
ompared with allof the spatial referen
es of another, we employ the 
over matrix presented inSe
tion 4.2. For ea
h term we 
hoose only the maximum similarity, and let theaverage of maximums stand for the spatial similarity of two do
uments analo-gously to temporal 
overage. Let L1 and L2 be sets of spatial terms su
h thatL1 
ontains n terms and L2 
ontainsm terms, respe
tively. The spatial 
overageis de�ned as follows
overs(L1; L2) = Pni=1 v1;i +Pmj=1 v2;jn+m : (7)Analogously to Equation 5, although here we employ IDF, the spatial similarityof do
uments X and Y issims(X;Y ) = 
overs(Xs; Ys) �RWS(Xs; Ys) (8)where Xs and Ys are the spatial referen
es in X and Y .



4.4 TDT AlgorithmAs stated in Se
tion 2, the dete
tion of �rst stories relies on the tra
king. In otherwords, if a do
ument is not found suÆ
iently similar to any of the previouslydete
ted ones, it is 
onsidered a �rst story. This kind of method is 
alled single-pass 
lustering [20℄, as the 
luster of a new data point is resolved in a single run.We employ two kinds of approa
hes: one using Kullba
k-Leibler divergen
e andanother of heuristi
 kind.Skew Divergen
e Kullba
k-Leibler divergen
e measures the distan
e betweentwo probability mass fun
tions. It has been used with relevan
e models in TDTwith some su

ess [7℄. We adopt it in a di�erent manner: in order to determinethe relative signi�
an
e of the eviden
e of ea
h semanti
 
lass, we build a modelfor similarity,myes, and a model for dissimilarity,mno. The models are averagedistributions of pair-wise 
omparisons in the training material. The underlyingassumption is that the model for similaritymyes has higher values in ea
h of thesemanti
 
lasses than those of the model of dissimilarity mno. Therefore, when
omparing two do
uments that dis
uss the same event, the distribution of the
lass-wise 
omparison should be 
loser to the modelmyes than to the modelmnoWe utilize the Kullba
k-Leibler divergen
e to measure the distan
e to both ofthe models to see whether the output of the 
omparison is 
loser to the averagedistribution between two do
uments on the same or di�erent event. Thus, wewrite D(mjjr) =X
 m(
)(logm(
)� log r(
)) (9)where 
 is a semanti
 
lass, m is the model, and r is the distribution of thesimilarity per semanti
 
lass. Sin
e the results of the semanti
 
lass 
omparisonsdo not ne
essarily yield a probability distribution, we need to ta
kle the zerovalues. Instead of smoothing, we adopt the Skew Divergen
e [21℄,s�(r;m) = D(mjj�r + (1� �)m) (10)where � 2 [0; 1℄. Now, the algorithm des
ribed in Figure 4 uses the ratio of theSkew Divergen
e with the similarity and dissimilarity models, i.e.,s�(r;myes)s�(r;mno) ; (11)in determining to whi
h the 
omparison result r is 
loser to. The suitable thresh-old value � is obtained by empiri
al experiments with the training data.The algorithm pro
eeds as follows: Initially, the set of events is empty as westart pro
essing the in
oming do
uments one by one. The do
ument ve
tor v hasa sub-ve
tor v
 for ea
h semanti
 
lass 
. The do
ument ve
tor is then 
omparedto ea
h of the found events, and the results from the 
lass-wise 
omparisons arestored in distribution dist. If the maximum of Equation 11 ex
eeds the threshold�, the ve
tor of the resulting event is updated (line 16). Otherwise, the do
umentis 
onsidered a �rst story and is added to the found events.



1 found  ();2 for ea
h new do
ument d3 v  buildVe
tor(d);4 max  0; event  ();5 for ea
h found e6 dist  ();7 for ea
h semanti
 
lass 
8 add(sim
(v
; e
); dist);9 end;10 if ( s�(dist,myes)/ s�(dist,mno) > max )11 then max  s�(dist,myes)/ s�(dist,mno));12 event  e;13 �;14 end;15 if ( max > � )16 then update(event, v);17 else add(v, found);18 �;19 end;Fig. 4. A single-pass 
lustering algorithm using Skew Divergen
e.Heuristi
 Thresholding Another approa
h is to assign heuristi
ally foundweights to semanti
 
lasses. The di�eren
e to the algorithm of Figure 4 is thaton lines 10 and 11 there is a sum of the similarity s
ores of the semanti
 
lasses,X
2C �
 � sim
(v
; e
); (12)instead of Equation 11. The �
 re
e
ts the importan
e of semanti
 
lass 
 withrespe
t to the others, for we do not 
onsider semanti
 
lasses equally important.That is, we multiply the similarity of the lo
ations, names, terms and tem-poral with �lo
ations = 2:0; �names = 2:0; �terms = 0:8 and �temporal = 1:0,respe
tively. temporal eviden
e is the least important sin
e it tends to be highfor the do
uments published on the same day. On the average, terms 
o-o

urmore frequently than names and lo
ations, and hen
e the latter two havehigher weights. A proper optimization would be an obvious improvement. How-ever, the optimization 
riteria would be rather tri
ky, be
ause the evaluation ofa TDT is system is not straight-forward.We also reward for having positive values in any three of the 
lasses names,lo
ations, temporal and terms, and espe
ially if there non-zero values in allof them. On the 
ontrary, we do not want to determine two do
uments similarbased only on lo
ations, temporals or names, and therefore we punish forthe absen
e of eviden
e of terms. In pra
ti
e, rewarding means multiplying with1.5 and punishing by 0.5.



5 Experiments5.1 CorpusOur 
orpus 
onsists of 10384 Finnish online news do
uments from April 1st 2001to De
ember 31st, 2001. We have manually assigned 5807 do
uments to events.The training material 
onsisting of 1918 do
uments yields 79 events and thetesting material 
omprises 3909 do
uments with 85 events. The events in thetesting set vary from the Siberian 
oods and the prolonged do
tors' strike inFinland to the �rst spa
e tourist, the presidental ele
tions in Peru and the riotsof June 2001 in Gothenburg, Sweden.We employ Connexor's 1 fun
tional dependen
y grammar based parser in ex-tra
ting terms, i.e., nouns, adje
tives and verbs. The details of our approa
h tore
ognizing and resolving temporal expressions are reported in [17℄. In extra
tinglo
ations and names we rely on Connexor's Named Entity re
ognizer. Table 4des
ribes the average do
ument in the 
orpus. There are less than 5 instan
es oflo
ations and over 6 instan
es of names in ea
h do
ument on the average. Theportion of terms is 
onsiderably larger than that of any of the other 
lasses.Table 4. Test 
 orpus statisti
s: Exp(X) is the expe
tation, V ar(X) the varian
e andStd(X) the standard deviation of the size X of the given semanti
 
lass.semanti
 
lass Exp(X) V ar(X) Std(X)lo
ations 4.460 16.698 4.086names 6.541 37.629 6.134terms 56.363 576.363 24.008temporals 2.669 5.013 2.239total words 105.578 1773.370 42.285In addition, we have manually 
lassi�ed the testing do
uments to 17 
ate-gories that form the �rst level of the International Press and Tele
ommuni
ationsCoun
il (IPTC) taxonomy 2. The distribution of the 
lasses is illustrated in Fig-ure 5. On the average, a do
ument is assigned to 1.46 
ategories. The largest
lasses are number 4, e
onomy, business and �nan
e, and number 11, politi
s.This 
lassi�
ation has been done in order to de
rease the number of pair-wise 
omparisons. Although our 
orpus at present does not en
ourage to builda 
lassi�er, the reported performan
e of automati
 text 
ategorization, however,makes the use of the 
lasses highly feasible. There are four do
uments in thetest set that are 
lassi�ed outside of the 
lass of the �rst story, and they 
annotbe 
orre
tly tra
ked. In other words, these four do
uments do not have mutual
ategories with the rest of the do
uments dealing with the same events.1 http://www.
onnexor.
om2 http://www.ipt
.org
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Fig. 5. The distribution of IPTC 
lasses in the test 
orpus.The 
ontents of our ontology is listed in Table 5. The data is based on mate-rial provided by Statisti
s Finland 3. Sin
e the 
orpus 
ontains a good number ofdomesti
 events, we have added another ontology from the same sour
e in addi-tion to the global one. The domesti
 lo
ations 
ontain all the 
ounties, provin
esand 
ommunes of Finland.5.2 Dete
tion and Tra
king ResultsWe have made the following assumptions: The do
uments that do not have anevent assigned to them in the 
orpus do not 
ount as �rst stories. In addition, iftwo do
uments that are not assigned to any event are found to dis
uss the sameevent, it does not a�e
t the results. These unlabeled do
uments interfere withthe tra
king, if they are assigned to some event or if some labeled do
ument isfound similar to them.The methods were evaluated with pre
ision, re
all, and their 
ombinationF1-measure. The evaluation measures 
omply with the following formulas:Pre
ision = P = relevants foundall foundRe
all = R = relevants foundall relevantF1-measure = F1 = 2PRP+R3 http://www.stat.fi Table 5. Ontology statisti
s.type type
ontinents 6 mountain peaks 269regions 23 mountains 116
ountries 270 rivers 369administrative distri
ts 1422 domesti
 lo
ations 576
ities 4116 o
eans/seas 77deserts 35 lakes 276



An event is represented by a 
entroid, or a
tually the average of the �rst andthe last do
ument assigned to an event.We ran experiments with Skew Divergen
e and Heuristi
 Thresholding. Inaddition, in order to provide a baseline, we ran test also with Cosine 
oeÆ-
ient [20℄, with and without the semanti
 
lasses. Table 5.2 shows the resultsof the experiments. In order to 
ompare the methods, we 
ombined the F1-measures to indi
ate overall eÆ
ien
y of ea
h method. The average is listed onthe right. The overall F1-measure was maximized to obtain the results. Ea
h rowis produ
ed by one threshold value, i.e., the same threshold is used in both thetra
king and the dete
tion. The 
onsiderable di�eren
e between pre
ision andre
all shows the diÆ
ulty of optimizing both tasks at the same time. Be
ausethe tasks are so interrelated, it is hard to 
ome up with a good optimization
riteria.Se
ondly, the performan
e of Skew Divergen
e seems very poor. Either thereis something wrong with the model, or four variables is not enough for measuringdivergen
e. Presumably, this kind of modeling requires larger masses of dataand variables. However, the result does not 
ontradi
t those reported in [22℄:Kullba
k-Leibler, though applied in di�erent way, performed 
onsistently worsepre
ision and re
all than Cosine.Table 6. The results of dete
tion and tra
kingDete
tion Tra
kingmethod P R F1D P R F1T F1D+F1T2Cosine 0.473 0.237 0.315 0.214 0.766 0.334 0.325Cosine (SC) 0.531 0.294 0.379 0.286 0.500 0.363 0.371Skew Divergen
e 0.400 0.190 0.258 0.207 0.545 0.300 0.279Heuristi
 0.551 0.905 0.685 0.688 0.450 0.544 0.620Another striking observation is the high performan
e of the heuristi
 ap-proa
h. Simple rules based on intuition and observations outperform all of theother methods by far. The high re
all in dete
tion is probably due to the lowerpre
ision: sin
e there are more do
uments 
onsidered �rst stories, there are more
orre
t ones. A de
ent pre
ision in tra
king also helps.Uniformly through out the results, there seems to be a 
onne
tion betweenthe dete
tion pre
ision and the tra
king re
all as well as between the dete
tionre
all and the tra
king pre
ision. A high value in one results in a high value inthe other.In all, the results, though modest, are at least not 
onsiderably worse thanthose reported by Papka [5℄, for example. They are still less than what Allan etal. would 
all a

eptable.



6 Con
lusionsWe have presented a topi
 dete
tion and tra
king approa
h that employs se-manti
 
lasses in event representation. We identi�ed four 
lasses, pla
es, names,temporal expressions and general terms, and ran the 
omparisons of two do
u-ments 
lass-wise. The approa
h relies on heavy use of NLP te
hniques.We have also presented a method to 
ompare temporal and spatial informa-tion in the 
ontext of TDT. The method enables the 
omparison of two relevantterms that di�er in the surfa
e forms.We used a divergen
e of models and heuristi
 approa
h in the dete
tion, andprovided results of plain and simple 
osine 
oeÆ
ient as a baseline.In the future, we will obviously 
on
entrate on developing the models morea

urate, that is, �nding ways in whi
h to represent the yes- and no-distributionswith less noise. We will also make e�orts to build the heuristi
 approa
h a solidtheoreti
al ba
kground. Also, we will run the experiments on the Linguisti
 DataConsortium's TDT data in order to have results that are fully 
omparable withthe previous work.Referen
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