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Abstract. Topic Detection and Tracking is an event-based information
organization task where online news streams are monitored in order to
spot new unreported events and link documents with previously detected
events. The detection has proven to perform rather poorly with tradi-
tional information retrieval approaches. We present an approach that
formalizes temporal expressions and augments spatial terms with on-
tological information and uses this data in the detection. In addition,
instead using a single term vector as a document representation, we split
the terms into four semantic classes and process and weigh the classes
separately. The approach is motivated by experiments.

1 Introduction

Topic Detection and Tracking (TDT) is fairly recent area of information re-
trieval. It aims to monitor the online news stream in order to automatically spot
new unreported news events (first story detection) and assigning documents to
previously detected events (topic tracking, cluster detection)(see e.g. [1-3] ). For
example, think of an information worker or a specialist who has to deal with sev-
eral incoming news-streams that report various things taking place in the world.
The information worker might want to follow the course of events regarding bush
fires in Australia, the development of the presidential elections in France, or just
be informed if anything new takes place in Portugal or in the metal industry,
for example. Given a news story, a TDT system would have to be able to attach
it to any previous discussions about the event portrayed in the story — else the
story would be regarded as new. The process of detecting new events has been
considered difficult and the existing information retrieval methodology has had
difficulties in this kind of event-based information organization [4].

We present an approach for TDT that exploits semantic classes, i.e., classes
consisting terms that have similar meaning: locations, proper names, temporal
expressions and general terms. Instead of the traditional document vector, our
representation has four vectors that reside in disparate spaces. In addition, we
formalize temporal expressions and provide them an interpretation on a global
time-line and we evaluate the relevance of two spatial references with respect
to an ontology. We outline a simple approach utilizing this kind of complex
representations and compare it with single-vector methods.



This paper is organized as follows: Section 2 gives a short introduction to
the previous results in TDT. The event vectors are presented in Section 3 and
Section 4 deals with the comparing these vectors. Section 5 illustrates our ex-
periments. Section 6 is a conclusion.

2 Previous Work

TDT related research begun in 1996 with DARPA funded pilot study [1]. The
researchers set out to experiment the feasibility of TDT systems using existing
technology. Quite soon the traditional methods for information retrieval were
found more or less inadequate for online detection purposes. First story detec-
tion was characterized queryless information retrieval as we do not know what
we are looking for, i.e., we want to detect the unexpected, new. Thus, query-
based retrieval methods seemed insufficient [2]. The tracking task is similar to
information filtering but with very few examples to work with. Since the tasks
are interrelated, the poor performance in detection results in poor tracking per-
formance. Allan, Lavrenko and Jin reduced the topic detection to topic tracking,
and showed that the performance of tracking is unacceptably low for efficient
first story detection. They concluded that “effective first story detection is either
impossible or requires substantially different approaches” [4].

Furthermore, the concept of event is problematic: though it appears to be
intuitively quite clear, it is difficult to establish a solid definition. Usually, it is
understood as “something happening in a certain place at a certain time” [5].
Soon after the launching of TDT program, the scope was confined to event
detection and tracking (e.g. [6]), but recently the focus has returned to spotting
dynamic topics that center around a seminal events [3, 7]. However, the definition
one adopts has an impact on the performance of the system [8].

The methods applied in TDT cover a good portion of the prevailing IR meth-
ods: the majority of the approaches in TDT have relied on some sort of cluster-
ing: Single-Pass Clustering [1, 2, 8] or hierarchical Group-Average Clustering [2].
Also, Hidden Markov Models [9], Rocchio [10], k-Nearest Neighbours [10], naive
Bayes [11], probabilistic Expectation-Maximization models [12] and Kullback—
Leibler divergence [7] have been used.

In these approaches, the documents are represented as vectors while the
events are either centroids, i.e., compilations of the vectors assigned to the event,
or a set of document vectors without generalization, as is the case with kNN.
The terms have been weighted with tf-idf variants [4, 10], surprisingness [6], and
Time Decay [1], for instance. Allan et al. investigated the use of named entities
(NE) in the vector model [13]. Similarly, Yang et al. [14] extracted locations,
names of individuals and organizations, time and date references, and sums of
money and percentages for NE-weighting.



3 Event Vector

Making the distinction between two different air disasters or train accidents has
not been easy. The terms of two documents discussing the same kind of event
tend to converge and therefore a term vector is not able to represent the delicate
distinction between documents regarding similar but not the same event [1].
However, Allan, Lavrenko and Papka suspect that only a small number of terms
is adequate to make the distinction between different news events [6]. Intuitively,
it would be temporal expressions, locations and names that would vary more
than other terms.

A news document regarding an event reports at the barest what happened,
where it happened, when it happened, and who was involved. Previous detec-
tion and tracking approaches have tried to encapsulate these facts in a single
vector. In order to attain the delicate distinctions mentioned above, to avoid
the problems with the term-space maintenance and still maintain robustness,
we assign each of the questions a semantic class [8], i.e., the words that have
meaning of the same type. The semantic class of LOCATIONS contains all the
places mentioned in the document, and thus gives an idea, where the event took
place. Similarly, TEMPORALS, i.e., the temporal expressions name a logical ob-
ject, that is, a point of on a global time-line, and bind the document onto the
time-axis. NAMES are proper names and tell who was involved. What happened
is represented by 'normal’ words which we call TERMS. These comprise nouns,
adjectives and verbs.

The representation of the document using semantic classes is illustrated in
Figure 1. This event vector comprises four sub-vectors that reside in distinct
spaces due to the semantical dissimilarity. If two documents coincide in temporal
expressions and locations, for example, it would suggest that they are discussing
the same event. Obviously, news events are reported quite promptly, and thus the
temporal similarity would be quite high for the news published on the same day.
Likewise, the spatial similarity based solely on large areas, such as continents, is
of course weaker than similarity based on more specific locations.

NAMES % U.S. NAVY

LOCATIONS 4 CALIFORNIA H PACIFICOCEAN‘

TEMPORALS WEDNESDAY

TERMS 4 SUBMARINE H RECORD H FIRE H RESEARCH ‘

Fig.1. An example of event vector.“The U.S. Navy diesel research submarine that
holds the world’s deep-diving record caught fire in the Pacific Ocean off California on
Wednesday and all 43 people aboard were rescued, the Navy said.” (Washington Post,
May 22, 2002)



4 Measuring Similarity

The use of semantic classes enables us to perform the similarity comparisons
class-wise, i.e., examining the corresponding sub-vectors of two event vectors at
a time. This results in slight difference in the ways of determining the similarity.
First, we present a general term weighting approach, which is elaborated from
our previous work [8]. Then, we outline comparison of temporal and spatial
references, and finally our detection and tracking algorithm.

4.1 General Term Weight

Typically, the short online news differ from detective stories in that they give
away story in the first few sentences. We aim to exploit this structural feature
in term weighting. Thus, we use the ranking of each occurrence of the term,
i.e., the ordinal of the sentence in which the term takes place in measuring the
importance of the term. The rank-score of a term ¢ occurring m times is

rs(t) = Z 5 1r11 0 (1)
k=1

where ?; is the ranking of the kth instance of term ¢. With rank-scoring,
the instances of terms in the first sentence (or title) are assigned weight 2,% =
% = 1. The rank-score decays as the ranking of the sentence grows, but the
(natural) logarithm is there to modify the difference between two consecutive
rankings: instances in the eighth and ninth sentences have a difference only of
0.019 (= 0.237 — 0.218).

In order to determine the weight of the intersection of two documents, we
calculate the ratio between the rank-score of the intersection and the rank-scores
of the documents. Naturally, the informativeness of the terms themselves varies
as well. Thus, loyal to the traditions of IR, we multiply the rank-scores with
inverted document frequency, IDF. For example, let X and Y be sets of terms.
Then their ranking-weighted similarity (RWS) equals to

\k)iTY\ rs(ty) * IDF(ty)
X Y
X rs(ty) + 0 rs(t)

The intersection |X N Y| contains all the occurrences of terms common to
both documents. Thus, if word ’airport’ occurs twice in X and once in Y, there
are three occurrences in the intersection. Therefore, the weight of the intersection
equals to 1, if the two documents are identical, and 0 if the documents have no
common terms.

RWS(X,Y) = (2)

4.2 Temporal Similarity

Temporal expressions often convey their information implicitly. This means that
by examining the surface forms is seldom of any avail. For example, finding the



expression 'last Monday’ in two documents tells little of their similarity, since the
referent of the expression changes with respect to the moment of utterance. We
construct automata for temporal expression pattern recognition similarly to [15].
The found patterns do not make sense without augmented information, and thus
we canonize the expressions with a formalized calendar [16] and a set of shift and
span operations [17]. As a result, we provide each recognized expression with a
semantical interpretation as an interval on a global time-line 7 with respect to
the publication date-stamp.

In our approach, the temporal similarity of two documents is a result of a
pair-wise comparison of the expressions: each start-end pair of one document is
compared to each of the start-end pairs of the other. Krippendorff has conducted
various investigations with intervals [18] and motivated by his work we propose
a cross-tabulation illustrated in Figure 2. It shows intervals of two sets A =
{A1, Ay, A3} and B = {B1, B2, B3, B4} on time-axis t. The diagonal represents
the synchronous points between the two time-axis. The shaded areas correspond
to the overlapping intervals. For example, A3 and B; have matching starting
point on the time-axis, but mismatching end points. Thus, B4 covers A3z only
partially.
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Fig. 2. A cross-tabulation of two sets of intervals A and B.

If the two sets contain the same intervals, they cover each other completely.
In such case, all of the intervals would be shaded completely along the diagonal
in Figure 2. In case there are disparate intervals, the larger intervals provide
weaker coverage than shorter ones. As an example, consider comparing a day
and a year versus a day and a weekend.

Galton lists 13 possible relations for two intervals [19]. In Table 4.2, we are
not concerned, whether A is before B or vice versa, and hence the number
of relations is decreased down to seven. We want to take these relations into



Table 1. The possible relations of two intervals. Note that the first six relations also
have the converse.

[ti, t;] is before [ty,t;]  ift; <tx

[ti, tj] meets [tk, tl] ift; =ty

[ti,t;] overlaps [tx, ] ift; <tp <tj <t
[ti,t]‘] begins [tk,tl] ift; =t A t; <t
[ti,tj] falls within [tk,tl] ift; <t ANt; <ty
[ti, tj] finishes [tk,tl] ift;i <t ANtj =1t
[ti,tj] equals [tk,tl] lf ti = tk A\ t]‘ = tl

account while comparing the temporal evidence of two documents. The more
the intervals overlap each other with respect to their lengths, the higher the
similarity. We employ a simple weight function y; : 7 x 7 — IR such that

(3)

where A : T x T — IR, A(t;,t;) = 1 is the duration (in days) of the given
interval. The weight function results in 1 if the expressions are an exact match
and 0 if the expressions are distinct. All of the relations presented above are
contained within the u;-function, since they can be represented in terms of the
intersection.

In Figure 2, the intersections A3 N By and As N B3 would result in higher pu;-
value than the any of the intersections A; N By, A; N B3, and A; N B>, because the
sizes of A3 N B4 and Ay N B3 are closer to the sizes of the union of the intervals,
i.e., |A3 U By| and |A U Bs|, and thus there is less uncovered area.

In practice, the pair-wise u;-weights are calculated in what we call a cover
matriz illustrated in Table 2. The coverage of an interval 7T} ; is calculated by
choosing the maximum v; ; of the weights for that term. If an interval 77 ; is
covered with an interval 75 ; of equal weight, the maximum value is v; ; = 1. On
the contrary, if it is not covered at all, the maximum value yields v; ; = 0. In
cases of partial or weak cover the value varies in (0, 1) depending on the sizes of
the intervals.

Table 2. A cover matrix. The maximum coverage for the interval 77,; would yield
v1,1 = maxj<m (pe(T1,1, To,j))-

To Tom max
Tia|pe(Tra,T21) oo pwe(Tr, Tam) | v1a

T |pt(Tin, To1) - oo pt(Thny To,m) | v1n

s

max V2,1 V2,m



The total coverage of the two sets of intervals is the sum of all the maximum
values v; ; divided by the number of intervals. Let 77 and T3 be sets of intervals
such that 77 contains n intervals and 75 contains m intervals. The coverage of

the intervals is n m
Doim Vit Zj:l V2,5

covery(T1,Ts) = T

(4)
Because p; = 1 stands for the perfect match, v; ; € [0, 1] and, since cover(T1,T>)
is really an average of the maximums, also cover;(T1,T3) € [0, 1]

We want to weight the temporal expressions with respect to the their ranking-
weighted similarity of Equation 2, but without the IDF-weight. Thus the tem-
poral similarity of documents X and Y yields

simy(X,Y) = covery(Xy, Y:) *x RWS'(Xy, V) (5)

where X; and Y; are the temporal expressions in X and Y, respectively, and
RWS'(X;,Y:) is the ranking score without the IDF-value.

4.3 Spatial Similarity

The introduction of a geographical ontology enables measuring similarity of the
spatial references on a finer scale than just binary decision match—-mismatch.
For example, when reporting floods in Siberia, the terms such as Russia, Lena,
Vilyuy, Lensk and Yakutsk have nothing in common in the surface forms, but
their geographical proximity and relevance can be understood by the virtue of
an ontology. In other words, we tie each spatial expression to a global structure
and thus provide it with a meaning that relates to other spatial expressions.

We employ a 5-level hierarchy in our knowledge of the world as portrayed in
Table 3. The levels involved depend on the type of the location. As to land, the
levels are continent, region, country, administrative region (e.g., province, state,
commune, municipality, municipio, gemeente, kommun), and city. In addition
to administrative region, level 4 can also be mountains, seas, lakes and (larger)
rivers that include or connect to mountain peaks and (smaller) rivers.

Table 3. An example of ontology.

Location Type|Level 1 |Level 2 Level 3 Level 4 Level 5
Delft city |Europe |W.Europe|Netherlands|Zuid-Holland|Delft
Europe continent|Europe |- - - -
Haag city|Europe |W.Europe|Netherlands|Zuid-Holland|Haag
Main river|Europe |W.Europe|Germany Rhine Main
Netherlands country|Europe |W.Europe|Netherlands |- -
North Sea sea|Atlantic|North Sea|- - -
Rhine river|Europe |W.Europe|Switzerland,|North Sea  |Rhine

Germany,

France,

Netherlands




Figure 3 shows a simplified taxonomy containing a number of places. Each
node in the tree stands for a location. In case we want to measure the similarity
of two such locations, we compare the length of the common path to the sum of
the lengths of the paths to the elements, and hence the spatial similarity u, of
two spatial terms /; and [5 yields

(level(lh N2))
level(ly) + level(ls))

ps(l1,l2) = ( (6)

In case of identity, we assign us(l1,/1) = 1. Now, comparing France and Germany
would result in 1/(2 4+ 2) = 1/4 since the length of the common path (Europe)
is 1 and the length of path to both France and Germany equals to 2. Similarly,
comparing China and Paris would result in 0/(2+ 3) = 0. Paris and France have
similarity of 2/(2 + 3) = 2/5.

FRANCE / GERMANY \NETHERLANDS

Fig. 3. A simplified ontological taxonomy.

Since all the spatial references of one document are to be compared with all
of the spatial references of another, we employ the cover matrix presented in
Section 4.2. For each term we choose only the maximum similarity, and let the
average of maximums stand for the spatial similarity of two documents analo-
gously to temporal coverage. Let L; and Lo be sets of spatial terms such that
L1 contains n terms and Ly contains m terms, respectively. The spatial coverage
is defined as follows

D1 Vit Do Vs
n+m )

(7)

coverg(Ly, Ly) =

Analogously to Equation 5, although here we employ IDF, the spatial similarity
of documents X and Y is

simg(X,Y) = covers(Xs,Ys) * RWS(Xs,Ys) (8)

where X and Y, are the spatial references in X and Y.



4.4 TDT Algorithm

As stated in Section 2, the detection of first stories relies on the tracking. In other
words, if a document is not found sufficiently similar to any of the previously
detected ones, it is considered a first story. This kind of method is called single-
pass clustering [20], as the cluster of a new data point is resolved in a single run.
We employ two kinds of approaches: one using Kullback-Leibler divergence and
another of heuristic kind.

Skew Divergence Kullback-Leibler divergence measures the distance between
two probability mass functions. It has been used with relevance models in TDT
with some success [7]. We adopt it in a different manner: in order to determine
the relative significance of the evidence of each semantic class, we build a model
for similarity, mes, and a model for dissimilarity, m,,,. The models are average
distributions of pair-wise comparisons in the training material. The underlying
assumption is that the model for similarity m ., has higher values in each of the
semantic classes than those of the model of dissimilarity m,,,. Therefore, when
comparing two documents that discuss the same event, the distribution of the
class-wise comparison should be closer to the model m,., than to the model m,,,

We utilize the Kullback-Leibler divergence to measure the distance to both of
the models to see whether the output of the comparison is closer to the average
distribution between two documents on the same or different event. Thus, we
write

D(mlr) Zm (logm(c) — logr(c)) (9)

where ¢ is a semantic class, m is the model, and r is the distribution of the
similarity per semantic class. Since the results of the semantic class comparisons
do not necessarily yield a probability distribution, we need to tackle the zero
values. Instead of smoothing, we adopt the Skew Divergence [21],

Sa(r,m) = D(mllar + (1 — a)m) (10)

where a € [0, 1]. Now, the algorithm described in Figure 4 uses the ratio of the
Skew Divergence with the similarity and dissimilarity models, i.e.,

S(I (T’ myes)

Sa (Ta mno)
in determining to which the comparison result r is closer to. The suitable thresh-
old value 6 is obtained by empirical experiments with the training data.

The algorithm proceeds as follows: Initially, the set of events is empty as we
start processing the incoming documents one by one. The document vector v has
a sub-vector v, for each semantic class c. The document vector is then compared
to each of the found events, and the results from the class-wise comparisons are
stored in distribution dist. If the maximum of Equation 11 exceeds the threshold
6, the vector of the resulting event is updated (line 16). Otherwise, the document
is considered a first story and is added to the found events.

: (11)



1 found + ();

2 for each new document d

3 v « buildVector(d);

4 maz + 0; event « ();

5 for each found e

6 dist + ();

7 for each semantic class ¢

8 add(simc(ve, e.), dist);

9 end;

10 if ( sa(dist,myes)/ sa(dist,mp,) > maz )
11 then maz + sq(dist,myes)/ sa(dist,mno));
12 event — e;

13 fi;

14 end;

15 if ( max > 6 )

16 then update(event, v);

17 else add(v, found);

18 fi;

19 end;

)

Fig. 4. A single-pass clustering algorithm using Skew Divergence.

Heuristic Thresholding Another approach is to assign heuristically found
weights to semantic classes. The difference to the algorithm of Figure 4 is that
on lines 10 and 11 there is a sum of the similarity scores of the semantic classes,

Zﬁc * Simc(vmec)v (12)

ceC

instead of Equation 11. The 3, reflects the importance of semantic class ¢ with
respect to the others, for we do not consider semantic classes equally important.
That is, we multiply the similarity of the LOCATIONS, NAMES, TERMS and TEM-
PORAL with Blocations = 2-055names = 2-07ﬁterms = 0.8 and ﬁtemporal = 1.0,
respectively. TEMPORAL evidence is the least important since it tends to be high
for the documents published on the same day. On the average, TERMS co-occur
more frequently than NAMES and LOCATIONS, and hence the latter two have
higher weights. A proper optimization would be an obvious improvement. How-
ever, the optimization criteria would be rather tricky, because the evaluation of
a TDT is system is not straight-forward.

We also reward for having positive values in any three of the classes NAMES,
LOCATIONS, TEMPORAL and TERMS, and especially if there non-zero values in all
of them. On the contrary, we do not want to determine two documents similar
based only on LOCATIONS, TEMPORALS or NAMES, and therefore we punish for
the absence of evidence of TERMS. In practice, rewarding means multiplying with
1.5 and punishing by 0.5.



5 Experiments

5.1 Corpus

Our corpus consists of 10384 Finnish online news documents from April 1st 2001
to December 31st, 2001. We have manually assigned 5807 documents to events.
The training material consisting of 1918 documents yields 79 events and the
testing material comprises 3909 documents with 85 events. The events in the
testing set vary from the Siberian floods and the prolonged doctors’ strike in
Finland to the first space tourist, the presidental elections in Peru and the riots
of June 2001 in Gothenburg, Sweden.

We employ Connexor’s ! functional dependency grammar based parser in ex-
tracting TERMS, i.e., nouns, adjectives and verbs. The details of our approach to
recognizing and resolving temporal expressions are reported in [17]. In extracting
LOCATIONS and NAMES we rely on Connexor’s Named Entity recognizer. Table 4
describes the average document in the corpus. There are less than 5 instances of
LOCATIONS and over 6 instances of NAMES in each document on the average. The
portion of TERMS is considerably larger than that of any of the other classes.

Table 4. Test c orpus statistics: Fzp(X) is the expectation, Var(X) the variance and
Std(X) the standard deviation of the size X of the given semantic class.

semantic class Ezp(X) Var(X) Std(X)

LOCATIONS 4.460 16.698 4.086
NAMES 6.541 37.629 6.134
TERMS 56.363 576.363 24.008
TEMPORALS 2.669 5.013 2.239

total words 105.578 1773.370 42.285

In addition, we have manually classified the testing documents to 17 cate-
gories that form the first level of the International Press and Telecommunications
Council (IPTC) taxonomy 2. The distribution of the classes is illustrated in Fig-
ure 5. On the average, a document is assigned to 1.46 categories. The largest
classes are number 4, economy, business and finance, and number 11, politics.

This classification has been done in order to decrease the number of pair-
wise comparisons. Although our corpus at present does not encourage to build
a classifier, the reported performance of automatic text categorization, however,
makes the use of the classes highly feasible. There are four documents in the
test set that are classified outside of the class of the first story, and they cannot
be correctly tracked. In other words, these four documents do not have mutual
categories with the rest of the documents dealing with the same events.

! http://www.connexor.com
2 http://www.iptc.org
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Fig. 5. The distribution of IPTC classes in the test corpus.

The contents of our ontology is listed in Table 5. The data is based on mate-
rial provided by Statistics Finland 2. Since the corpus contains a good number of
domestic events, we have added another ontology from the same source in addi-
tion to the global one. The domestic locations contain all the counties, provinces
and communes of Finland.

5.2 Detection and Tracking Results

We have made the following assumptions: The documents that do not have an
event assigned to them in the corpus do not count as first stories. In addition, if
two documents that are not assigned to any event are found to discuss the same
event, it does not affect the results. These unlabeled documents interfere with
the tracking, if they are assigned to some event or if some labeled document is
found similar to them.

The methods were evaluated with precision, recall, and their combination
F1-measure. The evaluation measures comply with the following formulas:
relevants found

all found
Recall = R = relevants found

all relevant

_ _ 2PR
Fl-measure = F'1 = IR

Precision = P =

® http://www.stat.fi

Table 5. Ontology statistics.

type type

continents 6 mountain peaks 269
regions 23 mountains 116
countries 270 rivers 369
administrative districts 1422 domestic locations 576
cities 4116 oceans/seas 7

deserts 35 lakes 276




An event is represented by a centroid, or actually the average of the first and
the last document assigned to an event.

We ran experiments with Skew Divergence and Heuristic Thresholding. In
addition, in order to provide a baseline, we ran test also with Cosine coeffi-
cient [20], with and without the semantic classes. Table 5.2 shows the results
of the experiments. In order to compare the methods, we combined the F1-
measures to indicate overall efficiency of each method. The average is listed on
the right. The overall F1-measure was maximized to obtain the results. Each row
is produced by one threshold value, i.e., the same threshold is used in both the
tracking and the detection. The considerable difference between precision and
recall shows the difficulty of optimizing both tasks at the same time. Because
the tasks are so interrelated, it is hard to come up with a good optimization
criteria.

Secondly, the performance of Skew Divergence seems very poor. Either there
is something wrong with the model, or four variables is not enough for measuring
divergence. Presumably, this kind of modeling requires larger masses of data
and variables. However, the result does not contradict those reported in [22]:
Kullback-Leibler, though applied in different way, performed consistently worse
precision and recall than Cosine.

Table 6. The results of detection and tracking

Detection Tracking
method P [ R [Fip| P | R [Firp||PofFflx
Cosine 0.473(0.237|0.315(|0.214|0.766|0.334|| 0.325
Cosine (SC) 0.531{0.294(0.379|0.286|0.500/0.363|| 0.371
Skew Divergence||0.400{0.190|0.258/{0.207|0.545|0.300{| 0.279
Heuristic 0.551{0.905|0.685||0.688|0.450|0.544|| 0.620

Another striking observation is the high performance of the heuristic ap-
proach. Simple rules based on intuition and observations outperform all of the
other methods by far. The high recall in detection is probably due to the lower
precision: since there are more documents considered first stories, there are more
correct ones. A decent precision in tracking also helps.

Uniformly through out the results, there seems to be a connection between
the detection precision and the tracking recall as well as between the detection
recall and the tracking precision. A high value in one results in a high value in
the other.

In all, the results, though modest, are at least not considerably worse than
those reported by Papka [5], for example. They are still less than what Allan et
al. would call acceptable.



6 Conclusions

We have presented a topic detection and tracking approach that employs se-
mantic classes in event representation. We identified four classes, places, names,
temporal expressions and general terms, and ran the comparisons of two docu-
ments class-wise. The approach relies on heavy use of NLP techniques.

We have also presented a method to compare temporal and spatial informa-
tion in the context of TDT. The method enables the comparison of two relevant
terms that differ in the surface forms.

We used a divergence of models and heuristic approach in the detection, and
provided results of plain and simple cosine coefficient as a baseline.

In the future, we will obviously concentrate on developing the models more
accurate, that is, finding ways in which to represent the yes- and no-distributions
with less noise. We will also make efforts to build the heuristic approach a solid
theoretical background. Also, we will run the experiments on the Linguistic Data
Consortium’s TDT data in order to have results that are fully comparable with
the previous work.
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