
ATR's Artificial Brain (CAM-Brain) Project: A Sample of What Individual CoDi-1Bit Model
Evolved Neural Net Modules Can Do

Hugo de Garis
Dept. 6, ATR-HIP

Kyoto, Japan
www.hip.atr.co.jp/�degaris

Michael Korkin
Genobyte, Inc.

Boulder, CO, USA
www.genobyte.com

Felix Gers
IDSIA

Lugano, Switzerland
www.idsia.ch/�felix

Michael Hough
CS Dept., Stanford University

Stanford, CA, USA
www.stanford.edu/�mhough

Abstract- This paper presents a sample of what evolved
neural net circuit modules using the socalled ”CoDi-1Bit”
neural net model can do. This work is part of an 8 year
research project at ATR which aims to build an artifi-
cial brain containing a billion neurons by the year 2001,
that will be used to control the behaviors of a kitten robot
”Robokoneko”. It looks as though the figure is more likely
to be 40 million, but the numbers are not of great concern.
What is more important is the issue of evolvability of the
cellular automata (CA) based neural net circuits which
grow and evolve in special FPGA (Field Programmable
Gate Array) hardware, at hardware speeds (e.g. updating
150 billion CA cells per second, and performing a com-
plete run of a genetic algorithm, i.e. tens of thousands
of circuit growths and fitness evaluations, to evolve the
elite neural net circuit in about 1 second). The special-
ized hardware which performs this evolution is labeled
the CAM-Brain Machine (CBM). It implements the CoDi-
1Bit model, and will be delivered to ATR probably in Jan-
uary 1999. The CBM should make practical the assem-
blage of 10,000s of evolved neural net modules into hu-
manly defined artificial brains. For the past few months,
the latest hardware version of the CBM has been simu-
lated in software to see just how evolvable and functional
individual evolved modules can be. This paper reports on
some of the results of these simulations.

1 Introduction

ATR's CAM-Brain Project aims to build an artificial brain
containing up to a billion artificial neurons by the year 2001.
The essential ingredient in this project is a special piece of
hardware, based on Xilinx company's FPGA XC6264 chips
which grow and evolve cellular automata based neural net-
work circuits (modules) at electonic speeds. This machine,
called a ”CBM” (CAM-Brain Machine), can update the cel-
lular automata (CA) cells which form the basis of the neural
network at a rate of 150 Billion a second, and can complete a
full run of a genetic algorithm with tens of thousands of cir-
cuit grows and fitness evaluations of those grown circuits in
about one second. Hence the CBM will make ”brain build-

ing” practical. Tens of thousands (and higher magnitudes)
of evolved neural net modules can be evolved and assembled
into humanly defined artificial brain architectures. The cellu-
lar automata based neural net model used in the CBM had to
be simple enough to be implementable in state-of-the-art pro-
grammable logic (the Xilinx XC6264 chips). The constraints
imposed by the electronics were rather severe, so we could
not afford to give many bits to the states of the neural signals
which traverse the grown neural nets. In fact, the model we
use is called ”CoDi” (Collect and Distribute) and uses only
single bit signaling [1]. Thus the inputs and outputs of each
”CoDi module” are spiketrains.

We were then faced with the problem of interpreting the
meaning of a spiketrain input or output (i.e. choosing a rep-
resentation for the spiketrains). After some initial experimen-
tation with various spiketrain representations, we eventually
settled on one we called ”SIIC” (Spike Interval Information
Coding” [3], which convolves the spiketrain output with a
digitized analog convolution function (see section 3 for an
explanation, and Fig. 1 for the convolution function). The
result of this convolving (convolution) is an analog waveform
(usually time varying) output which can then be compared to
some user supplied analog target waveform. The fitness of the
CoDi module (the CA based neural net circuit) grown and sig-
naled by the CBM is then a function of the sum of the absolute
differences between the target and the actual analog wave-
form values at each clocktick. Experiments were performed
using SIIC to generate random ”Fourier” curves of the formsin(t)+0:3 cos(2t)+0:5 sin(3t) etc. Constantly firing binary
inputs were supplied to a CoDi module, which was evolved
to output a spike train which when convolved with the SIIC
gave the above ”Fourier” curve quite accurately. See Fig. 2.
Thus the SIIC enabled users (”evolutionary engineers” (EEs))
to convert the abstract spiketrains into a visually comprehen-
sible analog wave form, whose fitness can be easily measured
when compared to a target waveform.

However, despite the success of the SIIC, we felt that this
was only half the story. We needed some process which
would perform the opposite task, namely converting an ana-
log waveform into a spike train. This is done with the ”Hough
Spiker Algorithm (HSA)” which is explained in section 4.

0 20 40 60 80 100 120 140 160 180 200
−30

−20

−10

0

10

20

30

40

50

60

70

Fi
lte

r A
m

pl
itu

de

Figure 1: Decoding filter for the spike trains.

0 50 100 150 200 250

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 50 100 150 200 250
0

0.5

1

Figure 2: Sum of sines and cosines generated by the CoDi
model and SIIC method.

The SIIC and the HSA combined will be very useful to evo-
lutionary engineers (EEs), because they will be able to think
entirely in terms of analog waveform inputs and outputs when
evolving CoDi modules.

An EE will be able to use the HSA (the ”spiker”) in the
context of CoDi module evolution. The EE specifies (for ex-
ample) two analog inputs I1 and I2. Each of these inputs are
passed through the HSA, resulting in two spiketrains ST1 and
ST2, which are input to each CoDi module in the genetic al-
gorithm population. Each CoDi module outputs (usually) a
single spiketrain STout which passes through the SIIC con-
volver resulting in an output analog waveform WFout. This
output waveform can then be compared to a target waveform
WFtarg to measure the CoDi module's fitness. Note, that the
inputs to a CoDi module need not begin as analog waveforms.
They can take the form of raw bit streams and be input di-
rectly to the CoDi module without a spiking conversion. For
example, if a CoDi module is to be used to detect some ”vi-
sual” pattern of 1 bit pixels, then those 1 bit pixels can be
supplied directly to the CoDi module's input points. How-
ever, with the HSA approach, it may be possible to take ana-
log input, e.g. in the form of speech sounds or phonemes etc,
and convert them to spiketrains beforehand. Using the HSA
and the SIIC as two transforming procedures (i.e. from ana-

log to spiketrain and back), the EE is freed from having to
think in terms of spiketrains, which may be difficult to inter-
pret. These two transforms will allow the evolution of CoDi
modules to be automated to some extent. For example, one
can imagine EEs drawing or computer generating an initial
input analog waveform that represents some pattern to be de-
tected, i.e. a CoDi module is to be evolved that gives a high
output when that particular waveform is presented to it, and
a low output for any other waveform. Since the CBM can
evolve such a module in about a second, it will be possible to
evolve many such modules rather quickly and then assemble
them into humanly defined artificial brain architectures.

Actually, evolving a pattern detector as suggested above
may involve several sequential and partial fitness measure-
ments. For example, to evolve a particular waveform WFa de-
tector module, would involve presenting the waveform WFa
to it (the ”positive” example) and then sequentially, ”nega-
tive” examples which differ from it. The target output wave-
form for the positive example would be a high output (strong
activation) for the positive example fitness score F+, and a
low output (weak activation) for the negative examples fitness
scores F(i)-, for each of the negative examples ”i”. The total
fitness of the module would be the sum of the partial fitnesses
(F+ + F(i)- for all ”i”). To change the weighting of the partial
fitnesses, the number of clocks ticks over which the partial
fitness measurements occur can be changed, e.g. the time
for the positive example measurement could be increased to
equal the total number of clocks ticks for the negative exam-
ples. The CBM itself clears out the internal 1 bit signals for
each partial fitness measurement, and then sums the partial
fitness values, while using the same circuit.

The above gives an overview of the context in which the
Hough Spiker Algorithm (HSA) operates, otherwise simply
supplying the algorithm itself would be rather meaningless.
The remainder of this paper is structured as follows. Sec-
tion 2 gives a brief description of the ”CoDi-1Bit” model [1],
which is implemented by the CAM-Brain Machine (CBM)
whose electronic restrictions impose a 1 bit neural signaling
model. This 1 bit signaling then requires interpretation, and
hence the need for transformations such as the SIIC and the
HSA. Section 3 gives a brief description of the SIIC (Spike
Interval Information Coding) representation which converts a
spiketrain into an analog signal. Section 4 presents the Hough
Spiker Algorithm (HSA) itself which does the opposite, i.e.
converts an analog signal into a spiketrain, and shows some
results of simulation experiments. Section 5 presents a sam-
ple of evolved CoDi modules, showing their functionalities
and evolvabilities. Section 6 summarizes.

2 The ”CoDi-1Bit” Neural Network Model &
CAM-Brain Machine (CBM)

The CBM implements a so called ”CoDi” (i.e. Collect and
Distribute) [1] neural model. It is a simplified cellular au-
tomata based neural network model developed at ATR HIP

(Kyoto, Japan) in the summer of 1996 with two goals in mind.
One was to make neural network functioning much simpler
and more compact compared to the original ATR HIP model,
to achieve considerably faster evolution runs on the CAM-8
(Cellular Automata Machine), a dedicated hardware tool de-
veloped at Massachusetts Institute of Technology in 1989.

In order to evolve one neural module, a population of 30-
100 modules is run through a genetic algorithm for 200-600
generations, resulting in up to 60,000 different module eval-
uations. Each module evaluation consists of - firstly, grow-
ing a new set of axonic and dendritic trees, guided by the
module's chromosome. These trees interconnect several hun-
dred neurons in the 3D cellular automata space of 13,824 cells
(24*24*24). Evaluation is continued by sending spiketrains
to the module through its efferent axons (external connec-
tions) to evaluate its performance (fitness) by looking at the
outgoing spiketrains. This typically requires up to 1000 up-
date cycles for all the cells in the module.

On the MIT CAM-8 machine, it takes up to 69 minutes to
go through 829 billion cell updates needed to evolve a single
neural module, as described above. A simple ”insect- like”
artificial brain has hundreds of thousands of neurons arranged
into ten thousand modules. It would take 500 days (running
24 hours a day) to finish the computations.

Another limitation was apparent in the full brain simula-
tion mode, involving thousands of modules interconnected to-
gether. For a 10,000-module brain, the CAM-8 is capable of
updating every module at the rate of one update cycle 1.4
times a second. However, for real time control of a robotic
device, an update rate of 50-100 cycles per module, 10-20
times a second is needed. So, the second goal was to have
a model which would be portable into electronic hardware
to eventually design a machine capable of accelerating both
brain evolution and brain simulation by a factor of 500 com-
pared to CAM-8. Now that these two transforms exist, it will
be a lot more practical now for EEs to evolve CoDi modules
quickly and easily, provided of course that the evolvability of
the modules is adequate.

The CoDi model operates as a 3D cellular automata (CA).
Each cell is a cube which has six neighbor cells, one for each
of its faces. By loading a different phenotype code into a cell,
it can be reconfigured to function as a neuron, an axon, or a
dendrite. Neurons are configurable on a coarser grid, namely
one per block of 2*2*3 CA cells. Cells are interconnected
with bidirectional 1-bit buses and assembled into 3D modules
of 13,824 cells (24*24*24).

Modules are further interconnected with 92 1-bit connec-
tions to function together as an artificial brain. Each module
can receive signals from up to 92 other modules and send its
output signals to up to 32,768 modules. These intermodular
connections are virtual and implemented as a cross-reference
list in a module interconnection memory (see below).

In a neuron cell, five (of its six) connections are dendritic
inputs, and one is an axonic output. A 4-bit accumulator sums
incoming signals and fires an output signal when a threshold

is exceeded. Each of the inputs can perform an inhibitory or
an excitatory function (depending on the neuron's chromo-
some) and either adds to or subtracts from the accumulator.
The neuron cell's output can be oriented in 6 different ways
in the 3D space. A dendrite cell also has five inputs and one
output, to collect signals from other cells. The incoming sig-
nals are passed to the output with an 5-bit XOR function. An
axon cell is the opposite of a dendrite. It has 1 input and 5
outputs, and distributes signals to its neighbors. The ”Collect
and Distribute” mechanism of this neural model is reflected
in its name ”CoDi”. Blank cells perform no function in an
evolved neural network. They are used to grow new sets of
dendritic and axonic trees during the evolution mode.

Before the growth begins, the module space consists of
blank cells. Each cell is seeded with a 6-bit chromosome. The
chromosome will guide the local direction of the dendritic
and axonic tree growth. Six bits serve as a mask to encode
different growth instructions, such as grow straight, turn left,
split into three branches, block growth, T- split up and down
etc. Before the growth phase starts, some cells are seeded
as neurons at random locations. As the growth starts, each
neuron continuously sends growth signals to the surrounding
blank cells, alternating between ”grow dendrite” (sent in the
direction of future dendritic inputs) and ”grow axon” (sent to-
wards the future axonic output). A blank cell which receives
a growth signal becomes a dendrite cell, or an axon cell, and
further propagates the growth signal, being continuously sent
by the root neuron, to other blank cells. The direction of
the propagation is guided by the 6-bit growth instruction, de-
scribed above. This mechanism grows a complex 3D system
of branching dendritic and axonic trees, with each tree having
one neuron cell associated with it. The trees can conduct sig-
nals between the neurons to perform complex spatio-temporal
functions. The end-product of the growth phase is a pheno-
type bitstring which encodes the type and spatial orientation
of each cell.

3 The Spike Interval Information Coding Rep-
resentation, ”SIIC”

3.1 Choosing a Representation for the CoDi-1Bit Signal-
ing

The constraints imposed by state-of-the-art programmable
(evolvable) FPGAs in 1998 are such that the CA based model
(the CoDi model) had to be very simple in order to be im-
plementable within those constraints. Consequently, the sig-
naling states in the model were made to contain only 1 bit
of information (as happens in nature's ”binary” spike trains).
The problem then arose as to interpretation. How were we to
assign meaning to the binary pulse streams (i.e. the clocked
sequences of 0's and 1's which are a neural net module's in-
puts and outputs? We tried various ideas such as a frequency
based interpretation, i.e. count the number of pulses (i.e. 1s)
in a given time window (of N clock cycles). But this was
thought to be too slow. In an artificial brain with tens of thou-

sands of modules which may be vertically nested to a depth
of 20 or more (i.e. the outputs of a module in layer ”n” get
fed into a module in layer ”n+1”, where ”n” may be as large
as 20 or 30) then the cumulative delays may end up in a total
response time of the robot kitten being too slow (e.g. if you
wave your finger in front of its eye, it might react many sec-
onds later). We wanted a representation that would deliver an
integer or real valued number at each clock tick, i.e. the ulti-
mate in speed. The first such representation we looked at we
called ”unary” i.e. if N neurons on an output surface are firing
at a given clock tick, then the firing pattern represented the
integer N, independently of where the outputs were coming
from. We found this representation to be too stochastic, too
jerky. Ultimately we chose a representation which convolves
the binary pulse string with the convolution function shown
in Fig.1. We call this representation ”SIIC” (Spike Interval
Information Coding) which was inspired by [4]. This repre-
sentation delivers a real valued output at each clock tick, thus
converting a binary pulse string into an analog time dependent
signal. Our team has already published many papers on the
results of this convolution representation work [3]. From Fig.
2 and other similar experiments, we thought the results were
good enough to settle on this representation. The CBM will
implement this representation in the FPGAs when measuring
fitness values at electronic speeds.

3.1.1 Simplified Example

Convolve the spike train1101001 (where the left most bit is
the earliest, the right most bit, the latest) using the convolu-
tion filter valuesf1; 4; 9; 5;�2g. The spike train in this di-
agram moves from left to right across the convolution filter.
Alternatively, one can view the convolution filter (window)
moving across the spike train. The number to the right of the
colon shows the value of the convolution sum at each timet.
time-shifted spike train : 1 0 0 1 0 1 1 ---> (moves left to right)

convolution filter : 1 4 9 5 -2

1 0 0 1 0 1 1
0 0 0 0 0 : 0 t = -1

1 0 0 1 0 1 1
1 0 0 0 0 : 1 t = 0

1 0 0 1 0 1 1
1 4 0 0 0 : 5 t = 1

1 0 0 1 0 1 1
0 4 9 0 0 : 13 t = 2

1 0 0 1 0 1 1
1 0 9 5 0 : 15 t = 3

1 0 0 1 0 1 1
0 4 0 5 -2 : 7 t = 4

1 0 0 1 0 1
0 0 9 0 -2 : 7 t = 5

1 0 0 1 0
1 0 0 5 0 : 6 t = 6

1 0 0 1
0 4 0 0 -2 : 2 t = 7

1 0 0
0 0 9 0 0 : 9 t = 8

1 0
0 0 0 5 0 : 5 t = 9

1
0 0 0 0 -2 : -2 t = 10

Hence, the time-dependent output of the convolution filter
takes the values(0; 1; 5; 13; 15; 7; 7; 6; 2; 9; 5;�2). This is a
time varying analog signal, which is the desired result.

4 The ”Hough Spiker Algorithm” (HSA) for De-
convolution

Section 3 above explained the use of the SIIC (Spike Interval
Information Coding) Representation which provides an effi-
cient transformation of a spike train (i.e. string of bits) into a
(clocked) time varying analog signal. We need this interpreta-
tion in order to interpret the spike train output from the CoDi
modules to evaluate their fitness values (e.g. by comparing
the actual converted analog output waveforms with user spec-
ified target waveforms). However, we also need the inverse
process, i.e. an algorithm which takes as input, a clocked
(digitized, i.e. binary numbered) time varying analog signal,
and outputs a spike train. This conversion is needed as an in-
terface between the motors/sensors of the robot bodies (e.g. a
kitten robot) that the artificial brain controls, and the brain's
CoDi modules. However, it is also very useful to users, i.e.
EEs (evolutionary engineers) to be able to think entirely in
terms of analog signals (at both the inputs and outputs) rather
than in abstract, visually unintelligible spike trains. This will
make their task of evolving many CoDi modules much easier.
We therefore present next an algorithm which is the opposite
of the SIIC, namely one which takes as input, a time varying
analog signal, and outputs a spike train, which if later is con-
voluted with the SIIC convolution filter, should result in the
original analog signal.

A brief description of the algorithm used to generate a
spike train from a time varying analog signal is now pre-
sented. It is called the ”Hough Spiker Algorithm” (HSA) and
can be viewed as the inverse of the convolution algorithm de-
scribed above in section 3.

To give an intuitive feel for this deconvolution algorithm,
consider a spike train consisting of a single pulse (i.e. all 0's

with one 1). When this pulse passes through the convolution
function window, it adds each value of the convolution func-
tion to the output in turn.

A single pulse:(100000 : : : t = +1) will be convoluted
with the convolution function expressed as a function of time.
At t = 0 its value will be the first value of the convolution
filter, at t = 1 its value will be the second value of the con-
volution filter, etc. Just as a particular spike train is a se-
ries of spikes with time delays between them, so too the con-
volved spike train will be the sum of the convolution filters,
with (possibly) time delays between them. At each clock tick
when there is a spike, add the convolution filter to the output.
If there is no spike, just shift the time offset and repeat.

The same example:
spike train 1 1 0 1 0 0 1
convolution filter 1 4 9 5 -2

t -> 0 1 2 3 4 5 6 7 8 9 10
out:
1 1 4 9 5 -2
1 1 4 9 5 -2
0 0 0 0 0 0
1 1 4 9 5 -2
0 0 0 0 0 0
0 0 0 0 0 0
1 1 4 9 5 -2

1 5 13 15 7 7 6 2 9 5 -2

In the HSA deconvolution algorithm, we take advantage of
this summation, and in effect do the reverse, i.e. a kind of pro-
gressive subtraction of the convolution function. If at a given
clock tick, the values of the convolution function are less than
the analog values at the corresponding positions, then subtract
the convolution function values from the analog values. The
justification for this is that for the analog values to be greater
than the convolution values, implies that to generate the ana-
log signal values at that clock tick, the CoDi module must
have fired at that moment, and this firing contributed the set
of convolution values to the analog output. Once one has de-
termined that at that clock tick, there should be a spike, one
subtracts the convolution function's values, so that a similar
process can be undertaken at the next clock tick. For example,
to deconvolve the convolved output (using the same value of
the convolution function as in the simple example of the pre-
vious section:

1 5 13 15 7 7 6 2 9 5 -2
compare: 1 4 9 5 -2 convolution function values

It is assumed that spiking will irreversibly raise the value
of the convolved output. If the convolution filter value at a
given clock tick is less than that of the target waveform, spik-
ing will bring the two values closer together. If the waveform
value is still too low after a spike has occurred, a near future
spike will bring the two closer together.

Below is the C code for the algorithm. ”DUR” is the du-
ration of the spike train (the number of bits), ”error” is the

sum of the differences of the convolution value and wave-
form value at each clock tick, ”N_CONV” is the number of el-
ements (integers) in the convolution function, ”wave” stores
the value of the waveform at each clock tick, ”bits” stores
the spiking history (0 or 1) for each clocktick, ”thresh” is
the threshold value to decide when error is small enough for
a spike, ”conv_fn” contains the values of the convolution
function.
void deconv(int wave[], char bits[], int thresh)
{
int i,j,ni;
int error;

for(i=0;i< DUR;i++) {
error=0;
for(j=0;j< N_CONV;j++) {

if(i+j>DUR) break;
if(wave[i+j]< conv_fn[j]) error+=conv_fn[j]-wave[i+j];

}

/* if error is okay, SPIKE! */
if(error< thresh) {

bits[i]=1;
for(j=0;j< N_CONV;j++) {

if(i+j>DUR) break;
wave[i+j]-=conv_fn[j];

}
}
else bits[i]=0;

}
}

Fig. 3 shows an examples of the HSA in action. The orig-
inal input analog signalOi is shown as a stippled line. The
spike train resulting from the analog input is sent into the SIIC
convolutor (shown in Fig. 1). The resulting analog output
should be very close to the originalOi and is shown as a solid
line. The third line near the bottom is the absolute difference
(error) between the two analog signals. The HSA seems to
work well when the values of the waveforms are large and do
not take values close to zero, and do not change too quickly
relative to the time width of the convolution filter window.
An example of applying too stringent an analog wave form is
shown in Fig. 4. It may be possible to simply add a constant
value to incoming analog signals before spiking them and to
ensure that the analog signal does not change too rapidly.

Note however, that the HSA deconvolution algorithm was
only discovered very recently, so the neural net module evolu-
tion that is discussed in section 5, does not use it. The inputs
to these modules as specified by the EE (evolutionary engi-
neer) were binary, not analog.

0 50 100 150 200 250
0

50

100

150

200

250

300

350

400

450

Figure 3:A good result of the Spiker Module.

0 50 100 150 200 250
−50

0

50

100

150

200

250

Figure 4:A not-so-good result of the Spiker Module.

5 A Sampler of CoDi-1Bit Evolved Neural Net
Modules

Since the whole point of using the CBM is to attain a high
evolution speed, it is useful if the representation chosen to in-
terpret the 1 bit signals which enter and leave the CoDi mod-
ules can be unique, otherwise several representations would
need to be implemented in the electronics. (For the CBM
to be efficient, i.e. to evolve CoDi modules in about 1 sec-
ond, fitness measurements need to be performed at electronic
speeds, which implies that the representation chosen for the
signals be implemented directly in the hardware). We chose
the SIIC to be our unique representation. However, as men-
tioned at the bottom of section 4, most of the evolutionary
experiments presented here were already undertaken before
the SIIC representation was chosen. Since the results of these
earlier experiments are interesting in their own right, we re-
port on them here. They show to what extent that CoDi mod-
ules are evolvable and the power of their functionality. The
evolution of SIIC-representation-based and HSA-based mod-
ules will be the subject of work in the very near future, given
that both algorithms are now ready. So is the CBM multi-
module simulation code, so progress should be rather rapid
in the coming months prior to the delivery of the CBM itself.
Once the CBM is delivered, multi-module systems should be

built as fast as we can dream them up. The bottleneck in
building large scale multi-module systems will become hu-
man creativity lag, not module evolution lag (as was the case
with software evolution speeds in the ”pre-CBM era”.) We
now provide a sample of evolved CoDi neural net modules,
their specified functionalities, and their actual performances,
to give a feel for what they can do.

5.1 XOR Module
If a CoDi module could not be evolved to perform something
as simple as an exclusive OR, then the whole CAM-Brain
approach would be cast in doubt, so one of the first things we
tried was to evolve an XOR module. The module size was a
cube of 24 cells in each one of the axes(X;Y;Z) of the 3D
CA space (the standard CBM module size, as implemented
in the hardware). Two binary signals,A andB, on theZ = 0
face of the cube, on axon cells at coordinates of(1; 1; 0) and(7; 1; 0) were input over 64 clock ticks. There were 4 test
cases (using a multi-test fitness measurement:
Case 1:
inputA was a steady stream of 1's for 64 clocks, and
inputB was a steady stream of 1's for 64 clocks.
Case 2:
inputA was a steady stream of 1's for 64 clocks, and
inputB was a steady stream of 0's for 64 clocks.
Case 3:
inputA was a steady stream of 0's for 64 clocks, and
inputB was a steady stream of 1's for 64 clocks.
Case 4:
inputA was a steady stream of 0's for 64 clocks, and
inputB was a steady stream of 0's for 64 clocks.

At the output point(4; 4; 0), the target output values were a
stream of 0's, 1's, 1's and 0's respectively, as a boolean XOR
logic function. The total fitness value was the sum of the
partial fitness values of the 4 test cases, i.e. the total number
of correct output values, giving a theoretical maximum fitness
value of4 � 64 = 256. However, since there are inevitable
time delays, as the signals progress through the CA cells of
the module, this perfect score is not possible.

The elite module, (population of 15, mutation rate of
0.005 per bit per generation, one point crossover rate of
0.6 per chromosome per generation), gave after about 20
generations the following outputs for the 4 cases, with partial
fitness scores of 63, 57, 56, 64 respectively. Hence, total
fitness was 240.
Case 1:
00000001000000000000000000000000000000000000000
00000000000000000
Case 2:
000000011
11111111111111111
Case 3:
00000000111111111111111111111111111111111111111
11111111111111111
Case 4:

000
00000000000000000

So the XOR module evolved fairly quickly and easily.
Note that the XOR case is an example of amulti-test fitness
measurement. For each test, a partial fitness score is obtained,
which is later summed with other partial fitess scores, result-
ing in the overall fitness score of the CoDi module. Between
each partial test, the signal states of the module are cleared,
and a new test run is performed using the same circuit, but
with different input. The same occurs in the CBM hardware.

5.2 Timer Module
One of the first experiments performed, when the CoDi-1Bit
model was proposed, was to see if a CoDi module (consisting
of 4K 3D CA cells, with about 150 artificial neurons in the
4K space) could evolve a ”timer”, i.e. where constantly
firing binary inputs generate at a single cell output (placed
elsewhere in the CA space) a string of 0's during the first 30
clock ticks, then a string of 1's during the next 20 clock ticks,
and finally a string of 0's in the last 20 clocks, as shown
below. This was quite a demanding evolutionary task, which
was a useful test vehicle during the early evolutionary trials.
Target
00000000000000000000000000000011111111111111111
11100000000000000000000

pretty simple. (Note, that the evolution of this module did
not use the SIIC or HSA approaches. Inputs and outputs were
specified directly in binary signals). If a 0 appeared in the
first (0) block, score 1 point. If a 1 appeared in the second (1)
block, score 3 points. If a 0 appeared in the third block (0),
score 2 points. Hence a perfect score would be30 � 1 + 20 �3 + 20 � 2 = 130. Population size was 24, with no crossover.

The CoDi-1Bit model software simulation evolved this
with a fitness of 100% in about 150 generations. A few days
later, by strongly increasing the neuron density in the CA
space to about 90% of the maximum value, we got the same
result in about 50 generations!

5.3 Multiple Timer Module
Since a 100% fitness score does not test the limits of evolv-
ability of a module, a more demanding output function was
tried. The target output (similar to the above pattern) and the
actual evolved output (placed immediately under the target
pattern for comparison) were as follows:
Target
00000000000000000000000000000011111111111111111
Evolved
00000000000000000000000000000000011111111111111
Target ctd.
11100000000000000000000000011111111111111110000
0000000000000000
Evolved ctd.
11110000000000000000000000001111111111111111000
0000000000000000

The fitness definition was similar to the above. If a 0
appeared in the first (0) block, score 12 points, if a 1 ap-
peared in the second (1) block, score 7 points, if a 0 ap-
peared in the third block (0), score 3 points, if 1 appeared
in the fourth block (1), score 2 points, if 0 appeared in the
fifth block (0), score 1 point. Hence a perfect score would be30�12+20�7+24�3+16�2+20�1 = 624. These weight-
ings were chosen so as to encourage the earlier outputs to be
correct before the later outputs. Population size was 30, no
crossover. This result converged after about 100 generations
with a fitness value of 0.957.

It is interesting to note that these good results are evolv-
ing in about 100 generations or so, and yet the chromosome
length is very large. The standard CBM chromosome length
is of the order of 90K bits. One might think that such a long
chromosome would be very slow in evolving, but this was not
the case. One possible explanation for this is that there may
be so many possible solutions that a suitable one is quickly
found.

5.4 Switchable Dual Function Module
Our thoughts then turned to the idea of trying to evolve a
module whose behaviors could be placed under switchable
control, i.e. a module with dual functionality, which could
be switched from one behavior to the other, depending on
whether a control input was activated or not.

More specifically, two fixed position input pointsIN and
SWITCH were placed at positions(8; 8; 0) and(16; 16; 0) for
a rectanguloid of24�24�18 3D CA cells, with a fixed output
point at position(11; 12; 9). If the output point was not an
axon, fitness was defined to be zero.

Two experiments were run on the same module (the same
CoDi module, with signal flushing between experiments). In
both experiments, theIN input fired at every clock tick. In the
first experiment, theSWITCH input was off for every clock
tick. In the second experiment theSWITCH input fired for
every clock tick. The module was evolved to give a very ac-
tive output (lots of 1's) if theSWITCH was off, but a low
output (few 1's) if theSWITCH was on. That is, theSWITCH
acted as an inhibitor.

The bitstrings below show the outputs for the two cases,
firstly with SWITCH off, then on. Over 90 clock ticks, the
first output had 42 more 1's than the second output.
SWITCH off
0000000000000000000000000000000000011000111011
11
SWITCH on
0000000000000000000000000000000000001000001000
00100000100000100000100000100000100000100000

The number of 1's in the two outputs were labeled asS1
andS2, respectively. The fitness function (F) was defined as:IF (S1 > S2)F = 10000 � (S1 � S2) + 0:001 � (S1 + S2)IF (S1 < S2)

F = 100 � (S2 � S1) + 0:001 � (S1 + S2)
The term0:001� (S1+S2) was used to encourage circuits

to give nonzero output at the output point. The terms100 �(S2 � S1) and10000 � (S1 � S2) encouraged differences in
the two outputs, with a strong preference for the first case to
give more 1's in the output.

This result was very encouraging because it shows that
controllable multifunction modules, at least like this switch-
able function, are evolvable with the CoDi model. Such mod-
ules will be very useful when the time comes to evolve mod-
ules to be placed in ”artificial brain” architectures.

5.5 Pattern Detector Module
Slightly modifying the previous set up, a pattern detector
module was evolved, which was capable of distinguishing
between two square wave inputs, of 111000111000... and
11111000001111100000... In this case, no switch input
was used. Two experiments were run. In the first, the input
was the 6-clocktick cycle square wave input, applied at the
fixed input point(8; 8; 0). In the second experiment, the
circuit was regrown with the same chromosome and the
10-clocktick cycle square wave input was applied to the
same fixed input point. The fitness definition was the same
as above. Over 90 clockticks, the first output had 48 more 1's
than the second output.
Square wave input 111000111000...
Output
00000000000000000000000010011011101111111111111
111
Square wave input 11111000001111100000...
Output
00000000000000000000000000001000100010001000100
0100010001000100010000000000010001000100010

Since the CoDi modules seem capable of evolving such
detectors, it may be possible to evolve modules which are ca-
pable of detecting a specific phoneme analog input, e.g. the
spike train (bitstring) that represents the time dependent ana-
log signal. In a manner similar to the above, one could input
the signal in the first experiment, and a random signal in the
second, in a multi-test experiment, and evolve the phoneme
detector. Maybe one could evolve a set of detectors, one for
each phoneme. By using the SIIC and HSA digital/analog
conversions, this kind of thing may become quite practical.

5.6 Hubel-Wiesel Line Motion Detector Module
The results of the following experiment were significant for
the CAM-Brain Project as a whole, we felt. It involved
the evolution of a Hubel Wiesel type line motion detector.
Hubel and Wiesel won a Nobel prize for discovering that cer-
tain neural cells in the visual region of the cat's brain fired
strongly when lines of light at particular orientations and
speeds were shone onto a screen that the cats were observing.
These cells (neurons) were detecting the motion of lines at a
particular orientation. The evolution of this ”Hubel-Wiesel”

module used the same fitness definition and a similar method-
ology as in the above case. In the first experiment, a square
12*12 neuron input grid was used. At the first clock tick,
the top horizontal 12 neurons were made to fire; at the sec-
ond clock tick, the second horizontal row of 12 neurons was
made to fire, etc, for 12 clock ticks, then the cycle was re-
peated. This input firing pattern simulated the motion of a
line of light moving horizontally down the visual field on the
retina of a cat. In the second experiment, 12 randomly posi-
tioned input neurons were fired at each clock tick. These 12
positions were randomly generated for each clock tick. This
second input firing pattern simulated input noise, to be con-
trasted with the line motion input. Output results are shown
below:
Line Motion Input Case
Output
00000000000000000000000010011010011011111111111
111
Random Input Case
Output
00000000000000000000000000001000000000000000010
001

There were 35 more 1 bit outputs in the first case than the
second. Since the inputs to the second case are positioned
randomly, the same neural net module will generate a differ-
ent fitness value depending on the input. Nevertheless the
evolution still improved over time, developing a fairly robust
net giving fitness values corresponding to over 30 1-bit differ-
ences (between the two experiments) in most cases (e.g. the
top 5 fitness chromosomes were saved for each generation
and not crossed over or mutated. The fitness values (1-bit dif-
ference count) of these top 5 were 31, 34, 35, 30, 29 after sev-
eral hundred generations). However, we have no idea how the
circuit does what it does. Evolved circuits can achieve perfor-
mance levels beyond what human engineers can achieve with
traditional top-down design techniques, i.e. attain superior
engineering performance levels, but the price is that one loses
scientific understanding, due to the overwhelming structural
and dynamical complexity of these CoDi circuits.
6 Summary and Conclusions

This paper presented some software simulation results of cel-
lular automata based neural network circuit modules which
will be grown and evolved at electronic speeds in special
FPGA based hardware (the CAM-Brain Machine (CBM) [2],
which should be delivered to ATR by January 1999). The
neural net model implemented by the CBM is called ”CoDi-
1Bit” [1]. The constraints imposed by the electronics neces-
sitated a very simple model, namely one whose signal states
contain only 1 bit. This restriction implied that the spike
trains (bit string of 1's and 0's) which are input and output
to and from modules need to be interpreted. We can con-
vert the spike train into an analog waveform using a convolu-
tion technique that we call ”SIIC” (Spike Interval Information
Coding [3]). The reverse process, i.e. converting from an ana-
log waveform to a spiketrain was performed using the ”HSA”

(Hough Spiker Algorithm). These two transformations allow
users (”EEs” or ”evolutionary engineers”) to think entirely
in terms of analog waveforms, both at input and when spec-
ifying target (desired) outputs. Thinking in analog terms is
much easier than thinking in terms of spike intervals (i.e. the
number of 0s between spikes (i.e. the 1s), which visually is
rather meaningless. However, since the HSA was only in-
vented very recently, the experiments reported on in this pa-
per have the user specifying input in raw binary terms, not in
analog waveforms which would be converted into spiketrains
by the HSA. Nevertheless the results of the raw binary input
cases are still very interesting. The results shown in section
5 make it clear that the evolvability of he CoDi-1Bit model
modules is powerful and interesting.To fully test the capabili-
ties of the CBM, we will need a CBM, but prior to its delivery,
we have been simulating its performance and evolvability.

The issue of evolvability is always an open question, be-
cause not all modules evolve the way one wants. Evolution-
ary engineering is still a ”black art”. Criteria for good evolv-
ability are not well understood. However, in practice, if is it
found that a particular module does not evolve well, then al-
ternative modules with different functional specifications can
often be found to solve the same problem and that these alter-
native modules do evolve well.

The next step in the CAM-Brain Project is to design multi
module systems, and to scale up the number of modules used.
The CAM-Brain Machine (CBM) can update roughly 32000
modules at sufficient speed (150 Billion cellular automata
(CA) cells a second) to enable real time control of a kitten
robot. So with 32000 modules allowable by the hardware,
BAs (brain architects) and EEs (evolutionary engineers) can
afford to be ambitious. The great challenge now is how to
design artificial brains. Hopefully within a few years, a new
research field will be established, called simply ”Brain Build-
ing”.
Bibliography

[1] Felix Gers, Hugo de Garis, and Michael Korkin. CoDi-1
Bit: A simplified cellular automata based neuron model.
In Proceedings of AE97, Artificial Evolution Conference,
October 1997.

[2] Michael Korkin, Hugo de Garis, Felix Gers, and Hitoshi
Hemmi. CBM (CAM-Brain Machine): A hardware tool
which evolves a neural net module in a fraction of a
second and runs a million neuron artificial brain in real
time. In John R. Koza, Kalyanmoy Deb, Marco Dorigo,
David B. Fogel, Max Garzon, Hitoshi Iba, and Rick L.
Riolo, editors,Genetic Programming 1997: Proceedings
of the Second Annual Conference, July 1997.

[3] Michael Korkin, Norberto Eiji Nawa, and Hugo de Garis.
A 'spike interval information coding' representation for
ATR's CAM-brain machine (CBM). InProceedings of
the Second International Conference on Evolvable Sys-
tems: From Biology to Hardware (ICES'98). Springer-
Verlag, September 1998.

[4] Fred Rieke, David Warland, Rob de Ruyter van
Steveninck, and William Bialek.Spikes: exploring the
neural code. MIT Press/Bradford Books, Cambridge,
MA, 1997.

