
Learning Probabilistic Motion Models for Mobile Robots

Austin I. Eliazar ELIAZAR @CS.DUKE.EDU

Ronald Parr PARR@CS.DUKE.EDU

Department of Computer Science, Duke University, Durham, NC, 27708 USA

Abstract
Machine learning methods are often applied to
the problem of learning a map from a robot’s sen-
sor data, but they are rarely applied to the prob-
lem of learning a robot’s motion model. The mo-
tion model, which can be influenced by robot id-
iosyncrasies and terrain properties, is a crucial
aspect of current algorithms for Simultaneous
Localization and Mapping (SLAM). In this pa-
per we concentrate on generating the correct mo-
tion model for a robot by applying EM methods
in conjunction with a current SLAM algorithm.
In contrast to previous calibration approaches,
we not only estimate the mean of the motion,
but also the interdependencies between motion
terms, and the variances in these terms. This can
be used to provide a more focused proposal dis-
tribution to a particle filter used in a SLAM al-
gorithm, which can reduce the resources needed
for localization while decreasing the chance of
losing track of the robot’s position. We validate
this approach by recovering a good motion model
despite initialization with a poor one. Further ex-
periments validate the generality of the learned
model in similar circumstances.

1. Introduction

Advances in the areas of robot localization and Simultane-
ous Localization and Mapping (SLAM) have come a long
way towards bringing the prospect of truly autonomous
robot operation closer to reality (Thrun, 2002). With these
techniques, mobile robots can create maps and position
themselves in mapped environments with low risk of get-
ting lost. However, an infrequently discussed but important
input into these methods is the set of parameters for the
robot’s motion model. This model is provided to the robot
by a human, based upon a combination of intuitions about

Appearing inProceedings of the21 st International Conference
on Machine Learning, Banff, Canada, 2004. Copyright 2004 by
the authors.

the environment and experience with the robot. The model
is usually refined in successive iterations (through intensive
human effort) for improved performance.

In this paper, we present a novel method of automating the
process of acquiring this motion model. This not only re-
lieves some of the work needed from the robot operator,
but can be extremely useful when the robot moves to a
new type of terrain (e.g., moving from asphalt to gravel) or
when the robot’s behavior changes due to malfunctions or
wear. In familiar territory, this method can provide a much
more refined motion model, resulting in more accurate lo-
calization and mapping results with less computation.

The contributions of this paper can be summarized as fol-
lows. First, we develop a probabilistic motion model that
is more sophisticated than previous learned motion mod-
els for mobile robots. Second, by applying the Expectation
Maximization (EM) framework, we are able to learn the pa-
rameters of this model without the benefit of a known map.
In effect, we estimate the motion model and map together
as part of the same learning procedure. Finally, we validate
our approach on several maps, demonstrating the ability to
correct and refine inaccurate motion models.

2. Motion Models for Localization

Robot motion models play an important role in modern
robotic algorithms. The main goal of a motion model is to
capture the relationship between a control input to the robot
and a change in the robot’s configuration.1 Good models
will capture not only systematic errors, such as a tendency
of the robot to drift left or right when directed to move for-
ward, but will also capture the stochastic nature of the mo-
tion. The same control inputs will almost never produce
the same results and the effects of robot actions are, there-
fore, best described as distributions (Thrun, 2000). These
distributions play an important role in algorithms that use
particle filters for localization and mapping. Specifically,
they form the proposal distribution for the particle filter.

1In robotics, one typically treats the odometry as the control
input since it is possible to specify control inputs to the robot in
terms of target odometry.

A particle filter is a Monte Carlo method for estimating and
propagating a probability distribution through a Markov
model. We briefly review particle filters here, but refer the
reader to excellent overviews of this topic (Doucet et al.,
2001) and its application to robotics (Thrun, 2000) for a
more complete discussion.

A particle filter maintains a weighted (and normalized) set
of sampled states,s = fs1 : : : smg, calledparticles. At
each step, upon observing evidenceE, the particle filter:

1. Samplesm new statess0 = fs01 : : : s0mg from from the
weighted set of particless with replacement.

2. Propagates each new state through a Markovian tran-
sition (or simulation) model:P (s00js0). This entails
sampling a new state from the conditional distribution
over next states given the sampled previous state.

3. Weighs each new state according to a Markovian ob-
servation model:P (Ejs00)

4. Normalizes the weights for the new set of states.

Particle filters are easy to implement and have been used
to track multimodal distributions for many practical prob-
lems (Doucet et al., 2001). For robot localization, the distri-
butionP (s00js0) comes from the robot’s motion model. (In
full generality, the distribution from which next states are
sampled is referred to as theproposal distribution, because
it need not matchP (s00js0)). The observation probabilities,P (Ejs00) come from a combination of the robot’s sensor
model, typically laser or sonar, and a map.

While the SLAM algorithm itself is not the focus of this
paper, SLAM involves an extra step beyond that which is
performed for localization. For SLAM, the map becomes
part of the state that is estimated at each iteration. The
particles therefore represent a joint distribution over maps
and robot states (Cheeseman et al., 1990; Montemerlo &
Thrun, 2002; Eliazar & Parr, 2004). The problem of effi-
ciently maintaining this distribution is the source of much
of the subtlety in SLAM algorithm research.

We used the DP-SLAM 2.0 algorithm (Eliazar & Parr,
2004) to construct our maps. DP-SLAM 2.0 is well suited
to this problem because it is able to maintain a joint dis-
tribution over maps and robot positions by very efficiently
maintaining large sets of particles. With a good motion
model, DP-SLAM 2.0 is accurate enough to close large
loops without any explicit map correction techniques. For
these reasons, we chose to treat the set of particles main-
tained by DP-SLAM as a good representation of the prob-
ability distribution at any time step2. This lets us treat the

2We note that for very bad initial models, this may not be a
good assumption. In practice, we are able to recover from poor

SLAM algorithm as a black box that provides a distribu-
tion over robot positions during the map making process.
The maps themselves are effectively marginalized out in
the procedure for learning motion models. An alternative
approach to this method could use a landmark based SLAM
algorithm with a variant of a Kalman filter for state estima-
tion.

In general, it is well known that a poor proposal distribu-
tion may require a prohibitively large number of particles to
track the state of a system successfully. If the true behavior
is not well within the sampling region of the particle fil-
ter, the probability of generating a particle consistent with
the state of the system will be very low. In application, a
robot localization procedure with a poor proposal distribu-
tion will require an excessive number of particles and yet
may still lose track of the robot state. Thus, the motivation
for acquiring a good motion model is quite strong.

Previous work in automatic acquisition of motion mod-
els for mobile robots has been fairly sparse. Most of the
efforts have dealt with the problem of systematic errors,
rather than the levels of noise that can be present. Boren-
stein and Feng (1994) describe a method for calibrating
odometry to account for systematic errors. This method
assumes a fairly smooth surface for calibration, with low
non-systematic errors, and attempts to model each wheel
independently. This method would become significantly
more difficult for a robot with more than two drive wheels.
Voyles and Khosla (1997) use shape from motion to learn
the motion model parameters, but instead of using the shaft
encoders, attempt to model the observation of applied force
vectors directly. This would require an additional sensor
which is not typically available on many robots, and has
limited accuracy. Roy and Thrun (1999) propose a method
which is more amenable to the problems of localization
and SLAM. They treat the systematic errors in turning and
movement as independent, and compute these errors for
each time step by comparing the odometric readings with
the position estimate given by a localization method. They
can then use an exponential estimator to learn these two
parameters online, assuming that short term localization re-
sults will be accurate enough to refine the motion model.

The goals of our approach are most similar to those of
Roy and Thrun. We aim to have a method that can start
with a crude model and bootstrap itself towards a more re-
fined motion model, giving the robot the ability to adapt
to changing motion parameters. Instead of merely learn-
ing two simple parameters for the motion model, as with
the method proposed by Roy and Thrun, we seek to use
a more general model which incorporates interdependence
between motion terms, including the influence of turns on

initial models and we discuss our unusually good performance in
such cases in the conclusion.

lateral movement, and vice-versa. Furthermore, the pro-
posed method extends the scope of the calibration beyond
the systematic errors dealt with in previous methods. We
believe that great gains in performance can be achieved by
estimating the non-systematic errors, through variance in
the different movement terms. This can be crucial to the
motion model of SLAM methods, as different amounts of
noise in the movement terms can produce vastly different
proposal distributions (Burgard et al., 1999). A properly
calibrated set of variance parameters will provide the local-
ization algorithm with a more appropriate proposal distri-
bution, allowing it to better focus its resources on the most
likely poses for the robot.

The algorithm for learning the motion model is integrated
with a SLAM algorithm, giving increased autonomy to the
system. The robot now has the potential to learn the most
appropriate model based upon recent experiences, and in
direct conjunction with its current task. This is especially
useful as the robot’s motion model will change over time,
both from changes in the terrain and from general wear on
the robot. It is also important that this calibration method
can be performed in a remote location, without the need
of external sensors to measure the robot’s true motion. A
rover landing on another planet with unknown surface con-
ditions would be an obvious application of this approach.

With this view in mind, we can identify two categories of
hidden variables in our problem formulation. We are at-
tempting to learn both the map of the environment and the
set of motion model parameters that describe stochastic re-
lationship between the odometry and the actual movement
of the robot. To estimate the parameters of this model, we
propose using an EM algorithm: The expectation step is
provided by a SLAM algorithm, implemented with some
initial motion model parameters. The possible trajectories
postulated are then used in the maximization step to create
a set of parameters which best describe the motions repre-
sented by these trajectories.

3. Motion Model Details

Let the robot’s pose at any given time step be represented as� = (x; y; �), where� is the facing angle of the robot. The
motion model then seeks to determineP (�0j�; o), where�0
is the robot’s pose one time step in the future, ando = (d; t)
is the amount of lateral and rotational movement (respec-
tively) that odometry has reported over that time interval.

Roy and Thrun (1999) propose the following model:x0 = x+D os(� + T)y0 = y +D sin(� + T)�0 = � + T mod 2�:
Here,D is the actual distance traveled by the robot, and

T is the actual turn performed. This is correct only if the
turn and drive commands are performed independently, a
simplifying assumption which even their own experiments
violate. A simple improvement to account for simultaneous
turning and lateral movement would be:x0 = x+D os(� + (T=2))y0 = y +D sin(� + (T=2))�0 = � + T mod 2�:
This model assumes that the turning velocity of the robot
is constant throughout the time step, and that the robot can
only move in the direction it is facing. These improved
equations do not take into account that even in this case, the
distance traveled will actually be an arc, and not a straight
line. However, when T is reasonably small, this error is
minor and can be absorbed as part of the noise.

A better model would take into account the ability of the
robot to move in a direction that is not solely determined
by the beginning and end facing angle of the robot. Such
a model would be able to account for variable speed turns
and sideways shifts, both of which have been apparent with
our robots, even on the best of surfaces:x0 = x+D os(��)y0 = y +D sin(��)�0 = � + T mod 2�:
Here�� is the true movement angle of the robot. In this
method, the direction of movement has been expressed sep-
arately from� andT , which permits movement in a direc-
tion distinct from the facing angle of the robot. In practice
it is often difficult to determine this independently from�
andT , but with some robots, the shaft encoders on each
wheel can be read independently, and can give a more di-
rect observation of this parameter.

Even in the rare cases where it might be possible to ob-
serve��, it would be very difficult to develop a good noise
model. Representing the noise in�� as a Gaussian would
require some choice for a mean. For a robot which can per-
form holonomic turns, the lateral shift of the robot could
very easily be in any direction, while the lateral movement
reported would be negligible. In this case,�� would more
accurately be modeled as a uniform distribution. For these
reasons, we prefer a slightly different model that decom-
poses the movement into two principle components:x0 = x+D os(� + T2) + C os(� + T + �2)y0 = y +D sin(� + T2) + C sin(� + T + �2)�0 = � + T mod 2�:
We approximate�� with (�+ T2) and refer to this direction
as themajor axisof movement.C is an extra lateral transla-

tion term, which is present to model shift in the orthogonal
direction to the major axis, which we call theminor axis.
This axis is at angle(�+ T+�2), and is defined so as to have
a consistent (left-hand) orientation3.

This motion model lends itself to a fairly natural noise
model. We expect that the true values ofD andT will
be distributed normally with respect to the reported values,d andt, but that the mean of each will scale linearly with
bothd andt while the variance will scale withd2 andt2.
This is plausible if the total noise is the sum of two indepen-
dent noise sources with magnitude that scales linearly withd andt. We expect thatC will have a similar dependence
on d andt. In this view,C, D andT are all conditionally
Gaussian givend andt:C � N (d�Cd + t�Ct ; d2�2Cd + t2�2Ct)D � N (d�Dd + t�Dt ; d2�2Dd + t2�2Dt)T � N (d�Td + t�Tt ; d2�2Td + t2�2Tt);
where�Ab is the coefficient for the contribution of odome-
try termb to the mean of the distribution overA. It is these
sets of mean and variance terms that we propose to learn.

4. Parameter Estimation

The learning problem for our robot is that of discovering
the parameters of the distributionP (�0j�; o), whereo is the
reported odometry. With this in mind, consider a SLAM
algorithm, which uses a particle filter to produce a distribu-
tion over maps and poses at each time step. For a given set
of motion model parameters, our particle filter provides a
set of possible trajectories with forward probabilities (nor-
malized particle weights) at each time step. To complete
theE step, we must perform backward smoothing over our
particles. There are many ways to do this with a particle fil-
ter, but we use the simplest, which is to compute the prob-
ability of each trajectory and average across successor tra-
jectories for particles that are resampled multiple times.

To complete the M step of our EM procedure, we must
compute the maximum likelihood values of the parameters
in our model. The means in our model have linear contri-
butions from the reported odometry values. We therefore
determine the influence of each term on the motion param-
eters using a weighted least squares method. For example,
let �C be the column vector[�Cd �Ct ℄T , O be anN � 2
matrix, where each row is the reported odometric move-
ment[di ti℄, andC be theN�1 matrix of the estimatedCi
terms. We obtain the least squares solution of�C from the
overdetermined system:WO�C =WC;

3There is nothing special about the left-hand choice.

whereW is anN �N diagonal weight matrix with diago-
nal elementi as

pwi. The process can be repeated for the
other two motion terms.

The variance in our model has a quadratic dependence in
the odometry terms. To compute the variance parameters
for theC term in our model,�2C = [�2Cd �2Ct ℄T , we defineO2 as anN � 2 matrix whose rows are the squared odom-
etry readings,Oi = [d2i t2i ℄. We defineC�2 as theN � 1
matrix such thatC�2i = (O2i �C � Ci)2. As before, we are
interested in the least squares solution to an overdetermined
system of linear equations:WO2�2C =WC�2 :
The calculation is similar for the variance parameters of the
other motion model terms.

The least squares solution for all12 parameters of the mo-
tion model constitutes theM step of our EM procedure.
The new model parameters can now be used for a new run
of the SLAM algorithm on the same set of sensor data, and
the process can be repeated until (near) convergence. This
method can be applied to varying quantities of motion data.
Run over the entire set of data, it can be applied off-line as
a means of determining the best motion model for a robot
in future deployments in the same, or similar, environment.
This is useful, as it allows the algorithm to learn, with high
confidence, the proper set of motion parameters, due to the
large amount of training data. It also provides the operator
the ability to check the performance of final motion param-
eters by observing the accuracy of the final trajectory.

An alternative, quasi real time application of this method
would run EM on a smaller set of data, allowing the robot
to learn the motion model as it explores. In this case, the
robot would use a fixed size chunk of recent observations
to fine tune the motion model to changes in its behavior.
For example, the robot might apply this technique if it en-
counters a type of terrain that it has never seen before. This
can slow any mapping activities undertaken by the robot. If
the robot is using a SLAM algorithm for mapping, the EM
nature of the model learning algorithm will require that the
localization be run multiple times over each section and the
mapping will no longer be real time. In practice, we ex-
pect that model tuning procedures would not be used con-
tinuously, but would be used primarily at sparse intervals
or when there is some reason to believe that an inaccurate
model is degrading mapping accuracy.

5. Empirical Results

We tested our algorithm on sensor logs generated by an
iRobot ATRV Jr. in a cyclic hallway environment, with
observations made approximately every 15cm. The robot
is equipped with a SICK laser range finder, which scans

at one degree increments along a semi-circle at a height of
7cm from the floor.

Figure 1.A complete loop of hallway, generated using a naive
motion model. The robot starts at the top left and moves coun-
terclockwise. Each pixel in this map represents 3cm in the envi-
ronment. The total path length is approximately 60 meters. White
areas are unexplored. Shades between gray and black indicate
increasing probability of an obstacle.

In these experiments, we noticed a small anomaly where
laser readings sometimes changed in a manner implying
motion, when no changes were reported in odometry. This
could possibly be caused by readings from the laser range
finder not being perfectly synchronized with the readings
from the odometers, or some other anomaly in our robot
or data collection technique. Since the motion model de-
scribed is directly dependent on the magnitude of reported
motion, the variance in these situations would be zero, and
the SLAM algorithm would have no ability to recover the
correct motion for that time step. To handle this problem,
we found it necessary to set a minimum amount of noise
that must be present at each time step. These levels were
small (variances less than 2cm along the major axis and less
than4Æ in facing), and the model exceeded these variance
levels in all but a few time steps.

The first experiment demonstrates the ability of the pro-
posed method to calibrate the motion model parameters for
a robot with little or no previous knowledge of the environ-
ment. The robot is driven around an indoor test environ-
ment, eventually completing a loop of hallway, while col-
lecting data from its sensors and odometers. Note that the
completion of a loop is not necessary for either the SLAM
algorithm or the learning method, but merely serves to help
illustrate the quality of the map at each EM iteration. The
motion model is set initially with no systematic biases, but
high variances. Figure 1 shows the highest probability map
produced at the end of the first run of EM. The resulting
map has the right general shape, but in the top left area
where the robot returns to its starting position there is a

significant error in the map, resulting in double walls. A
closeup of this region is shown in Figure 2. After three
EM iterations, the model parameters are refined to the point
where the SLAM algorithm successfully closes the loop
without any blemishes in the map. A closeup of the same
area is shown in Figure 3.

Figure 2.Close up of the area where the loop is closed, using the
naive motion model. Double walls reflect an accumulated error of
approximately one half meter over the path of the robot.

Figure 3.Close up of the same area as Figure 2, using the learned
motion model learned by EM.

One concern that we had when learning a motion model
was the possibility of overfitting the specific trajectory that
was supplied to the SLAM algorithm. We would like the
learned parameters to be tuned to the properties of the robot
and environment, but not the quirks of individual data col-
lection runs, since it would be it would be inefficient and
contrary to the spirit of SLAM to learn a new motion model
with EM every time that the robot is redeployed. To ver-
ify this generality of the motion model, we used one run of
the robot to learn the parameters in the same indoor envi-
ronment as before. Then, using this set of learned motion

parameters, we had the robot remap the same environment
using data collected from several days later. The resulting
map shown in Figure 4 is the same high quality as if we
had learned the motion model directly from the second tra-
jectory itself.

Figure 4.Map created using the motion model learned from one
sensor log, applied to a different log generated several days later. ��

Figure 5.Map resulting from the first iteration of EM initialized
with an out-of-date motion model. This is a close up of the area
where the loop is closed. The environment is the same as shown
for in other experiments, with a top, center starting position.

A strong test of the robustness of our method is its ability
to recover from a poor motion model. This is also impor-
tant to the applicability of the method since changes in the
environment or in the robot itself can cause the appropriate
motion model to change. In this experiment, we used a set
of data collected in an office environment to learn a good
motion model. We then tested the model using a second set
of data collected in the same area, but with approximately a
year of time separating the two data sets. When attempting
to use the same model on the second data set, we quickly
notice that the map produced by the SLAM algorithm is
obviously flawed where it attempts to complete the loop
(Figure 5). A year of use and some rough handling during
shipping caused significant wear in the robot and changes
in its behavior, resulting in an altered motion model. In
the next iteration (Figure 6), the learned motion model can
be seen to be improving the quality of the map as a result

of increased accuracy. Figure 7 depicts the map from the
next and final iteration, where the two ends of the loop are
seamlessly aligned. ��

Figure 6.Second iteration of EM. ��

Figure 7.Final iteration of EM.

Most of our results are visual or anecdotal, since the ac-
tual parameters would be fairly meaningless to all but those
very familiar with this model of robot. However, in this ex-
periment the difference in variances is particularly telling.
Predictably, the variances have all increased significantly
over the course of the year, as wear on the robot has caused
movements to become more erratic. The most significant
of these is the�Ct term, which changes from6:7 mrad to14:4 mrad , indicating significantly more erratic lateral shifts
during turns, a result consistent with our observations of
the robot in action.

A graphical depiction of the change in distributions is
shown in (Figure 8). This graph shows the first standard de-
viation of the noise in the major and minor axes (along the
x and y axes respectively) for a single unit of lateral motion.
In the progression from the first iteration to the second, the
mean is shifted significantly, while the variances decrease.
The third iteration shows a negligible shift in the mean, but
the variance along the major axis experiences a large in-
crease. In comparing the difference of coverage between
the first and the third iteration, it is clear that a dramati-
cally larger number of particles would be needed for the
first distribution in order to cover high probability regions
of the third distribution effectively.

We also performed an experiment on a smaller segment of
sensor data. We wanted to use a section with a signifi-
cant amount of both lateral motion and turning within its
trajectory, so we chose an area consisting of two corners

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Initial Model

Second Iteration

Final Iteration

Figure 8.A plot of the first standard deviation for the third exper-
iment. The major axis of motion is plotted along the x-axis, and
the minor axis is plotted along the y-axis, with results shown for
a single unit of lateral motion.

connected by one lateral stretch of hallway, for a total of
approximately one quarter of a full sensor log. The initial
model provided was the same naive model presented in the
first experiment. We performed this experiment to verify
the ability to learn a model with less information and to il-
lustrate that traversing a loop is not necessary for accurate
performance of the learning method. This experiment took
ten iterations to converge while those based upon full sen-
sor logs typically took less than five. However, the final
motion model parameters upon convergence of EM were
accurate enough to result in seamless mapping when the
algorithm was presented with a full sensor log. The result-
ing maps are indistinguishable from those produced with
models learned from full sensor logs and are not shown.

To determine the effect of terrain type on the motion model
we learned motion models for three different surfaces: car-
pet, tile and concrete. We used the same robot in each ex-
periment, and all information was gathered within the pe-
riod of a day, to minimize the effects of wear on the mo-
tion model. The models were then learned on a trajectory
at least 20m in length, and containing at least 90 degrees
of rotation. Plots showing a single standard deviation for
one unit of lateral (x axis) motion for each of these motion
models are shown in Figure 9. The results suggest that the
greater friction of a concrete surface reduces wheel slip.
However, there is also greater drift along the minor axis of
movement. This is consistent with the observed behavior of
the robot, but we have not diagnosed the exact cause. One
possibility could be slants in sections of concrete traversed
by the robot.

Finally, we considered the possibility of using very large
variances and a large number of particles as an alterna-
tive to learning a good model. The problem with this ap-

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Carpet

Tile

Concrete

Figure 9.Motion models learned for different terrains.

proach is that adequately covering the configuration space
of the robot when the model parameters have high variance
is quite difficult. Even with 25 times as many samples as
our refined models, our naive model was unable to produce
seamless maps.

6. Conclusion

By using an EM learning algorithm coupled with a flexible
motion model, we have shown how existing SLAM algo-
rithms can greatly improve their performance by refining
the stochastic motion model. We believe that our approach
is the first to capture both systematic errors and variance in
odometry. This technique has the potential to significantly
increase the autonomy of mobile robots by eliminating the
human effort required to produce a motion model.

The results presented show that the method is capable of
learning accurate motion models with very little user in-
put. Beginning with a general, naive set of motion param-
eters, we demonstrated the ability to refine the model to
be significantly more accurate. In addition, this model was
shown to be generally applicable in similar environments.
Furthermore, when presented with an incorrect model, the
proposed method quickly adapted, and was able to suc-
cessfully learn more appropriate parameters. Finally, we
demonstrated the power of this method to learn a good
model that is applicable to a large area when presented with
data from only a small piece of this area.

This research was motivated by our own practical consider-
ations after investing significant amounts of time and effort
into hand tuning appropriate motion models for our dif-
ferent robots and test environments. Beyond saving time
and resources, this method was also inspired by practical
concerns of remote deployment for robots. The ability to
learn a complete motion model using only onboard sensors
is crucial for isolated robots in unknown environments, or

ones which suffer malfunction in the field.

One surprising aspect of this approach was its ability to
learn good motion models despite initially poor models that
lead to poor maps. One might expect that little could be
learned from SLAM runs that result in poor maps since
poor maps imply that the particle trajectories have failed
to capture the true motion of the robot. We speculate that
such poor runs still tend to contain useful information that
can push the model parameters in the right direction. The
reasons for this are twofold. First, although SLAM pos-
terior distributions are not unimodal, they often appear to
have strong peaks surrounded by relatively shallow local
optima. Thus, on poor runs, the trajectories that are closer
to truth will often still tend to have higher probability. Sec-
ond, poor runs typically assign particles far from the mean
higher probability, which has the effect of increasing vari-
ance on the the next iteration. On runs which are initialized
with poor models, we have observed an “expand-contract”
pattern in the model parameters, where the variance grows
until the mean is well covered and then contracts to reflect
the true variance given the correct mean.

We recognize that the calibration technique described here
would not be efficient to run at all times. Instead, it
would best be run at intervals when the motion has notably
changed from the existent model. In the future, we would
like to develop principled methods for automatically deter-
mining when a motion model needs to be updated.

This method was developed using an assumption that the
true motion of the robot can be described as the sum of
two independent normal distributions, arising from rota-
tional movement and lateral movement. We would like to
investigate relaxing this assumption, and allow the motion
to be described by a single multivariate Gaussian with a
full covariance matrix. Through learning the complete set
of parameters for this multivariate distribution, we could
determine to what degree this assumption of independence
is valid.

In experiments, we noticed that the amounts of noise
present at certain time steps were significantly lower than at
others, due to differing amounts of motion. Thus we were
using a number of particles consistent with sufficient cov-
erage for the greater noise, even during time steps where
the noise, and thus the necessary number of particles, was
much lower. A great practical speed up might be achieved
by understanding how many particles are required given the
noise predicted by the model. The SLAM algorithm could
then use a variable number of particles depending on the
amount of noise currently present. This function could be
significantly dependent on the type of environment that the
robot is sensing, and could require further machine learning
techniques, but is definitely an avenue of further research
which could yield useful results.

Our emphasis in this paper has been the development of
motion models for SLAM algorithms that use odometry
and sensor data produce densely populated maps. We be-
lieve that a similar approach could be applied to landmark
based SLAM algorithms, or to robots that use GPS data
instead of odometry as an initial measure of robot motion.

Acknowledgements

This work supported in part by the National Science Foun-
dation, the Sloan Foundation, and SAIC.

References

Borenstein, J., & Feng, L. (1994). UMBmark - A
method for measuring, comparing, and correcting dead-
reckoning errors in mobile robotsTechnical Report UM-
MEAM-94-22). University of Michigan.

Burgard, W., Cremers, A., Fox, D., Hähnel, D., Lakemeyer,
G., Schulz, D., Steiner, W., & Thrun, S. (1999). Ex-
periences with an interactive museum tour-guide robot.
Artificial Intelligence, 114, 3–55.

Cheeseman, P., Smith, P., & Self, M. (1990). Estimat-
ing uncertain spatial relationships in robotics. InAu-
tonomous robot vehicles, 167–193. Springer-Verlag.

Doucet, A., de Freitas, N., & Gordon, N. (2001).Sequen-
tial monte carlo methods in practice. Berlin: Springer-
Verlag.

Eliazar, A., & Parr, R. (2004). DP-SLAM 2.0.IEEE 2004
International Conference on Robotics and Automation
(ICRA-04).

Montemerlo, M., & Thrun, S. (2002). Simultaneous lo-
calization and mapping with unknown data association
using FastSLAM.IEEE 2002 International Conference
on Robotics and Automation (ICRA-02).

Roy, N., & Thrun, S. (1999). Online self-calibration for
mobile robots.IEEE 1999 International Conference on
Robotics and Automation (ICRA-99).

Thrun, S. (2000). Probabilistic algorithms in robotics.AI
Magazine, 21, 93–109.

Thrun, S. (2002). Robotic mapping: A survey. In G. Lake-
meyer and B. Nebel (Eds.),Exploring artificial intelli-
gence in the new millenium. Morgan Kaufmann.

Voyles, R., & Khosla, P. (1997). Collabrative calibration.
IEEE 1997 International Conference on Robotics and
Automation (ICRA-97).

