
Component Middleware to Support Non-repudiable Service Interactions

Nick Cook, Paul Robinson and Santosh Shrivastava
School of Computing Science, University of Newcastle, UK

Email: {nick.cook, p.robinson, santosh.shrivastava}@ncl.ac.uk

Abstract

The wide variety of services and resources available
over the Internet presents new opportunities to create value
added, inter-organisational Composite Services (CSs) from
multiple existing services. To preserve their autonomy and
privacy, each organisation needs to regulate access both to
their services and to shared information within the CS. Key
mechanisms to facilitate such regulated interactions are the
collection and verification of non-repudiable evidence of
the actions of the parties to the CS. The paper describes how
component-based middleware can be enhanced to support
non-repudiable service invocation and information sharing.
A generic implementation, based on a J2EE application
server, is presented.

Keywords: System Security; FT Architecture/Middleware
Software Engineering; Non-repudiation; Service
Composition

1. Introduction

The wide variety of services and resources available
over the Internet presents new opportunities to create value-
added, inter-organisational Composite Services (CSs) from
multiple existing services. The resulting CS can involve
close interaction among the constituent services of partici-
pating organisations. Nevertheless, each organisation needs
to maintain their autonomy and privacy. This implies the
regulation of access both to the services offered within a
CS and to information that is shared in a CS. Regulation
of access to shared information includes validation by all
interested parties of any proposed changes to that infor-
mation. Since the intention is to compose a CS from ex-
isting services, regulatory requirements should be met by
the extension, as opposed to replacement, of existing ser-
vices. The main contribution of this paper is to address this
requirement by extending component-based middleware to
provide a flexible framework to support regulated interac-
tion between organisations.

It is assumed that each organisation has a local set of
policies for an interaction that is consistent with an over-
all agreement (or set of agreements) between organisations
(the business contract). The formation and operation of the
CS must not compromise local policies and must comply
with the business contract. There are two aspects to reg-
ulation in this context: (i) high level mechanisms to spec-
ify and enforce contractual rights and obligations (exam-
ples include work on Law Governed Interaction [13] and on
contract representation and monitoring [14]); and (ii) lower
level mechanisms to generate a non-repudiable audit trail
that can be used to record and to verify that observed in-
teraction behaviour adheres to agreements. An interaction
is non-repudiable if it is impossible for any party to the
interaction to subsequently deny their participation. This
paper presents two mechanisms that together form the ba-
sic building blocks for trusted interaction: non-repudiable
service invocation and non-repudiable information shar-
ing. These provide abstractions that are familiar from the
intra-organisational context and result in regulated interac-
tion in the inter-organisational context. For example, non-
repudiable service invocation can be used to audit requests
between organisations to access or modify each other’s in-
ternal information, or for transfer of control over shared
information. Non-repudiable information sharing regulates
access to and updates of shared information.

The contributions of this paper are that it: (i) introduces
the abstraction of trusted interceptors that mediate the in-
teraction between organisations to achieve the exchange of
non-repudiation evidence and to validate changes to shared
information; (ii) shows that this abstraction is sufficiently
general to apply to a variety of interaction scenarios; and
(iii) demonstrates the practicality of the abstraction through
a prototype implementation in component-based middle-
ware (such as J2EE [16]). Section 2 provides a motivat-
ing example. Section 3 discusses the trusted interceptor
abstraction and our model of non-repudiable interaction.
Section 4 describes the prototype component-based imple-
mentation of non-repudiation services. Related work is dis-
cussed in Section 5. Section 6 concludes the paper.

2. Motivating example

This section describes the scenario of a specialist car
manufacturer that combines components from various part
suppliers to satisfy the requirements of a specialist car
dealer (acting on behalf of the ultimate customer). Figure 1

 shared space

 organisationNR-Invocation

NR-Sharing

local database

shared information

Virtual
Enterprise

Specialist car
 manufacturer

Part supplier B

Part supplier A

Part supplier C

Car dealer

Figure 1. Specialist car manufacturer applica-
tion

presents the overall structure of the interaction between the
specialist car dealer, the car manufacturer and, in this ex-
ample, three car part suppliers. In effect these enterprises
collaborate to form a virtual enterprise (VE) to deliver a
specialist car to the car dealer’s customer. That is, the VE
creates a Composite Service (CS) for the specification and
delivery of a specialist car. The CS interactions must be
regulated to ensure that each member of the VE obtains the
value they expect from the collaboration and are bound to
the corresponding commitments they make.

CS interactions involve invocation of services between
members of the VE and the sharing of information that is
held in common by the VE. For example, Figure 1 depicts
the car manufacturer and suppliers A and B negotiating the
delivery of some component. The component is required to
meet an overall specification negotiated between the dealer
and the manufacturer. The manufacturer is then required
to reach agreement with the suppliers on details such as:
interfaces between parts, cost of customisation and deliv-
ery schedules. It is natural to share this information so that
each party can update it (subject to the agreement of the
other parties). Other artifacts that are shared, and may be
subject to renegotiation, are the agreements governing the
interaction. In addition to update to shared information, the
process of reaching agreement on the specification of a car
component, and the car as a whole, will involve requests
between parties to perform actions on each other’s behalf.
Actions may range from the resolution of queries on the
range of parts available to requests to act on shared infor-
mation (initiating a transfer of control). These requests are
naturally expressed as service invocations.

To regulate interactions of the above type, a given ac-
tion must be attributable to the party who performed the
action and commitments made must be attributable to the
committing party. For example, it should not be possible
for a client to subsequently disavow the request and con-
sumption of a service. Similarly, it should not be possible
for the service provider to subsequently deny having de-
livered a service. If information is shared then the parties
sharing the information should be able to validate a pro-
posed update, the update should be attributable to its pro-
poser and the validation decisions with respect to the up-
date attributable to the other parties. That is, to regulate
an interaction we require attribution, validation and audit.
Non-repudiable attribution binds an action to the party per-
forming the action. Validation determines the legality of an
action with respect to interaction agreements. Audit ensures
that evidence is available in case of dispute and to inform
future interactions. This paper addresses these require-
ments by providing two building blocks for regulated in-
teraction between organisations: non-repudiable service in-
vocation (NR-Invocation) and non-repudiable information
sharing (NR-Sharing). Component middleware support for
regulated service interactions ensures that actions of a mem-
ber of a VE are non-repudiably bound to the member; the
acceptance, or otherwise, of those actions is non-repudiably
bound to the other members of the VE; and that service in-
vocations, and the results of those invocations, are bound to
the parties to the invocation.

3. Building blocks for trusted interaction

This section discusses the abstraction of trusted inter-
ceptors that mediate inter-organisational interaction and de-
scribes our model of non-repudiable interaction in terms of
this abstraction. We argue that the trusted interceptor ab-
straction is sufficiently general to apply to a variety of in-
teraction scenarios. For example, it is not bound to partic-
ular non-repudiation protocols but can be seen as a flexible
framework in which protocols can be deployed as appropri-
ate to the regulatory regime governing an interaction or to
the trust relationships between the parties to an interaction.

3.1. Trusted interceptors and trust domains

Inter-organisational interaction requires regulatory
mechanisms to ensure: (i) that misbehaviour by dishonest
parties does not disadvantage honest parties and (ii) that
honest parties share a verifiable, consistent view of the
nature of the interaction. However, different types of inter-
action will demand different mechanisms. The choice of
mechanisms to deploy will be determined by application-
specific factors such as: the relationship between the parties
to the interaction, the legal framework and agreements that

govern the interaction, and the application domain within
which the organisations operate. The common feature of
all regulatory mechanisms is that they somehow mediate
the interaction between parties. The trusted interceptor
abstraction generalises this notion of mediation. As

interceptor

Org. A Org. B

Org. C

trust
domain

interceptor

interceptor

Figure 2. Trusted interceptors

shown in Figure 2, conceptually, each party has a trusted
interceptor that acts on its behalf. The introduction of
trusted interceptors transforms an unregulated domain into
a trust domain for the conduct of regulated, audited and fair
interaction. Informally, a fair interaction is one in which
honest parties cannot be disadvantaged by the behaviour of
dishonest parties (for details, see Markowitch et al [12] who
discuss the evolution of the notion of fairness in exchange
protocols). The trusted interceptor abstraction insulates
the parties to the interaction from the detail of underlying
mechanisms used to meet regulatory requirements. In-
terceptors can implement different mechanisms to meet
different interaction requirements and can be reconfigured
to meet changing requirements as relationships evolve.

Trusted interceptors provide a trust domain by policing
access to the domain and regulating and auditing actions
within the domain. To support dispute resolution, the fact
that trusted interceptors mediated the interaction provides
any honest party with irrefutable evidence of their own ac-
tions within the domain and of the observed actions of other
parties. The regulatory mechanisms used to support a trust
domain will vary according to the degree of trust between
parties. For example, a more lightweight mechanism can
be used when parties, who otherwise trust each other, need
a verifiable audit trail of their interaction compared to the
situation where parties are mutually mistrusting (and re-
quire strong fairness guarantees). Also, certain types of in-
teraction may be inherently more trustworthy than others.
For example, there may be stronger incentives to good be-
haviour in a long-running interaction involving update to
shared information between members of a VE compared
with a one-off service invocation. This observation is sup-
ported by work on the Iterative Prisoner’s Dilemma [1]
where the prospect of and payoff from future interaction can
even induce antagonists to cooperate. Ultimately, trusted

interceptors construct a trust domain that, under assump-
tions agreed between the parties to an interaction, delivers
safety and liveness guarantees. Safety guarantees ensure
that the interaction complies with agreements between or-
ganisations — for example, that changes to shared informa-
tion are unanimously agreed. Liveness guarantees address
forward progress — for example, that honest parties can
resolve an exchange despite non-cooperation of dishonest
parties.

(c) direct trust domain

Org. BOrg. A
trust

domain

interceptor interceptor

(a) inline TTP trust domain

TTP

Org. BOrg. A trust
domain

(b) distributed inline TTP trust domain

Org. A Org. B
TTP

A
TTP

Btrust
domain

Figure 3. Trust domains using trusted inter-
ceptors

Figure 3 shows three approaches to the use of trusted in-
terceptors to provide a trust domain (for simplicity, between
two organisations). In both Figure 3(a) and 3(b), communi-
cation between organisations A and B is routed via Trusted
Third Parties (TTP(s)). Figure 3(a) shows a single TTP act-
ing on behalf of both organisations. Figure 3(b) is the con-
struction of an inline TTP from TTPs acting on behalf of A
and B. However constructed, the inline TTP is an intercep-
tor between the organisations and is responsible for ensur-
ing that agreed safety and liveness guarantees are delivered
to honest parties.

The alternative to interaction through inline TTPs is the
formation of a direct trust domain by the organisations
themselves. As shown in Figure 3(c), in this case, each
party hosts its trusted interceptor. The interceptors execute
protocols that deliver the guarantees required to form a trust
domain appropriate to the given interaction. Depending on
the relationship between organisations and the specific in-
teraction requirements, this direct trust domain may demand
the availability of one or more TTPs. These TTP(s) are not
directly involved in all communication between the parties
but may be called upon to resolve or abort a protocol run

to deliver fairness and/or liveness guarantees to honest par-
ties. The organisations forming a trust domain can agree on
the deployment of different interceptors to deliver different
fairness or reliability guarantees or to satisfy different ev-
identiary requirements. An advantage of the formation of
a direct trust domain is that it is easier to make trade-offs
between different requirements. For example, the imple-
mentation of non-repudiable information sharing described
in Section 4.3 involves direct interaction between organisa-
tions without the support of a TTP. Nevertheless, as shown
in [5], it has the safety property that an honest party can ir-
refutably assert the validity of the (agreed) state of shared
information despite failure and/or misbehaviour by other
parties. It has the liveness property that if no party mis-
behaves, agreed interactions take place despite a bounded
number of temporary network and computer related fail-
ures. In effect, the risk of a loss of liveness and the resul-
tant breakdown of an interaction leading to dispute is traded
against the advantage of direct interaction between parties
without the involvement of a TTP. An alternative implemen-
tation, using different interceptors, could involve a TTP to
deliver a stronger liveness guarantee.

In the remainder of this section we describe how trusted
interceptors are used to achieve regulated service invocation
and information sharing. First, we enumerate the trusted
interceptor assumptions (some of which are trivially met
when a single TTP acts as interceptor for all parties):

1. Trusted interceptors use perfect cryptography. For ex-
ample, signatures cannot be forged and encrypted data
cannot be decrypted except with the appropriate de-
cryption key.

2. The communication channel between trusted intercep-
tors provides eventual message delivery (there is a
bounded number of temporary network and computer
related failures).

3. Trusted interceptors have persistent storage for mes-
sages (or, more precisely, evidence extracted from
messages). The minimum requirement is that inter-
ceptors ensure evidence is available for as long as is
necessary to meet their obligations to the other inter-
ceptors mediating an interaction. Longer term storage
to protect the interests of the party on whose behalf an
interceptor acts will be determined by agreement be-
tween the party and its interceptor.

4. Trusted interceptors only exchange messages that are
well constructed with respect to the interaction they
are mediating. For example: interceptors do not re-
lay information provided by the organisation they rep-
resent that is invalid with respect to a given protocol
execution; and messages exchanged are either tamper-
resistant (encrypted), or tampering is detectable and in-

terceptors will cooperate to ensure a well-constructed
message is eventually delivered.

5. Trusted interceptors execute on reliable nodes or the
interaction between them is made fault tolerant by
employing mechanisms such as those described by
Ezhilchelvan and Shrivastava [7].

Given these assumptions, trusted interceptors can cooperate
to ensure fairness and liveness for honest parties to an in-
teraction. Ultimately, since cooperation of dishonest parties
cannot be enforced, the guarantee is that trusted interceptors
will support the conclusion of dispute resolution in favour
of honest parties. The infrastructure requirements implied
by the above assumptions are discussed in the extended ver-
sion of this paper [4].

The following descriptions of non-repudiation services
apply to all three approaches to constructing a trust domain.
In the case of a single inline TTP, trusted interceptors acting
on behalf of each party are co-located and communication
between them is internal to the TTP. In practice, this may
mean that the interceptors are constructed from components
hosted by the same application server and interfaces to in-
teract through the interceptors are presented to participating
organisations.

3.2. Non-repudiable service invocation

Figure 4(a) shows a typical two-party, client-server in-

(b) Non-repudiable service invocation

req, NROreq

resp, NROresp

NRRresp

req

resp

req
resp

NRRreq

interceptor interceptor

Client Server

(a) Service invocation

request

responseClient Server

Figure 4. Non-repudiable service invocation

teraction. The client invokes a service by sending a request
to the server who issues a response. We assume at-most-
once service invocation semantics (supported by most mid-
dleware): if the client receives the response then this means
that the invoked operation has been executed once; if no re-
sponse is received then the operation may or may not have
been executed. Non-repudiable service invocation provides
the following additional assurances to the client: (1) that
following an attempt to submit a request to a server, either:
(a) the submission failed and the server did not receive the

request; or (b) the submission succeeded and there is proof
that the request is available to the server; and: (2) that if a
response is received, there is proof that the server produced
the response. For the server, the corresponding assurances
are: (1) that if a request is received, there is proof iden-
tifying the client who submitted the request; and: (2) that
following an attempt to deliver a response to the client, ei-
ther: (a) the delivery failed and the client did not receive the
response; or (b) delivery succeeded and there is proof that
the response is available to the client.

To provide the above assurances, trusted interceptors ex-
ecute a non-repudiation protocol that ensures the following:

1. a request is passed to a server if, and only if, the client
(or its interceptor) provides non-repudiation evidence
of the origin of the request (NROreq) and the server
(or its interceptor) provides non-repudiation evidence
of receipt of the request (NRRreq)

2. the response is passed to the client if, and only if, the
server (or its interceptor) provides non-repudiation ev-
idence of the origin of the response (NROresp) and the
client (or its interceptor) provides non-repudiation ev-
idence of receipt of the response (NRRresp).

Non-repudiation tokens include a unique request identifier,
to distinguish between protocol runs and to bind protocol
steps to a run, and a signature on a secure hash of the evi-
dence generated. Figure 4(b) models the exchange of ev-
idence achieved by the execution of an appropriate non-
repudiation protocol between interceptors acting on behalf
of client and server. The client initiates a request for some
service. The client’s interceptor generates an NROreq token
and then sends both the request and the token to the server’s
interceptor. The server’s interceptor generates an NRRreq
token and returns it to the client’s interceptor. The server’s
interceptor then passes the request to the server to generate
a response. On receipt of the response, the server’s intercep-
tor generates an NROresp token and sends both the response
and the token to the client’s interceptor. As noted in Sec-
tion 3.1, the interceptors are responsible for verification and
persistence of evidence generated during the exchange. The
exact meaning of generation of non-repudiation evidence
will be dependent on the actual protocol used to execute the
exchange. Client and server may sign evidence, or their in-
terceptors may sign on their behalf, or, as with some fair
exchange protocols, a combination of client/server signing
in the normal case and TTP signing in case of recovery will
be used. Minimally, the interceptors ensure that irrefutable
evidence of the exchange is generated.

Assuming the server-side response (resp) includes evi-
dence as to whether the request was made available to the
server, the above model of the interaction between client in-
terceptor (CI) and server interceptor (SI) can be simplified
to:

CI → SI : req, NROreq
SI → CI : resp, NRRreq, NROresp
CI → SI : NRRresp

If the request was made available to the server, then resp
is either the result of normal execution of the request at
the server or interceptor-generated evidence that the request
failed or that the server did not respond within some agreed
timeout or that the client initiated an abort of the request
before a result was available. If the request was not made
available to the server, then resp indicates that the request
was received but not executed. Similarly, the client-side re-
ceipt for the server-side response, NRRresp, may include
evidence as to the client’s consumption of the response. For
example, if the interceptor can prevent access to the result of
the server’s execution of the client’s request, then the NR-
Rresp can indicate that the response was received but not
consumed by the client. This equates to at-most-once se-
mantics where a server may do work on behalf of a client
that is not consumed. Given these semantics, the client may
fail or timeout and the server will receive evidence that a
response was generated that the client did not consume.

3.3. Non-repudiable information sharing

Figure 5(a) shows three organisations (A, B and C) ac-

(a) Information sharing

Org. C

Org. B

Org.
A i

update

update

update

(b) Non-repudiable information sharing

2

Org.
A i1 3

interceptor

Org. B

interceptor

Org. C

interceptor
2

Figure 5. Non-repudiable information sharing

cessing and updating shared information. If, for example,
A wishes to update the information, then they must reach
agreement with B and C on the validity of the proposed up-
date. For the agreement to be non-repudiable: (i) B and C
require evidence that the update originated at A; and (ii) A,
B and C require evidence that, after reaching a decision on
the update, all parties have a consistent view of the agreed
state of the shared information. The latter condition im-
plies that there must be evidence that all parties received
the update and that they all agreed to it being applied to the
information.

Figure 5(b) shows A proposing an update to the informa-
tion shared by A, B and C. Interceptors are used to mediate
each organisation’s access to the information. In step 1, A
attempts an update to the information. A’s interceptor inter-
cepts the update and, in step 2, executes a non-repudiable
state coordination protocol with B and C to achieve the fol-
lowing:

1. That A’s update is irrefutably attributable to A and pro-
posed to B and C.

2. That B and C independently validate A’s proposed
update, using a locally determined and application-
specific process, and their respective decisions are
made available to A and are irrefutably attributable to
B and C.

3. That the collective decision on the validity of the up-
date (in this case, responses from B and C to A) are
made available to all parties (A, B and C).

If the resolution of the protocol executed at step 2 represents
agreement to the update then the shared information is up-
dated in step 3. Otherwise, the information remains in the
state prior to A’s proposed update. Non-repudiable connect
and disconnect protocols govern changes to the membership
of the group of organisations sharing the information.

Our previous work on B2BObjects [5] presents a real-
isation of the above abstraction of regulated information
sharing. The paper gives a detailed description of a non-
repudiable state coordination protocol used to reach agree-
ment on update to shared information that offers the live-
ness and safety guarantees discussed in Section 3.1. A
Java RMI-based implementation of B2BObjects is also de-
scribed. This implementation is the starting point for the
component middleware support for regulated information
sharing described in Section 4.3.

3.4. Evidence generation requirements

To meet non-repudiation requirements the evidence gen-
erated, and signed, during service invocation or update to
shared information must be in a form that cannot be sub-
sequently disputed. For non-repudiable service invocation,
the requirement is that a meaningful snapshot of the invo-
cation is generated (including details of the request, the ser-
vice invoked and the response). For non-repudiable infor-
mation sharing, the main requirement is that an agreed rep-
resentation of information state is used for evidence gen-
eration. Additional details of the components and form of
evidence are provided in the extended version of the paper
[4].

4. Component-based implementation

This section presents a component middleware imple-
mentation of the services described in Section 3. The imple-
mentation is based on a J2EE application server. J2EE ap-
plications are assembled from components (self-contained
software units). The components include Enterprise Jav-
aBeans (EJBs) that are deployed on an application server.
EJBs run in an environment called an EJB container. To-
gether, the server and container provide a bean’s runtime
environment. The container intercepts remote invocations
on the bean and is responsible for invoking appropriate low-
level services, such as persistence and transaction manage-
ment, for each operation on the bean. The application pro-
grammer concentrates on the functional (business logic) as-
pects of a bean’s behaviour while the container provides ser-
vices to ensure correct, non-functional behaviour.

Container

EJB Component

EJB
Client

Services

Non
Repudiation

Messaging

Persistence

Transaction
Management

Figure 6. J2EE-based non-repudiation

Figure 6 shows an EJB client invoking an operation on
an EJB component and the container interception of the in-
vocation to provide various services. As shown, the inten-
tion is to add a non-repudiation service to regulate access to
EJBs.

Our prototype extends the JBoss J2EE application server
[8]. JBoss makes systematic use of reflection and invo-
cation path interceptors to support extension to its exist-
ing services and the addition of new services. This pro-
vides a straightforward mechanism for the implementation
of the trusted interceptors introduced in Section 3. Although
this exploits JBoss-specific mechanisms, similar support is
found in other component-based systems.

In JBoss, interceptors are used to invoke container-
level services to meet requirements specified in a compo-
nent’s deployment descriptor. An application-level invoca-
tion passes through a chain of interceptors, each intercep-
tor completing some task before passing the invocation to
the next interceptor in the chain. Existing services can be
modified or new services added to a container by inserting
additional interceptors in the chain. JBoss uses reflection to
provide the interceptor with access to the application-level
method called, the method parameters, the target bean and
its deployment descriptor. JBoss provides interceptors both

at the server and the client (using a dynamic proxy). Thus
the mechanism supports the execution of additional logic at
the client-side on behalf of a container-level service.

The prototype implementation uses JBoss interceptors to
access our non-repudiation middleware that uses a generic
B2BCoordinator service for the exchange of protocol mes-
sages. Custom protocol handlers are registered with the
coordinator to execute non-repudiation protocols. The co-
ordinator service also provides access to generic services
that support execution of protocols (such as credential man-
agement and state storage). The combination of generic
coordinator service and custom protocol handlers provides
a middleware that is adaptable to different application re-
quirements, for example to execute different protocols and
to support the different interaction styles described in Sec-
tion 3.1.

The implementations are based on the direct trusted in-
terceptor interaction shown in Figure 3(c). Furthermore,
no TTP is used to support protocol execution. Thus, the
implementation of service invocation guarantees safety and
liveness if client and server satisfy the trusted interceptor
assumptions. The implementation of information sharing
guarantees: (i) no invalid changes to shared information
whatever the behaviour of participants, and (ii) liveness if
all parties satisfy the trusted interceptor assumptions. The
flexibility inherent in our approach means that we can trans-
form these implementations by introducing a TTP to sup-
port execution of fault-tolerant fair exchange protocols of
the kind described in [7]. This transformation would then
allow us to relax the strong assumptions about the parties to
the interaction.

4.1. B2BCoordinator service and protocol handlers

Each trusted interceptor provides a B2BCoordinator ser-
vice for the exchange of messages with other trusted inter-
ceptors. In the J2EE implementation, this service is ex-
ported as a remote object that remote trusted interceptors
make invocations on to deliver messages. This service is the
external entry point for execution of non-repudiation proto-
cols. The interface is:

B2BCoordinatorRemote {
void deliver(B2BProtocolMessage msg);
B2BProtocolMessage

deliverRequest(B2BProtocolMessage msg);
}

Remote invocation of deliver results in delivery of the
given message from the remote party (as a parameter to
the call). deliver can be used for synchronous or asyn-
chronous protocol execution. deliverRequest is a conve-
nience method that allows a remote party to deliver a mes-
sage and then to wait synchronously for a response (the re-
sult of the call). A B2BProtocolMessage is an interface to

content that is common to non-repudiation protocol mes-
sages — request (protocol run) identifier, sender, proto-
col step, signed content, payload etc. Concrete implemen-
tations of B2BProtocolMessage meet protocol-specific re-
quirements.

To execute specific protocols, and meet different applica-
tion or platform requirements, custom protocol handlers are
registered with the coordinator service. The coordinator is
responsible for mapping an incoming protocol message to
an appropriate handler. The coordinator also provides ac-
cess to local services that are not protocol or platform spe-
cific. All protocol handlers provide the following interface
to the local coordinator service to process incoming mes-
sages:

B2BProtocolHandler {
void process(B2BProtocolMessage msg);
B2BProtocolMessage

processRequest(B2BProtocolMessage msg);
}

Protocol handlers use the coordinator service provided by
remote parties to deliver outgoing protocol messages. As
discussed below, for non-repudiable service invocation, a
B2BInvocationHandler initiates protocol execution by an
appropriate protocol handler. For non-repudiable informa-
tion sharing, a B2BObjectController initiates protocol exe-
cution.

4.2. Implementation of non-repudiable service in-
vocation

Client
Client Proxy

B2BCoordinators

Server

EJB Component

B2B Protocol
Handlers

Trusted Interceptor

B2B Invocation
Handlers

Trusted Interceptor

Container ServicesOther JBoss
Interceptors

JBoss NR
Interceptor

EJB
Client

Figure 7. JBoss/J2EE-based NR-Invocation

In J2EE, service invocation equates to the remote invo-
cation of an operation on an enterprise bean. As shown in
Figure 7, the JBoss facility for server- and client-side inter-
ceptors is used to render the operation non-repudiable. The
client’s reference to the remote bean is a dynamic proxy

generated by the server. This proxy contains client-side in-
terceptors that are typically used for context propagation.
We add an extra interceptor — the JBoss NR interceptor —
to both client and server invocation paths. These NR in-
terceptors are responsible for triggering execution of a non-
repudiation protocol that achieves the exchange described
in Section 3.2. The client-side NR interceptor accesses the
client’s non-repudiation middleware that in turn manages
the client’s participation in protocols and its access to sup-
porting infrastructure to store evidence etc.

Each interceptor in a chain may execute on both the
outgoing and incoming invocation path. To achieve non-
repudiation of the request as constructed by the client and
to verify the integrity of the response presented to the client,
the client-side NR interceptor is the first in the chain on the
outgoing path (and last on the return path). On the server-
side, to verify the integrity of the request as it entered the
server and to provide non-repudiation of the response as it
leaves the server, the NR interceptor is the first in the chain
on the incoming path (the last on the return path).

Each JBoss interceptor has an invoke operation that
takes an Invocation object1 as a parameter for the intercep-
tor to process in some way. The interceptor then passes the
Invocation to the next interceptor in the chain by calling that
interceptor’s invoke operation. The invoke operation of the
client-side JBoss NR interceptor is:

public Object invoke(Invocation inv) {
B2BInvocationHandler b2bInvHdlr =

B2BInvocationHandler.getInstance(
“JBossJ2EE”, “direct”);

B2BInvocation b2bInv =
new JBossB2BInvocation(

nextInterceptor(), inv);
return b2bInvHdlr.invoke(b2bInv);

}

getInstance is a factory method that returns a refer-
ence to a B2BInvocationHandler for the given platform
(“JBossJ2EE”) to execute the given protocol (“direct”).
The concrete implementation of a B2BInvocationHandler
is under control of the client. A B2BInvocation ob-
ject is a generic wrapper for platform-specific representa-
tions of the service to invoke and the invocation param-
eter(s). For a JBossB2BInvocation, the service to invoke
is the next interceptor in the chain and a JBoss Invoca-
tion object encapsulates the invocation parameters. When
invoke is called, the general behaviour of the client-side
B2BInvocationHandler is: (i) obtain a reference to or in-
stantiate the local B2BCoordinator service; (ii) obtain a
reference to or instantiate a protocol handler for the given
protocol and register the handler with the coordinator ser-
vice; (iii) request that the protocol handler execute its non-
repudiation protocol using the given service and invocation

1an encapsulation of the client’s service invocation, including contex-
tual information and related payload

parameters; and (iv) return the outcome of protocol execu-
tion (normally the server’s response) to the client.

To start execution of the protocol, the client-side
B2BInvocationHandler replaces the arguments to the ser-
vice invocation with the first message of the protocol and
a reference to its local coordinator service. These are then
passed up through the interceptor chain to the server. When
the server-side NR interceptor receives the Invocation ob-
ject, it instantiates a JBoss-specific B2BInvocationHandler
object and calls the B2BInvocationHandler’s invoke

method with the Invocation object as a parameter. The
general behaviour of the server-side B2BInvocationHandler
is: (i) obtain a reference to or instantiate the local
B2BCoordinator service; (ii) obtain a reference to or instan-
tiate a protocol handler for the type of B2BProtocolMessage
encapsulated in the Invocation object and register the han-
dler with the coordinator service; and (iii) request that the
protocol handler execute its non-repudiation protocol us-
ing the protocol message and remote coordinator reference
(obtained from the Invocation object). At the appropriate
point during execution of the non-repudiation protocol, the
client’s request is actually passed through the interceptor
chain to the EJB component for execution. The result of
this execution is then used to complete the non-repudiation
protocol.

The application programmer on the server side is
responsible for identifying, in a bean’s deployment
descriptor, when non-repudiation is required and for
identifying the platform and protocol for instantia-
tion of the B2BInvocationHandler by the NR inter-
ceptor. Thus the server controls activation of non-
repudiation. However, the client controls its own partici-
pation, through its own implementations of B2BInvocation-
Handler, B2BProtocolHandler and B2BCoordinator. Thus,
for example, the client may change the behaviour of its
B2BInvocationHandler to attempt to re-negotiate the non-
repudiation protocol to execute. As shown, the NR inter-
ceptor, B2BInvocationHandler, B2BProtocolHandler and
B2BCoordinator comprise each party’s trusted interceptor.

4.3. Implementation of non-repudiable information
sharing

The implementation of non-repudiable information shar-
ing is based on our previous work on B2BObjects. This
provides the abstraction of shared information depicted in
Figure 5(b) by coordinating the state of local (object) repli-
cas that encapsulate the information. Figure 8 illustrates
the component-based implementation when two organisa-
tions, A and B, share a B2BObject and A is updating the
object state. As in a standard J2EE application, an EJB
client makes invocations through an application interface (a
session bean) that may result in access and update to an as-

B2B
Coordinators

B2B Protocol
Handlers

EJB
Client

Org. B Server

State Validators

session
bean

B2BObject
Controller

Trusted Interceptor

B2BObject

entity
bean

Org. A Server

Application
Interface

session
bean

B2BObject
Controller

Trusted Interceptor

B2BObject

entity
bean

Figure 8. JBoss/J2EE-based NR-Sharing

sociated entity bean. In this case, the entity bean has been
identified as a B2BObject that should be coordinated with
remote replicas. An interceptor traps invocations on the
entity bean to ensure that a B2BObjectController controls
access and update to the bean. The controller is the local
interface to configuration, initiation and control of informa-
tion sharing. It uses protocol handlers and a coordinator
service to execute non-repudiable state and membership co-
ordination protocols with remote parties. Implementations
of the interceptor, controller, protocol handlers and coordi-
nator are all provided by the middleware, as is the support-
ing infrastructure to store evidence etc. The controller uses
application-specific validation listeners to validate state and
membership changes proposed by remote parties. Figure 8
shows B’s controller validating A’s proposed update by ap-
pealing to one or more state validators (implemented as ses-
sion beans). The update is only applied to the replicas if B
agrees to the proposal. The process is the same for an up-
date proposed by B. Furthermore, the implementation sup-
ports sharing by more than two parties.

The middleware-provided JBoss interceptor is respon-
sible for interaction with the B2BObjectController, and,
through the controller, with the B2BObjects middleware.
The application programmer is responsible for: identifying
an entity bean as a B2BObject; providing configuration in-
formation in the bean’s deployment descriptor (for example,
to identify validator beans); and providing implementations
of one or more session beans to perform validation. Op-
tionally, the application programmer can also specify that
a method in the application interface should result in a se-
ries of operations on an underlying B2BObject bean being
“rolled-up” into a single (atomic) coordination event. The
enhancement of an entity bean to become a B2BObject is
effectively transparent to the local EJB client and its appli-
cation interface.

5. Related work

We are not aware of other work that provides systematic
integration of services for trusted interaction with compo-
nent middleware. There is a Web Services non-repudiation
proposal [9] that specifies a mechanism to request and send
a signed receipt for a SOAP (XML-encoded) message in or-
der to support so-called “voluntary” non-repudiation. The
OASIS Digital Signature Service [15] proposes XML re-
quest/response protocols for signing, verifying and time-
stamping data. The Universal Postal Union has proposed
the Global Electronic Postmark [17] (EPM) standard. This
is a TTP service for generation, verification, time-stamping
and storage of non-repudiation evidence. The service would
also support linking of evidence under a unique transaction
identifier to allow business transaction events to be bound
together. None of these proposals provide for the exchange
of non-repudiation evidence or the governance of complex
interactions. These would have to be delivered at the ap-
plication level with the proposed services used as back-end
infrastructure (which in the case of EPM would be provided
by a TTP).

Early work by Clark and Wilson [3] on security pol-
icy stressed the importance of data integrity in the com-
merce domain (as opposed to the military domain’s focus
on disclosure). In the Clark-Wilson model constrained data
items are only manipulated through verified transforma-
tion procedures as part of well-formed transactions. This
ensures that transformations respect an organisation’s in-
tegrity rules, for example respecting good accounting prac-
tice, and are logged for audit. The model was concerned
with enforcement of policy within organisations. The use
of verified transformation procedures that mediate the ac-
tions within an organisation is similar to the use of trusted
interceptors as mediators between organisations.

There has been much recent work on fair exchange and
fair non-repudiation, and on the formal verification of pro-
tocols. Kremer et al [10] summarise the state of the art
and provide a useful classification of protocols according
to types of fairness and the role of TTPs in protocols. There
have also been contributions on the transformation of fair
exchange to meet fault tolerance requirements [11, 7]. This
body of work can be brought to bear on the choice of pro-
tocols that trusted interceptors execute to meet interaction
requirements.

The work of Minsky et al on Law Governed Interaction
(LGI) [13] represents one of the earliest attempts to provide
coordination between autonomous organisations. Trusted
agents act as mediators that comply with a global policy.
This is similar to the trusted interceptor abstraction in that
the interaction between agents is assumed to be legal. LGI
does not address systematic non-repudiation.

Wichert et al [18] used filters in CORBA to provide non-

repudiable invocation on a remote object. However, there
approach is asymmetric — the client provides the server
with non-repudiation of origin of a request but there is no
exchange to provide corresponding evidence to the client.
Their work did provide useful insights into representation of
evidence in XML documents. In our system the exact rep-
resentation of evidence is a matter for agreement between
parties concerned, the important requirement is that the rep-
resentation can be subsequently rendered meaningful and is
irrefutable.

6. Conclusions

This paper presented a unified approach to regulated in-
teraction based on the abstraction of trusted interceptors
that mediate interactions. The component-based middle-
ware implementation provides the basic building blocks for
the construction of a composite service by organisations
collaborating to form a virtual enterprise. This can be ex-
tended to support transactional interaction. Our preliminary
work in this area [6] shows how B2BObjects can partici-
pate in distributed (JTA [2]) transactions. We intend to build
on this work to provide component-based transactional and
non-repudiable interaction.

In effect, the trusted interceptor abstraction, and its reali-
sation in middleware, provides a flexible framework for im-
plementation of different approaches to non-repudiable ser-
vice invocation (fair exchange) and regulated information
sharing. Future work will include the use of this framework
to provide a suite of protocols and other mechanisms that
can be deployed to meet different application requirements.

Acknowledgements
This work is part-funded by the EU under projects IST-
2001-34069: "TAPAS (Trusted and QoS-Aware Provision
of Application Services)" and IST-2001-37126: “ADAPT
(Middleware Technologies for Adaptive and Composable
Distributed Components)”; and by the UK EPSRC un-
der grant GR/S63199: “Trusted Coordination in Dynamic
Virtual Organisations”. We thank our colleague Paul
Ezhilchelvan for useful discussion of this work.

References

[1] R. Axelrod. The Evolution of Co-operation. Penguin Books,
1990.

[2] S. Cheung and V. Matena. Java Transaction API
(JTA version 1.0.1B). Sun Microsystems Inc.,
http://java.sun.com/products/jta/index.html, 2002.

[3] D. R. Clark and D. R. Wilson. A Comparison of Commer-
cial and Military Computer Security Policies. In Proc. IEEE
Symp. on Security and Privacy, pages 184–194, 1987.

[4] N. Cook, P. Robinson, and S. Shrivastava. Component
Middleware to Support Non-repudiable Service Interactions.
Technical Report CS-TR 834, School of Computing Science,
Univ. Newcastle, 2004.

[5] N. Cook, S. Shrivastava, and S. Wheater. Distributed Object
Middleware to Support Dependable Information Sharing be-
tween Organisations. In Proc. IEEE Int. Conf. on Dependable
Syst. and Networks (DSN), Washington DC, USA, 2002.

[6] N. Cook, S. Shrivastava, and S. Wheater. Middleware Sup-
port for Non-repudiable Transactional Information Sharing
between Enterprises. In Proc. IFIP Int. Conf. on Distributed
Applications and Interoperable Syst. (DAIS), Springer LNCS
2893, Paris, France, Nov 2003.

[7] P. Ezhilchelvan and S. Shrivastava. Systematic Development
of a Family of Fair Exchange Protocols. In Proc. 17th IFIP
WG 11.3 Working Conf. on Database and Applications Secu-
rity, Colorado, USA, 2003.

[8] M. Fleury and F. Reverbel. The JBoss Extensible Server.
In Proc. ACM/IFIP/USENIX Int. Middleware Conf., Springer
LNCS 2672, Rio de Janeiro, Brazil, Jun 2003.

[9] E. Gravengaard, G. Goodale, M. Hanson, B. Roddy,
and D. Walkowski. Web Services Security: Non-
Repudiation Proposal Draft 05. Reactivity,
http://schemas.reactivity.com/2003/04/web-services-non-
repudiation-05.pdf, Apr 2003.

[10] S. Kremer, O. Markowitch, and J. Zhou. An Intensive Sur-
vey of Fair Non-repudiation Protocols. Computer Communi-
cations, 25:1601–1621, 2002.

[11] P. Liu, P. Ning, and S. Jajodia. Avoiding Loss of Fairness
Owing to Process Crashes in Fair Data Exchange Protocols.
In Proc. IEEE Int. Conf. on Dependable Syst. and Networks
(DSN), New York, USA, 2000.

[12] O. Markowitch, D. Gollmann, and S. Kremer. On Fairness
in Exchange Protocols. In Proc. 5th Int. Conf. on Information
Security and Cryptology (ISISC 2002), Springer LNCS 2587,
2002.

[13] N. Minsky and V. Ungureanu. Law-Governed Interaction:
A Coordination and Control Mechanism for Heterogeneous
Distributed Systems. ACM Trans. Softw. Eng. and Methodol-
ogy, 9(3):273–305, 2000.

[14] C. Molina-Jimenez, S. Shrivastava, E. Solaiman, and
J. Warne. Contract Representation for Run-time Monitoring
and Enforcement. In Proc. IEEE Int. Conf. on E-Commerce
(CEC), pages 103–110, Newport Beach, USA, 2003.

[15] T. Perrin, D. Andivahis, J. C. Cruellas, F. Hirsch, P. Kassel-
man, A. Kuehne, J. Messing, T. Moses, N. Pope, R. Salz, and
E. Shallow. Digital Signature Service Core Protocols and El-
ements. OASIS Committee Working Draft, http://www.oasis-
open.org/committees/dss, Dec 2003.

[16] Sun. Java 2 Platform Enterprise Edition (J2EE) Specifica-
tion. Sun Microsystems Inc., http://java.sun.com/j2ee/, 1.4
edition, 2003.

[17] UPU. Global EPM Non-repudiation Service Definition
and the Electronic Postmark 1.1. Universal Postal Union,
http://www.globalepost.com/prodinfo.htm, Oct 2002.

[18] M. Wichert, D. Ingham, and S. Caughey. Non-repudiation
Evidence Generation for CORBA using XML. In Proc. IEEE
Annual Comp. Security Applications Conf., Phoenix, USA,
1999.

