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Abstract. Energy confinement data of large fusion experiments have been ana-
lyzed in terms of dimensionless form free scaling functions. Several possible physi-
cal scenarios lead to different models with a certain number of degrees of freedom.
These are used to set up the confinement function as a linear combination of di-
mensionless power law terms. Then one has to solve the problem, given a particular
plasma model which is the optimum number of terms in the expansion, and which
model is most likely in the light of the data. Based upon data containing the en-
ergy content for a wide variety of variable settings, predictions for single variable
scans are made and compared to actual experiments. A very good agreement is
obtained.
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1. Introduction

The plasma behavior in large fusion experiments is now described for over twenty
years by energy confinement scaling functions [1]. Since an exact description of
energy transport is not possible scaling laws are in common use to give an overview
of the plasma machine properties. This allows inter-machine comparisons and the
characterization of conditions for enhanced confinement regimes. Even more, for
being quite successful in the past in predicting the performance of larger plasma
devices from data of small and midsized machines, scaling laws are involved in the
design of future fusion reactors.

The functional form of the scaling law is still unknown. Only for reasons of sim-
plicity a power law dependence is assumed and has accumulated considerable credit
just by experience. In order to describe the energy content W"¢° of the confined
plasma all the plasma determining quantities in the machine under consideration
are fed into the scaling law: For the in this paper examined W7-AS stellarator
these are the particle density n, the magnetic field B, the heating power P and
the minor radius a. Additional machine parameters like the major radius of torus
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R come only into play in comparisons with machines of different size. The scaling
law then reads:
mtheo — eoccn?énBZQéBPiocpa?a + & , (1)

where ¢ labels a single measurement with unknown error €. Also the scaling con-
stant (e®) has been expressed in exponential form. Now the above addressed
reasons for the power law choice are obvious: Applying the logarithm to both
sides of (1) an easy to solve set of linear equations in the sought «’s is obtained.

2. Dimensionless Confinement Scaling

A major shortcoming of the above equation is to be solely a data fit and that it does
not take care of the physical implications of the input variables. In order to obtain
a dimensionally exact scaling function basic plasma models may be used. This was
achieved by Connor and Taylor [2] in requiring that the invariances of basic plasma
models under similarity transformations should be the same as those of the scaling
function belonging to the respective model. Four kinetic models (see table 1) were
obtained in considering the Boltzmann equation of motion (describing a collisional
plasma) or the Vlasov equation (collisionless plasma) and discriminating further
between the electrostatic limit (low-5 case) or a self-consistent calculation of the
electro-magnetic fields from the Maxwell equations (high-3). By the invariance
requirement the plasma variables are combined in three dimensionless factors with
new scaling exponents (z1, 2, x3) specified according to table 1.
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The constants (c1, c2, ¢3) in (2) consist of fundamental physical constants and
carry physical units. They may be absorbed in an overall constant ¢ in (3). Just
the same may be done with the large radius R of the torus which is constant for
the here considered dataset of a single machine. Finally, in (4) the scaling terms
are comprised by a general function f(n, B, P, a; &) where & has components z1,
o, X3.

Already Connor and Taylor proposed to express a general form free energy
confinement scaling function as a series of terms of the form (4) with properly
chosen @ and ¢. We want to exploit this idea and employ the following ansatz to
describe the energy content Wihee of N different experiments:

E

WtheOZchf(azk):Fc. (5)

k=1

F is a N x F matrix with columns f(2;). In mathematical terms this is nothing
but an expansion in a dimensionally exact basis. In general, N linearly independent
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MJ CT Model 1 o r3 NDOF p(MJ|We‘Tp,O',I)
1 collisionless low-3 z 0 0 1 4 x10712%

2 collisional low-3 z y 0 2 99.7%

3 collisionless high-6 = 0 z 2 0.25%

4 collisional high-G z y z 3 0.025%

TABLE 1. Plasma models according to Connor and Taylor [2].

vectors f(xy) form a complete basis in the N-dimensional data space and would
therefore allow a pointwise reconstruction of the data. This is neither desirable,
nor with respect to physics correct, since the corresponding vector of the measured
energy content WP is corrupted by noise. What we really want is an expansion,
truncated at some appropriate upper limit £ describing the physics, while the
residual N — F terms in the expansion (5) would only fit the noise. So we have to
look for the most probable expansion order. Furthermore, given the four CT models
of table 1 we would like to identify the plasma physics model which describes the
data best. Since the number of degrees of freedom Npop varies between one and
three (see table 1) Occam’s Razor will have a say in this matter. And finally
we would like to estimate the energy content for certain parameter settings. An
important topic here are single variable scans (e.g. the variation of the energy
content as function of the density alone with all other variables fixed). Such scans
are not directly accessible from published databases. On the other hand, single
variable scans are experimentally cumbersome and expensive experiments have to
be performed for each and every input variable of interest. It is therefore highly
desirable to extract single variable scans from existing databases by employing
improved data analysis techniques.

3. Bayesian Approach
The likelihood function of our problem reads:

N N
p(WP|w, ¢, E, M;,0,1) ( )2H0'

K3

2
N (WS E cx fi(xr)
exp —w; (v 2; ) (6)

M; denotes the plasma kinetic model used to generate the expansion vectors f(ay).
o is the vector of experimental uncertainties associated with the measurement
WP The uncertainty in the energy content W" contains the direct distrib-
utions from the diamagnetic measurement as well as indirect contributions from
the finite precision in the input variables (n, B, P, a). Both contributions have been
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estimated to the best of our knowledge. However, to allow for possible deviations
from the true errors we introduce an overall correction factor w where we assume
that the relative error is correctly estimated. The Bayesian analysis yields a pos-
teriori for the most probable model and the optimum expansion order that o was
overestimated merely by a factor of 20%.

We are looking for the probability of a model given the data W**F. The odds
ratio gives

p(M; W a,1) _ p(Mjlo, I) p(W™|M;, 0, I) )
p(M WP o ) p(Mglo,I) p(WP|My,o,1)

The first ratio on the r.h.s., the so-called prior odds, is set to unity since we do
not want to favor one model over another. We are left with the determination of
the second ratio, the so-called Bayes factor. The global likelihood is given by a
discrete sum over all expansion orders

p(WP| My, 0,1) = > p(E|M;, o, 1)p(W P |E, M;,a,1) (8)
E

where p(E|M;, o, I) is set constant because a priori no expansion order is to be
preferred. The remaining marginal likelihood 1s obtained by

p(WP|E M;,0,1) = /p(Wexp|w,c,w,E,Mj,0',I)
plw,z,c|lE,M;,0,1) pi(w, 2, ¢) dw de dz ,  (9)

where we followed the ideas brought up by Rodriguez [3] formulating an invariant
measure. p(w,#,¢) in the marginalization integral. This stems from the require-
ment that the description of a problem should be the same regardless in which
coordinate system it 1s considered. Then the posterior probability for an infinites-
imal change in the parameters is given by

pldw,de,dec|E, M;,0,1) = p(w,®,c|E, M;, o, Hp(w, x, ¢) dw de dx | (10)
with p(w, ®, ¢) describing the Riemannian metricof the problem. The latter is given

by
pulw, @, ¢) = \/det [g] . (11)

g is the Fisher information matrix, which is

o I*Inp(W?|0, F, M;,0,1)
9ii = 00, 90;

(12)

and build up by the second derivative of the log-likelihood function with respect
to the parameters 8 = (w, x, ¢).
The prior function decomposes into

plw,z,¢|E,M;,0,1) = p(w,®|E, M;, Ip(cle, E, M;,0,1) . (13)
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While an uninformative prior is assigned to w and & we employ what we call
the Bessel prior for p(c|®, E, M;, o, I). This just imposes an upper boundary to
the choice of possible coefficients with ¢ F¥ Fe < 2(|[We™P||2. Tt is equivalent to
an entropic prior proposed by Rodriguez, where the hyperparameter o has been
marginalized by using the Bretthorst approximation that the prior may be taken
out of the integral at the maximum of the likelihood.

While the ¢ and w integrations may be performed analytically the remaining
@ integration is carried out numerically by computing the prior predictive value[4]
with Markov Chain Monte Carlo(MCMC). This is given by

p(WP|E, M;,0,1) = /p(Wexp|az,E,Mj,o,f)p(w|E,Mj,0',I) du(x) (14)
- /A(az)l_[(az) dx . (15)

p(x) is the remaining measure in . In (15) we combined the factors of the integral
to new functions A and II, where A(#) contains the pure likelihood and some
normalization constants, while TI(x) comprises the prior and the terms stemming
from the Riemannian measure. The latter shall be normalized to [II(z) da = 1.
The only way to evaluate (15) is to use II(x) as a probability density. Since the
likelihood descending term A(#) is generally much more structured than TI(x) the
variance will be large and extremely long Markov chains are needed to obtain the
desired accuracy. However, one can solve this problem in defining a new function

20) = [ A (@)i(e) do (16)

with Z(5 = 0) = 1 and Z(8 = 1) as the sought quantity in (15). The derivative
with respect to § gives

31%7?5) = /lnA(az)p@(az) de
= (InA(z))s (17)
with AP (2)I(z)

ps(@) = TAG (2 (') da’
as the new sampling density. If we integrate both sides of 17,

[y as = [ E2E g (19)

op
= InZ(B=1)-1InZ(B=0) (20)
= lnp(W*F|\E, M;,0,1), (21)

we are back where we started in (14). To obtain the marginal likelihood one there-
fore has to calculate the integral on the Lh.s. in (19) where the expectation value
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Figure 1. Upper curve: expansion order. Notice the logarithmic scale on the left. Lower curve:
misfit of data and model.

(In A(x))p is accessible by Markov Chain Monte Carlotechniques. The proof that
this is now feasible may be found in [4].

4. Results

The data which we have used in our calculations are the 153 WT7-AS data from
the international stellarator energy confinement data base [5]. We have selected
only data points with rotational transform of + & 1/3 since the single variable
scans which we present further down and which we want to compare with have
been performed at this value. Odds ratios obtained from (7) are converted back
to probabilities using Zj p(WP|M;,o,I) = 1. The resulting model probabilities
are depicted in the last column of table 1. We see that the ¢ & 1/3 W7-AS data are
best described by the collisional low-/5 Connor Taylor model. The high beta models
follow in second and third place with much lower probability. The collisionless low-
£ model is clearly inappropriate to describe the transport physics in W7-AS.

The probability distribution for the expansion order given data and model is
now readily obtained:

p(E|M;, 0, Np(WF|E, M;,0,1)
p(Wexp|Mj’ g, I)

p(E|Wexp’Mj’o"I) = (22)
This quantity is displayed for the most probable plasma model, the collisional low
beta case, in Fig. 1 as full circles. The error bars indicate Monte Carlo integration
uncertainties. The open squares, with associated error bars, depict the misfit (here
square of the usual random mean square error) between data and model prediction
(5) for each expansion order. We observe quite a typical behavior. Already three
terms in the expansion (5) lead to a rapid decrease of the misfit in the order of 35%
of the value for £ = 1. Though it does decrease further with increasing expansion
order the probability for a given E decreases rapidly so that contributions of higher
expansion orders become very small demonstrating Occam’s razor.
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Finally we come to determination of observables. Here we want to test the
predictive power of the present theory. Such a test is provided by a comparison
of measured single variable scans to the predictions from the present theory. The
latter is the expectation value of the energy content

(W) = JW p(W|W? v, M;, o,1)dW
- fp(W|Wexp,v,Mj,0',I) dW

(23)

The additional condition v specifies the “input data vector” v’ = (n, B, P, a) at
which the energy content measurement was performed. p(W|W*F v, M;, o, 1) is
again obtained by marginalization

p(W|Wexpavanao-aI) = Z/p(W|E,ZE,C,U,Mj,O',I)
E

-plE, e, c,w|W™ M; o,1) de de dw | (24)

where

p(W|E,az,c,v,Mj,0',I):(5(W—gT(az,v)~c) , (25)

with g(#,v) as an E-dimensional vector with elements f(7, B,P,a; x). The second

factor in (24) is just

p(Wel‘p’ Ea €T, C’W|Mja g, I)
OV, 0, 1)

p(anacaw|Wexpanao'aI): (26)

and we get

B ZEp(Wexp|E,Mj,o,f)ng(w,v)cMLp(az) dfx
B ZEp(Wex”E’Mj’O"I) .

(W) (27)

In Fig. 2 we show the result for a density scan obtained on the one hand from
the present theory and on the other hand from experiments at W7-AS. Because
these data are not included in the W7-AS data base the analysis is based on,
this nice agreement shows the predictive power of our approach. The stellarator
energy confinement data base is represented by the open circles which are spread
all over since they were obtained for various settings of the variables (B, P, a).
The full circles in Fig. 2 depict experimental results for a density scan. Here the
variables B, P, a are held fixed and only n varies. Representative error bars signify
the precision level of these data. But what would be the answer of our present
semi-empirical theory based only on the data with open circles? This 1s shown
by the continuous curve along with the confidence range indicated by the gray
shaded area. Within the density range of the single variable scan the prediction
of the semi-empirical theory runs straight through the data and exhibits clearly
a previously supposed density saturation [5,6]. Outside this range the data set
WP s too sparse, which is reflected in the rapidly widening error band and
therefore indicates where the extrapolation becomes unreliable. However, it is not
a shortcoming of the probabilistic approach but rather an honest outcome that
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Figure 2. Experimental results of a single variable density scan (full circles) compared to the
predictions of the present semi-empirical theory (continuous line, shaded area represents the
error) for B = 2.5T, P = 0.45MW, o = 0.176m. The input data (open circles) are shown
regardless of additional variations in B, P, a and are therefore spread all over. The histogram
accounts for their distribution over the density axis.

an extrapolation beyond the parameter regime supported by the data base is not
possible.

5. Conclusion

In summary, form free dimensionally exact energy confinement functions derived
from data of the international stellarator data base and treated consistently ac-
cording to the rules of Bayesian probability theory have identified the collisional
low beta Connor Taylor model to be the most probable plasma physics model for
WT-AS. Moreover, single variable scans were reproduced in quantitative agreement
with experiments. The result of a single variable scan is therefore already hidden
in the data obtained for arbitrary variable choices and can be extracted from the
latter by a proper data analysis.
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