
MODEL COMPARISON IN PLASMA ENERGY CONFINEMENTSCALING R. PREUSS, V. DOSE AND W. VON DER LINDENMax-Planck-Institut f�ur Plasmaphysik, EURATOM AssociationD-85748 Garching b. M�unchen, Germany yAbstract. Energy con�nement data of large fusion experiments have been ana-lyzed in terms of dimensionless form free scaling functions. Several possible physi-cal scenarios lead to di�erent models with a certain number of degrees of freedom.These are used to set up the con�nement function as a linear combination of di-mensionless power law terms. Then one has to solve the problem, given a particularplasma model which is the optimum number of terms in the expansion, and whichmodel is most likely in the light of the data. Based upon data containing the en-ergy content for a wide variety of variable settings, predictions for single variablescans are made and compared to actual experiments. A very good agreement isobtained.Key words: Model Comparison, Prior Predictive Value, Invariant Measure1. IntroductionThe plasma behavior in large fusion experiments is now described for over twentyyears by energy con�nement scaling functions [1]. Since an exact description ofenergy transport is not possible scaling laws are in common use to give an overviewof the plasma machine properties. This allows inter-machine comparisons and thecharacterization of conditions for enhanced con�nement regimes. Even more, forbeing quite successful in the past in predicting the performance of larger plasmadevices from data of small and midsized machines, scaling laws are involved in thedesign of future fusion reactors.The functional form of the scaling law is still unknown. Only for reasons of sim-plicity a power law dependence is assumed and has accumulated considerable creditjust by experience. In order to describe the energy content W theo of the con�nedplasma all the plasma determining quantities in the machine under considerationare fed into the scaling law: For the in this paper examined W7-AS stellaratorthese are the particle density n, the magnetic �eld B, the heating power P andthe minor radius a. Additional machine parameters like the major radius of torusyEmail: preuss@ipp.mpg.de 145



146 R. PREUSS ET AL.R come only into play in comparisons with machines of di�erent size. The scalinglaw then reads: W theoi = e�cn�ni B�Bi P�Pi a�ai + "i ; (1)where i labels a single measurement with unknown error ". Also the scaling con-stant (e�c ) has been expressed in exponential form. Now the above addressedreasons for the power law choice are obvious: Applying the logarithm to bothsides of (1) an easy to solve set of linear equations in the sought �'s is obtained.2. Dimensionless Con�nement ScalingAmajor shortcoming of the above equation is to be solely a data �t and that it doesnot take care of the physical implications of the input variables. In order to obtaina dimensionally exact scaling function basic plasma models may be used. This wasachieved by Connor and Taylor [2] in requiring that the invariances of basic plasmamodels under similarity transformations should be the same as those of the scalingfunction belonging to the respective model. Four kinetic models (see table 1) wereobtained in considering the Boltzmann equation of motion (describing a collisionalplasma) or the Vlasov equation (collisionless plasma) and discriminating furtherbetween the electrostatic limit (low-� case) or a self-consistent calculation of theelectro-magnetic �elds from the Maxwell equations (high-�). By the invariancerequirement the plasma variables are combined in three dimensionless factors withnew scaling exponents (x1, x2, x3) speci�ed according to table 1.W theo / na4RB2�c1 Pna4RB3�x1 �c2 a3B4n �x2 �c3 1na2�x3 (2)= c� Pna4B3�x1 �a3B4n �x2 � 1na2�x3 (3)= cf (n;B; P; a;x) : (4)The constants (c1, c2, c3) in (2) consist of fundamental physical constants andcarry physical units. They may be absorbed in an overall constant c in (3). Justthe same may be done with the large radius R of the torus which is constant forthe here considered dataset of a single machine. Finally, in (4) the scaling termsare comprised by a general function f(n;B; P; a;x) where x has components x1,x2, x3.Already Connor and Taylor proposed to express a general form free energycon�nement scaling function as a series of terms of the form (4) with properlychosen x and c. We want to exploit this idea and employ the following ansatz todescribe the energy content W theo of N di�erent experiments:W theo = EXk=1 ckf (xk) = Fc : (5)F is a N �E matrix with columns f(xk). In mathematical terms this is nothingbut an expansion in a dimensionally exact basis. In general, N linearly independent



MODEL COMPARISON IN PLASMA ENERGY CONFINEMENT SCALING 147Mj CT Model x1 x2 x3 NDOF p(MjjW exp;�; I)1 collisionless low-� x 0 0 1 4� 10�12%2 collisional low-� x y 0 2 99:7%3 collisionless high-� x 0 z 2 0:25%4 collisional high-� x y z 3 0:025%TABLE 1. Plasma models according to Connor and Taylor [2].vectors f(xk) form a complete basis in the N -dimensional data space and wouldtherefore allow a pointwise reconstruction of the data. This is neither desirable,nor with respect to physics correct, since the corresponding vector of the measuredenergy content W exp is corrupted by noise. What we really want is an expansion,truncated at some appropriate upper limit E describing the physics, while theresidual N �E terms in the expansion (5) would only �t the noise. So we have tolook for the most probable expansion order. Furthermore, given the four CTmodelsof table 1 we would like to identify the plasma physics model which describes thedata best. Since the number of degrees of freedom NDOF varies between one andthree (see table 1) Occam's Razor will have a say in this matter. And �nallywe would like to estimate the energy content for certain parameter settings. Animportant topic here are single variable scans (e.g. the variation of the energycontent as function of the density alone with all other variables �xed). Such scansare not directly accessible from published databases. On the other hand, singlevariable scans are experimentally cumbersome and expensive experiments have tobe performed for each and every input variable of interest. It is therefore highlydesirable to extract single variable scans from existing databases by employingimproved data analysis techniques.3. Bayesian ApproachThe likelihood function of our problem reads:p(W expj!; c;x; E;Mj;�; I) = � !2��N2 NYi ��1i� exp8><>:�! NXi=1 �W expi �PEk ckfi(xk)�22�2i 9>=>; : (6)Mj denotes the plasma kinetic model used to generate the expansion vectors f(xk).� is the vector of experimental uncertainties associated with the measurementW exp. The uncertainty in the energy content W exp contains the direct distrib-utions from the diamagnetic measurement as well as indirect contributions fromthe �nite precision in the input variables (n;B; P; a). Both contributions have been



148 R. PREUSS ET AL.estimated to the best of our knowledge. However, to allow for possible deviationsfrom the true errors we introduce an overall correction factor ! where we assumethat the relative error is correctly estimated. The Bayesian analysis yields a pos-teriori for the most probable model and the optimum expansion order that � wasoverestimated merely by a factor of 20%.We are looking for the probability of a model given the data W exp. The oddsratio gives p(Mj jW exp;�; I)p(MkjW exp;�; I) = p(Mj j�; I)p(Mkj�; I) p(W expjMj;�; I)p(W expjMk;�; I) : (7)The �rst ratio on the r.h.s., the so-called prior odds, is set to unity since we donot want to favor one model over another. We are left with the determination ofthe second ratio, the so-called Bayes factor. The global likelihood is given by adiscrete sum over all expansion ordersp(W expjMj;�; I) =XE p(EjMj;�; I)p(W expjE;Mj;�; I) ; (8)where p(EjMj ;�; I) is set constant because a priori no expansion order is to bepreferred. The remaining marginal likelihood is obtained byp(W expjE;Mj;�; I) = Z p(W expj!; c;x; E;Mj;�; I)� p(!;x; cjE;Mj;�; I) �(!;x; c) d! dc dx ; (9)where we followed the ideas brought up by Rodriguez [3] formulating an invariantmeasure. �(!;x; c) in the marginalization integral. This stems from the require-ment that the description of a problem should be the same regardless in whichcoordinate system it is considered. Then the posterior probability for an in�nites-imal change in the parameters is given byp(d!; dx; dcjE;Mj;�; I) = p(!;x; cjE;Mj;�; I)�(!;x; c) d! dc dx ; (10)with �(!;x; c) describing the Riemannianmetricof the problem. The latter is givenby �(!;x; c) =pdet [g] : (11)g is the Fisher information matrix, which isgij = ��@2 lnp(W expj�; E;Mj;�; I)@�i@�j � (12)and build up by the second derivative of the log-likelihood function with respectto the parameters � = (!;x; c).The prior function decomposes intop(!;x; cjE;Mj;�; I) = p(!;xjE;Mj; I)p(cjx; E;Mj;�; I) : (13)



MODEL COMPARISON IN PLASMA ENERGY CONFINEMENT SCALING 149While an uninformative prior is assigned to ! and x we employ what we callthe Bessel prior for p(cjx; E;Mj;�; I). This just imposes an upper boundary tothe choice of possible coe�cients with cTF TFc � 2kW expk2. It is equivalent toan entropic prior proposed by Rodriguez, where the hyperparameter � has beenmarginalized by using the Bretthorst approximation that the prior may be takenout of the integral at the maximum of the likelihood.While the c and ! integrations may be performed analytically the remainingx integration is carried out numerically by computing the prior predictive value[4]with Markov Chain Monte Carlo(MCMC). This is given byp(W expjE;Mj;�; I) = Z p(W expjx; E;Mj;�; I)p(xjE;Mj;�; I) d�(x) (14)= Z �(x)�(x) dx : (15)�(x) is the remaining measure in x. In (15) we combined the factors of the integralto new functions � and �, where �(x) contains the pure likelihood and somenormalization constants, while �(x) comprises the prior and the terms stemmingfrom the Riemannian measure. The latter shall be normalized to R �(x) dx = 1.The only way to evaluate (15) is to use �(x) as a probability density. Since thelikelihood descending term �(x) is generally much more structured than �(x) thevariance will be large and extremely long Markov chains are needed to obtain thedesired accuracy. However, one can solve this problem in de�ning a new functionZ(�) = Z ��(x)�(x) dx (16)with Z(� = 0) = 1 and Z(� = 1) as the sought quantity in (15). The derivativewith respect to � gives @ lnZ(�)@� = Z ln�(x)��(x) dx= hln �(x)i� (17)with ��(x) = ��(x)�(x)R ��(x0)�(x0) dx0 (18)as the new sampling density. If we integrate both sides of 17,Z 10 hln �(x)i� d� = Z 10 @ lnZ(�)@� d� (19)= lnZ(� = 1)� lnZ(� = 0) (20)= lnp(W expjE;Mj;�; I) ; (21)we are back where we started in (14). To obtain the marginal likelihood one there-fore has to calculate the integral on the l.h.s. in (19) where the expectation value
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>Figure 1. Upper curve: expansion order. Notice the logarithmic scale on the left. Lower curve:mis�t of data and model.hln �(x)i� is accessible by Markov Chain Monte Carlotechniques. The proof thatthis is now feasible may be found in [4].4. ResultsThe data which we have used in our calculations are the 153 W7-AS data fromthe international stellarator energy con�nement data base [5]. We have selectedonly data points with rotational transform of � � 1=3 since the single variablescans which we present further down and which we want to compare with havebeen performed at this value. Odds ratios obtained from (7) are converted backto probabilities usingPj p(W expjMj;�; I) = 1. The resulting model probabilitiesare depicted in the last column of table 1. We see that the � � 1=3 W7-AS data arebest described by the collisional low-� Connor Taylor model. The high beta modelsfollow in second and third place with much lower probability. The collisionless low-� model is clearly inappropriate to describe the transport physics in W7-AS.The probability distribution for the expansion order given data and model isnow readily obtained:p(EjW exp;Mj;�; I) = p(EjMj ;�; I)p(W expjE;Mj;�; I)p(W expjMj;�; I) : (22)This quantity is displayed for the most probable plasma model, the collisional lowbeta case, in Fig. 1 as full circles. The error bars indicate Monte Carlo integrationuncertainties. The open squares, with associated error bars, depict the mis�t (heresquare of the usual randommean square error) between data and model prediction(5) for each expansion order. We observe quite a typical behavior. Already threeterms in the expansion (5) lead to a rapid decrease of the mis�t in the order of 35%of the value for E = 1. Though it does decrease further with increasing expansionorder the probability for a given E decreases rapidly so that contributions of higherexpansion orders become very small demonstrating Occam's razor.



MODEL COMPARISON IN PLASMA ENERGY CONFINEMENT SCALING 151Finally we come to determination of observables. Here we want to test thepredictive power of the present theory. Such a test is provided by a comparisonof measured single variable scans to the predictions from the present theory. Thelatter is the expectation value of the energy contenthW i = R W p(W jW exp;v;Mj ;�; I) dWR p(W jW exp;v;Mj;�; I) dW : (23)The additional condition v speci�es the \input data vector" vT = (n;B; P; a) atwhich the energy content measurement was performed. p(W jW exp;v;Mj;�; I) isagain obtained by marginalizationp(W jW exp;v;Mj;�; I) =XE Z p(W jE;x; c;v;Mj;�; I)� p(E;x; c; !jW exp;Mj;�; I) dx dc d! ; (24)where p(W jE;x; c;v;Mj;�; I) = � �W � gT (x;v) � c� ; (25)with g(x;v) as an E-dimensional vector with elements f(n̂; B̂; P̂ ; â;x). The secondfactor in (24) is justp(E;x; c; !jW exp;Mj;�; I) = p(W exp; E;x; c; !jMj;�; I)p(W expjMj;�; I) (26)and we get hW i = PE p(W expjE;Mj;�; I) R gT (x;v)cML�(x) dExPE p(W expjE;Mj;�; I) : (27)In Fig. 2 we show the result for a density scan obtained on the one hand fromthe present theory and on the other hand from experiments at W7-AS. Becausethese data are not included in the W7-AS data base the analysis is based on,this nice agreement shows the predictive power of our approach. The stellaratorenergy con�nement data base is represented by the open circles which are spreadall over since they were obtained for various settings of the variables (B, P , a).The full circles in Fig. 2 depict experimental results for a density scan. Here thevariables B, P , a are held �xed and only n varies. Representative error bars signifythe precision level of these data. But what would be the answer of our presentsemi-empirical theory based only on the data with open circles? This is shownby the continuous curve along with the con�dence range indicated by the grayshaded area. Within the density range of the single variable scan the predictionof the semi-empirical theory runs straight through the data and exhibits clearlya previously supposed density saturation [5,6]. Outside this range the data setW exp is too sparse, which is re
ected in the rapidly widening error band andtherefore indicates where the extrapolation becomes unreliable. However, it is nota shortcoming of the probabilistic approach but rather an honest outcome that
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Figure 2. Experimental results of a single variable density scan (full circles) compared to thepredictions of the present semi-empirical theory (continuous line, shaded area represents theerror) for B = 2:5T, P = 0:45MW, a = 0:176m. The input data (open circles) are shownregardless of additional variations in B, P , a and are therefore spread all over. The histogramaccounts for their distribution over the density axis.an extrapolation beyond the parameter regime supported by the data base is notpossible.5. ConclusionIn summary, form free dimensionally exact energy con�nement functions derivedfrom data of the international stellarator data base and treated consistently ac-cording to the rules of Bayesian probability theory have identi�ed the collisionallow beta Connor Taylor model to be the most probable plasma physics model forW7-AS. Moreover, single variable scans were reproduced in quantitative agreementwith experiments. The result of a single variable scan is therefore already hiddenin the data obtained for arbitrary variable choices and can be extracted from thelatter by a proper data analysis.References1. J. Hugill and J. She�eld Nucl. Fusion, 18, p. 15, 1978.2. J. W. Connor and J. B. Taylor Nucl. Fusion, 17, p. 1047, 1977.3. C. Rodriguez, \From euclid to entropy," in Maximum Entropyand Bayesian Methods,J. W. T. Grandy, ed., Kluwer Academic, Dordrecht, 1991.4. W. von der Linden, R. Preuss, and V. Dose, \The prior predictive value." These proceedings.5. U. Stroth, M. Murakami, R. A. Dory, H. Yamada, S. Okamura, F. Sano, and T. Obiki Nucl.Fusion, 36, p. 1063, 1996.6. U. Stroth Plasma Phys. Control. Fusion, 40, p. 9, 1998.


