
On the e�ectiveness of genetic search in

combinatorial optimization�

Kihong Parky

park@cs.bu.edu

Bob Carter

carter@cs.bu.edu

BU-CS-94-010
November 10, 1994

Computer Science Department

Boston University

Boston, MA 02215

Abstract

In this paper, we study the e�cacy of genetic algorithms in the context of combinatorial

optimization. In particular, we isolate the e�ects of cross-over, treated as the central component

of genetic search. We show that for problems of nontrivial size and di�culty, the contribution

of cross-over search is marginal, both synergistically when run in conjunction with mutation

and selection, or when run with selection alone, the reference point being the search procedure

consisting of just mutation and selection. The latter can be viewed as another manifestation of

the Metropolis process. Considering the high computational cost of maintaining a population to

facilitate cross-over search, its marginal bene�t renders genetic search inferior to its singleton-

population counterpart, the Metropolis process, and by extension, simulated annealing. This is

further compounded by the fact that many problems arising in practice may inherently require a

large number of state transitions for a near-optimal solution to be found, making genetic search

infeasible given the high cost of computing a single iteration in the enlarged state-space.

�A short version will appear in Proc. 10th ACM Symposium on Applied Computing, Genetic Algorithms and

Optimization Track, February, 1995.
ySupported in part by NSF grant CCR-9204284

0



1 Introduction

Genetic algorithms [8], viewed as general-purpose optimization procedures, are increasingly being

applied to a diverse spectrum of problem areas, ranging from protein folding to crew scheduling in

the airline industry, to name a few [3, 5, 6, 9, 11, 12, 15]. Although research abounds, the jury is

still out with respect to the utility of genetic search as a pure optimization technique. In part, this

is due to the nonuniformity of problem instances which makes comparing results across di�erent

domains di�cult. In other cases, the problem instances themselves are selected without speci�c

regard to their \hardness," the problem sizes may be too small to render the reported results

typical, or the merit of using genetic algorithms relative to other techniques is not explicated. To

facilitate the productive application of genetic search to real-world problems, it is imperative that

its power be delineated, providing an evaluation of potential bene�ts and costs, a sense of expected

performance, and an overall ranking compared to other optimization techniques.

In this paper, we study the performance of genetic search and its components in the context of

MAX-CLIQUE, the problem of �nding the size of a maximum clique in a graph. MAX-CLIQUE

is an NP-complete problem whose approximation problem has recently been proven to be NP-

hard [1]. That is, in general, even �nding approximate solutions may be inherently di�cult. With

this nontrivial problem domain as the backdrop, we proceed to isolate the contribution of cross-over

in the search process, evaluating its e�ects on both \easy" and \di�cult" problem instances. This is

done by comparing the performance of the full search procedure (cross-over, mutation, selection),

denoted CMS, and a partial version (cross-over, selection), CS, against MS, the version that

uses only mutation and selection. The latter turns out to be equivalent, in a qualitative sense,

to the Metropolis process (simulated annealing at a �xed temperature) because both are exactly

describable as time-homogenous Markov chains, high-�tness states are preferred but with stochastic

backtracking enabled, and the next state is gotten by local perturbation. CMS, the full genetic

search, is also describable as a time-homogenous Markov chain, but with the notable di�erence that

its next state is achieved via nonlocal means through cross-over.

This paper is an extension of previous work [4], where it is shown that for nontrivial problem

instances above a certain size, the performance of genetic search degrades ungracefully as the

problem size is increased. Two main causes are cited, one being the high computational cost

which puts a strain on the number of generations of a GA that can be run, and the other being

1



the limited applicability of the building-block hypothesis to a range of problem instances, the

feature that genetic search is conjectured to exploit. The building-block hypothesis [7] attempts to

characterize a class of problems which have the property that if two good, disjoint subsolutions are

suitably combined, then with nonnegligible probability an even better solution is obtained. There is

rigorous evidence to indicate that genetic search is e�ective for problems where the building-block

hypothesis (BBH) is readily applicable [13, 14], but it must be pointed out that problems satisfying

this \superposition principle" are, by de�nition, only super�cially nonlinear, and hence should be

amenable to more e�cient means of attack.

When dealing with problems stemming from real-world applications, there looms the perennial

question of how di�cult a class they actually represent. The answer may be highly problem

dependent, and a satisfactory characterization di�cult to come by. This paper will show evidence

indicating that with respect to the utility of genetic search, one is faced with a no-win situation,

independent of the problem at hand. That is, for \easy" problems where BBH holds true, �nding a

near-optimal solution is an inherently easy task, and other more e�cient algorithms are preferable

to the compute-intensive GA. For more \di�cult" problems where BBH is not readily applicable,

cross-over yields only a negligibly small probability of success, while turning into a burden by

restricting the number of states that can be visited in the search space within reasonable resource

bounds. Our focus on identifying and evaluating the contribution of the cross-over component in

genetic search augments the �rst-approximation conclusions of [4]. Furthermore, the component-

based treatment allows us to compare genetic search with simulated annealing (SA), leading to the

following ordering relationships:

Quality of solution:

Genetic Search (CMS) ' MS � Metropolis Process � Simulated Annealing

Time complexity:

Genetic Search (CMS) � MS � Metropolis Process ' Simulated Annealing

The quality of solution is based on a resource bound of several hours of workstation CPU time (as

opposed to days) where \'" denotes \on average equal" and \�" stands for \consistently better."

Admittedly, the ordering relations are imprecise, but for the qualitative conclusions to be drawn,

they will su�ce. With regard to time-complexity, a rigorous de�nition can be given without an

increase in unnecessary formalism. Time-complexity is measured as a function of the problem size

2



n and population size m, for computing a single iteration (or generation). Assumingm is subsumed

in n via some functional relationship, A � B () TimeB(n) = O(TimeA(n)), where TimeA and

TimeB are the time-complexity functions of A and B, respectively. That is, B is \faster" than A.

Combining the previous orderings, we get

Genetic Search � Simulated Annealing

both quality-of-solution, and time-complexity wise. For the cross-over and selection only strategy,

CS, it turns out that with respect to time-complexity, CMS � CS � MS, and with respect

to the quality of solution, CS � CMS and CS � MS. The time-complexity relationships are

straightforward to establish, and the remainder of the paper will be concerned with establishing

the quality of solution orderings1.

This paper is organized as follows. In the next section, a description of the algorithmic and

experimental set-up is given. This is followed by the main section which provides evidence for

\genetic search � simulated annealing." Augmenting that are sections describing the e�ects of

population size on the search process and the long-term behavior of the di�erent algorithms. We

conclude with a discussion of the strengths and weaknesses of the present methodology, and its

implication on the scope of applicability of our results.

2 Set-up

A genetic algorithhm consists of three operators cross-over (C), mutation (M), and selection (S),

each taking a multi-set of some �xed size m, i:e:, population H, and producing a new population

H0 at the next time step. If we let T = MCS denote the composition, then one generation (or

iteration) of genetic search is de�ned as

H0 = T (H):

The dynamics of (T t(H))1t=0 depends on numerous factors such as the choice of parameters, the

problem encoding scheme, and various auxiliary mechanisms including the use of penalty functions.

The following is a brief description of the algorithmic set-up employed in the experiments. A more

detailed description can be found in [3].

1In the quality of solution ordering, we will establish MS � SA directly, without going through the Metropolis

process. The strict ordering holds true even when the CPU time-bound allotted to MS is several factors greater

than that of SA.

3



� Problem encoding. An element of the population, representing a graph, was encoded in

the straightforward way as a binary string x of length n, where xi = 1 if and only if the ith

node was present in the graph. A preprocessing step, based on the idea of permuting the

vertex labels so as to group related nodes together was applied (relatedness was a function of

the graph's connectivity), with little e�ect. We believe the positive results reported in [2] are

mostly applicable to specially engineered graphs, having little bearing on enhancing cross-over

in general.

� Cross-over. Several cross-over schemes were tried, ranging from two-point to uniform

to more structured schemes. For MAX-CLIQUE, if two elements x and y encoding cliques

are crossed over, say, via the two-point scheme, the probability that the resulting element

remains a clique is very slim. We have approached this issue in two ways. One, by allowing

noncliques to remain as members of the population and assigning them a �tness value based

on a penalty function (see below), or two, disallowing noncliques altogether by employing

structured cross-over schemes that preserve the cliqueness property. Our experiments have

shown that the latter approach yields slightly improved solutions, and current results are

based on this method.

� Penalty functions. It was observed that when admitting noncliques as population elements,

the use of a penalty function which assigns a �tness value weighted by a measure of the

degree of noncliqueness was bene�cial to the search process. In this paper, the penalty

function degenerates to returning the clique size as the �tness value.

� Mutation rates. Several mutation rates were tried, and except at extreme values, marked

di�erences were not observed.

� Diversi�cation schemes. To balance the detrimental e�ect of premature convergence, a

host of diversi�cation schemes were implemented, all based on the idea that even though

the probability distribution in the selection step may dictate so, the production of exact

duplicates was discouraged. One method was probability distribution damping, whereby the

distance of the computed distribution from the uniform distribution was controlled by a

parameter. This is easily achieved with very little overhead, and the closer to the uniform

distribution, the less bias is exerted toward high �tness elements. More explicit schemes were

4



based on the idea of bucket maintainance where for a range of clique sizes up to the current

maximum, intervention is exerted to preserve and produce elements representing smaller

cliques. Otherwise, due to the low �tness value of small cliques, selection eventually weeds

them out, leaving only large cliques. This in turn diminishes the cross-over success rate.

In the parallel implementation (see below), a niching scheme was tried for explicit diversity

maintainance. The population was evenly divided among 32 nodes of a CM-5 partition, with

interaction among niches controlled by a coupling parameter. Niching, in our range, did not

exhibit a noticeable improvement in the solution found.

� Parallelization. Parallel implementations were carried out on a Thinking Machines CM-5,

using a 32-node batch partition, and two 16-node time-shared partitions. Two classes of

parallelizations were implemented, one based on the C� data parallel programming language

resulting in a SIMD approach, and the other using the CM message passing library yield-

ing a full-
edged MIMD approach. Both implementations yield similar solutions although

the MIMD implementation is faster than the SIMD version allowing for more iterations.

For population sizes below 1000, the speed-up achieved over a Sparc 1+ workstation was

not pronounced, mainly due to the communication overhead and its associated synchroniza-

tion penalty. To keep the parallelization issues separate, and because of the small speed-up

achieved in the < 1000 population range, experiments performed on a set of six dedicated

Sparc 1+ workstations are reported here.

� Initial population make-up. Judicial choice of the initial population a�ected the search

process by speeding it up and, in some cases, resulting in better solutions. Although obvious

in its potential, we were unable to �nd a rule that remained e�ective over di�erent problem

instances and problem sizes.

The various degrees-of-freedom that de�ne a particular genetic algorithm and their e�ects were

clearly observable for small problem instances (graphs with < 200 nodes), be they \easy" or \di�-

cult" [3, 4]. It is for \large" and \di�cult" instances where a marked degradation in performance

relative to other algorithms is observed. For this class of instances, our previously successful meth-

ods of attack became ine�ective. The following sections give an explanation of why we believe this

to be an inherent problem, and not just a lack of ingenuity on the authors' part.

5



3 E�ects of cross-over search

3.1 Simple problem

The simple problem instance was obtained by embedding a 52-node clique in a 700-node graph, with

twomutually disjoint 21-node cliques partially overlapping the larger clique. A couple of high-degree

nodes were added, and the remaining non-edges turned on with 0:1 probability to create further

distractions. Finally, the vertex labels were randomly permuted to destroy adjacency correlations.

The performance of CMS (genetic search),MS, CS, and simulated annealing (SA) are plotted as

0

10

20

30

40

50

60

0 5 10 15 20 25 30

M
A

X
 C

L
IQ

U
E

 F
O

U
N

D

Generations

CMS

0

10

20

30

40

50

60

0 200 400 600 800 1000 1200

M
A

X
 C

L
IQ

U
E

 F
O

U
N

D

Generations

MS

0

10

20

30

40

50

60

0 5 10 15 20 25 30

M
A

X
 C

L
IQ

U
E

 F
O

U
N

D

Generations

CS

0

10

20

30

40

50

60

0 500 1000 1500 2000 2500 3000

M
A

X
 C

L
IQ

U
E

 F
O

U
N

D

Generations

SA

Figure 1: Performance diagrams for the simple graph. See section 1 for de�nitions of CMS,MS,
CS, and SA.

functions of time and shown in �gure 1. The population size was �xed at 300. Since the building-

6



block hypothesis is well applicable to this problem instance, cross-over is able to speed up the

search process by facilitating large-step improvements, �nding the maximum clique at generation

count 24. MS, being limited to small-perturbation search, needs more generations to converge to

its plateau, �nding the optimal solution at generation 1115. A garden-variety simulated annealing

algorithm with a linear annealing schedule also exhibits an exponential convergence to its plateau,

reaching the maximum clique at iteration 3063. Due to the di�erent time-complexities associated

with CMS, MS, and simulated annealing for evaluating a single iteration2, the iteration count

needs to be adjusted by its time-complexity function. The actual CPU-time expended to �nd the

optimal solution for each of the three algorithms is shown in table 1. Both genetic search and

Graph CMS MS SA

Simple 1 min (52) 11 min (52) 1 min (52)

Table 1: CPU-time in minutes until optimal solution is found

simulated annealing require 1 minute to �nd the optimal solution whereasMS requires 11 minutes

of CPU time. The point to note here is not so much the di�erence in absolute time (they are

already smallish, including MS), but the qualitative behavior of the search process which in all

three cases is characterized by an exponential convergence to a plateau at which the optimal solution

is quickly found. That is, for easy problems, convergence to the optimal solution occurs early on in

the plateau, and cross-over only serves to further narrow the transient stage, already characterized

by geometric convergence, making its length inconsequential. Cross-over with selection alone, CS,

is not a fruitful search procedure, as seen in �gure 1. CS gets stuck at clique size 21, and does not

improve over 10000 generations.

It should be stressed that for \simple" problem instances where the building-block hypothesis

is well applicable, genetic search (CMS) is e�ective even for large problem instances. Figure 1

clearly shows the way in which cross-over contributes to the search process, namely, by merging a

pair of \good" solutions to yield an even better one. It is for \large," \di�cult" problem instances

that nonlinearity kicks in as a dominating factor3, and the cost of cross-over will far outweigh its

marginal bene�t.

2Note, the time-complexity ordering of a single iteration is given by CMS �MS � simulated annealing.
3In essence, BBH is just another way of capturing the di�erence between linear and nonlinear problems. The

simple problem instance, even though it is called \simple," is not trivially so by construction.

7



3.2 Di�cult problems

The �rst di�cult problem instance is a 776-node Keller graph [10], belonging to the DIMACS

combinatorial optimization benchmark set. Figure 2 shows the the time evolution of CMS,MS,

0

5

10

15

20

25

30

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

M
A

X
 C

L
IQ

U
E

 F
O

U
N

D

Generations

CMS

0

5

10

15

20

25

30

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

M
A

X
 C

L
IQ

U
E

 F
O

U
N

D

Generations

MS

0

5

10

15

20

25

30

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

M
A

X
 C

L
IQ

U
E

 F
O

U
N

D

Generations

CS

0

5

10

15

20

25

30

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

M
A

X
 C

L
IQ

U
E

 F
O

U
N

D

Generations

SA

Figure 2: Performance diagrams for Keller graph.

CS, and simulated annealing, respectively. None of the four algorithms �nds the optimum clique size

27 within 10000 generations. As before, the search procedures are characterized by an exponential

convergence to a plateau, followed by gradual changes. For this problem instance, BBH is not

readily applicable, and the cross-over component in genetic search is of little value. That is, cross-

over does not add any more power as we go from MS to CMS. The performance of CS remains

dismal, and will not be further illustrated in the paper.

The CPU-time to perform 10000 generations is shown in table 2. There is a factor 3:3 di�erence

8



between CMS andMS, a factor 16:4 di�erence betweenMS and simulated annealing, and a factor

55:0 di�erence between CMS and simulated annealing. As we will see in the next section, it takes

Graph CMS MS SA

Keller 385 min (22) 115 min (21) 7 min (22)

Random 495 min (12) 134 min (12) 4 min (12)

Sanchis 669 min (87) 105 min (87) 7 min (175)

Table 2: CPU-time in minutes for 10000 generations

at least several hundred thousand generations for the optimal solution to be found, and thus the

costly nature of CMS places a severe burden on the number of generations that can be run with

limited resources. For nontrivial problems, the cost-per-iteration (CPI) is an all-important measure,

and we have

CPIsimulated annealing � CPIgenetic search:

It is this feature coupled with the ine�ectiveness of the cross-over component for nontrivial problem

instances which makes genetic search a questionable optimization technique.

Figure 3 depicts a more detailed, internal view of the CMS search process for the Keller graph.

We noted in section 2 that bucket-based diversi�cation schemes were used to combat premature

convergence. Figure 3, top, shows the time-evolution of clique size distributions (left), and cross-

over improvement distributions (right), when such a bucket scheme was active, corresponding to the

CMS run of �gure 2. In the clique histogram graph, we see the peak of the distribution concentrated

near the current maximum clique size, the whole distribution shifting in time as larger cliques are

found. After the transient period, the distribution levels o� at a plateau and remains qualitatively

invariant for subsequent generations. Due to the diversi�cation scheme, smaller clique sizes remain

part of the distribution, even after the plateau at clique size 22 has been reached. The busy activity

in the cross-over improvement histogram shows that small step improvements are more likely than

large ones, with some improvement steps occuring in the range of 8 and above. The cross-over

improvement histogram also stays qualitatively invariant in the long run.

Contrast this to �gure 3, bottom, which shows the same statistics for a CMS run employing

only probability distribution damping. Although the clique histogram evolution shows a similar

shift in the peak of the distribution toward large clique sizes leveling o� at a plateau of 20, note

the absence of small cliques after the transient period, which in turn manifests itself as a lack of

activity in the clique improvement histogram. In either case, with or without explicit diversity

9



5

10

15

20

CliqueSize

300

600

900

1200

1500

1800

2100

2400

2700

3000

Generations

0

50

100

150

Count

5

10

15

20

CliqueSize

5

10

15

Crossover Improvement

300

600

900

1200

1500

1800

2100

2400

2700

3000

Generations

0

10

20

30

40

50

Count

5

10

15

Crossover Improvem

5

10

15

CliqueSize

100

200

300

400

500

600

700

800

900

1000

Generations

0

100

200

300

Count

5

10

15

CliqueSize

5

10

15

Crossover Improvement

100

200

300

400

500

600

700

800

900

1000

Generations

0

20

40

60

80

100

Count

5

10

15

Crossover Improvem

Figure 3: Clique size histogram and cross-over improvement histogram for the Keller graph. Top:
with bucket diversity scheme. Bottom: without bucket diversity scheme.

10



intervention, cross-over is not able to produce improved solutions, indicating its ine�ectiveness in

the 776-node Keller graph and other nontrivial problem instances considered in the paper. Figure 4

shows a population diversity plot of the CMS and MS runs of �gure 2. Both show the diversity

0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000 8000 10000

D
iv

e
rs

ity

Generations

CMS

0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000 8000 10000
D

iv
e
rs

ity

Generations

MS

Figure 4: Population diversity diagrams for the Keller graph.

being maintained in the long run, CMS at a higher level thanMS, as expected.

Figure 5 shows the performance runs of CMS, MS, and simulated annealing on a 1024-node

random graph (left column), and a 700-node Sanchis graph (right column), also part of the DIMACS

benchmark set. The random graph has a maximum clique size of � 14, and the performance plots

show that all three algorithms �nd a clique size 12 within 10000 generations. In the long-term

behavior section, we will see a more pronounced di�erence over many more iterations. In the

case of the Sanchis graph which has maximum clique size 175, both CMS and MS get stuck at

a local minimum near 87 when run for 10000 generations, whereas simulated annealing is able

to �nd the optimum clique size. It is not clear why simulated annealing does better from the

outset, this being the behavior observed over several runs. The CPU-time needed to run the

three algorithms for the previous two graphs is shown in table 2. As with the Keller graph,

there is a big di�erence in the associated time-complexities, making it infeasible to run genetic

search for a large number of generations. This, in conjunction with the ine�ectiveness of the cross-

over component to cut down the generation count needed to �nd a near-optimal solution, implies

\genetic search � simulated annealing."

11



0

2

4

6

8

10

12

14

16

0 2000 4000 6000 8000 10000

M
A

X
 C

L
IQ

U
E

 F
O

U
N

D

Generations

CMS

0

20

40

60

80

100

120

140

160

180

0 500 1000 1500 2000 2500 3000 3500 4000

M
A

X
 C

L
IQ

U
E

 F
O

U
N

D

Generations

CMS

0

2

4

6

8

10

12

14

16

0 2000 4000 6000 8000 10000

M
A

X
 C

L
IQ

U
E

 F
O

U
N

D

Generations

MS

0

20

40

60

80

100

120

140

160

180

0 500 1000 1500 2000 2500 3000 3500 4000

M
A

X
 C

L
IQ

U
E

 F
O

U
N

D

Generations

MS

0

2

4

6

8

10

12

14

16

0 2000 4000 6000 8000 10000

M
A

X
 C

L
IQ

U
E

 F
O

U
N

D

Generations

SA

0

20

40

60

80

100

120

140

160

180

0 500 1000 1500 2000 2500 3000 3500 4000

M
A

X
 C

L
IQ

U
E

 F
O

U
N

D

Generations

SA

Figure 5: Performance diagrams. Left column: random graph. Right column: Sanchis graph.

12



4 Long-term behavior and population e�ects

4.1 Long-term behavior

Figure 6 shows the long-term behavior of CMS,MS, and simulated annealing over a large number

of iterations. The left column shows the runs for the Keller graph over 150000 generations. Sim-

ulated annealing is able to �nd the maximum clique size 27 at iteration 143368 taking 1:6 hours

of CPU-time to do so. On the other hand, MS �nds clique size 25 at generation 118306, but

requiring 21:2 hours to do so. Even when run for 300000 generations, at the expense of 53:7 hours

of CPU-time, 25 remains the maximum clique size found. CMS, due to its high CPI, could be run

for only 150000 generations, �nding a maximum clique size of 24 at 5:1 hours, and expending a

total of 96:2 hours of CPU-time over its allowed maximum iteration limit.

The right column shows the runs for the 1024-node random graph, over 80000 generations.

Simulated annealing �nds clique size 14 at iteration 25591 taking 0:5 hours of CPU-time to do so.

MS �nds clique size 13 at generation 12522 requiring 2:7 hours of CPU-time. Even over 300000

generations, at the cost of 64:5 hours of CPU-time, 13 is the maximum clique sizeMS �nds. CMS

�nds clique size 13 at generation 14026 using 16:9 hours of CPU-time. When run for the full 80000

generations, it still �nds only size 13 at a cost of 96:7 hours of CPU-time.

4.2 Population size e�ects

Figure 7 shows the e�ect of using di�erent population sizes on the quality of solution found for CMS

and MS over 10000 generations in the case of the Keller graph. We believe that increasing the

population size has the bene�cial e�ect of allowing for a potentially more diverse population pool,

which in turn may increase the success probability of cross-over search. In the � 1000 population

size range, no pronounced correlation is observed to indicate that cross-over empowers CMS over

MS. Much larger population sizes up to 131072 were run on the CM-5 parallel implementation for

CMS alone, showing a small improvement in the quality of solution found, but at a huge increase

in computation cost [4]. Our experience leads us to believe that the cross-over success rate, and

hence its ultimate utility, is a slowly increasing function of population size (assuming diversity is

properly maintained), and thus within reasonable resource bounds, signi�cant bene�ts may not be

achieved.

13



0

5

10

15

20

25

30

0 30000 60000 90000 120000 150000

M
A

X
 C

L
IQ

U
E

 F
O

U
N

D

Generations

CMS

0

2

4

6

8

10

12

14

16

0 10000 20000 30000 40000 50000 60000 70000 80000

M
A

X
 C

L
IQ

U
E

 F
O

U
N

D

Generations

CMS

0

5

10

15

20

25

30

0 30000 60000 90000 120000 150000

M
A

X
 C

L
IQ

U
E

 F
O

U
N

D

Generations

MS

0

2

4

6

8

10

12

14

16

0 10000 20000 30000 40000 50000 60000 70000 80000

M
A

X
 C

L
IQ

U
E

 F
O

U
N

D

Generations

MS

0

5

10

15

20

25

30

0 30000 60000 90000 120000 150000

M
A

X
 C

L
IQ

U
E

 F
O

U
N

D

Generations

SA

0

2

4

6

8

10

12

14

16

0 10000 20000 30000 40000 50000 60000 70000 80000

M
A

X
 C

L
IQ

U
E

 F
O

U
N

D

Generations

SA

Figure 6: Long-term performance diagrams. Left column: Keller graph. Right column: random
graph.

14



0

5

10

15

20

25

30

0 100 200 300 400 500 600 700 800 900 1000

MA
X 
CL
IQ
UE
 F
OU
ND

Population Size

CMS
MS

Figure 7: E�ect of population size on performance for Keller graph.

5 Discussion

We have presented an investigation of the utility of genetic search as it pertains to the synergistic

and singular e�ects of cross-over as the distinguishing search component. We have shown evidence

to indicate that cross-over contributes only marginally to the search process, in e�ect, becoming a

severe computational burden for nontrivial problem instances where the building-block hypothesis

may not hold.

It is unclear how much of the reported prowess of genetic algorithms is due to cross-over being an

indispensable component, or if the same results are achievable in the absence of cross-over, running

mutation and selection as an enlarged Metropolis process. If the latter is true, then the ordering

relationship established between genetic search and simulated annealing, CMS � SA, implies

that in the context of strict combinatorial optimzation, genetic search is inferior to simulated

annealing in a well-de�ned sense. If P 6= NP, and assuming this to have some rami�cation on

the inherent di�culty of real-world problems4, then no matter what algorithm is being employed,

di�cult problems may require large amount of resources to be solved. If one is faced with such a

situation and there are no short-cuts known, then the order relationship indicates that simulated

4To be precise, an assumption on probabilistic algorithms and their complexity hierarchy needs to be made, but

the spirit of the statement should be clear.

15



annealing may still be preferable to genetic search for seeking a good approximate solution.

It is inherently more di�cult to demonstrate negative than positive results experimentally since

the former is a statement over the whole space of candidate algorithms, whereas the latter only

involves exhibiting the existence of one. The present work is far from exhaustive to extrapolate

our conclusions in general. In fact, this is the next order of business. In the mean time, what this

paper does give, beyond the evidence and point-of-view on the utility of genetic algorithms as an

optimization technique, is a diagnostic tool that may be of practical use in applications. This is so

since it is easy to decouple the cross-over component and compare CMS against MS on a given

problem domain. If their performance are comparable, then this suggests that using simulated

annealing may be more e�ective.

References

[1] S. Arora and S. Safra. Probabilistic checking of proofs: a new characterization of NP. In Proc.

33rd IEEE Symp. on Foundations of Computer Science, pp. 2{13, 1992.

[2] T. Bui and B. Moon. Hyperplane synthesis for genetic algorithms. In Proc. 5th International

Conf. on Genetic Algorithms, pp. 102{109, 1993.

[3] B. Carter and K. Park. How good are genetic algorithms at �nding large cliques: an experimen-

tal study. Technical Report BU-CS-93-015, Computer Science Department, Boston University,

1993.

[4] B. Carter and K. Park. Scalability problems of genetic search. In Proc. IEEE International

Conference on Systems, Man and Cybernetics, pp. 1591{1596, October, 1994.

[5] L. Davis (ed.). Handbook of Genetic Algorithms. Van Nostrand Reinhold, 1991.

[6] K. De Jong and W. Spears. Using Genetic Algorithms to Solve NP-Complete Problems. In

Proc. 3rd International Conf. on Genetic Algorithms, pp. 124{132, 1993.

[7] D. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-

Wesley, 1989.

[8] J. Holland. Adaptation in Natural and Arti�cial Systems. MIT Press, 1992.

16



[9] P. Jog, J. Suh, and D. Gucht. Parallel Genetic Algorithms Applied to the Traveling Salesman

Problem. SIAM Journal on Optimization, 1(4):515{529, 1991.

[10] J. Lagarias and P. Shor. Keller's cube-tiling conjecture is false in high dimensions. Bulletin of

the American Mathematical Society, 27(2):279{283, 1992.

[11] D. Levine. A genetic algorithm for the set partitioning problem. In Proc. 5th International

Conf. on Genetic Algorithms, pp. 481{487, 1993.

[12] H. M�uhlenbein, M. Gorges-Schleuter and O. Kr�amer. Evolution algorithms in combinatorial

optimization. Parallel Computing, 7:65{85, 1988.

[13] K. Park. A lower-bound result on the power of genetic algorithms. In Proc. 5th International

Conf. on Genetic Algorithms, pp. 651, 1993.

[14] Y. Rabinovich and A. Wigderson. Analysis of a simple genetic algorithm. In Proc. 4th Inter-

national Conf. on Genetic Algorithms, pp. 215{221, 1991.

[15] R. Unger and J. Moult. Genetic algorithms for 3D protein folding simulations. In Proc. 5th

International Conf. on Genetic Algorithms, pp. 581{588, 1993.

17


