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Abstract

Several models have been proposed that attempt to explain how the brain identifies people by looking at their
faces. However, to date, it is still not clear by which mechanism the brain successfully accomplishes the matching
of two or more face images when differences in facial expression make the (local and global) appearance of these
images different from one another. There seems to be a consensus that faces are processed holistically rather than
locally, but there is not yet consensus on whether information on facial expression is passed to the identification
process to aid recognition of individuals or not. Models have been proposed that exploit each of these two views,
and psychophysical data exist in favor of and against each view. In this article, we show how the experimental data
of these two opposite views can be explained by incorporating a key process of motion estimation in the classical
feedforward model of face processing. This new model will then lead us to hypothesize that to successfully match
expression variant faces, it is convenient to use the information supplied by this motion estimation process within
the matching task. We will show experimental results in favor of this hypothesis. Finally, we will show how we can
also use the same motion estimator to recognize facial expressions.

Keywords: face recognition, matching, model, motion, expression recognition, emotions.

1 Introduction

Faces are objects capable of large deformations. Through these deformations we can communicate emotions,
interest (disinterest), language (e.g. gesturing in speech, and gesturing and meaning in sign languages), etc. (Bruce
& Young, 1998; Hill & Johnston, 2001; Haxby et al., 2000; Messing & Campbell, 1999). Our vision, however, seems
to have little problem in identifying individuals (or matching faces) even when these differences in facial expression
are present. How our vision solves this problem is a fundamental question of cognitive science. This problem has
also faced computer scientist as they attempt to build face recognition algorithms invariant to these deformations.

To answer the above stated question, several models have been proposed. However, to date, there is no consensus
on the procedure employed by us when matching two (or more) faces bearing different facial expressions. By
“matching”, we mean that our cognitive system is attempting to determine whether the current images belong
to the same class (person) or not. Fig. 1 depicts two examples that should help to clarify this point. In these
examples, we generally have little difficulty in establishing that the images shown in (a) belong to the same subject
whereas the images shown in (b) correspond to different subjects. Although in these two examples, there is a large
variation in facial appearance, it is still possible to judge to what extent the images may or may not belong to the
same class.

Some models proposed in the past suggest that to recognize people’s identity we use a process that is completely
decoupled from that of recognizing the facial expression (Bruce & Young, 1986). Others propose that a connection
must exist between the two processes (Hansch & Pirozzolo, 1980). Psychophysical data exist in favor of and
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(a)

(b)

Figure 1. People can usually determine whether the two images shown in (a) and the two in (b) are from the same
person or not.

against each view (Bruyer et al., 983; Kurucz & Feldmar, 1979; Endo et al., 1992; Etcoff, 1984; Young et al., 1996;
Schweinberger & Soukup, 1998; Baudouin et al. 2000).

The strongest evidence for a possible dissociation between the identification of faces and that of facial expression
recognition comes from agnosic patients with impaired ability to identify individual faces (even those of their family
and themselves), but preserved ability to recognize facial expressions (Bruyer et al., 983; Farah, 1990). The opposite
can also occur; i.e., cases have been described where agnosic patients were unable to classify facial expressions, but
were found to have a normal ability to identify faces (Kurucz & Feldmar, 1979).

One of the most notable experiments against the independence of identity and facial expression recognition is
the finding that people are slower in identifying happy and angry faces than they are in identifying faces with
neutral expression (Endo et al., 1992). Similarly, subjects are slower in identifying pictures of familiar faces when
those are shown with uncommon facial expressions (Hay et al., 1991) or when some artificial deformations are
added to the images.

The existence of experimental data in favor and against the two face recognition strategies described above
makes a deeper understanding of many aspects of face processing difficult. In this article, we propose a new model
that is consistent with the experimental data discussed above.

The proposed model does not have a direct connection between the processes of identity and facial expression
recognition. However, both processes get information from the common modules of dynamic and static processing
cues, as depicted in Fig. 2. Within the dynamic cues, we have only focused on the key process of motion estimation
named “deformation of the face,” whose task is to calculate the apparent physical deformation between the faces
to be matched (for simplicity we shall refer to this process as DF). The DF process computes the motion field
between images (i.e., the implied motion between images). As we will show below, this is key to explaining the
psychophysical data discussed above.

The model shown in Fig. 2 is consistent with the idea advanced by Hubel and Wiesel (Hubel & Wiesel, 1965)
of a sequence of more and more complex and invariant features. Early processing of facial features may be carried
out in the inferior occipital gyri, which (hierarchically) sends information to the lateral fusiform sulcus and the
superior temporal sulcus (STS). Cells have been found in the STS that are selective to biological motion (Servos
et al., 2002; Grossman et al., 2000) and to social behaviors of moving facial features (Allison et al., 2000; Haxby
et al., 2000). These cells may or may not use the information of our DF process, but their physical proximity to
the other processes seems to make this plausible. The model depicted in Fig. 2 assumes, however, a dissociation
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Figure 2. Depiction of the different processes of the model proposed in this paper. The key process is the one
responsible for estimating the deformation of the face, which is connected in a feedforward manner to the processes
of identification and facial expression recognition. These two last modules are dissociated, although they both obtain
information from the (new) common process DF and from the processes that compute static cues. This is key to
explaining the psychophysical data described in the past. (See text.)

between the modules responsible for computing dynamic cues and those responsible for computing static cues.
Evidence exists to support such a claim. For example, Humphreys et al. (1993) describes an agnosic patient
impaired to recognition of identity and with poor recognition of facial expressions from static images, but with
normal classification capacities of facial expressions from video sequences.

The hierarchy of the proposed model starts diverging toward the specialized areas of identity and expression
recognition only after the DF area, while in previous models this separation was assumed to occur in a much
earlier stage – probably as early as in the inferior occipital gyri. Finally, once both models become independent,
the recognition of identity continues toward anterior temporal areas, while the recognition of facial expressions
of emotions proceeds toward the amygdala, insula, limbic system or other areas associated to the processing of
emotional cues.

Note that the suppression of the DF area would affect the recognition of identity and facial expression but
would not completely prevent recognition in either. However, if only the area dedicated to the recognition of facial
expressions or the one dedicated to identification of faces was damaged, we would obtain the result demonstrated
by the agnosic patients introduced earlier (i.e., those that are impaired either with regard to identity or expression,
but not both).

Our model can also explain the psychophysical data against the independence. Note that it is now logical to
expect the identification of faces to be slower for those cases where a larger deformation of the face exists, since
we need to go through the motion estimation module DF. The more complex the facial expression, the more time
(generally) needed to compute an approximation of the muscle activity of the face (see Results). For example, the
DF module shown in Fig.2 does not need to estimate any motion for the neutral facial expression case, but requires
the computation of an approximation of the motion of a smile and other facial expressions.

However, the question still remains as to why there should be a motion estimation process, which computes the
deformation between the images to be matched, within our face recognition model. One reason is given by the
finding that motion plays an important role in recognizing identity and facial expressions in a sequence of images
(Hill & Johnston, 2001; Wallis & Bulthoff, 2001; Lander et al., 1999). Uncommon deformations or uncommon
sampling times disrupt identification of individuals (Hay et al., 1991) and of facial expressions (Kamachi et al.,
2001).

In this paper, we further hypothesize that this motion field is necessary (or, at least, useful) to successfully
match the local and global features of a set of faces when those bear distinct facial expressions. This seems
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(a)

Figure 3. As the face of a person changes facial expression, the local appearance (texture) of her/his face also changes.
In this figure, we compare three local areas of the face under three different expressions (neutral, happy, and scream).

reasonable, because the local texture of a face changes considerably as the facial expression also changes. An
example is shown in Fig. 3. In this figure, three local areas of three face images of the same person, but with
different facial expressions, have been highlighted. It is apparent that as the facial expression changes, the local
texture of each of these areas becomes quite distinct (even in the forehead). For the scream face, one could even
wonder if there exists any invariant features (within these three areas) useful for identification. A classification (or
identification) algorithm, however, will need to find where the invariant features are. If we compute the motion
field (deformation) between the two images that one wants to match, we can then know which are the features that
have changed the least between the two images, and thus, which are the best candidates for matching purposes.
We will experimentally show how this is indeed useful for classification purposes.

We will compare the results of our model (accuracy and reaction times) with the results obtained with human
participants in an experiment that uses the same data for both. These results will demonstrate the ability of our
model to predict human responses.

We will also show that when we incorporate the motion estimation process (DF) within the model of recognition
of facial expressions, we can justify several of the psychophysical data encountered in the literature (e.g. slower
recognition rates for image composites of two different emotions (Young et al., 1997)). This shows that our model
has implications beyond the ones discussed above, and that indeed the motion process can play an important role
within the face processing system. Furthermore, we can use the extended model to make new hypotheses about
our ability to identify facial expressions. We will show how our model predicts that when matching or classifying
faces with facial expressions that look alike the reaction time increases, while when facial expressions are very
distinct, reaction times are shorter. Similarly, we can also expect faces with large deformations to require longer
reaction times and faces with small deformations to have shorter reaction times. We will confirm these hypotheses
in another experiment with human participants.

2 The Model

2.1 Matching: recognition of identity

Since it is believed that faces are processed holistically rather than by parts, most computational models for
face recognition have exploited such a possibility. A common way to accomplish this is by means of a unified pixel
to pixel comparison of the whole face (Ullman, 1996; Fukunaga, 1990). Formally, consider two different images,
I1 and I2, both of n pixels. We can redefine the images as vectors taking values in an n-dimensional space, i.e.
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ℜn. We shall denote this as V1 and V2. The advantage of doing this is that it allows comparisons of the images by
means of vector operations such as subtraction:

‖V1 − V2‖ (1)

where ‖ · ‖ denotes the L2 norm (i.e., Euclidean distance). In this definition stated here, we assume that all
faces have been aligned (with respect to the main facial features) in such a way that the eyes, mouths, noses,
etc. of each of the images are at roughly the same pixel coordinates, e.g. (Beymer & Poggio 1996; Mart́ınez,
2002). The approach defined above, in Eq. (1), has proven to perform well when frontal face images with similar
facial expressions are compared to each other (Brunelli & Poggio, 1993). However, when matching face images
bearing different facial expressions, this comparison becomes unstable (Mart́ınez, 2002); hence pixels can now carry
information of different features. An example of this was depicted in Fig. 3.

A fundamental question in face recognition is whether or not the identification process receives (or interchanges)
information from (with) the process of facial expression recognition to aid in the recognition of individuals. Psy-
chophysical evidence exists to support a positive and a negative answer to this question. Nevertheless, as shown
above, this data can now be explained by incorporating the DF process in our model, as depicted in Fig. 2. This
new model of face processing can be expressed mathematically as:

‖f−1(V1 − V2)‖, (2)

where f is an n-dimensional vector with detailed information on how the pixels of the first image have moved so that
they can represent the facial expression of the second image. Intuitively, f is a vector that keeps correspondences
between the pixels of the first and second images. Eq. (2) can be interpreted as follows; pixels (or local areas)
that have been deformed largely due to local musculature activity will have a low weight, whereas pixels that are
less affected by those changes will gain importance. We can formally define f−1 as taking values linearly inverse
to those of f , i.e.:

MAXF − ‖Fi‖ (3)

where F is the motion flow (i.e., motion between two images), Fi the motion vector at the ith pixel, and MAXF =
max∀i‖Fi‖ (the magnitude of the largest motion vector in the image).

The value of f corresponds thus to the outcome of the DF process. Note that f defines the face deformation
(motion) between two images and, therefore, can also be used to estimate the facial expression of a new incoming
face image (see Section 2.3). As mentioned earlier, experimental data supports this belief.

2.2 Motion estimation

Several plausible neurological models for the computation of visual motion between two images have been pro-
posed, such as the Barlow-Levick’s circuit. In general, this can be expressed mathematically by local deformations
that occur in small intervals of time, δt, as

I(x, y, t) = I(x+ uδt, y + vδt, t+ δt), (4)

where I(x, y, t) is the image value at point (x, y) at time t, (u, v) are the horizontal and the vertical image velocities
at (x, y) and δt is considered to be small (Horn & Schunck, 1981). We note that in our model f = (u, v).

If we assume that the motion field (i.e., the pixel correspondences between the two images) is small at each
pixel location, the motion estimator can be represented by the first-order Taylor series expansion as

ED =

∫ ∫

ρ (Ixu+ Iyv + It) dxdy (5)

where (Ix, Iy) and It are the spatial and time derivatives of the image, and ρ is an estimator.
To resolve the above equation, it is necessary to add an additional constraint. The most common one is the

spatial coherence constraint (Horn & Schunck, 1981), which embodies the assumption that neighboring pixels in an
image are likely to belong to the same surface and, therefore, a smoothness in the flow is expected. The first-order
model of this second constraint is given by
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ES =

∫ ∫

ρ (∇(u, v)) dxdy (6)

where ∇ represents the gradient.
The goal is to minimize the regularization problem ED + λES . To gain precision at motion boundaries it is

convenient to make a good choice for ρ, e.g. ρ(x) = log
(

1 + 1/2(x/σ)2
)

(Black & Anandan 1996).
The iterative update equation for minimizing E = ED +λES at the image pixel i at step r+1 can be expressed

as (Black & Anandan 1996):

ur+1
i = ur

i − w
1

T (ui)

∂E

∂ui

(7)

where w is an over-relaxation parameter that is used to over-correct the estimate of ur+1. It has been shown that
with 0 < w < 2 this equation converges (Varga, 1962). The partial derivative ∂E

∂ui
of the above equation can be

approximated with:
∂E

∂ui

≈
∑

s∈R

[Ixψ(Ixui + Iyvi + It, σ) + λS

∑

s∈Rs

ψ(ui − us, σ)] (8)

where Rs represents the set of 4-neighboring pixels (left, right, up and down) and ψ(x, σ) = 2x
sσ2+x2 is the derivative

of the Lorentzian. The term T (ui) is the upper bound of the second partial derivative of E, which we can define
as:

T (ui) ≤
λDI

2
x + 4λS

σ2
(9)

Here we have only shown derivations with respect to u, but exactly the same applies to v.
Although the objective function E is non-linear (and a direct solution does not exist for minimizing it), methods

exist that can find a minimum E close or even equal to the global minimum. One solution corresponds to first
selecting a large value for σ in such a way that a convex approximation of E is obtained (Blake & Zisserman,
1987). In this convex approximation, we can readily locate the minimum of the function. In general, this solution
will not be the desired one, but it will serve as a good starting point. We can then decrease the value of σ and
find a new minimum for E. When doing this, however, we will use the minimum obtained previously as an initial
guess. By repeating (iterating) this process, we can converge to a good approximation of the global minimum.

The procedure detailed above will yield good results only when the object displacements between consecutive
images are small (since we used a first-order model). In order to correctly detect large motions, a coarse-to-
fine strategy can be employed. In our experiments, the pyramid method of (Black & Anandan 1996) was used.
In this approach we begin with a reduced-resolution representation of the images so that the small-displacement
assumption (made above) is satisfied. The optical flow is computed for the low-resolution images and then projected
to the next level of the pyramid where the images in the sequence have a higher resolution. At each level of the
pyramid, the optical flow computed from the previous level is used to warp the images in the sequence so that the
small displacement assumption holds for the new resolution too. This process is repeated until the flow has been
computed at the original resolution. The warping process can be formally described as:

Iwarped(x, y) = I(x− u(x, y), y − v(x, y)). (10)

The final flow field is obtained by combining the flow information of each of the levels of the pyramid. The
number of levels on the pyramid will be dictated by the largest motion in the sequence of images.

2.3 Matching: expression recognition

Psychological and neurological evidence suggest that motion plays an important role in the recognition of
emotions and facial expressions (Basilli 1978; Bruce & Velentine, 1988; Kamachi et al., 2001). We now show how
our model can achieve this by using the outcome of the DF area.

Facial expressions (and specially those associated with the so called universal emotions (Darwin, 1872; Ekman
& Friesen, 1978)) can be perceived in a categorical manner by humans (Etcoff & Magee, 1992; Calder et al., 1996;
Young et al., 1997). Categorical perception has also been observed in other face recognition tasks, such as in the
recognition of identity (Beale & Keil, 1995; Leopold et al., 2001) and in the recognition of grammatical content
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Figure 4. Depicted here are the different processes that involve the recognition of facial expressions and that use the
DF module described in this article.

in the facial expressions of sign languages (Campbell et al., 1999; Messing & Campbell, 1999). Other visual task,
such as color perception, can also be categorical (DeValois & DeValois, 1975; Bornstein, 1987). Outside vision,
categorization has been observed in several tasks such as in the perception of language.

However, images are not always classified within one category or another with equal ease. For example, Young
et al. (Young et al., 1997) have used a set of morphed face images which represent a continuum between pairs of
facial expressions of emotions to show that while subjects prefer to classify the images in a categorical manner,
their reaction times (RT) are slower for the morphed faces that combine features of two expressions. In their
experiments, a face is morphed to represent n% of an emotion and (100 − n)% of another emotion. Young et al.
showed that human RT’s get slower as the values of n and (100 − n) get closer. A classifier that solely uses the
pixel intensities of expressive faces to categorize each facial expression in a group of emotions could not justify the
changes in RT. Such a classifier would be equally fast (or equally slow) for all emotional displays.

However, these RT differences can be justified if we incorporate the DF module within the model of recognition
of facial expressions. In our model, facial expressions are also processed using the same DF process described above,
but the final categorization (matching) task is different. Fig. 4 depicts this part of the (extended) model. Note
that while the DF module is common to the tasks of identity and facial expression recognition, the categorization
tasks are independent processes.

In our model, each facial expression is classified in a category according to the motion field of the face, f . The
direction of motion is used to determine the class (Bartlett et al. 1999), while the magnitude of the motion can be
used to specify the intensity of a given expression. These two parts of the motion can be expressed mathematically
as:

SMi
= abs(‖Fti‖ − ‖Fpi

‖) and SAi
= arccos

< Fti,Fpi
>

‖Fti‖‖Fpi
‖

(11)

where Fti and Fpi
are the vector flows of the two expressions to be compared at the ith pixel, < a,b > represents

the dot product of a and b, SMi
is the similarity between the magnitude of the ith pixel in the two image flows,

and SAi
the similarity between the angles of the two vectors at pixel i.

The method described in the preceding paragraph is normally used to compare two images (i.e. matching), but
we can also used this to classify (or identify) facial expressions within a group of pre-learned categories. These
categories can either be universal and may even be wired from birth (Darwin, 1872; Ekman & Friesen, 1978), may
be associated with language categories (Davidoff, 2001) or may be learned after birth.

This categorical comparison can be carried out at each pixel location or at specific areas that are known to be
most discriminant for a given expression. We can formally express this as:
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SM =

m
∑

i=1

SMi
and SA =

m
∑

i=1

SAi

mo

(12)

where m is the number of pixels where comparison takes place, m ≤ n, and mo is the total number of vectors in
m with magnitude greater than zero. Note that since the angle similarity can only be computed between actual
vectors (of magnitude greater than zero), it is necessary to normalize SA by the number of comparisons to prevent
biases towards images with associated small motions. Similar measurements have been successfully used to identify
the active units of Ekman and Friesen (Ekman & Friesen, 1978) by other authors (Bartlett et al. 1999; Donat et
al., 1999).

In order to appropriately select the value of m, it is convenient to search for those features (i.e. pixels) that best
discriminate between categories and those that are most stable within categories. A common way to do this is by
means of the between-class and within-class measurement of Fisher’s Linear Discriminant Analysis (LDA) (Fisher,
1938; Fukunaga, 1990). The use of discriminant features will help us to be more precise in our classifications, more
robust to image changes and will speed up computation.

Formally, we define the within and between class scatter matrices of LDA as (Fisher, 1938):

SW =

c
∑

j=1

Nj
∑

i=1

(vi,j − µj)(vi,j − µj)
T and SB =

c
∑

j=1

(µj − µ)(µj − µ)T (13)

where SW is the within-class scatter matrix, SB is the between-class scatter matrix, c is the number of classes, Nj

is the number of samples for class j, vi,j is the ith sample of class j, µj is the mean vector of class j, and µ is the
mean of all classes.

However, due to singularity problems, we generally find it difficult to compute the LDA transformation of large
face images. Additionally, SB limits us to a maximum of c−1 dimensions (where c is the number of classes). Since
we usually deal with small values of c and it is known that LDA may perform poorly if the dimensionality of the
space is small (Mart́ınez & Kak, 2001), it is convenient to only use that information which directly specifies the
usefulness of each pixel. This is represented in the variances of each feature (pixel) within SW and SB , which is
given by the values at the diagonal of each of these matrices:

ŜW = diag(SW ) and ŜB = diag(SB). (14)

By first finding those pixels (areas) of the face that are most different among classes (ŜB) and, then selecting
those that are most similar across samples of the same class (ŜW ), we can build a classifier that computes the
values of SA in a smaller set of pixels. This classifier is also generally more robust and efficient than the one that
uses all the pixels of the image.

We can predict, using the model described above, that when faces are to be classified within very distinct
categories (e.g. happy and neutral), the task will result easier than when the two facial expressions are alike (e.g.
angry and neutral). As a consequence, it is logical to expect faster responses (RT) when we attempt to classify two
very distinct classes (easier task), than while attempting to classify very similar classes. Since the model uses the
DF procedure described above, we can also predict that when classifying faces within two distinct groups, those
that involve larger motions will usually have longer RT. Similarly, those facial expressions that are more difficult to
be classified or are more alike, will require the analysis of additional local parts – resulting in longer RT. According
to this discussion, when classifying or identifying facial expressions of emotions, the RT should be slower for those
faces that carry expressions that are most difficult to classify (identify) – as those will require the comparison of
extra local areas. When a face cannot be reliably classified within one of the categories by looking at the most
discriminant areas, we will need to extend our comparison to other areas of the face. This latest prediction is
consistent with the findings of Young et al. discussed earlier. When images are compositions of two expressions,
two classifiers will successfully classify the image. In order to choose one of them a closer analysis will be necessary,
i.e. more pixels (or local areas) will be added to the comparison. For composites of 60% and 40%, a pixel-to-pixel
comparison may be necessary.
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Figure 5. (a) An example of a neutral (no-expression) face image. (b) An example of a happy, an angry and a scream
face. (c) The recognition rates obtained when matching: i) happy and neutral faces, ii) angry and neutral faces, and
iii) scream and neutral faces. Note that when we incorporate the information of the DF process in our model (i.e. f),
the results improve and the matching process becomes less sensitive to the differences in facial expression.

3 Results

In this section we will first show how the model presented in this article is consistent with the psychophysical
findings described in the introduction – dependent versus independent processes. We will compare our results with
a group of human subjects. Then, we will show how we can recognize facial expressions by means of the extended
model introduced above, and we will confirm our hypothesis made above with another experiment with human
subjects.

3.1 Identity recognition

We can now test two important points advanced in the previous section: a) how the suppression of the DF
process would affect the identification of known individuals, and b) how the identification of happy and angry faces
is now slower than the recognition of neutral expression faces. In these experiments, we will use the face images
of 100 individuals of the AR database (Mart́ınez & Benavente, 1998). The images of this database for one of the
subjects are shown in Fig. 5(a-b).

3.1.1 Recognition

As sample images we will use the neutral faces, Fig. 5(a). As test images (i.e., images to be matched with the
sample ones), we will use the happy, angry and screaming faces, Fig. 5(b). For each of the test images, we will
select the sample image that best matches it, as given by Eq. (2). If the retrieved image belongs to the same
person (class) as the one in the testing image, we will say that our recognition was successful. Fig. 5(c) shows
the percentage of successful identifications. We have detailed the recognition rates for each of the facial expression
images to show the dependency between the recognition of identity and facial expression. We have also shown, in
this figure, what would happen if the DF process was damaged or absent. This is represented by omitting the value
of f in Eq. (2) (as given by Eq. (1)). This latest result makes us hypothesize that if there exist an agnosic patients
with localized brain damage that exclusively involves the DF process (area), this patient’s ability to recognize
facial expressions will be quite deteriorated whereas his/her ability to identify faces will mostly be altered for those
images with large muscular activity only (such as the “scream” face). The results of such a patient as predicted
by our model are obtained with Eq. (1) in Fig. 5.

3.1.2 Delays

We can also analyze how the recognition of identity slows down as the expressions on the images diverge more
from each other. The reader may have already noted that this is quite obvious, because to estimate large motions
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we will need extra iterations (as advanced in Section 2.2). It is important to note that as the differences between
facial expressions increase, it is necessary to be more careful in estimating the motion field. Since most methods
of motion estimation carry the assumption of small displacements between images, it is necessary to use another
approach for larger motions. We have shown above that we can solve this using a coarse-to-fine strategy (we will
refer to this as the pyramid or the hierarchical approach). When small motions are present, this approach will
require fewer samplings of the original image. For larger deformation, more levels of the hierarchy will be necessary.

Furthermore, at each level of the hierarchy we will need to find the global minimum of a non-convex function.
In general, when the motions of different parts of the image is more distinct (i.e., moving in different directions),
the function to minimize is more complex (i.e., far from non-convex). As mentioned earlier, this can be solved by
means of an iterative approach. We do that by first searching the minimum in a convex approximation and then
finding the solution to progressively less convex functions. At each iteration though, we use the previous estimate
as a starting guess. We stop when we finally find the minimum of the original non-convex function. As defined in
Section 2, in our computational model we can control the convexity of the function to be minimized by varying the
value of σ. For complex motions (functions), many iterations will be necessary. For simple motions, few iterations
will suffice.

To calculate the computational time required to compute the motion field for each of the expressions, we need
to determine: i) the number of levels of the pyramid required to compute the largest motions of the image, and
ii) the number of iterations necessary to correctly calculate the minimum of the non-convex function at each level
of the pyramid.

For each of the facial expressions in the AR database (i.e., happy, angry and scream) as well as for the neutral
expression image, we have calculated the minimum number of iterations and levels of the pyramid required as
follows. First, we computed the motion fields, f , using levels of the pyramid that range from 1 to 4 – for each
of the expressions independently. (This was done using a randomly selected group of 30 people, 15 male and 15
female, of that database.) We then compared the results obtained when using h + 1 levels of the pyramid and
when only using h levels. If the similarity in magnitude (as computed by SM/mo) and angle (SA) between the
two (h and h+ 1) was below a threshold, we determined that h levels suffice for the computation of the motion in
that image; otherwise h+ 1 levels were necessary. We will refer to this chosen value as H. The threshold used in
this experiment was equal to one pixel; i.e., the motion estimated at h + 1 had to be at least 1 pixel longer than
that calculated with only h levels to be sufficiently large to justify h+1 levels. Note that less than one pixel would
reflect a zooming effect rather than an actual difference in motion estimation.

To determine the number of iterations required at each level of the pyramid, we compared the results obtained
when using g + 1 and g iterations. Again, if the comparison was below a threshold, we selected g, otherwise we
selected g + 1. We will refer to this value as G. In this case, the threshold was 0.1 and g was tested for the range
of values from 10 to 50.

Finally, we combined the two selected values into a single one as CT = G∗H (computational time = the number
of iterations necessary at each level multiplied by the number of levels needed). The results (mean across samples)
were: Neutral faces: H = 1, G = 10 and CT = 10, Happy faces: H = 3, G = 26 and CT = 78, Angry faces:
H = 2.4, G = 20 and CT = 48, Scream faces: H = 4, G = 33 and CT = 152. These results are plotted in the
graphical representation of Fig. 6. These results do not include the time necessary to compute Eq. (2), but since
in our current implementation of the model this time is always constant, we have omitted it for simplicity.

3.1.3 Comparison to human subjects

Human participants: Ten people (5 males and 5 females) from different backgrounds voluntarily participated in
this experiment. The age of the participants varied from 20 to 61 (mean=34.7). All had normal or corrected-to-
normal vision. None of the participants had previous experience with the face stimuli shown in the experiments and
all were naive as to the research questions under study and to what variables were recorded during the experiment.

Stimuli: Eighty (80) images corresponding to the neutral expression, happy, angry and scream faces of twenty
(20) people of the AR face database were selected for this experiment. To prevent the results from being affected
by other image cues than those under investigation, all twenty selected individual were males with no glasses. All
images had been recorded under strictly controlled lighting conditions to guarantee uniformity across samples.
The images were warped to a standard image size as described earlier. This prevents configurational recognition,
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Figure 6. Shown here are the mean delays (Computational Time, CT) required to compute the motion fields, f , for
each facial expression group.

making the identification task (in general) more difficult (as configurational recognition is thought to play a crucial
role in adult perception of faces). The images shown to the participants were of 165 by 120 pixels, which in a 21
inch monitor corresponded to approximately 15 by 11 cm. When viewed from a normal distance of approximately
60 cm this size corresponds to 14 by 10.4 degrees of visual angle.

Design and procedure: The experiment consisted of two blocks of images, each with the images of ten of the
selected people from the AR database of face images. In each block, pairs of images were shown in sequence: first a
neutral image of a randomly selected person was displayed for 800 ms (prime face), an interstimulus interval of 300
ms followed, then a neutral, happy, angry or screaming face (target face) of another randomly selected person was
displayed. Participants had to decide whether the two images shown in sequence correspond to the same individual
or not. Participants were instructed to respond as soon as they knew the answer, but not sooner. Reaction times
(RT) as well as correct and incorrect choices were recorded.

The identity of the prime and target face images as well as the facial expression of the target face were randomly
selected. Each participant saw 80 pairs of images in each of the two blocks of images, which adds up to a total of
160 pairs.

Results: Fig. 7(a) shows the mean RT values of all participants when deciding whether the prime and target
face images belong to the same person or not. That corresponds to neutral-neutral, neutral-angry, neutral-happy
and neutral-scream pairs. As expected, the more the target face diverged (in muscle activity) from the prime face,
the slower it was to reach a decision. In Fig. 7(b), we show the percentage in recognition rate achieved by the
participants for each possible sequence pair; i.e., the prime image being a neutral expression face and the target
as shown.

It is important to note that our model successfully predicted the responses of our human subjects. Unfortunately,
a numerical comparison would be difficult, because while the RT include the matching time (which is not necessarily
constant for all expressions), the CT correspond only to the time necessary to compute the deformation of the face
(i.e. DF process).

3.2 Facial expression recognition

3.2.1 Matching facial expressions

Similar to the matching experiments of identity recognition described above, we now show how the motion vectors
can be used to recognize facial expressions. We will calculate the similarity between pairs of images by using the
value of SA described earlier in Eq. (12).

The first test (matching) corresponds to determining for each possible combination of two facial expressions (a
total of 10 combinations) if the two images shown have the same facial expression or not. To do this, we used
the neutral, happy, angry and screaming face images of 50 randomly selected individuals of the AR face database
which gives us a total of 12, 750 different pairs. For each of these pairs, we compute the motion field (i.e., face
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Figure 7. (a) Mean RT of the ten participants when deciding wether two consecutive viewed images belong to the
same individual or not (the prime image with a neutral expression and the target image with the expression as shown
in the x-axes). (b) Mean recognition rate (in percentage) of the ten participants when performing the task described
in (a).

(a) (b) (c) (d) (e) (f)

Figure 8. (a) Ŝwhappy
, (b) Ŝwangry , (c) Ŝwscream , (d) Ŝb including all the expressions, (e) Ŝb for expressions happy

and scream, and (f) Ŝb for expressions neutral and angry.

deformation, DF) that exists between the neutral image and the facial expression selected. The two resulting
motion fields are then compared by using the similarity measure SA. This value is expected to be low for similar
motion fields (i.e. similar expressions) and large for different ones.

Once the value of SA has been obtained for each of the 12, 750 pairs of images, we search for the value of SA

that optimally divides the pairs with equal expression in one group and those with different expression within
another group. We then use this threshold to classify the image pairs of a different set of 50 people. The correct
classification in this second group (using the threshold obtained with the first group) was of 82.7%.

As advanced in section 2.3, we can improve this result by means of a discriminant function that helps us to
determine which areas of the face are most discriminant within classes (i.e., same facial expression) and which are
most distinct between classes (i.e., different facial expressions). One way to do that is by means of Eq. (14). For
example, when comparing happy and screaming faces we can use the values of Sb(happy,scream) (shown in Fig. 8(e))

and the values of Ŝwhappy
and Ŝwscream

(shown in Fig. 8(a,c)) to determine those pixels that are most discriminant.

We then order (rank) the pixels inversely proportional to the values of Ŝw and proportionally to the values of Ŝb.
Since most of the pixels will have an associated ranking of zero or close to zero, we can make our comparison faster
by only using those pixels with a value of Ŝb/Ŝw larger than a pre-determined threshold. This threshold can also
be learned from the training data – in which case we select that value that best classifies the training data. By
following this procedure, the results improved to 91.3%.

We have already discussed that in several cases categories may already exist and that classification (or identi-
fication) may be another alternative to consider. That is to say, if we see two images expressing emotions (e.g.
happy and happy – same, or, happy and angry – different), we may determine that they have (or not) the same
expression because they are classified within the same (different) category rather than because they look alike.
That means that when a new image is to be classified, we first compute its motion field and then compare this
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Figure 9. (a) Recognition rates obtained by our model when classifying each of the face images in four different
groups: neutral, happy, angry and scream. (b) Mean computational time (CT) required to calculate the class for
those images with neutral, happy, angry and scream facial expressions.

with each sample motion field (previously) stored in memory. The stored motion that is found to be most similar
to the testing one will determine the class of the testing image.

We used the neutral, happy, angry and scream face images of 10 randomly selected individuals as samples and
the neutral, happy, angry and scream face images of 90 different individuals as testing images. For each of the 360
testing images, we determine the closest sample (among the 40 stored in memory) using the value of SA. If the
facial expression in the testing image and in the closest sample were the same, we recorded a successfully classified
image. Again, we use the values of Ŝb and Ŝw to improve the classification results and speed up computation.
These results are shown in Fig. 9(a).

3.2.2 Delays

According to our model, the delays observed when we recognize facial expressions can be due to: i) the time
required to compute the motion field (DF) of the expression displayed on the (testing) image, or ii) the difficulty
associated in classifying the facial expression of a test image in a set of pre-selected categories.

For example, when classifying images as either happy or screaming, we expect to have longer RT for those images
with a scream expression because it takes longer to compute the motion field (DF) of a scream face. Moreover, we
would expect longer RT when classifying images as either neutral or angry than when classifying images as either
happy or screaming, because the images in the first task (group) are more alike and thus a more detailed analysis
will be required. While happy and screaming faces can be easily distinguish by looking at a small number of pixels
(such as the eyes or the corners of the mouth), a pixel-to-pixel comparison may be necessary to decide whether an
image is a neutral expression or a not-excessively-marked angry face. 1

In Fig. 9(b) we show the Computational Times (CT) of Fig. 6 multiplied by the percentage (range: 0 to 1) of
pixels that were necessary to use in order to obtain the best classification rate when classifying the images as either
neutral expressions or the expression under consideration. The pixels were selected according to the rankings given
by Ŝb.

3.2.3 Comparison to human subjects

Human Participants: A new group of ten people (5 males and 5 females) voluntarily participated in this ex-
periment. The age of the participants varied from 24 to 33 (mean=27.2). All had normal or corrected-to-normal
vision. None of the participants had previous experience with the face stimuli shown, none had participated in
the experiment of Section 3.1.3, and all were naive as to the research questions under study and to what variables
were recorded during the experiment.

1In some cases, the angry face images of the AR face database are not very prominent. This may be due to the difficulty associated

with posed emotions that one does not feel.
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Figure 10. Mean RT when classifying the images in: (a) four different groups (neutral, happy, angry and scream),
(b) two categories classification (happy-scream, neutral-angry, and neutral-happy). (Reaction time in seconds.)

Stimuli, design and procedure: The neutral, happy, angry and scream face images of twenty (20) males
(with no glasses) of the AR face database were selected for this experiment. To prevent recognition by shape alone,
images were warped to a standard image size of 165 by 120 pixels. Subjects participated in four different tests.
The first required them to classify each of the images of the AR database within one of the four categories of that
dataset. Subjects were told in advance of those categories and an image for each of the expressions was shown to
participants before the experiment started. The other three tests only involved two types of facial expressions. In
these two-class experiments, subjects were asked to classify images within these two categories only. The two-class
experiments comprise the following facial expression images: a) happy and scream, b) neutral and angry, and c)
neutral and happy.

Reaction times (in seconds) and percentage of correct choices were recorded. Fifty images were randomly se-
lected and displayed, one at a time, until the subject pressed a key to indicate her/his classification choice. A two
second pause (with blank screen) separated each of the images shown to the participants.

Results: In Fig. 10(a) we show the RT means of all the participants when classifying the images within each
of the four groups. These results should be compared to the CT predicted by our model and shown in Fig. 9(b).

As discussed above our model also predicts that when comparing happy and screaming faces (i.e., when clas-
sifying images in only two clearly distinguishable classes), the latter will generally require longer RT because (as
demonstrated in Section 3.1) longer time is required to estimate the DF. This was confirmed by our group of
subjects, Fig. 10(b). We also predicted that when classifying face images within two similar classes, the RT will
generally increase. This is the case for neutral and angry faces, Fig. 10(b). Another particular case is that of
classifying face images as either neutral or happy. This task can be readily solved by looking at a small number
of pixels (such as those around the corners of the lips and the eyes). Thus, in this case, similar RT are expected.
This was indeed the case in our experiment, Fig. 10(b).

4 Discussion

Our claim is that the psychophysical data previously described and believed to be contradictory can be explained
by including a process of motion estimation (whose task is to calculate the deformation between the faces we want
to match), DF, within a hierarchical model of face processing as depicted in Fig. 2. This is key to explaining the
reason why in some experiments, e.g. (Endo et al., 1992; Hay et al., 1991; Baudouin et al. 2000), slower recognition
times are obtained when attempting to identify faces with distinct facial expression (e.g., smiling versus neutral
faces). At the same time, the model does not require a direct interaction between the processes of face identification
and facial expression recognition. This is important, because it is consistent with the observation that some agnosic
patients (Kurucz & Feldmar, 1979; Bruyer et al., 983; Farah, 1990) are impaired only with regard to one of the
two tasks (either identification of people or facial expression recognition).

In our model, motion (dynamic) cues are processed independently from static cues. This is based on neuro-
physiological evidence which supports the assumption that dynamic cues are computed separately from static ones
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(Humphreys et al., 1993). Although dynamic and static cues are processed separately in our model, they are
combined to accomplish the tasks of recognition of identity and facial expression at the end of the hierarchy. This
is also consistent with experimental data that show disruption in recognition when one of the two cues (dynamic
or static) is altered (Hay et al., 1991; Kamachi et al., 2001).

The model presented in this article, and depicted in Fig. 2, leads to the hypothesis that motion is actually
useful for successful matching of face images bearing distinct facial expressions. We further hypothesize that the
computed motion fields could be used to select the most invariant (textural) features between the images we want
to match. We have reported results that show the usefulness of adding the information supplied by the DF process
within the matching task. As we have seen in the preceding section, recognition of identity is reduced by discarding
the outcome of the DF module from the similarity function (i.e., going from Eq. (2) to Eq. (1)). We do not argue
that this is the only way by which we accomplish such a task, but that it is an important one.

In addition, these motion features could also be used to construct a (motion) feature-space useful for recognition.
Motion may be used as an alternative, independent means for identifying people and expressions. In computer
vision, reasonable results have been obtained by constructing feature-spaces based solely on motion cues (Yacoob
& Davis, 1996; Beymer & Poggio 1996; Bartlett et al. 1999; Pantic & Rothkrantz, 2000). These results could
ultimately be used to reinforce the recognition task, or help to make a decision where other processes are not
adequate.

We have shown, in this article, how we can extend and use our model to classify faces within a set of facial
expression categories. We have also experimentally shown that the DF carries the necessary information to suc-
cessfully achieve this task. Motion fields and linear discriminant analysis have shown to be useful for classifying
facial expressions of emotions and to identity the AUs of an expression in several previous studies (Yacoob & Davis,
1996; Bartlett et al. 1999; Donat et al., 1999; Lyons et al., 1999; Calder et al., 2001; Pantic & Rothkrantz, 2000).

It is important to note that by combining the DF and a linear classifier, we were able to predict the classification
RT of each of the facial expressions of the AR database. Furthermore, we were able to make some predictions that
were later confirmed by a group of human subjects.

Other algorithms, such as the dynamic link architecture (Lades et al., 1993), may also justify some of the
psychophysical data described in the introduction. However, as we have shown in this article, the motion estimation
process not only is supported from a large number of psychophysical studies, but also has demonstrated to be useful
for many other tasks in face recognition.

Additionally, neuroimaging and neurophysiological studies as well as single-cell recordings in monkeys, reveal
areas in and near the STS that respond to social moving percepts (such as eye direction (Wicker et al., 1998; Puce
et al., 1998)). These areas have also been found to be activated by static images of the face, which suggests that
they are also sensitive to implied motion (Allison et al., 2000). Implied motion could be detected by a process
similar to the DF module described in this article.

The model proposed in this article is also consistent with the idea of a hierarchical organization of the visual
path along the ventral path (Ungerleider, 1995). In face recognition, it has also been argued that as the process
of identification gets more specific, the areas activated shift progressively toward more anterior parts (Ungerleider,
1995; Haxby et al., 1994; Sergent et al., 1992). Our model is consistent with these findings.

Finally, the model proposed in this paper predicts that there could be agnosic patients that are impaired in
facial expression recognition but have preserved identity recognition in the presence of facial expression changes.
This would be possible when the facial expression categorizer(s) is (are) damaged but the DF area remains intact.
Also, it may be possible to find an agnosic patient with damage into the DF area but intact face recognition
and identification processes. This patient should have strong difficulties in classifying facial expressions and some
difficulties in identifying identity with faces displaying large deformations (e.g., the scream face as shown in Fig.
5).

A limitation of the current model is that it is primarily focused on textural changes. Configurational changes
though, are also expected to vary the RT and, therefore, it would be interesting to include them in the model.

Appendix A: Face images

The AR database of faces contains color images (i.e., three channels as given by the values of R, G, B) of
768 × 576 pixels. For our experiments, we reduced the original size to 165 × 120 pixels, and we converted the
images to grey-level (i.e., one channel) by using the function I = (R+G+B)/3.
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Before computing the flow field or similarities between faces, the face images need to be aligned. This is done to
prevent results that are effected by factors such as scale or orientation (Beymer & Poggio 1996; Mart́ınez, 2002).
To do this, we manually marked the coordinates of the eyes, mouth, nose, chin and ears of each face image. Once
these facial features have been localized, using the differences between the x and y coordinates of the two eyes, the
original image is rotated until obtaining a frontal view face where both eyes have the same y value. Mathematically,
atan(‖y1 − y2‖/‖x1 − x2‖), where (x1, y1) and (x2, y2) are the right and left eye coordinates. Finally, the image is
warped (or re-sampled by parts) until all the facial features detailed above are aligned. The results shown in Fig.
8 were obtained by further sampling the images to a size of 82 by 60 pixels.
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