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.ptAbstra
tIn re
ent years, di�erent ba
ktra
k sear
hPropositional Satis�ability (SAT) algorithmshave proposed relaxing the identi�
ation ofthe ba
ktra
k point in the sear
h tree. Eventhough relaxing the identi�
ation of the ba
k-tra
k point 
an be signi�
ant in solving hardinstan
es of SAT, it is also true that the re-sulting algorithms may no longer be 
omplete.This paper proposes a new ba
ktra
k sear
hstrategy, unrestri
ted ba
ktra
king, that nat-urally 
aptures relaxations of the identi�
a-tion of the ba
ktra
k point in the sear
htree, most notably sear
h restarts and ran-dom ba
ktra
king. Moreover, the paper pro-poses a number of 
onditions that guaranteethe 
ompleteness of generi
 unrestri
ted ba
k-tra
king SAT algorithms.Introdu
tionPropositional Satis�ability is a well-knownNP-
omplete problem, with theoreti
al andpra
ti
al signi�
an
e, and with extensive ap-pli
ations in many �elds of Computer S
ien
eand Engineering, in
luding Arti�
ial Intelli-gen
e and Ele
troni
 Design Automation.Current state-of-the-art SAT solvers in
or-porate sophisti
ated pruning te
hniques aswell as new strategies on how to organizethe sear
h. E�e
tive sear
h pruning te
h-niques are based, among others, on nogoodlearning and dependen
y-dire
ted ba
ktra
k-ing (Stallman & Sussman 1977) and ba
k-jumping (Gas
hnig 1979), whereas re
ent ef-fe
tive strategies introdu
e variations on theorganization of ba
ktra
k sear
h. Exam-ples of su
h strategies are weak-
ommitmentsear
h (Yokoo 1994), sear
h restarts (Gomes,Selman, & Kautz 1998) and random ba
k-tra
king (Lyn
e, Baptista, & Marques-Silva

2001).Advan
ed te
hniques applied to ba
ktra
ksear
h SAT algorithms have a
hieved re-markable improvements (Bayardo Jr. &S
hrag 1997; Marques-Silva & Sakallah 1999;Moskewi
z et al. 2001), having been shown tobe 
ru
ial for solving hard instan
es of SATobtained from real-world appli
ations. More-over, and from a pra
ti
al perspe
tive, themost e�e
tive algorithms are 
omplete, andso able to prove what lo
al sear
h is not 
a-pable of, i.e. unsatis�ability. Indeed, this isoften the obje
tive in a large number of sig-ni�
ant real-world appli
ations.Nevertheless, it is also widely a

epted thatlo
al sear
h (Selman & Kautz 1993) 
an oftenhave 
lear advantages with respe
t to ba
k-tra
k sear
h, sin
e it is allowed to start thesear
h over again whenever it gets stu
k in alo
ally optimal partial solution. This advan-tage of lo
al sear
h has motivated the study ofapproa
hes for relaxing ba
ktra
king 
ondi-tions (while still assuring 
ompleteness). Thekey idea is to unrestri
tedly 
hoose the pointto ba
ktra
k to, in order to avoid thrashingduring ba
ktra
k sear
h. Moreover, one 
anthink of 
ombining di�erent forms of relaxingthe identi�
ation of the ba
ktra
k point. Inthis paper, we propose a new generi
 frame-work for implementing di�erent ba
ktra
kingstrategies, referred to as unrestri
ted ba
k-tra
king. Besides des
ribing the unrestri
tedba
ktra
king sear
h strategy, we also estab-lish 
ompleteness 
onditions for the resultingSAT algorithms.The remainder of this paper is organizedas follows. The next se
tion presents de�ni-tions used throughout the paper. Afterwards,we brie
y survey ba
ktra
k sear
h SAT algo-rithms. Then we introdu
e the unrestri
ted214



ba
ktra
king sear
h strategy and analyze ex-amples of spe
i�
 formulations of unrestri
tedba
ktra
king. In addition, we relate 
om-pleteness 
onditions with the di�erent formsof ba
ktra
king. Finally, we des
ribe relatedwork, and 
on
lude by suggesting future re-sear
h dire
tions.De�nitionsThis se
tion introdu
es the notationalframework used throughout the pa-per. Propositional variables are denotedx1; : : : ; xn, and 
an be assigned truth values0 (or F ) or 1 (or T ). The truth valueassigned to a variable x is denoted by �(x).(When 
lear from 
ontext we use x = �x,where �x 2 f0; 1g). A literal l is either avariable xi or its negation :xi. A 
lause! is a disjun
tion of literals and a CNFformula ' is a 
onjun
tion of 
lauses. A
lause is said to be satis�ed if at least one ofits literals assumes value 1, unsatis�ed if allof its literals assume value 0, unit if all butone literal assume value 0, and unresolvedotherwise. Literals with no assigned truthvalue are said to be free literals. A formulais said to be satis�ed if all its 
lauses aresatis�ed, and is unsatis�ed if at least one
lause is unsatis�ed. A truth assignment fora formula is a set of assigned variables andtheir 
orresponding truth values. The SATproblem 
onsists of de
iding whether thereexists a truth assignment to the variablessu
h that the formula be
omes satis�ed.SAT algorithms 
an be 
hara
terized asbeing either 
omplete or in
omplete. Com-plete algorithms 
an establish unsatis�abilityif given enough CPU time; in
omplete algo-rithms 
annot. In a sear
h 
ontext, 
ompletealgorithms are often referred to as systemati
,whereas in
omplete algorithms are referred toas non-systemati
.Ba
ktra
k Sear
h SAT AlgorithmsOver the years a large number of algo-rithms have been proposed for SAT, fromthe original Davis-Putnam pro
edure (Davis& Putnam 1960), to re
ent ba
ktra
k sear
halgorithms (Bayardo Jr. & S
hrag 1997;Zhang 1997; Marques-Silva & Sakallah 1999;Moskewi
z et al. 2001) and to lo
al sear
halgorithms (Selman & Kautz 1993), amongmany others.

The vast majority of ba
ktra
k sear
h SATalgorithms build upon the original ba
k-tra
k sear
h algorithm of Davis, Logemannand Loveland (Davis, Logemann, & Loveland1962). The ba
ktra
k sear
h algorithm is im-plemented by a sear
h pro
ess that impli
itlyenumerates the spa
e of 2n possible binary as-signments to the n problem variables. Ea
hdi�erent truth assignment de�nes a sear
hpath within the sear
h spa
e. A de
ision levelis asso
iated with ea
h variable sele
tion andassignment. The �rst variable sele
tion 
or-responds to de
ision level 1, and the de
isionlevel is in
remented by 1 for ea
h new de
isionassignment 1. In addition, and for ea
h de
i-sion level, the unit 
lause rule (Davis & Put-nam 1960) is applied. If a 
lause is unit, thenthe sole free literal must be assigned value 1for the formula to be satis�ed. In this 
ase,the value of the literal and of the asso
iatedvariable are said to be implied. The iteratedappli
ation of the unit 
lause rule is often re-ferred to as Boolean Constraint Propagation(BCP).In 
hronologi
al ba
ktra
king, the sear
halgorithm keeps tra
k of whi
h de
ision as-signments have been toggled. Given an un-satis�ed 
lause (i.e. a 
on
i
t or a deadend) at de
ision level d, the algorithm 
he
kswhether at the 
urrent de
ision level the 
or-responding de
ision variable x has alreadybeen toggled. If not, the algorithms erases thevariable assignments whi
h are implied by theassignment on x, in
luding the assignment onx, assigns the opposite value to x, and marksde
ision variable x as toggled. In 
ontrast, ifthe value of x has already been toggled, thesear
h ba
ktra
ks to de
ision level d� 1.Re
ent state-of-the-art SAT solvers uti-lize di�erent forms of non-
hronologi
al ba
k-tra
king (Bayardo Jr. & S
hrag 1997;Marques-Silva & Sakallah 1999; Moskewi
zet al. 2001), in whi
h ea
h identi�ed 
on-
i
t is analyzed, its 
auses identi�ed, and anew 
lause 
reated to explain and preventthe identi�ed 
on
i
ting 
onditions. Created
lauses are then used to 
ompute the ba
k-tra
k point as the most re
ent de
ision as-signment from all the de
ision assignmentsrepresented in the re
orded 
lause. Moreover,some of the (larger) re
orded 
lauses are even-1Observe that all the assignments made before the �rstde
ision assignment 
orrespond to de
ision level 0.215



tually deleted. Clauses 
an be deleted oppor-tunisti
ally whenever they are no longer rel-evant for the 
urrent sear
h path (Marques-Silva & Sakallah 1999).Unrestri
ted Ba
ktra
kingUnrestri
ted ba
ktra
king relaxes the 
on-dition that ba
ktra
king must be taken to themost re
ent de
ision assignment in a re
orded
lause. In other words, whenever a dead-end is rea
hed, the sear
h algorithm is al-lowed to unrestri
tedly ba
ktra
k to any point(i.e. de
ision level) in the 
urrent sear
hpath. Clearly, this unrestri
ted ba
ktra
kstep 
an also be the usual 
hronologi
al ornon-
hronologi
al ba
ktra
k steps. Besidesthe freedom for sele
ting the ba
ktra
k pointin the de
ision tree, unrestri
ted ba
ktra
k-ing entails a poli
y for applying di�erentba
ktra
k steps in sequen
e. Ea
h ba
k-tra
k step 
an be sele
ted among 
hrono-logi
al ba
ktra
king (CB), non-
hronologi
alba
ktra
king (NCB) or alternative forms ofba
ktra
king (AFB) (e.g., sear
h restarts,weak-
ommitment sear
h, random ba
ktra
k-ing, heuristi
 ba
ktra
king, or 
onstant-depthba
ktra
king, among many others). Moreformally, unrestri
ted ba
ktra
king 
onsistsof de�ning a sequen
e of ba
ktra
k stepsfBSt1;BSt2;BSt3; : : :g su
h that ea
h ba
k-tra
k step BSti 
an either be a 
hronologi
al,a non-
hronologi
al or an alternative form ofba
ktra
king, i.e. BSti 2 fCB;NCB;AFBg.The de�nition of unrestri
ted ba
ktra
k-ing (UB) allows 
apturing the ba
ktra
kingsear
h strategies used by 
urrent state-of-the-art SAT solvers.Clearly, if the UB strategy spe
i�es al-ways applying the CB step or always applyingthe NCB step, then we respe
tively 
apturethe 
hronologi
al and non-
hronologi
al ba
k-tra
king sear
h strategies.For example, 
onsider a UB strategy 
on-sisting of applying an AFB step after everyK 
hronologi
al ba
ktra
k steps, and wherethe AFB step is a sear
h restart. Then thisUB strategy 
orresponds to sear
h restarts in(
hronologi
al) ba
ktra
k sear
h (Gomes, Sel-man, & Kautz 1998) 2, hen
e being an anin
omplete algorithm. If instead of 
hrono-2In this 
ase we assume that the variable sele
tionheuristi
 
an be randomized as des
ribed in (Gomes, Sel-man, & Kautz 1998).

logi
al ba
ktra
king, non-
hronologi
al ba
k-tra
king with 
lause re
ording is applied inbetween AFB steps, and if the number of
on
i
ts in between AFB steps in
reases bya 
onstant value iK, then the resulting UBstrategy 
orresponds to sear
h restarts withnon-
hronologi
al ba
ktra
k sear
h (and with
lause re
ording) (Baptista & Marques-Silva2000).If instead of a sear
h restart the AFB stepin the previous strategies 
onsists of a ran-dom ba
ktra
k step, then the resulting al-gorithm 
orresponds to sto
hasti
 systemati
sear
h (Lyn
e, Baptista, & Marques-Silva2001).Moreover one 
an also envision new, thoughmore elaborate, UB strategies, that involvedi�erent forms of AFB. An example of su
h aUB strategy 
ould be applying an AFB 
orre-sponding to random ba
ktra
king after everyK 
on
i
ts (where K 
an be stri
tly in
reas-ing), and applying an AFB step 
orrespond-ing to a sear
h restart after every M 
on
i
ts(where M 
an also be stri
tly in
reasing).Why Unrestri
ted Ba
ktra
king?In the previous se
tion we illustratedhow unrestri
ted ba
ktra
king 
aptures themost su

essful ba
ktra
king strategies 
ur-rently used for SAT. Nevertheless, and be-sides allowing 
apturing di�erent ba
ktra
k-ing strategies, one may wonder the a
tual use-fulness of unrestri
ted ba
ktra
king.We start by observing that a uni�ed rep-resentation for di�erent ba
ktra
king strate-gies allows establishing general 
ompleteness
onditions for 
lasses of ba
ktra
king strate-gies and not only for ea
h individual strat-egy, as it has often been done. By utiliz-ing a uni�ed representation, we 
an establish
onditions that apply to all variations of un-restri
ted ba
ktra
king. This will naturallysimplify establishing 
ompleteness results forfuture ba
ktra
king strategies.It should also be observed that the most
ompetitive SAT solvers, e.g. (Marques-Silva& Sakallah 1999; Moskewi
z et al. 2001)do indeed apply multiple ba
ktra
king strate-gies. Hen
e, unrestri
ted ba
ktra
king nat-urally models the organization of modernstate-of-the-art SAT solvers.216



CONFLICT
xj(:xi _ xj _ xk)path 
lause:
on
i
t path xi = 1xi 
on
i
t sub-path

xk
xi = 0 
on
i
t 
lause:(:xi _ xk)

Figure 1: Sear
h tree de�nitionsCompleteness IssuesIn this se
tion we address the problem ofguaranteeing the 
ompleteness of algorithmsthat implement some form of unrestri
tedba
ktra
king. As illustrated in the previousse
tions, unrestri
ted ba
ktra
king 
an yieldin
omplete algorithms. Before pro
eeding,however, we need to introdu
e a few de�ni-tions.PreliminariesIn what follows we assume the organiza-tion of a ba
ktra
k sear
h SAT algorithm asdes
ribed earlier in this paper. The mainloop of the algorithm 
onsists of sele
ting avariable assignment (i.e. a de
ision assign-ment), making that assignment, and prop-agating that assignment using BCP. In thepresen
e of an unsatis�ed 
lause (i.e. a 
on-
i
t) the algorithm ba
ktra
ks to a de
isionassignment that 
an be toggled 3. Ea
h timea 
on
i
t is identi�ed, all the 
urrent de
i-sion assignments de�ne a 
on
i
t path in thesear
h tree. (Observe that we restri
t the def-inition of 
on
i
t path solely with respe
t tothe de
ision assignments.) After a 
on
i
tis identi�ed, we may apply a 
on
i
t anal-ysis pro
edure (Bayardo Jr. & S
hrag 1997;Marques-Silva & Sakallah 1999; Moskewi
z etal. 2001) to identify a subset of the de
isionassignments that represent a suÆ
ient 
on-dition for produ
ing the same 
on
i
t. Thissubset of de
ision assignments is in generalrepresented as a new 
lause, being referred toas a 
on
i
t-indu
ed 
lause (being also known3Without loss of generality, we assume that NCB alsouses variable toggling.

as a nogood, or simply as a 
on
i
t-
lause).The subset of de
ision assignments that is de-
lared to be asso
iated with a given 
on
i
t isreferred to as a 
on
i
t sub-path. A straight-forward 
on
i
t analysis pro
edure 
onsists of
onstru
ting a 
lause with all the de
ision as-signments in the 
on
i
t path. In this 
asethe 
reated 
lause is referred to as a path-
lause. Figure 1 illustrates these de�nitions.As a �nal note, for the ba
ktra
king strate-gies 
onsidered below, we restri
t ourselvesto the ones spe
i�
ally used in the SATdomain. As a result, we do not 
on-sider non-
hronologi
al ba
ktra
king strate-gies that are not based on re
ording 
on
i
t-indu
ed 
lauses.Standard Ba
ktra
king StrategiesIt is well-known that the 
hronologi-
al and non-
hronologi
al ba
ktra
king algo-rithms proposed for SAT are 
omplete (Davis& Putnam 1960; Marques-Silva & Sakallah1999). Basi
ally these algorithms are 
om-plete be
ause there is always an impli
itexplanation for why a solution 
annot befound in the portion of the sear
h spa
e al-ready sear
hed; either the set of already tog-gled variables or previously re
orded 
on
i
t
lauses. Also, observe that non-
hronologi
alba
ktra
king is 
omplete even when 
lausedeletion is applied.Besides the 
ompleteness results, it is alsouseful to understand whether CB and NCB
an repeat 
on
i
t paths and 
on
i
t sub-paths.Theorem 1 For an unrestri
ted ba
ktra
k-ing algorithm that only implements either
hronologi
al ba
ktra
k (CB) steps or non-
hronologi
al ba
ktra
k (NCB) steps, the fol-lowing holds:� For either CB or NCB, no 
on
i
t paths arerepeated.� For CB 
on
i
t sub-paths 
an be repeated.� For NCB, where all re
orded 
lauses arekept, no 
on
i
t sub-paths are repeated.� For NCB where some (large) re
orded
lauses are opportunisti
ally deleted, 
on-
i
t sub-paths 
an be repeated.217



Sin
e the sear
h spa
e is impli
itly enu-merated in a given order, and sin
e thesear
h pro
ess only toggles untoggled vari-ables, we are guaranteed never to repeat a
on
i
t path. This is true for both CB andNCB. Moreover, observe that this is true forNCB even when 
lauses get opportunisti
allydeleted. Indeed, a re
orded 
lause 
an only bedeleted provided some other re
orded 
lauseexplains why a portion of the sear
h spa
edoes not 
ontain a solution (Marques-Silva &Sakallah 1999). A simple indu
tion argumentallows establishing 
ompleteness and 
onse-quently the fa
t that 
on
i
t paths are notrepeated.Clearly, 
on
i
t sub-paths 
an be repeatedfor CB, sin
e no 
lause re
ording takes pla
e.Moreover, and for NCB, if all 
on
i
t-
lausesare kept, then no 
on
i
t sub-paths 
an berepeated, sin
e the sear
h pro
ess and BCPprevent sets of de
ision assignments that di-re
tly unsatisfy 
lauses. Finally, if re
orded
lauses 
an be deleted, then 
on
i
t sub-paths 
an be repeated, in parti
ular 
on
i
tsub-paths asso
iated with re
orded 
lausesthat get deleted during the sear
h pro
ess.In the next se
tions we analyze 
omplete-ness 
onditions when AFB steps are alsotaken during the sear
h pro
ess. We shouldemphasize that in all 
ases, the results estab-lished do not depend on the a
tual AFB stepthat is taken, but only on what is suÆ
ientto be done to guarantee 
ompleteness in thepresen
e of the AFB steps.Strong Completeness ConditionsIn this se
tion we 
onsider unrestri
tedba
ktra
king algorithms that re
ord (andkeep) a 
lause for ea
h identi�ed 
on
i
t. Inthis situation, and given the de�nitions givenabove for a 
on
i
t path (and possibly asso-
iated path-
lause or 
on
i
t-indu
ed 
lause),the following results 
an be established.Theorem 2 An unrestri
ted ba
ktra
king al-gorithm does not repeat 
on
i
t paths pro-vided it re
ords a path-
lause for ea
h identi-�ed 
on
i
t.Sin
e a path-
lause 
aptures the de
isionassignments asso
iated with a 
on
i
t, the ex-isten
e of that 
lause and the appli
ation ofBCP guarantees that the same set of de
i-sion assignments be
omes disallowed by the

operation of the sear
h algorithm. Clearly, inthis 
ase the algorithm does not loop and willeventually �nish.Corollary 3 An unrestri
ted ba
ktra
kingalgorithm is 
omplete provided it re
ords apath-
lause for ea
h identi�ed 
on
i
t.The previous argument 
an also be used forestablishing the following results.Theorem 4 An unrestri
ted ba
ktra
king al-gorithm does not repeat 
on
i
t sub-paths pro-vided it re
ords a 
on
i
t-
lause for ea
h iden-ti�ed 
on
i
t.The same reasoning that was used abovefor path-
lauses applies in this 
ase. The ex-isten
e of the 
on
i
t-
lause and the appli
a-tion of BCP guarantees that the same set ofde
ision assignments be
omes disallowed bythe operation of the sear
h algorithm.Corollary 5 An unrestri
ted ba
ktra
kingalgorithm does not repeat 
on
i
t paths pro-vided it re
ords a 
on
i
t-
lause for ea
h iden-ti�ed 
on
i
t.Sin
e the algorithm does not repeat 
on-
i
t sub-paths, it must ne
essarily not repeat
on
i
t paths. Moreover, and as above, 
om-pleteness of the sear
h algorithm is guaran-teed.Corollary 6 An unrestri
ted ba
ktra
kingalgorithm that re
ords a 
on
i
t-
lause forea
h identi�ed 
on
i
t is 
omplete.Given the above results, one 
an further re-late algorithms that re
ord path-
lauses andalgorithms that re
ord 
on
i
t-
lauses. Ba-si
ally, an algorithm that re
ords 
on
i
t-
lauses does not repeat 
on
i
t paths, but analgorithm that re
ords path-
lauses 
an re-peat 
on
i
t sub-paths.Theorem 7 An unrestri
ted ba
ktra
king al-gorithm that re
ords a path-
lause for ea
hidenti�ed 
on
i
t 
an repeat 
on
i
t sub-paths.Observe that path-
lauses do not 
onstrainproper sub-sets of de
ision assignments, andso these sub-sets may o

ur again during thesear
h pro
ess.The previous 
onditions for ensuring 
om-pleteness entail re
ording a 
lause for ea
hidenti�ed 
on
i
t. Hen
e, the number of218




lauses grows linearly with the number of 
on-
i
ts, and so in the worst-
ase exponentiallywith the number of variables.Finally, we note that the observation thatkeeping all re
orded 
lauses yields a 
ompletealgorithm has been previously stated by oth-ers (Ginsberg 1993; Yokoo 1994), in the 
on-text of spe
i�
 variations on ba
ktra
king al-gorithms.Weak Completeness ConditionsThe results established in the previous se
-tion guarantee 
ompleteness at the 
ost ofre
ording (and keeping) a 
lause for ea
hidenti�ed 
on
i
t. In this se
tion we proposeand analyze 
onditions for relaxing this re-quirement. We allow for some 
lauses to bedeleted during the sear
h pro
ess, and onlyrequire that some spe
i�
 re
orded 
lauses arekept. (We should note that 
lause deletiondoes not apply to 
hronologi
al ba
ktra
kingstrategies, and also that in non-
hronologi
alstrategies existing deletion poli
ies do not
ompromise the 
ompleteness of the algo-rithm.) Afterwards, we propose other 
on-ditions that do not require spe
i�
 re
orded
lauses to be kept. As des
ribed earlier, weassume that unrestri
ted ba
ktra
king 
on-sists of an arbitrary sequen
e of CB, NCB andAFB steps. Moreover, we say that a re
orded
lause is kept provided it is prevented frombeing deleted during the subsequent sear
h.Theorem 8 An unrestri
ted ba
ktra
king al-gorithm is 
omplete provided it re
ords (andkeeps) a 
on
i
t-
lause for ea
h identi�ed
on
i
t for whi
h an AFB step is taken.We know that both 
hronologi
al and non-
hronologi
al ba
ktra
king yield 
omplete al-gorithms, even when large 
lauses are deletedin non-
hronologi
al ba
ktra
king. Moreover,if we re
ord a 
on
i
t 
lause ea
h time anAFB step is taken, then this same 
on
i
tsub-path will not be further repeated againduring the remaining sear
h, and so AFBswill subsequently be taken on di�erent 
on-
i
t sub-paths. Hen
e, the sear
h pro
essmust ne
essarily terminate. Note that we 
anstrengthen the previous result.Theorem 9 Given a integer 
onstant M ,an unrestri
ted ba
ktra
king algorithm is
omplete provided it re
ords (and keeps) a


on
i
t-
lause after every M identi�ed 
on-
i
ts for whi
h an AFB step is taken.The same reasoning used above applies. In-stead of re
ording a 
on
i
t 
lause after ev-ery 
on
i
t for whi
h an AFB step is taken,we re
ord a 
lause after every M 
on
i
ts forwhi
h an AFB is taken.Corollary 10 Under the 
onditions of Theo-rem 8 and Theorem 9, the number of times a
on
i
t path or a 
on
i
t sub-path is repeatedis upper-bounded.As shown earlier, the resulting algorithmis 
omplete. Hen
e, the number of di�er-ent de
ision assignments 
onsidered is upper-bounded, and the same ne
essarily holds forthe number of times a 
on
i
t sub-path or a
on
i
t-path is repeated.As one �nal remark, observe that for theprevious 
onditions, the number of re
orded
lauses grows linearly with the number of 
on-
i
ts where an AFB step is taken, and so inthe worst-
ase exponentially in the number ofvariables.Other approa
hes to guarantee 
omplete-ness involve in
reasing the value of some
onstraint asso
iated with the sear
h algo-rithm. The following results illustrate theseapproa
hes.Theorem 11 Suppose an unrestri
ted ba
k-tra
king strategy that applies a sequen
e ofba
ktra
k steps. If for this sequen
e the num-ber of 
on
i
ts in between AFB steps stri
tlyin
reases after ea
h AFB step, then the re-sulting algorithm is 
omplete.Observe that sin
e the number of 
on-
i
ts in between AFB steps is stri
tly in-
reasing, then eventually the sear
h algo-rithm will have a suÆ
ient number of 
hrono-logi
al or non-
hronologi
al ba
ktra
k stepsto either prove satis�ability or unsatis�a-bility. We should also note that this re-sult 
an be viewed as a generalization ofthe 
ompleteness-ensuring 
ondition used insear
h restarts, that 
onsists of in
reasingthe ba
ktra
k 
uto� value after ea
h sear
hrestart (Baptista & Marques-Silva 2000) 4.Finally, observe that in this situation thegrowth in the number of 
lauses 
an bemade polynomial, provided 
lause deletion4Observe that, given this 
ondition, the resulting algo-rithm resembles iterative-deepening.219



is applied on 
lauses re
orded from non-
hronologi
al ba
ktra
k steps.The next result establishes 
onditions forguaranteeing 
ompleteness whenever largere
orded 
lauses (due to an AFB step) areopportunisti
ally deleted. The idea is to in-
rease the size of re
orded 
lauses that arekept after ea
h AFB step. Another ap-proa
h is to in
rease the life-span of large-re
orded 
lauses, by in
reasing the relevan
e-based learning threshold (Bayardo Jr. &S
hrag 1997).Theorem 12 Suppose an unrestri
ted ba
k-tra
king strategy that applies a spe
i�
 se-quen
e of ba
ktra
k steps. If for this sequen
e,either the size of the largest re
orded 
lause orthe size of the relevan
e-based learning thresh-old is in
reased after ea
h AFB step is taken,then the resulting algorithm is 
omplete.Similarly to the previous result, by in
reas-ing the size of large re
orded 
lauses or thelife-span of large re
orded 
lauses ea
h timean AFB step is taken, we are guaranteed toeventually keep all the 
lauses required toprevent the repetition of 
on
i
t sub-paths,and so either prove satis�ability or unsat-is�ability. Observe that for this last resultthe number of 
lauses 
an grow exponentiallywith the number of variables.We should note that the observationregarding in
reasing the relevan
e-basedlearning threshold was �rst suggestedin (Moskewi
z et al. 2001).One �nal result addresses the number oftimes 
on
i
t paths and 
on
i
t sub-paths
an be repeated.Corollary 13 Under the 
onditions of Theo-rem 11 and Theorem 12, the number of timesa a 
on
i
t path or a 
on
i
t sub-path is re-peated is upper-bounded.Clearly, the reasoning that was used for es-tablishing Corollary 10 
an also be applied inthis 
ase. Related WorkDi�erent variations of non-
hronologi
alba
ktra
king (e.g. ba
kjumping) and di�er-ent forms of nogood learning were originallyproposed by Stallman and Sussman in (Stall-man & Sussman 1977) in the area of TruthMaintenan
e Systems (TMS), and indepen-dently studied by J. Gas
hnig (Gas
hnig

1979) and others (see for example (De
hter1990) in the 
ontext of Constraint Satisfa
-tion Problems (CSP)). Moreover, a thoroughanalysis of 
on
i
t-dire
ted ba
kjumping 
anbe found in (Chen & van Beek 2001).The introdu
tion of variations in the ba
k-tra
k step is also related to dynami
 ba
k-tra
king (Ginsberg 1993). Dynami
 ba
k-tra
king establishes a method by whi
h ba
k-tra
k points 
an be moved deeper in thesear
h tree. This allows avoiding the un-needed erasing of the amount of sear
h thathas been done thus far. The target is to�nd a way to dire
tly "erase" the value as-signed to a variable as opposed to ba
ktra
k-ing to it, moving the ba
kjump variable to theend of the partial solution in order to repla
eits value without modifying the values of thevariables that 
urrently follow it. More re-
ently, Ginsberg and M
Allester 
ombined lo-
al sear
h and dynami
 ba
ktra
king in an al-gorithm whi
h enables arbitrary sear
h move-ment (Ginsberg & M
Allester 1994), startingwith any 
omplete assignment and evolvingby 
ipping values of variables obtained fromthe 
on
i
ts.In weak-
ommitment sear
h (Yokoo 1994),the algorithm 
onstru
ts a 
onsistent partialsolution, but 
ommits to the partial solutionweakly, in 
ontrast to standard ba
ktra
kingalgorithms whi
h never abandon a partial so-lution unless it turns out to be hopeless (i.e.when it is shown not to yield a solution).Moreover, sear
h restarts have been pro-posed and shown e�e
tive for real-world in-stan
es of SAT (Gomes, Selman, & Kautz1998). The sear
h is repeatedly restartedwhenever a 
uto� value is rea
hed. The al-gorithm proposed is not 
omplete, sin
e therestart 
uto� point is kept 
onstant. In (Bap-tista & Marques-Silva 2000), sear
h restartswere jointly used with learning for solvinghard real-world instan
es of SAT. This lateralgorithm is 
omplete, sin
e the ba
ktra
k
uto� value in
reases after ea
h restart. Morere
ently, a highly-optimized 
omplete SATsolver (Moskewi
z et al. 2001) has su

ess-fully 
ombined non-
hronologi
al ba
ktra
k-ing and restarts, again obtaining remark-able results on solving real-world instan
es ofSAT.220



Con
lusions and Future WorkThis paper proposes and analyzes a generalframework for unrestri
tedly ba
ktra
king inSAT algorithms. Moreover, we propose di�er-ent 
onditions for ensuring the 
ompletenessof SAT algorithms.In the near future, we expe
t to study othervariations of this new ba
ktra
king strategy.We 
an envision the implementation of di�er-ent hybrids (e.g. weak-
ommitment sear
h,sear
h restarts and random ba
ktra
king), allguaranteed to be 
omplete and so 
apableof proving unsatis�ability. In this generi
framework, the a
tual ba
ktra
k point 
anbe de�ned using either randomization, heuris-ti
 knowledge, 
onstant-depth ba
ktra
kingor sear
h restarts, among other possible ap-proa
hes. In addition, it will be important to
ondu
t a 
omprehensive experimental eval-uation and 
ategorization of the proposedba
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