
Complete Unrestrited Baktraking Algorithms for Satis�abilityInês Lyne and Jo~ao Marques-SilvaDepartment of Information Systems and Computer Siene,Tehnial University of Lisbon,IST/INESC/CEL, Lisbon, Portugalfines,jpmsg�sat.ines.ptAbstratIn reent years, di�erent baktrak searhPropositional Satis�ability (SAT) algorithmshave proposed relaxing the identi�ation ofthe baktrak point in the searh tree. Eventhough relaxing the identi�ation of the bak-trak point an be signi�ant in solving hardinstanes of SAT, it is also true that the re-sulting algorithms may no longer be omplete.This paper proposes a new baktrak searhstrategy, unrestrited baktraking, that nat-urally aptures relaxations of the identi�a-tion of the baktrak point in the searhtree, most notably searh restarts and ran-dom baktraking. Moreover, the paper pro-poses a number of onditions that guaranteethe ompleteness of generi unrestrited bak-traking SAT algorithms.IntrodutionPropositional Satis�ability is a well-knownNP-omplete problem, with theoretial andpratial signi�ane, and with extensive ap-pliations in many �elds of Computer Sieneand Engineering, inluding Arti�ial Intelli-gene and Eletroni Design Automation.Current state-of-the-art SAT solvers inor-porate sophistiated pruning tehniques aswell as new strategies on how to organizethe searh. E�etive searh pruning teh-niques are based, among others, on nogoodlearning and dependeny-direted baktrak-ing (Stallman & Sussman 1977) and bak-jumping (Gashnig 1979), whereas reent ef-fetive strategies introdue variations on theorganization of baktrak searh. Exam-ples of suh strategies are weak-ommitmentsearh (Yokoo 1994), searh restarts (Gomes,Selman, & Kautz 1998) and random bak-traking (Lyne, Baptista, & Marques-Silva

2001).Advaned tehniques applied to baktraksearh SAT algorithms have ahieved re-markable improvements (Bayardo Jr. &Shrag 1997; Marques-Silva & Sakallah 1999;Moskewiz et al. 2001), having been shown tobe ruial for solving hard instanes of SATobtained from real-world appliations. More-over, and from a pratial perspetive, themost e�etive algorithms are omplete, andso able to prove what loal searh is not a-pable of, i.e. unsatis�ability. Indeed, this isoften the objetive in a large number of sig-ni�ant real-world appliations.Nevertheless, it is also widely aepted thatloal searh (Selman & Kautz 1993) an oftenhave lear advantages with respet to bak-trak searh, sine it is allowed to start thesearh over again whenever it gets stuk in aloally optimal partial solution. This advan-tage of loal searh has motivated the study ofapproahes for relaxing baktraking ondi-tions (while still assuring ompleteness). Thekey idea is to unrestritedly hoose the pointto baktrak to, in order to avoid thrashingduring baktrak searh. Moreover, one anthink of ombining di�erent forms of relaxingthe identi�ation of the baktrak point. Inthis paper, we propose a new generi frame-work for implementing di�erent baktrakingstrategies, referred to as unrestrited bak-traking. Besides desribing the unrestritedbaktraking searh strategy, we also estab-lish ompleteness onditions for the resultingSAT algorithms.The remainder of this paper is organizedas follows. The next setion presents de�ni-tions used throughout the paper. Afterwards,we briey survey baktrak searh SAT algo-rithms. Then we introdue the unrestrited214



baktraking searh strategy and analyze ex-amples of spei� formulations of unrestritedbaktraking. In addition, we relate om-pleteness onditions with the di�erent formsof baktraking. Finally, we desribe relatedwork, and onlude by suggesting future re-searh diretions.De�nitionsThis setion introdues the notationalframework used throughout the pa-per. Propositional variables are denotedx1; : : : ; xn, and an be assigned truth values0 (or F ) or 1 (or T ). The truth valueassigned to a variable x is denoted by �(x).(When lear from ontext we use x = �x,where �x 2 f0; 1g). A literal l is either avariable xi or its negation :xi. A lause! is a disjuntion of literals and a CNFformula ' is a onjuntion of lauses. Alause is said to be satis�ed if at least one ofits literals assumes value 1, unsatis�ed if allof its literals assume value 0, unit if all butone literal assume value 0, and unresolvedotherwise. Literals with no assigned truthvalue are said to be free literals. A formulais said to be satis�ed if all its lauses aresatis�ed, and is unsatis�ed if at least onelause is unsatis�ed. A truth assignment fora formula is a set of assigned variables andtheir orresponding truth values. The SATproblem onsists of deiding whether thereexists a truth assignment to the variablessuh that the formula beomes satis�ed.SAT algorithms an be haraterized asbeing either omplete or inomplete. Com-plete algorithms an establish unsatis�abilityif given enough CPU time; inomplete algo-rithms annot. In a searh ontext, ompletealgorithms are often referred to as systemati,whereas inomplete algorithms are referred toas non-systemati.Baktrak Searh SAT AlgorithmsOver the years a large number of algo-rithms have been proposed for SAT, fromthe original Davis-Putnam proedure (Davis& Putnam 1960), to reent baktrak searhalgorithms (Bayardo Jr. & Shrag 1997;Zhang 1997; Marques-Silva & Sakallah 1999;Moskewiz et al. 2001) and to loal searhalgorithms (Selman & Kautz 1993), amongmany others.

The vast majority of baktrak searh SATalgorithms build upon the original bak-trak searh algorithm of Davis, Logemannand Loveland (Davis, Logemann, & Loveland1962). The baktrak searh algorithm is im-plemented by a searh proess that impliitlyenumerates the spae of 2n possible binary as-signments to the n problem variables. Eahdi�erent truth assignment de�nes a searhpath within the searh spae. A deision levelis assoiated with eah variable seletion andassignment. The �rst variable seletion or-responds to deision level 1, and the deisionlevel is inremented by 1 for eah new deisionassignment 1. In addition, and for eah dei-sion level, the unit lause rule (Davis & Put-nam 1960) is applied. If a lause is unit, thenthe sole free literal must be assigned value 1for the formula to be satis�ed. In this ase,the value of the literal and of the assoiatedvariable are said to be implied. The iteratedappliation of the unit lause rule is often re-ferred to as Boolean Constraint Propagation(BCP).In hronologial baktraking, the searhalgorithm keeps trak of whih deision as-signments have been toggled. Given an un-satis�ed lause (i.e. a onit or a deadend) at deision level d, the algorithm hekswhether at the urrent deision level the or-responding deision variable x has alreadybeen toggled. If not, the algorithms erases thevariable assignments whih are implied by theassignment on x, inluding the assignment onx, assigns the opposite value to x, and marksdeision variable x as toggled. In ontrast, ifthe value of x has already been toggled, thesearh baktraks to deision level d� 1.Reent state-of-the-art SAT solvers uti-lize di�erent forms of non-hronologial bak-traking (Bayardo Jr. & Shrag 1997;Marques-Silva & Sakallah 1999; Moskewizet al. 2001), in whih eah identi�ed on-it is analyzed, its auses identi�ed, and anew lause reated to explain and preventthe identi�ed oniting onditions. Createdlauses are then used to ompute the bak-trak point as the most reent deision as-signment from all the deision assignmentsrepresented in the reorded lause. Moreover,some of the (larger) reorded lauses are even-1Observe that all the assignments made before the �rstdeision assignment orrespond to deision level 0.215



tually deleted. Clauses an be deleted oppor-tunistially whenever they are no longer rel-evant for the urrent searh path (Marques-Silva & Sakallah 1999).Unrestrited BaktrakingUnrestrited baktraking relaxes the on-dition that baktraking must be taken to themost reent deision assignment in a reordedlause. In other words, whenever a dead-end is reahed, the searh algorithm is al-lowed to unrestritedly baktrak to any point(i.e. deision level) in the urrent searhpath. Clearly, this unrestrited baktrakstep an also be the usual hronologial ornon-hronologial baktrak steps. Besidesthe freedom for seleting the baktrak pointin the deision tree, unrestrited baktrak-ing entails a poliy for applying di�erentbaktrak steps in sequene. Eah bak-trak step an be seleted among hrono-logial baktraking (CB), non-hronologialbaktraking (NCB) or alternative forms ofbaktraking (AFB) (e.g., searh restarts,weak-ommitment searh, random baktrak-ing, heuristi baktraking, or onstant-depthbaktraking, among many others). Moreformally, unrestrited baktraking onsistsof de�ning a sequene of baktrak stepsfBSt1;BSt2;BSt3; : : :g suh that eah bak-trak step BSti an either be a hronologial,a non-hronologial or an alternative form ofbaktraking, i.e. BSti 2 fCB;NCB;AFBg.The de�nition of unrestrited baktrak-ing (UB) allows apturing the baktrakingsearh strategies used by urrent state-of-the-art SAT solvers.Clearly, if the UB strategy spei�es al-ways applying the CB step or always applyingthe NCB step, then we respetively apturethe hronologial and non-hronologial bak-traking searh strategies.For example, onsider a UB strategy on-sisting of applying an AFB step after everyK hronologial baktrak steps, and wherethe AFB step is a searh restart. Then thisUB strategy orresponds to searh restarts in(hronologial) baktrak searh (Gomes, Sel-man, & Kautz 1998) 2, hene being an aninomplete algorithm. If instead of hrono-2In this ase we assume that the variable seletionheuristi an be randomized as desribed in (Gomes, Sel-man, & Kautz 1998).

logial baktraking, non-hronologial bak-traking with lause reording is applied inbetween AFB steps, and if the number ofonits in between AFB steps inreases bya onstant value iK, then the resulting UBstrategy orresponds to searh restarts withnon-hronologial baktrak searh (and withlause reording) (Baptista & Marques-Silva2000).If instead of a searh restart the AFB stepin the previous strategies onsists of a ran-dom baktrak step, then the resulting al-gorithm orresponds to stohasti systematisearh (Lyne, Baptista, & Marques-Silva2001).Moreover one an also envision new, thoughmore elaborate, UB strategies, that involvedi�erent forms of AFB. An example of suh aUB strategy ould be applying an AFB orre-sponding to random baktraking after everyK onits (where K an be stritly inreas-ing), and applying an AFB step orrespond-ing to a searh restart after every M onits(where M an also be stritly inreasing).Why Unrestrited Baktraking?In the previous setion we illustratedhow unrestrited baktraking aptures themost suessful baktraking strategies ur-rently used for SAT. Nevertheless, and be-sides allowing apturing di�erent baktrak-ing strategies, one may wonder the atual use-fulness of unrestrited baktraking.We start by observing that a uni�ed rep-resentation for di�erent baktraking strate-gies allows establishing general ompletenessonditions for lasses of baktraking strate-gies and not only for eah individual strat-egy, as it has often been done. By utiliz-ing a uni�ed representation, we an establishonditions that apply to all variations of un-restrited baktraking. This will naturallysimplify establishing ompleteness results forfuture baktraking strategies.It should also be observed that the mostompetitive SAT solvers, e.g. (Marques-Silva& Sakallah 1999; Moskewiz et al. 2001)do indeed apply multiple baktraking strate-gies. Hene, unrestrited baktraking nat-urally models the organization of modernstate-of-the-art SAT solvers.216



CONFLICT
xj(:xi _ xj _ xk)path lause:onit path xi = 1xi onit sub-path

xk
xi = 0 onit lause:(:xi _ xk)

Figure 1: Searh tree de�nitionsCompleteness IssuesIn this setion we address the problem ofguaranteeing the ompleteness of algorithmsthat implement some form of unrestritedbaktraking. As illustrated in the previoussetions, unrestrited baktraking an yieldinomplete algorithms. Before proeeding,however, we need to introdue a few de�ni-tions.PreliminariesIn what follows we assume the organiza-tion of a baktrak searh SAT algorithm asdesribed earlier in this paper. The mainloop of the algorithm onsists of seleting avariable assignment (i.e. a deision assign-ment), making that assignment, and prop-agating that assignment using BCP. In thepresene of an unsatis�ed lause (i.e. a on-it) the algorithm baktraks to a deisionassignment that an be toggled 3. Eah timea onit is identi�ed, all the urrent dei-sion assignments de�ne a onit path in thesearh tree. (Observe that we restrit the def-inition of onit path solely with respet tothe deision assignments.) After a onitis identi�ed, we may apply a onit anal-ysis proedure (Bayardo Jr. & Shrag 1997;Marques-Silva & Sakallah 1999; Moskewiz etal. 2001) to identify a subset of the deisionassignments that represent a suÆient on-dition for produing the same onit. Thissubset of deision assignments is in generalrepresented as a new lause, being referred toas a onit-indued lause (being also known3Without loss of generality, we assume that NCB alsouses variable toggling.

as a nogood, or simply as a onit-lause).The subset of deision assignments that is de-lared to be assoiated with a given onit isreferred to as a onit sub-path. A straight-forward onit analysis proedure onsists ofonstruting a lause with all the deision as-signments in the onit path. In this asethe reated lause is referred to as a path-lause. Figure 1 illustrates these de�nitions.As a �nal note, for the baktraking strate-gies onsidered below, we restrit ourselvesto the ones spei�ally used in the SATdomain. As a result, we do not on-sider non-hronologial baktraking strate-gies that are not based on reording onit-indued lauses.Standard Baktraking StrategiesIt is well-known that the hronologi-al and non-hronologial baktraking algo-rithms proposed for SAT are omplete (Davis& Putnam 1960; Marques-Silva & Sakallah1999). Basially these algorithms are om-plete beause there is always an impliitexplanation for why a solution annot befound in the portion of the searh spae al-ready searhed; either the set of already tog-gled variables or previously reorded onitlauses. Also, observe that non-hronologialbaktraking is omplete even when lausedeletion is applied.Besides the ompleteness results, it is alsouseful to understand whether CB and NCBan repeat onit paths and onit sub-paths.Theorem 1 For an unrestrited baktrak-ing algorithm that only implements eitherhronologial baktrak (CB) steps or non-hronologial baktrak (NCB) steps, the fol-lowing holds:� For either CB or NCB, no onit paths arerepeated.� For CB onit sub-paths an be repeated.� For NCB, where all reorded lauses arekept, no onit sub-paths are repeated.� For NCB where some (large) reordedlauses are opportunistially deleted, on-it sub-paths an be repeated.217



Sine the searh spae is impliitly enu-merated in a given order, and sine thesearh proess only toggles untoggled vari-ables, we are guaranteed never to repeat aonit path. This is true for both CB andNCB. Moreover, observe that this is true forNCB even when lauses get opportunistiallydeleted. Indeed, a reorded lause an only bedeleted provided some other reorded lauseexplains why a portion of the searh spaedoes not ontain a solution (Marques-Silva &Sakallah 1999). A simple indution argumentallows establishing ompleteness and onse-quently the fat that onit paths are notrepeated.Clearly, onit sub-paths an be repeatedfor CB, sine no lause reording takes plae.Moreover, and for NCB, if all onit-lausesare kept, then no onit sub-paths an berepeated, sine the searh proess and BCPprevent sets of deision assignments that di-retly unsatisfy lauses. Finally, if reordedlauses an be deleted, then onit sub-paths an be repeated, in partiular onitsub-paths assoiated with reorded lausesthat get deleted during the searh proess.In the next setions we analyze omplete-ness onditions when AFB steps are alsotaken during the searh proess. We shouldemphasize that in all ases, the results estab-lished do not depend on the atual AFB stepthat is taken, but only on what is suÆientto be done to guarantee ompleteness in thepresene of the AFB steps.Strong Completeness ConditionsIn this setion we onsider unrestritedbaktraking algorithms that reord (andkeep) a lause for eah identi�ed onit. Inthis situation, and given the de�nitions givenabove for a onit path (and possibly asso-iated path-lause or onit-indued lause),the following results an be established.Theorem 2 An unrestrited baktraking al-gorithm does not repeat onit paths pro-vided it reords a path-lause for eah identi-�ed onit.Sine a path-lause aptures the deisionassignments assoiated with a onit, the ex-istene of that lause and the appliation ofBCP guarantees that the same set of dei-sion assignments beomes disallowed by the

operation of the searh algorithm. Clearly, inthis ase the algorithm does not loop and willeventually �nish.Corollary 3 An unrestrited baktrakingalgorithm is omplete provided it reords apath-lause for eah identi�ed onit.The previous argument an also be used forestablishing the following results.Theorem 4 An unrestrited baktraking al-gorithm does not repeat onit sub-paths pro-vided it reords a onit-lause for eah iden-ti�ed onit.The same reasoning that was used abovefor path-lauses applies in this ase. The ex-istene of the onit-lause and the applia-tion of BCP guarantees that the same set ofdeision assignments beomes disallowed bythe operation of the searh algorithm.Corollary 5 An unrestrited baktrakingalgorithm does not repeat onit paths pro-vided it reords a onit-lause for eah iden-ti�ed onit.Sine the algorithm does not repeat on-it sub-paths, it must neessarily not repeatonit paths. Moreover, and as above, om-pleteness of the searh algorithm is guaran-teed.Corollary 6 An unrestrited baktrakingalgorithm that reords a onit-lause foreah identi�ed onit is omplete.Given the above results, one an further re-late algorithms that reord path-lauses andalgorithms that reord onit-lauses. Ba-sially, an algorithm that reords onit-lauses does not repeat onit paths, but analgorithm that reords path-lauses an re-peat onit sub-paths.Theorem 7 An unrestrited baktraking al-gorithm that reords a path-lause for eahidenti�ed onit an repeat onit sub-paths.Observe that path-lauses do not onstrainproper sub-sets of deision assignments, andso these sub-sets may our again during thesearh proess.The previous onditions for ensuring om-pleteness entail reording a lause for eahidenti�ed onit. Hene, the number of218



lauses grows linearly with the number of on-its, and so in the worst-ase exponentiallywith the number of variables.Finally, we note that the observation thatkeeping all reorded lauses yields a ompletealgorithm has been previously stated by oth-ers (Ginsberg 1993; Yokoo 1994), in the on-text of spei� variations on baktraking al-gorithms.Weak Completeness ConditionsThe results established in the previous se-tion guarantee ompleteness at the ost ofreording (and keeping) a lause for eahidenti�ed onit. In this setion we proposeand analyze onditions for relaxing this re-quirement. We allow for some lauses to bedeleted during the searh proess, and onlyrequire that some spei� reorded lauses arekept. (We should note that lause deletiondoes not apply to hronologial baktrakingstrategies, and also that in non-hronologialstrategies existing deletion poliies do notompromise the ompleteness of the algo-rithm.) Afterwards, we propose other on-ditions that do not require spei� reordedlauses to be kept. As desribed earlier, weassume that unrestrited baktraking on-sists of an arbitrary sequene of CB, NCB andAFB steps. Moreover, we say that a reordedlause is kept provided it is prevented frombeing deleted during the subsequent searh.Theorem 8 An unrestrited baktraking al-gorithm is omplete provided it reords (andkeeps) a onit-lause for eah identi�edonit for whih an AFB step is taken.We know that both hronologial and non-hronologial baktraking yield omplete al-gorithms, even when large lauses are deletedin non-hronologial baktraking. Moreover,if we reord a onit lause eah time anAFB step is taken, then this same onitsub-path will not be further repeated againduring the remaining searh, and so AFBswill subsequently be taken on di�erent on-it sub-paths. Hene, the searh proessmust neessarily terminate. Note that we anstrengthen the previous result.Theorem 9 Given a integer onstant M ,an unrestrited baktraking algorithm isomplete provided it reords (and keeps) a

onit-lause after every M identi�ed on-its for whih an AFB step is taken.The same reasoning used above applies. In-stead of reording a onit lause after ev-ery onit for whih an AFB step is taken,we reord a lause after every M onits forwhih an AFB is taken.Corollary 10 Under the onditions of Theo-rem 8 and Theorem 9, the number of times aonit path or a onit sub-path is repeatedis upper-bounded.As shown earlier, the resulting algorithmis omplete. Hene, the number of di�er-ent deision assignments onsidered is upper-bounded, and the same neessarily holds forthe number of times a onit sub-path or aonit-path is repeated.As one �nal remark, observe that for theprevious onditions, the number of reordedlauses grows linearly with the number of on-its where an AFB step is taken, and so inthe worst-ase exponentially in the number ofvariables.Other approahes to guarantee omplete-ness involve inreasing the value of someonstraint assoiated with the searh algo-rithm. The following results illustrate theseapproahes.Theorem 11 Suppose an unrestrited bak-traking strategy that applies a sequene ofbaktrak steps. If for this sequene the num-ber of onits in between AFB steps stritlyinreases after eah AFB step, then the re-sulting algorithm is omplete.Observe that sine the number of on-its in between AFB steps is stritly in-reasing, then eventually the searh algo-rithm will have a suÆient number of hrono-logial or non-hronologial baktrak stepsto either prove satis�ability or unsatis�a-bility. We should also note that this re-sult an be viewed as a generalization ofthe ompleteness-ensuring ondition used insearh restarts, that onsists of inreasingthe baktrak uto� value after eah searhrestart (Baptista & Marques-Silva 2000) 4.Finally, observe that in this situation thegrowth in the number of lauses an bemade polynomial, provided lause deletion4Observe that, given this ondition, the resulting algo-rithm resembles iterative-deepening.219



is applied on lauses reorded from non-hronologial baktrak steps.The next result establishes onditions forguaranteeing ompleteness whenever largereorded lauses (due to an AFB step) areopportunistially deleted. The idea is to in-rease the size of reorded lauses that arekept after eah AFB step. Another ap-proah is to inrease the life-span of large-reorded lauses, by inreasing the relevane-based learning threshold (Bayardo Jr. &Shrag 1997).Theorem 12 Suppose an unrestrited bak-traking strategy that applies a spei� se-quene of baktrak steps. If for this sequene,either the size of the largest reorded lause orthe size of the relevane-based learning thresh-old is inreased after eah AFB step is taken,then the resulting algorithm is omplete.Similarly to the previous result, by inreas-ing the size of large reorded lauses or thelife-span of large reorded lauses eah timean AFB step is taken, we are guaranteed toeventually keep all the lauses required toprevent the repetition of onit sub-paths,and so either prove satis�ability or unsat-is�ability. Observe that for this last resultthe number of lauses an grow exponentiallywith the number of variables.We should note that the observationregarding inreasing the relevane-basedlearning threshold was �rst suggestedin (Moskewiz et al. 2001).One �nal result addresses the number oftimes onit paths and onit sub-pathsan be repeated.Corollary 13 Under the onditions of Theo-rem 11 and Theorem 12, the number of timesa a onit path or a onit sub-path is re-peated is upper-bounded.Clearly, the reasoning that was used for es-tablishing Corollary 10 an also be applied inthis ase. Related WorkDi�erent variations of non-hronologialbaktraking (e.g. bakjumping) and di�er-ent forms of nogood learning were originallyproposed by Stallman and Sussman in (Stall-man & Sussman 1977) in the area of TruthMaintenane Systems (TMS), and indepen-dently studied by J. Gashnig (Gashnig

1979) and others (see for example (Dehter1990) in the ontext of Constraint Satisfa-tion Problems (CSP)). Moreover, a thoroughanalysis of onit-direted bakjumping anbe found in (Chen & van Beek 2001).The introdution of variations in the bak-trak step is also related to dynami bak-traking (Ginsberg 1993). Dynami bak-traking establishes a method by whih bak-trak points an be moved deeper in thesearh tree. This allows avoiding the un-needed erasing of the amount of searh thathas been done thus far. The target is to�nd a way to diretly "erase" the value as-signed to a variable as opposed to baktrak-ing to it, moving the bakjump variable to theend of the partial solution in order to replaeits value without modifying the values of thevariables that urrently follow it. More re-ently, Ginsberg and MAllester ombined lo-al searh and dynami baktraking in an al-gorithm whih enables arbitrary searh move-ment (Ginsberg & MAllester 1994), startingwith any omplete assignment and evolvingby ipping values of variables obtained fromthe onits.In weak-ommitment searh (Yokoo 1994),the algorithm onstruts a onsistent partialsolution, but ommits to the partial solutionweakly, in ontrast to standard baktrakingalgorithms whih never abandon a partial so-lution unless it turns out to be hopeless (i.e.when it is shown not to yield a solution).Moreover, searh restarts have been pro-posed and shown e�etive for real-world in-stanes of SAT (Gomes, Selman, & Kautz1998). The searh is repeatedly restartedwhenever a uto� value is reahed. The al-gorithm proposed is not omplete, sine therestart uto� point is kept onstant. In (Bap-tista & Marques-Silva 2000), searh restartswere jointly used with learning for solvinghard real-world instanes of SAT. This lateralgorithm is omplete, sine the baktrakuto� value inreases after eah restart. Morereently, a highly-optimized omplete SATsolver (Moskewiz et al. 2001) has suess-fully ombined non-hronologial baktrak-ing and restarts, again obtaining remark-able results on solving real-world instanes ofSAT.220



Conlusions and Future WorkThis paper proposes and analyzes a generalframework for unrestritedly baktraking inSAT algorithms. Moreover, we propose di�er-ent onditions for ensuring the ompletenessof SAT algorithms.In the near future, we expet to study othervariations of this new baktraking strategy.We an envision the implementation of di�er-ent hybrids (e.g. weak-ommitment searh,searh restarts and random baktraking), allguaranteed to be omplete and so apableof proving unsatis�ability. In this generiframework, the atual baktrak point anbe de�ned using either randomization, heuris-ti knowledge, onstant-depth baktrakingor searh restarts, among other possible ap-proahes. In addition, it will be important toondut a omprehensive experimental eval-uation and ategorization of the proposedbaktraking strategies.ReferenesBaptista, L., and Marques-Silva, J. P. 2000.Using randomization and learning to solvehard real-world instanes of satis�ability. InInternational Conferene on Priniples andPratie of Constraint Programming, 489{494.Bayardo Jr., R., and Shrag, R. 1997. UsingCSP look-bak tehniques to solve real-worldSAT instanes. In Proeedings of the Na-tional Conferene on Arti�ial Intelligene,203{208.Chen, X., and van Beek, P. 2001. Conit-direted bakjumping revisited. Journal ofArti�ial Intelligene Researh 14:53{81.Davis, M., and Putnam, H. 1960. A om-puting proedure for quanti�ation theory.Journal of the Assoiation for ComputingMahinery 7:201{215.Davis, M.; Logemann, G.; and Loveland,D. 1962. A mahine program for theorem-proving. Communiations of the Assoiationfor Computing Mahinery 5:394{397.Dehter, R. 1990. Enhanement shemes foronstraint proessing: Bakjumping, learn-ing, and utset deomposition. Arti�ial In-telligene 41(3):273{312.
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