Complete Unrestricted Backtracking Algorithms for Satisfiability

Inés Lynce and Joao Marques-Silva
Department of Information Systems and Computer Science,
Technical University of Lisbon,
IST/INESC/CEL, Lisbon, Portugal
{ines, jpms}@sat.inesc.pt

Abstract

In recent years, different backtrack search
Propositional Satisfiability (SAT) algorithms
have proposed relaxing the identification of
the backtrack point in the search tree. Even
though relaxing the identification of the back-
track point can be significant in solving hard
instances of SAT, it is also true that the re-
sulting algorithms may no longer be complete.
This paper proposes a new backtrack search
strategy, unrestricted backtracking, that nat-
urally captures relaxations of the identifica-
tion of the backtrack point in the search
tree, most notably search restarts and ran-
dom backtracking. Moreover, the paper pro-
poses a number of conditions that guarantee
the completeness of generic unrestricted back-
tracking SAT algorithms.

Introduction

Propositional Satisfiability is a well-known
NP-complete problem, with theoretical and
practical significance, and with extensive ap-
plications in many fields of Computer Science
and Engineering, including Artificial Intelli-
gence and Electronic Design Automation.

Current state-of-the-art SAT solvers incor-
porate sophisticated pruning techniques as
well as new strategies on how to organize
the search. Effective search pruning tech-
niques are based, among others, on nogood
learning and dependency-directed backtrack-
ing (Stallman & Sussman 1977) and back-
jumping (Gaschnig 1979), whereas recent ef-
fective strategies introduce variations on the
organization of backtrack search. Exam-
ples of such strategies are weak-commitment
search (Yokoo 1994), search restarts (Gomes,
Selman, & Kautz 1998) and random back-
tracking (Lynce, Baptista, & Marques-Silva

214

2001).

Advanced techniques applied to backtrack
search SAT algorithms have achieved re-
markable improvements (Bayardo Jr. &
Schrag 1997; Marques-Silva & Sakallah 1999;
Moskewicz et al. 2001), having been shown to
be crucial for solving hard instances of SAT
obtained from real-world applications. More-
over, and from a practical perspective, the
most effective algorithms are complete, and
so able to prove what local search is not ca-
pable of, i.e. unsatisfiability. Indeed, this is
often the objective in a large number of sig-
nificant real-world applications.

Nevertheless, it is also widely accepted that
local search (Selman & Kautz 1993) can often
have clear advantages with respect to back-
track search, since it is allowed to start the
search over again whenever it gets stuck in a
locally optimal partial solution. This advan-
tage of local search has motivated the study of
approaches for relaxing backtracking condi-
tions (while still assuring completeness). The
key idea is to unrestrictedly choose the point
to backtrack to, in order to avoid thrashing
during backtrack search. Moreover, one can
think of combining different forms of relaxing
the identification of the backtrack point. In
this paper, we propose a new generic frame-
work for implementing different backtracking
strategies, referred to as wunrestricted back-
tracking. Besides describing the unrestricted
backtracking search strategy, we also estab-
lish completeness conditions for the resulting
SAT algorithms.

The remainder of this paper is organized
as follows. The next section presents defini-
tions used throughout the paper. Afterwards,
we briefly survey backtrack search SAT algo-
rithms. Then we introduce the unrestricted

backtracking search strategy and analyze ex-
amples of specific formulations of unrestricted
backtracking. In addition, we relate com-
pleteness conditions with the different forms
of backtracking. Finally, we describe related
work, and conclude by suggesting future re-
search directions.

Definitions

This section introduces the notational
framework used throughout the pa-
per. Propositional variables are denoted
Z1,...,%,, and can be assigned truth values
0 (or F) or 1 (or T). The truth value
assigned to a variable z is denoted by v(z).
(When clear from context we use © = v,
where v, € {0,1}). A literal [is either a
variable x; or its negation —z;. A clause
w is a disjunction of literals and a CNF
formula ¢ is a conjunction of clauses. A
clause is said to be satisfied if at least one of
its literals assumes value 1, unsatisfied if all
of its literals assume value 0, unit if all but
one literal assume value 0, and wunresolved
otherwise. Literals with no assigned truth
value are said to be free literals. A formula
is said to be satisfied if all its clauses are
satisfied, and is wunsatisfied if at least one
clause is unsatisfied. A truth assignment for
a formula is a set of assigned variables and
their corresponding truth values. The SAT
problem consists of deciding whether there
exists a truth assignment to the variables
such that the formula becomes satisfied.

SAT algorithms can be characterized as
being either complete or incomplete. Com-
plete algorithms can establish unsatisfiability
if given enough CPU time; incomplete algo-
rithms cannot. In a search context, complete
algorithms are often referred to as systematic,
whereas incomplete algorithms are referred to
as non-systematic.

Backtrack Search SAT Algorithms

Over the years a large number of algo-
rithms have been proposed for SAT, from
the original Davis-Putnam procedure (Davis
& Putnam 1960), to recent backtrack search
algorithms (Bayardo Jr. & Schrag 1997,
Zhang 1997; Marques-Silva & Sakallah 1999;
Moskewicz et al. 2001) and to local search
algorithms (Selman & Kautz 1993), among
many others.

215

The vast majority of backtrack search SAT
algorithms build upon the original back-
track search algorithm of Davis, Logemann
and Loveland (Davis, Logemann, & Loveland
1962). The backtrack search algorithm is im-
plemented by a search process that implicitly
enumerates the space of 2" possible binary as-
signments to the n problem variables. Each
different truth assignment defines a search
path within the search space. A decision level
is associated with each variable selection and
assignment. The first variable selection cor-
responds to decision level 1, and the decision
level is incremented by 1 for each new decision
assignment '. In addition, and for each deci-
sion level, the unit clause rule (Davis & Put-
nam 1960) is applied. If a clause is unit, then
the sole free literal must be assigned value 1
for the formula to be satisfied. In this case,
the value of the literal and of the associated
variable are said to be implied. The iterated
application of the unit clause rule is often re-
ferred to as Boolean Constraint Propagation
(BCP).

In chronological backtracking, the search
algorithm keeps track of which decision as-
signments have been toggled. Given an un-
satisfied clause (i.e. a conflict or a dead
end) at decision level d, the algorithm checks
whether at the current decision level the cor-
responding decision variable x has already
been toggled. If not, the algorithms erases the
variable assignments which are implied by the
assignment on z, including the assignment on
x, assigns the opposite value to z, and marks
decision variable x as toggled. In contrast, if
the value of x has already been toggled, the
search backtracks to decision level d — 1.

Recent state-of-the-art SAT solvers uti-
lize different forms of non-chronological back-
tracking (Bayardo Jr. & Schrag 1997;
Marques-Silva & Sakallah 1999; Moskewicz
et al. 2001), in which each identified con-
flict is analyzed, its causes identified, and a
new clause created to explain and prevent
the identified conflicting conditions. Created
clauses are then used to compute the back-

signment from all the decision assignments
represented in the recorded clause. Moreover,
some of the (larger) recorded clauses are even-

!Observe that all the assignments made before the first
decision assignment correspond to decision level 0.

tually deleted. Clauses can be deleted oppor-
tunistically whenever they are no longer rel-
evant for the current search path (Marques-
Silva & Sakallah 1999).

Unrestricted Backtracking

Unrestricted backtracking relaxes the con-
dition that backtracking must be taken to the
most recent decision assignment in a recorded
clause. In other words, whenever a dead-
end is reached, the search algorithm is al-
lowed to unrestrictedly backtrack to any point
(i.e. decision level) in the current search
path. Clearly, this unrestricted backtrack
step can also be the usual chronological or
non-chronological backtrack steps. Besides
the freedom for selecting the backtrack point
in the decision tree, unrestricted backtrack-
ing entails a policy for applying different
backtrack steps in sequence. FEach back-
track step can be selected among chrono-
logical backtracking (CB), non-chronological
backtracking (NCB) or alternative forms of
backtracking (AFB) (e.g., search restarts,
weak-commitment search, random backtrack-
ing, heuristic backtracking, or constant-depth
backtracking, among many others). More
formally, unrestricted backtracking consists
of defining a sequence of backtrack steps
{BSty, BSty, BSt3, ...} such that each back-
track step BSt; can either be a chronological,
a non-chronological or an alternative form of
backtracking, i.e. BSt; € {CB,NCB, AFB}.

The definition of unrestricted backtrack-
ing (UB) allows capturing the backtracking
search strategies used by current state-of-the-
art SAT solvers.

Clearly, if the UB strategy specifies al-
ways applying the CB step or always applying
the NCB step, then we respectively capture
the chronological and non-chronological back-
tracking search strategies.

For example, consider a UB strategy con-
sisting of applying an AFB step after every
K chronological backtrack steps, and where
the AFB step is a search restart. Then this
UB strategy corresponds to search restarts in
(chronological) backtrack search (Gomes, Sel-
man, & Kautz 1998) 2, hence being an an
incomplete algorithm. If instead of chrono-

’In this case we assume that the variable selection
heuristic can be randomized as described in (Gomes, Sel-
man, & Kautz 1998).

216

logical backtracking, non-chronological back-
tracking with clause recording is applied in
between AFB steps, and if the number of
conflicts in between AFB steps increases by
a constant value ig, then the resulting UB
strategy corresponds to search restarts with
non-chronological backtrack search (and with
clause recording) (Baptista & Marques-Silva
2000).

If instead of a search restart the AFB step
in the previous strategies consists of a ran-
dom backtrack step, then the resulting al-
gorithm corresponds to stochastic systematic
search (Lynce, Baptista, & Marques-Silva
2001).

Moreover one can also envision new, though
more elaborate, UB strategies, that involve
different forms of AFB. An example of such a
UB strategy could be applying an AFB corre-
sponding to random backtracking after every
K conflicts (where K can be strictly increas-
ing), and applying an AFB step correspond-
ing to a search restart after every M conflicts
(where M can also be strictly increasing).

Why Unrestricted Backtracking?

In the previous section we illustrated
how unrestricted backtracking captures the
most successful backtracking strategies cur-
rently used for SAT. Nevertheless, and be-
sides allowing capturing different backtrack-
ing strategies, one may wonder the actual use-
fulness of unrestricted backtracking.

We start by observing that a unified rep-
resentation for different backtracking strate-
gies allows establishing general completeness
conditions for classes of backtracking strate-
gies and not only for each individual strat-
egy, as it has often been done. By utiliz-
ing a unified representation, we can establish
conditions that apply to all variations of un-
restricted backtracking. This will naturally
simplify establishing completeness results for
future backtracking strategies.

It should also be observed that the most
competitive SAT solvers, e.g. (Marques-Silva
& Sakallah 1999; Moskewicz et al. 2001)
do indeed apply multiple backtracking strate-
gies. Hence, unrestricted backtracking nat-
urally models the organization of modern
state-of-the-art SAT solvers.

conflict path
path clause:
(‘!m,' Va;V Tk)

conflict sub-path
conflict clause:
(‘!m,' \ Tk)

CONFLICT

Figure 1: Search tree definitions

Completeness Issues

In this section we address the problem of
guaranteeing the completeness of algorithms
that implement some form of unrestricted
backtracking. As illustrated in the previous
sections, unrestricted backtracking can yield
incomplete algorithms. Before proceeding,
however, we need to introduce a few defini-
tions.

Preliminaries

In what follows we assume the organiza-
tion of a backtrack search SAT algorithm as
described earlier in this paper. The main
loop of the algorithm consists of selecting a
variable assignment (i.e. a decision assign-
ment), making that assignment, and prop-
agating that assignment using BCP. In the
presence of an unsatisfied clause (i.e. a con-
flict) the algorithm backtracks to a decision
assignment that can be toggled 3. Each time
a conflict is identified, all the current deci-
sion assignments define a conflict path in the
search tree. (Observe that we restrict the def-
inition of conflict path solely with respect to
the decision assignments.) After a conflict
is identified, we may apply a conflict anal-
ysis procedure (Bayardo Jr. & Schrag 1997;
Marques-Silva & Sakallah 1999; Moskewicz et
al. 2001) to identify a subset of the decision
assignments that represent a sufficient con-
dition for producing the same conflict. This
subset of decision assignments is in general
represented as a new clause, being referred to
as a conflict-induced clause (being also known

#Without loss of generality, we assume that NCB also
uses variable toggling.

217

as a nogood, or simply as a conflict-clause).
The subset of decision assignments that is de-
clared to be associated with a given conflict is
referred to as a conflict sub-path. A straight-
forward conflict analysis procedure consists of
constructing a clause with all the decision as-
signments in the conflict path. In this case
the created clause is referred to as a path-
clause. Figure 1 illustrates these definitions.

As a final note, for the backtracking strate-
gies considered below, we restrict ourselves
to the ones specifically used in the SAT
domain. As a result, we do mnot con-
sider non-chronological backtracking strate-
gies that are not based on recording conflict-
induced clauses.

Standard Backtracking Strategies

It is well-known that the chronologi-
cal and non-chronological backtracking algo-
rithms proposed for SAT are complete (Davis
& Putnam 1960; Marques-Silva & Sakallah
1999). Basically these algorithms are com-
plete because there is always an implicit
explanation for why a solution cannot be
found in the portion of the search space al-
ready searched; either the set of already tog-
gled variables or previously recorded conflict
clauses. Also, observe that non-chronological
backtracking is complete even when clause
deletion is applied.

Besides the completeness results, it is also
useful to understand whether CB and NCB
can repeat conflict paths and conflict sub-
paths.

Theorem 1 For an unrestricted backtrack-
ing algorithm that only implements either
chronological backtrack (CB) steps or non-
chronological backtrack (NCB) steps, the fol-

lowing holds:

e For either CB or NCB, no conflict paths are
repeated.

e For CB conflict sub-paths can be repeated.

e For NCB, where all recorded clauses are
kept, no conflict sub-paths are repeated.

e For NCB where some (large) recorded
clauses are opportunistically deleted, con-
flict sub-paths can be repeated.

Since the search space is implicitly enu-
merated in a given order, and since the
search process only toggles untoggled vari-
ables, we are guaranteed never to repeat a
conflict path. This is true for both CB and
NCB. Moreover, observe that this is true for
NCB even when clauses get opportunistically
deleted. Indeed, a recorded clause can only be
deleted provided some other recorded clause
explains why a portion of the search space
does not contain a solution (Marques-Silva &
Sakallah 1999). A simple induction argument
allows establishing completeness and conse-
quently the fact that conflict paths are not
repeated.

Clearly, conflict sub-paths can be repeated
for CB, since no clause recording takes place.
Moreover, and for NCB, if all conflict-clauses
are kept, then no conflict sub-paths can be
repeated, since the search process and BCP
prevent sets of decision assignments that di-
rectly unsatisfy clauses. Finally, if recorded
clauses can be deleted, then conflict sub-
paths can be repeated, in particular conflict
sub-paths associated with recorded clauses
that get deleted during the search process.

In the next sections we analyze complete-
ness conditions when AFB steps are also
taken during the search process. We should
emphasize that in all cases, the results estab-
lished do not depend on the actual AFB step
that is taken, but only on what is sufficient
to be done to guarantee completeness in the
presence of the AFB steps.

Strong Completeness Conditions

In this section we consider unrestricted
backtracking algorithms that record (and
keep) a clause for each identified conflict. In
this situation, and given the definitions given
above for a conflict path (and possibly asso-
ciated path-clause or conflict-induced clause),
the following results can be established.

Theorem 2 An unrestricted backtracking al-
gorithm does not repeat conflict paths pro-
vided it records a path-clause for each identi-

fied conflict.

Since a path-clause captures the decision
assignments associated with a conflict, the ex-
istence of that clause and the application of
BCP guarantees that the same set of deci-
sion assignments becomes disallowed by the

218

operation of the search algorithm. Clearly, in
this case the algorithm does not loop and will
eventually finish.

Corollary 3 An unrestricted backtracking
algorithm is complete provided it records a
path-clause for each identified conflict.

The previous argument can also be used for
establishing the following results.

Theorem 4 An unrestricted backtracking al-
gorithm does not repeat conflict sub-paths pro-
vided it records a conflict-clause for each iden-
tified conflict.

The same reasoning that was used above
for path-clauses applies in this case. The ex-
istence of the conflict-clause and the applica-
tion of BCP guarantees that the same set of
decision assignments becomes disallowed by
the operation of the search algorithm.

Corollary 5 An unrestricted backtracking
algorithm does not repeat conflict paths pro-
vided it records a conflict-clause for each iden-
tified conflict.

Since the algorithm does not repeat con-
flict sub-paths, it must necessarily not repeat
conflict paths. Moreover, and as above, com-
pleteness of the search algorithm is guaran-
teed.

Corollary 6 An unrestricted backtracking
algorithm that records a conflict-clause for
each identified conflict is complete.

Given the above results, one can further re-
late algorithms that record path-clauses and
algorithms that record conflict-clauses. Ba-
sically, an algorithm that records conflict-
clauses does not repeat conflict paths, but an
algorithm that records path-clauses can re-
peat conflict sub-paths.

Theorem 7 An unrestricted backtracking al-
gorithm that records a path-clause for each
wdentified conflict can repeat conflict sub-
paths.

Observe that path-clauses do not constrain
proper sub-sets of decision assignments, and
so these sub-sets may occur again during the
search process.

The previous conditions for ensuring com-
pleteness entail recording a clause for each
identified conflict. Hence, the number of

clauses grows linearly with the number of con-
flicts, and so in the worst-case exponentially
with the number of variables.

Finally, we note that the observation that
keeping all recorded clauses yields a complete
algorithm has been previously stated by oth-
ers (Ginsberg 1993; Yokoo 1994), in the con-
text of specific variations on backtracking al-
gorithms.

Weak Completeness Conditions

The results established in the previous sec-
tion guarantee completeness at the cost of
recording (and keeping) a clause for each
identified conflict. In this section we propose
and analyze conditions for relaxing this re-
quirement. We allow for some clauses to be
deleted during the search process, and only
require that some specific recorded clauses are
kept. (We should note that clause deletion
does not apply to chronological backtracking
strategies, and also that in non-chronological
strategies existing deletion policies do not
compromise the completeness of the algo-
rithm.) Afterwards, we propose other con-
ditions that do not require specific recorded
clauses to be kept. As described earlier, we
assume that unrestricted backtracking con-
sists of an arbitrary sequence of CB, NCB and
AFB steps. Moreover, we say that a recorded
clause is kept provided it is prevented from
being deleted during the subsequent search.

Theorem 8 An unrestricted backtracking al-
gorithm is complete provided it records (and
keeps) a conflict-clause for each identified
conflict for which an AFB step is taken.

We know that both chronological and non-
chronological backtracking yield complete al-
gorithms, even when large clauses are deleted
in non-chronological backtracking. Moreover,
if we record a conflict clause each time an
AFB step is taken, then this same conflict
sub-path will not be further repeated again
during the remaining search, and so AFBs
will subsequently be taken on different con-
flict sub-paths. Hence, the search process
must necessarily terminate. Note that we can
strengthen the previous result.

Theorem 9 Given a integer constant M,
an unrestricted backtracking algorithm is
complete provided it records (and keeps) a

219

conflict-clause after every M identified con-
flicts for which an AFB step is taken.

The same reasoning used above applies. In-
stead of recording a conflict clause after ev-
ery conflict for which an AFB step is taken,
we record a clause after every M conflicts for
which an AFB is taken.

Corollary 10 Under the conditions of Theo-
rem 8 and Theorem 9, the number of times a
conflict path or a conflict sub-path is repeated
18 upper-bounded.

As shown earlier, the resulting algorithm
is complete. Hence, the number of differ-
ent decision assignments considered is upper-
bounded, and the same necessarily holds for
the number of times a conflict sub-path or a
conflict-path is repeated.

As one final remark, observe that for the
previous conditions, the number of recorded
clauses grows linearly with the number of con-
flicts where an AFB step is taken, and so in
the worst-case exponentially in the number of
variables.

Other approaches to guarantee complete-
ness involve increasing the value of some
constraint associated with the search algo-
rithm. The following results illustrate these
approaches.

Theorem 11 Suppose an unrestricted back-
tracking strategy that applies a sequence of
backtrack steps. If for this sequence the num-
ber of conflicts in between AFB steps strictly
increases after each AFB step, then the re-
sulting algorithm is complete.

Observe that since the number of con-
flicts in between AFB steps is strictly in-
creasing, then eventually the search algo-
rithm will have a sufficient number of chrono-
logical or non-chronological backtrack steps
to either prove satisfiability or unsatisfia-
bility. We should also note that this re-
sult can be viewed as a generalization of
the completeness-ensuring condition used in
search restarts, that consists of increasing
the backtrack cutoff value after each search
restart (Baptista & Marques-Silva 2000) *.
Finally, observe that in this situation the
growth in the number of clauses can be
made polynomial, provided clause deletion

*Observe that, given this condition, the resulting algo-
rithm resembles iterative-deepening.

is applied on clauses recorded from non-
chronological backtrack steps.

The next result establishes conditions for
guaranteeing completeness whenever large
recorded clauses (due to an AFB step) are
opportunistically deleted. The idea is to in-
crease the size of recorded clauses that are
kept after each AFB step. Another ap-
proach is to increase the life-span of large-
recorded clauses, by increasing the relevance-
based learning threshold (Bayardo Jr. &
Schrag 1997).

Theorem 12 Suppose an unrestricted back-
tracking strateqy that applies a specific se-
quence of backtrack steps. If for this sequence,
either the size of the largest recorded clause or
the size of the relevance-based learning thresh-
old is increased after each AFB step is taken,
then the resulting algorithm is complete.

Similarly to the previous result, by increas-
ing the size of large recorded clauses or the
life-span of large recorded clauses each time
an AFB step is taken, we are guaranteed to
eventually keep all the clauses required to
prevent the repetition of conflict sub-paths,
and so either prove satisfiability or unsat-
isfiability. Observe that for this last result
the number of clauses can grow exponentially
with the number of variables.

We should note that the observation
regarding increasing the relevance-based
learning threshold was first suggested

in (Moskewicz et al. 2001).

One final result addresses the number of
times conflict paths and conflict sub-paths
can be repeated.

Corollary 13 Under the conditions of Theo-
rem 11 and Theorem 12, the number of times
a a conflict path or a conflict sub-path is re-
peated 18 upper-bounded.

Clearly, the reasoning that was used for es-
tablishing Corollary 10 can also be applied in
this case.

Related Work

Different variations of non-chronological
backtracking (e.g. backjumping) and differ-
ent forms of nogood learning were originally
proposed by Stallman and Sussman in (Stall-
man & Sussman 1977) in the area of Truth
Maintenance Systems (TMS), and indepen-
dently studied by J. Gaschnig (Gaschnig

220

1979) and others (see for example (Dechter
1990) in the context of Constraint Satisfac-
tion Problems (CSP)). Moreover, a thorough
analysis of conflict-directed backjumping can
be found in (Chen & van Beek 2001).

The introduction of variations in the back-
track step is also related to dynamic back-
tracking (Ginsberg 1993). Dynamic back-
tracking establishes a method by which back-
track points can be moved deeper in the
search tree. This allows avoiding the un-
needed erasing of the amount of search that
has been done thus far. The target is to
find a way to directly ”erase” the value as-
signed to a variable as opposed to backtrack-
ing to it, moving the backjump variable to the
end of the partial solution in order to replace
its value without modifying the values of the
variables that currently follow it. More re-
cently, Ginsberg and McAllester combined lo-
cal search and dynamic backtracking in an al-
gorithm which enables arbitrary search move-
ment (Ginsberg & McAllester 1994), starting
with any complete assignment and evolving
by flipping values of variables obtained from
the conflicts.

In weak-commitment search (Yokoo 1994),
the algorithm constructs a consistent partial
solution, but commits to the partial solution
weakly, in contrast to standard backtracking
algorithms which never abandon a partial so-
lution unless it turns out to be hopeless (i.e.
when it is shown not to yield a solution).

Moreover, search restarts have been pro-
posed and shown effective for real-world in-
stances of SAT (Gomes, Selman, & Kautz
1998). The search is repeatedly restarted
whenever a cutoff value is reached. The al-
gorithm proposed is not complete, since the
restart cutoff point is kept constant. In (Bap-
tista & Marques-Silva 2000), search restarts
were jointly used with learning for solving
hard real-world instances of SAT. This later
algorithm is complete, since the backtrack
cutoff value increases after each restart. More
recently, a highly-optimized complete SAT
solver (Moskewicz et al. 2001) has success-
fully combined non-chronological backtrack-
ing and restarts, again obtaining remark-

able results on solving real-world instances of
SAT.

Conclusions and Future Work

This paper proposes and analyzes a general
framework for unrestrictedly backtracking in
SAT algorithms. Moreover, we propose differ-
ent conditions for ensuring the completeness
of SAT algorithms.

In the near future, we expect to study other
variations of this new backtracking strategy.
We can envision the implementation of differ-
ent hybrids (e.g. weak-commitment search,
search restarts and random backtracking), all
guaranteed to be complete and so capable
of proving unsatisfiability. In this generic
framework, the actual backtrack point can
be defined using either randomization, heuris-
tic knowledge, constant-depth backtracking
or search restarts, among other possible ap-
proaches. In addition, it will be important to
conduct a comprehensive experimental eval-
uation and categorization of the proposed
backtracking strategies.

References

Baptista, L., and Marques-Silva, J. P. 2000.
Using randomization and learning to solve
hard real-world instances of satisfiability. In
International Conference on Principles and

Practice of Constraint Programming, 489
494.

Bayardo Jr., R., and Schrag, R. 1997. Using
CSP look-back techniques to solve real-world
SAT instances. In Proceedings of the Na-

tional Conference on Artificial Intelligence,
203-208.

Chen, X., and van Beek, P. 2001. Conflict-
directed backjumping revisited. Journal of
Artificial Intelligence Research 14:53-81.

Davis, M., and Putnam, H. 1960. A com-
puting procedure for quantification theory.
Journal of the Association for Computing
Machinery 7:201-215.

Davis, M.; Logemann, G.; and Loveland,
D. 1962. A machine program for theorem-
proving. Communications of the Association
for Computing Machinery 5:394 397.

Dechter, R. 1990. Enhancement schemes for
constraint processing: Backjumping, learn-

ing, and cutset decomposition. Artificial In-
telligence 41(3):273-312.

221

Gaschnig, J. 1979. Performance Measure-
ment and Analysis of Certain Search Algo-
rithms. Ph.D. Dissertation, Carnegie-Mellon
University, Pittsburgh, PA.

Ginsberg, M., and McAllester, D. 1994.
GSAT and dynamic backtracking. In Pro-
ceedings of the International Conference

on Principles of Knowledge and Reasoning,
226-237.

Ginsberg, M. 1993. Dynamic backtrack-
ing. Journal of Artificial Intelligence Re-
search 1:25 46.

Gomes, C. P.; Selman, B.; and Kautz, H.
1998. Boosting combinatorial search through
randomization. In Proceedings of the Na-
tional Conference on Artificial Intelligence.

Lynce, 1.; Baptista, L.; and Marques-Silva,
J. 2001. Stochastic systematic search algo-
rithms for satisfiability. In LICS Workshop
on Theory and Applications of Satisfiability
Testing.

Marques-Silva, J. P., and Sakallah, K. A.
1999. GRASP-A search algorithm for propo-
sitional satisfiability. IEFEE Transactions on
Computers 48(5):506 521.

Moskewicz, M.; Madigan, C.; Zhao, Y.
Zhang, L.; and Malik, S. 2001. Engineer-
ing an efficient SAT solver. In Proceedings
of the Design Automation Conference.

Selman, B., and Kautz, H. 1993. Domain-
independent extensions to GSAT: Solving
large structured satisfiability problems. In

Proceedings of the International Joint Con-
ference on Artificial Intelligence, 290-295.

Stallman, R. M., and Sussman, G. J. 1977.
Forward reasoning and dependency-directed
backtracking in a system for computer-aided
circuit analysis. Artificial Intelligence 9:135—
196.

Yokoo, M. 1994. Weak-commitment search
for solving satisfaction problems. In Proceed-

ings of the National Conference on Artificial
Intelligence, 313 318.

Zhang, H. 1997. SATO: An efficient proposi-
tional prover. In Proceedings of the Interna-

tional Conference on Automated Deduction,
272 275.

