| mplementation and Perfor mance | mprovement of the Evaluation of a Two
Dimensional Bin Packing Problem using the No Fit Polygon

Edmund Burke Graham Kendall
University of Nottingham, University of Nottingham,
University Park University Park
NG7 2RD, UK NG7 2RD, UK
ekb@cs.nott.ac.uk gxk@cs.nott.ac.uk
Abstract : When using a meta-heuristic algorithm (e.g. simulated anngatirsyoften the case that the

evaluation function is the most computationally expensive phase ofgbatlain. This is the case in the
research in which we are currently conducting.

For the 2D stock cutting problem we calculate the NFP (N@®&liggon) for two polygons. Next we calculate
the convex hull, as many times as there are vertices on the fbiFthese two polygons. This process is
repeated whilst we consider the set of polygons that need to be packed.

Due to the nature of meta-heuristic algorithms this proceduep&sated many times. As the manipulation of
polygons is computational expensive, the algorithm shows a bottleneck at this evatagton s

In fact, many of the evaluations are simply re-evaluatiognfdete or partial) solutions that have been seen
earlier in the algorithm. In order to use these previous evaluatoimtroduce a cache which holds previous
(complete and partial) solutions. We demonstrate that by inogedse cache size we can significantly
increase the speed of the algorithm. We also introduce the cafgaepiygon types which allow us to make
much better use of the cache.

However, in some circumstances, it may not be beneficial toheseached evaluation as this would simply
keep returning the same evaluation value. There may be belii¢ioss available if we re-evaluate earlier
polygons in the set. Therefore, we show that by introducing a readi@i parameter that, we can stop the
algorithm always using a cached solution and potentially find @&rbstiution by re-evaluating the set of
polygons.

This paper also describes the data structures that we use totshppmperations described above, as well as
general computational geometry algorithms we use. We also present our campltasults.

Please note that this paper only presents results from cuttingep®loh order to show the effectiveness of
our optimization algorithms.

Keywords : stock cutting, simulated annealing, packing, computational geometry

1 Introduction

Our research is concerned with the 2D Stock Cutting problem. Thisves/placing a series of shapes onto a
stock sheet(s) such that the shapes do not overlap, they lie witluortfiees of the stock sheet and the waste
is minimised. Specifically, our research is looking at produgimgd quality solutions to these problems using
meta-heuristic algorithms (such as simulated annealing). Ini@deie want to be able to place any arbitrary
shapes onto stock sheets not, for example, just rectangles.

Subsequent papers to this will report on the findings of our research with regards teciBusting problem.
The purpose of this paper is to outline some of the fundamentaltdatuses and design decisions we have
made in implementing our algorithms. The principles presented inefist will form the basis for our future
research.

1.1 Problem Complexity

To give some idea of the complexity involved in dealing with aettgpes of shapes we present here a brief
analysis of the computational complexity of three shape caésganith respect to calculating their
intersection.

The 2D stock cutting problem can be viewed as a problem that pleeesypes of shapes onto a stock sheet.

In increasing order of complexity these shapes are.

* Rectangular shapes. A rectangle can be represented simply by defining two cooedin@perations such
as detecting if two rectangles intersect is easy and computationalpeimsaxe.

» Convex Polygons. These data structures can be represented as a number aésvéftihen joined, the
vertices create a shape such that no internal angle igeigthan 180 (later in the paper we discuss in
more detail how a polygon can be represented). The complexity of artiopesach as calculating the
intersection of two convex polygons can be done in linear time, @fh (where n and m are the number
of vertices of the polygons) (O’Rourke, 1994). It can also be shown thattéisection of two convex
polygons will only ever return another (single) convex polygon with the number of gdooeg n + m.

* Non-Convex Polygons. Non-Convex polygons allow internal angles that are greater thah TBQ
increases the complexity of operations such as computing overlapuasay now potentially have
intersections which return more than one polygon. Due to this, the opegtbiguadratic complexity (
Q(nm)) (O’'Rourke, 1994).

It is also possible to classify polygons sasiple andnon-simple. Simple polygons have no edges crossing,
whilst non-simple polygons have one or more edges crossing eachFahé¢he purposes of this paper, and
our future research, we only deal with simple polygons.

As our research is concerned with packing arbitrary shapes, we witik polygons (as opposed to
rectangles). For the reasons outlined above, this adds computatiomdéxityrto this problem and it is the
aim of this paper to outline how we have reduced the running times of the algonthitst maintaining good
quality solutions.

2 Computational Geometry

In order to discuss the packing of polygons it is necessary todesnsome aspects of computational
geometry.

Firstly, we describe the abstract data types (ADT’s) Wmathave implemented that allow us to manipulate
polygons. Next we consider the No Fit Polygon (NFP) which is fundamental to our research.

2.1 Abstract Data Type - Point

Much of our research relies on the fact that polygon data structures can be manipulated.

The literature (Laszlo, 1996, O’Rourke, 1994, Sedgewick, 1992) is in agreema¢malygons should be
represented by a set of points, with each point representing a vertex of the polygon.

Following the convention of representing a point using cartesian co-tasdiitavould be beneficial if integers
could be used to represent the x and y co-ordinates. This would gearanteerical accuracy when
performing operations on a point. At least, accuracy within thedimi the integer representation of the
computer on which the point has been implemented. If we stored inieg&®sbits, unsigned, this would
allow a range for the x and y co-ordinates of 0 to 4,294,967,295.

However, using integers does present problems. When carrying out sona¢iomgethe result will be a
floating point number. For example, when detecting the intersectiomwaflihes (with each line being
represented by two points) the result is unlikely to be a pamteger numbers, which represent the exact
point of intersection.

Similarly if a point is rotated, the new position for the point is n@irgnteed to be x and y co-ordinates which
are integers.

It was for these reasons that our point data type was implemesitegl a floating point representation. The
potential danger of using this representation is possible losscafamy when performing calculations. In
practise this problem has never manifested itself; although it is stijnesed as a potential problem area.

The main operation we needed to be able to perform on a point daia tgpetate it. The method to rotate a
point, given just its x and y co-ordinates is well known and is reghantenany texts, including (Hearn, 1994)
and (Adamowicz, 1976). The following equation shows the method.

X =Xcos6—Yysin0
Yy =Xsin 0 +Yycos 0

This rotates a point at positior,Y) through an angle 6, about the origin. If it is necessary to rotate a point
around a pivot point other than the origin then the following formula can be used.

X =X+ (X+X)cos0—(y—Yy)sin 0
Y =Y+ (X—X) sin 6 + (y—Y;) cos 0

wherex. andy; represent the pivot point.

2.2 Abstract Data Type - Polygon

Polygons can be represented by a list of points, with each ppnesenting a vertex of the polygon. The last
point in the list is considered to be connected to the first poing. usiial to order the points in a counter
clockwise order. The operations we have implemented for polygons are described below.

2.2.1 Primitive Operations

One important primitive is to calculate the area of a trierglen its Cartesian co-ordinates. (O’Rourke,
1994) describes one such algorithm and describes how this can besusdihsis to calculate the area of a
polygon.

Another useful primitive is to decide the relationship between two $@mtp,) and another point ¢p It is
useful, for example, to decide if [co-linear with p1 andor if ps is to the left (or right) of p ps.

In (O’'Rourke, 1994) this property is returned vibefa predicate (i.e. isgon the left of the line represented by
p1, P2?). The left predicate uses the triangle area function medtiabneve and returns if the area is positive
(indicating that pis to the left of pand p), zero (indicating the points are collinear) or negative (inohgat
that g is to the right of pand p).

(Sedgewick, 1992) uses the same basic principle but instead ofpael@icate, the operation is implemented
as aCCW (Counter Clockwise) function. This returns an integer depending orh&h#te points travel
clockwise or counter clockwise. It is Sedgewick’s algorithm ikatnost often quoted in the literature on
cutting and packing. This is due to the fact that many of tharitdigns only need to know how points are
oriented with regards to one another and a triangle area caaulatnot required, which is the basis of
O’Rourke’s algorithm.

A fundamental property in computational geometry is to decidedflimes (where a line is represented by
two vertices) intersect. (Sedgewick, 1992) uses the CCW primdiveplement this algorithm. (O’Rourke,
1994) uses the left predicate as the basis for his intersection algorithm.

Both of these algorithms simply return a boolean stating iflitess intersect. Sometimes it is necessary to
know the point of intersection. (O’'Rourke, 1994) describes an algorithm thisl@and states that in this
situation it is necessary to leave ttmmfortable world of integer co-ordinates and resort to floating point
values that represent the x and y co-ordinates of the point ofdatiers. Line intersection is obviously
fundamental to many other algorithms (such as deciding if two polygons overlap).

A primitive to calculate the angle a given line (represeigdwo points) makes with the horizontal is, at
times, useful. This primitive is useful in many situations. F@neple, you can take an arbitrary number of
points, sort them according to the angle they form with the horizontal andréega a polygon by assembling

the points into a polygon data structure using a counter clockwise ordering baseid amgllee

(Sedgewick, 1992) uses a theta function to carry out this operation whiel, given two points, returns a

real number that isot the angle formed with the horizontal but it has the same propérhesreason that the

actual angle is not calculated is because this would requirallatac a tangent function, which is
computationally expensive.

2.2.3 Single Polygon Operations

To implement a rotate operation for a polygon is easy as we already have te¢@biliate a point. The most
common requirement is to rotate a polygon around one of its veicdsach point, with the exception p¥,
has to be rotated aroupd.

Implementing an operation to return the area of a polygon is alsp te implement as we can use the
calculation of the area of a triangle as the basis for this algo(i#imeedee O’Rouke — | think).

Finding the convex hull of a polygon is another useful operation. This can be visualigedcamsgt an elastic
band around a shape. The contour made by the band is the convex hull of gunpdlyere are several
algorithms that can be used to calculate the convex hull of an arbitrary polygon.

Package (or Gift) Wrapping is described in both (O’'Rourke, 1994)lgeick, 1992) and (Preparata, 1985).
The original idea for this method was proposed by (Chand, 1970). Towéttaig works by choosing a point
that is obviously on the convex hull (for example, the vertex with thallest y co-ordinate) and then
sweeping a horizontal ray in the positive direction and moving it roundamatther point is hit. This point is
guaranteed to be on the hull. Of course, in practise, the algorithls teeonsider each point to see which
one will be hit next by the sweep line. In (Sedgewick, 1992), tha fettion is used to determine which
point should be next on the hull. The main disadvantage with this algorithnt isrthes in O(f) in the worst
case, that is when every point is on the hull.

Other convex hull algorithms are also available. For example kiud (Preparata, 1985) is an alternative to
Package Wrapping but it is the Graham Scan (Graham, 1972)sthabst often used with regards to the
cutting and packing group of problems. The main advantage of gugth is that it runs in O(n log n) in
the worst case. Most of the computational geometry textbooks show an impleomeotatie Graham Scan.

Another basic operation we need for polygons is to decide when one polygoedtst@rsother. There are two
ways in which we can represent the intersection. The firgtsistp return a boolean value indicating if the
polygons intersect. A more complex, but potentially more useful, operaido return a polygon that
represents the intersecting area. In addition we need to consitiecdmtex and non-convex polygons. The
operation is a more complex for non-convex polygon (see section 1.1).

In this paper we will only consider convex polygons. Only if our curieetof research leads to good quality
solutions for convex polygons will we tackle the stock cutting problem for non-convex palygons

The obvious method to decide if two polygons intersect is to check each tine pblygon against every line
of the other polygon. If any lines intersect then the polygons inteSeet degenerate case has to be catered
for. That is, if one polygon totally includes another. Assuming no limessect inclusion can be checked for
by taking every point on one polygon and checking to see if it ligsetdeft (using the left predicate or the
CCW primitive) of every line of the other polygon. If this is tlase the polygon lies totally within the other.
Of course we only need to check if the polygon with the smalleatisn@cluded within the larger polygon.
The reverse case, of the larger polygon fitting inside the smaller polygon obviansigtoccur.

(Sedgewick, 1992), although not presenting an algorithm to deteab ipddygons intersect, does provide all
the necessary algorithms to implement the method described abaisn fitates that such a naive approach,
to check if any lines intersect, runs in time proportionaftavhere n is the number of edges.

Therefore, an algorithm is presented that can detect if any two lineseiciténat runs in time proportional to n
log n (but still & in the worst case). This method, based on maintaining a scan lineaases across a plane
containing the points, was originally proposed by (Shamos, 1976).

In 1978 (Shamos, 1978) developed the first polygon intersection algorithmathat linear time; O(n + m),
where n and m are the number of edges.

In (O’Rourke, 1994) an algorithm is presented that also achieves @{(ntime. This is based on an idea
developed by O’'Rourke and his students (O’Rourke, 1982). The algorithm invaledmes “chasing” one
another around the edges of the polygons and plotting points as the headlioeshare advanced. At

termination the algorithm returns a polygon representing the ovartsgp This method is also described in
(Preparata, 1985).

2.2.4 No Fit Polygon (NFP)

The No Fit Polygon (NFP) determines all arrangements thtatathitrary polygons may assume such that the
shapes do not overlap but they cannot be moved closer together withseatitg. The concept of the NFP
was originally proposed by (Art, 1966) and was used by (Adamowicz, 18¥2%v6). It is the Adamowicz

papers that are most often cited with regards to stock cutting.
To show how the NFP is calculated we give an example. Consider the following two pplgand B.

Figure 1 - Two Polygons

The aim is to find an arrangement such that the two polygons touclo Imait overlap. If we can achieve this
then we know that we cannot move the polygons closer together in ordetain a tighter packing. In order
to find the various placements we proceed as follows

» One of the polygons (Premains stationery.
» The other polygon, Pmoves around;Rand stays in contact with it but never intersects it.

» Both polygons retain their original orientation. That is, they never rotate.
As P, moves around JPone of its vertices (the reference point — shown as a filletetiraces a line (this

becomes the NFP).

The following diagram shows the starting (and finishing) position®;,cénd B. The NFP is shown as a
dashed line. It is slightly enlarged so that it is visible. In, faeme of the edges would be identical teaRd

Ps.

Figure 2 - No Fit Polygon

Once we have calculated the NFP for a given pair of polygons weplege the reference point of P
anywhere on an edge of the NFP in the knowledge that it will touch, but not integsect, P

In order to implement a NFP algorithm it is not necessaryrolae one polygon orbiting another (although
we initially implemented an algorithm that did this). (Cunningh&neen, 1992) presented an algorithm that
we now use. It works on the assumption that (for convex polygons only)RRehisls its number of edges
equal to the number of edges af ftus the number of edges of,. h addition, the edges of the NFP are
copies of the edges of Bnd B, suitably ordered. To build the NFP it is a matter of takingetihges of Pand

P,, sorting them and building the NFP using the ordered edges. Tlostlaly is also presented in
(Cunninghame-Green, 1989), although here it is presented as a Configuration Betactee@QCSO).

3 Evaluation

By utilising the NFP, we have developed an evaluation strabegyne use in our research. We will describe
the evaluation using convex polygons but we hope to use the same methuaasdonvex polygons once we
have shown the effectiveness of the method.

Although we are experimenting with various evaluation functions thejysa the same basic method. Given a
set of polygons, P.P,, we initially find the NFP for (i = 1) and R;. Next we find the optimal placement of
these two polygons. This is done by placing & reference point on the NFP and calculating the convex hull
of B and R:;. After calculating convex hulls for a number of placements, timvex hull with the smallest
area is returned. This represents the best placement;ah Felation to R The polygon returned from the
convex hull operation is then paired with the next polygon in the sgk (P

This process continues unti} Ras been placed.

As stated above, this is the basic method but we are experimenting witfomara@i this theme. For example,
placing the polygons within the confines of a bin so that we can evaluate two-dimehsiquecking.

However, there are two problems that we need to address in order to make thecevsiiagy feasible.

The number of placements of the reference point on the NFP idendisithe reference point can be placed
anywhere on the edge of the NFP. In order to reduce the probleran@ageable proportions, we only place
the reference point on the vertices of the NFP when looking fosghmal placement. Thus we calculate the
convex hull as many times as there are vertices on the NFP.

The second problem is that there could be more than one optimal placement for two gigengol
Consider two rectangles of the same dimensions. There are four optimai@seas shown below

Figure 3 - Four optimal placements of two polygons

No matter which placement we choose the four evaluations retugathe value as the convex hulls all have
the same area. Therefore, it is immaterial which one we choose. Howenay, hake a difference when later
polygons are added. Consider for example if we select ghpl&ement in relation to;PDepending on the
characteristics of the next polygon, R could effect the quality of the solution that we are building.

The following figure, 4, illustrates this. They show that by choofingdnitially we get a better solution than
if we had chosenX®.

.

Figure4 - Later evaluations can effect solution quality

One option we could incorporate is to implement some type of “lookdaremthat we can select better
placements earlier in the solution. However, we have not implemémntds we consider it would be too
computationally expensive, although it could be a future line of resehrstead, when faced with two or
more equal evaluations we choose one at random. However, we do further addresgehissection 6.

4 Caching of Evaluations

The manipulation of polygons is computationally expensive. In addition, due tmathee of meta-heuristic

algorithms the evaluation function has to be called many times. The folloWwisgates this.

1. Given polygons, B.R,, we initially pair R and R.1. The eventual output of this pairing is the convex hull

of the two polygons optimally placed using the NFP. This polygon ischaitth P; and the process

repeated until Phas been placed.

Therefore, for polygonsPP, there are n-1 NFP calculations required.

In addition, we need to calculate as many convex hulls as treekedices on each NFP in order to find

the optimal placements.

4. Steps 2 and 3 are repeated for as many iterations as thdhagoeguires. For example, using simulated
annealing with a starting temperature of 30, a decrement carl520 iterations at each temperature
would require steps 2 and 3 to be carried out 1200 times.

5. Using a population based meta-heuristic (such as a genetic latgptite problem is potentially larger as
the entire population has to be evaluated on each iteration.

w N

It can be appreciated that the evaluation function is a potential bottleneck witsystam.

However, it is also the case that many of the evaluations beutdpeated many times. Therefore, it would
appear to be a good idea to store the results of previous evalustidhat we do not need to evaluate the
current solution if it has been evaluated before. In practise this means implegreecache.

In order to implement the cache we label each polygon with a unique identifiels imayiwe can recognise a
solution by considering a concatenation of the identifiers.

For example, given polygons;.fHP, we could label these as A, B, C, D, E and F. One potential solution is
ABCDEF, another is FEDCBA and yet another is DEABCF.

We use this concatenation of identifiers as a key to a haslnogidn which accesses the cache. When we
access the cache we are either returned a null value, mdhatnifpe solution is not in the cache, or we are
returned the previous evaluation which means we do not have to call the evaluation function.

In addition we are also returned a polygon data structure so that we can pairtthigewiext polygon. In fact,
the cache can hold more than one entry for each key. If you looguaé f8 you can see that this has four
optimal placements. These are all held in the cache but only one is returned nipibdomly selected.

In addition to storing complete solutions in the cache, we can also hold partial solutions.

Assume we have;PPs, with identifiers ABCDEF and these polygons are presented for evaluation.

As we evaluate each polygon we store the result in the cachefdiee after evaluating this permutation the
cache will hold

AB

ABC
ABCD
ABCDE
ABCDEF

and with each key will be stored the result from the evaluation together withgopalgta structure.

The next permutation we evaluate might be ABCDFE.

When we evaluate AB we find it is already in the cache so doewd to call the evaluation function. The
same will be true for ABC and ABCD. It is only when we eveduaDCDF (and ABCDFE) that we need to
call the evaluation function.

We have one last decision to make. How big should the cache be? Ohvibadigrger the better but we
cannot let it grow unbounded due to memory limitations.

The size of the cache will actually depend on the memory youdwarble and the data structure being held
in the cache (in this case the number of vertices). At ptésis of more interest to ensure that the cache does
actually speed up the processing time. Intuition says it should anghke grperiment should be able to prove
this.

1600 Our first experiment consists of 14 polygons. We used simulated
1400 annealing to try and pack the polygons into a small an area a:
1200 possible using the evaluation method we have described above.

In this experiment we are aiming to show that increasingabkec
size does lead to a decrease in the running time.
The following graph shows that this is the case.

0 The figures are averaged over three runs and were carried out on
0 300 750 1000 1100 1200 1300 1350 1400 1450 1500 1561 Pentlumgo processor us'ng 16Mb Of memory

Cache Size

Figure 5 - Cache Size vs Running Time
(problem one)

It can be seen that the size of the cache has a significant effect on the runeiofttie algorithm.

The largest number of elements in the cache (1561) was obtainedrbgg the algorithms with a cache size
of 20,000. At the end of the run the cache held 1561 entries. This providethus dseline figure and we
carried out the remaining runs by altering the cache size between zero and 1500.

As a further test we tested the effect of the cachemiza problem taken from the real world (see figure 6)
The objective is to cut polycarbonate shapes (used in conservatories) fronstacesheets.

In reality, the company receiving the orders has to cut maayes from many stock sheets whilst minimising
the waste. This figure is a solution for one stock sheet on a giyemddaever, it is a worthwhile problem to
see the effect of the cache size.

This test data is different from the first set of datahat every polygon is different (some may look the same
but they all have different dimensions). This means we cannot thiatage ofpolygon types (described
below). This results in less cache usage than is possible when polygons of the saneepngseated.

In addition the evaluation is slightly different. The same basithodeis used but is nhow amended to
accommodate the bin packing restriction.

This graph (figure 7) shows the results from this run

460

/TN
N

] N
360 \
340

” \
300

Figure 6 - Sample Layout Cache Size

Figure 7 - Cache Size vsrunning time
(problem two)

Again, the results are averaged over three runs. This time, thetladg was run on a Cyrix 166 processor,
with 64 MB of memory.

The upper bound (17000) was found in a similar way to the first test.

It is interesting to note that with a cache size of zeroatperithm actually performs faster than with small
cache size. This is also the case with the earlier testatiiibute this to the fact that when the cache is small
the overheads in maintaining the cache outweighs the advantages in using tterethia the cache.

5 Types

In addition to the cache we realised that another potential bo#tlémeke algorithm was evaluating similar
polygon permutations that had already been evaluated before.

Consider polygons with identifiers ABCDE and assume the polygons DiEearical (for example rectangles
with the same dimensions).

In evaluating ABCDE we will eventually have AB, ABC, ABCD and ABCD& st in the cache. Later in the
algorithm we might need to evaluate ABCED. When we evaluateEABE find that this evaluation is not in
the cache and we go through the evaluation function. In fact, thecerieed to do this as polygons D and E
have the same dimensions and evaluating ABCD will yield the sasut as ABCE. Of course, we do not
recognise this as the keys to the cache (the concatenation of the idertiéedgjerent.

In order to cater for this we introduced the notion of a polygpea This gives each polygon a type identifier

which acts as a pointer to the polygon description.

When we tested the cache size using our first test we could desagibed the polygons using fourteen
different identifiers (that is, ABCDEFGHIJKLMN). In fact, tieewere only three different types of polygon

so the identifiers became AAAABBBBBCCCCCC.

It can be appreciated that this significantly reduces theositee search space for the problem. In addition, it
allows us to make much more effective use of the cache. To shewvéhidid two tests, one where the

polygons were described as different types and another test where the polygodesegbed using just three

different types. Again, these tests were averaged over three runs aetithe sache size to 2000. We also set
the re-evaluation probability (see below) to zero.

Using shapes of different types the run time was 267 seconds. &lsapgs of the same type the run time
reduced to 173 seconds.

In order to confirm that the cache and types were working iruoatipn with one another, we ran the same
tests but with the cache size set to zero. As you would expect bothutetsthese conditions, took about the
same time as there is no information in the cache so the polygenstirrelevant as it needs to carry out an
evaluation every time.

6 Forcing Re-Evaluations

One of the problems with holding information in the cache is thatghinbe holding an evaluation value
which is not the best it could find for a particular permutation of gahg. An example will show why this
can be the case.

Assume three polygons

Figure 8 - Three Polygons

If we evaluate Pand B, we will find that the NFP and convex hull calculation allow ugdasition B in
relation to R in four places (either on the top of, Bn the bottom of P to the left of i or to the right of P
(see figure 3). The one we choose is random, so assume we chtog® Bn top of P

When we evaluatesRvith regards to Pand B the best configuration we can find is shown here

Figure9 - Three polygons sub-optimally placesif P; and P, areinitially
placed on top of one another

It is the result from this evaluation that will be stored in¢hehe and whenever,F» and RB are evaluated
then this value will be returned from the cache. We will nevee lzeess to the better solution wheraird
P, were initially placed alongside each other (see below).

If we had initially chosen £to go to the right of Pthen we would have this configuration.

Figure 10 - Three polygons optimally placed if P, and P,
areinitially placed next to each other

The convex hull is now equal to the sum of the area of the three polyganh,is a better configuration than
figure 9.

The only hope we have is that the cache exceeds its limithahdhe inferior solution is discarded so that it
has to be re-evaluated. However there is no guarantee thatiltthsppen. In fact, the larger the cache size
(in the hope of improved performance) the less chance there is of items beardetiscom the cache.

In an attempt to alleviate this problem we introduced-evaluation parameter. This is set to a value (between
0 and 1) and it determines if the solution should be re-evaluated, regardless of whetiet is in the cache.

A value of zero means that the value in the cache is alwaysitigeglists. A value of one means that the
solution is always re-evaluated, effectively ignoring the cache.

Higher values of the re-evaluation parameter will slow tigerthm down as it is not making as much use of
the cache as it could do. However, re-evaluating solutions should hatamet find better quality solutions as
more of the search space is explored.

Again, we tested this intuition. The first problem we used wasadinéelen polygon problem. Although we do
not know the optimal solution for this problem the best solution we have feur@p. We used this as a test
case to see if varying the re-evaluation parameter had an effect on tligh@idmding a solution of 1042.

We used simulated annealing for these tests and did fifty rung tv80 values for the evaluation parameter
(0.0 and 0.2).

We found that using 0.0 the algorithm found the 1042 solution 27 times outyoffging a parameter of 0.2
the 1042 solution was found 34 times out of 50.

On our second test problem we ran the algorithm ten times using re-evaluatimeteasaof 0.0 and 0.1.

The average result when using 0.0 was 1705.32. Using 0.1 the average was 1588.46.
Again, this shows that having a small revaluation parameter does have an effecsolution quality.

Further tests have shown increasing the re-evaluation parameterfdoes not have a dramatic effect on the
quality of the solutions. For most of our later work we have been using a re-evaluasiorefsa of 0.2.

2.7 Summary

This report considers ways in which we can speed up the evaluation function thaevdewiaed for the two-
dimensional stock cutting problem.

The problem arises due to the amount of time it takes to manialgigons, in particular to work out the No
Fit Polygon (NFP) for two polygons and then find the best placemehésé ttwo polygons by calculating the
convex hull for each position of the orbiting polygon on every vertex of the NFP.

The problem is made worse as, due to the nature of meta-heatigirthms, these evaluations need to be
carried out many times during the course of the algorithm.

In this report we have discussed the problems that computationaktygagives, in terms of computational
complexity, and also described the main operations we have impkminiemta point and polygon abstract
data type.

Next we described the basis for our evaluation function. Essentiaikymeans calculating the NFP for two
polygons and then finding the best placement for these two polygons via a number oftedhealculations.
This is repeated n-1 times (where n is the number of polygons in the solution).

In order to improve the run time of the algorithm the evaluatibogh(partial and complete) are held in a
cache so that the evaluation function can be bypassed when thesshution (partial or complete) is seen
again. We have shown that this method can drastically improve the run time of thénadgori

We have also introduced the concept of types so that polygons whidieasanme are classified together so
that the evaluation cache can make use of this when deciding if the result of tiatiewvas held in the cache.

Finally, we described the need, with some probability, to foravaddation of a solution that might already
be in the cache. This is due to the fact that a solution held iradhe ecnay not be the best solution for a given
permutation of polygons.

Our future research will make use of, and develop, the ideas we have presemteceort.

2.8 References

* Adamowicz, M., Albano, A. 1972. A Two-Stage solution of the cutting-stock problafarmation
Processing, Vol. 71, pp 1086-1091.

* Adamowicz, M., Albano, A. 1976. Nesting Two-Dimensional Shapes in Rpd@nModules. Computer
Aided Design, Vol 8, pp 27-33

* Art, R.C. 1966. An Approach to the Two-Dimensional Irregular Cutting SRyoklem. Technical Report
36.008, IBM Cambridge Centre.

 Chand, D.R., Kapur, S.S. 1970. An algorithm for convex polytopes. JACM vol. 17, iss. 1, pp 78-86

e Cunninghame-Green, R. 1989. Geometry, Shoemaking and the Milk Tray ProbéemSdientist, 12,
August 1989, 1677, pp 50-53.

» Cunninghame-Green, R., Davis, L.S. 1992. Cut Out Waste! O.R. Insight, Vol 5, iss 3, pp 4-7

e Graham, R.L. 1972. An Efficient Algorithm for Determining the Conwxl of a Finite Planar Set.
Information Processing Letters, 1

* Hearn, D, Baker, P., M. 1994. Computer Graphics. Prentice Hall, New Jersey

» Laszlo, M.J. 1996. Computational Geometry and Computer Graphics in C++. Prentice Hall.

* O'Rourke, J., Chien, C.b., Olson, T., Naddor, D. 1982. A New Linear Algorithrmtersecting Convex
Polygons. Comput. Graph. Image Process. Vol. 19, pp 384-391.

* O’'Rourke, J. 1994. Computational Geometry in C. Cambridge University Press.

* Preparata, F.P., Shamos, M.I., 1985. Computational Geometry: An Introduction. Springey-Verl

» Sedgewick, R. 1992. Algorithms in C++. Addison-Wesley, Reading, Massachusetts

* Shamos, M. ., Hoey, D. 1976. Geometric Intersection Problems. Seventgenial IEEE Symposium
on Foundations of Computer Science, pp 208-215.

¢ Shamos, M.l. 1978. Computational Geometry. PhD Thesis, UMI #7819047, Yale dilyividew Haven,
CT.

