A Non-Parametric Approach to Web Log Analysis

*

Andrew Foss, Weinan Wang, Osmar R. Zaiane
Department of Computing Science
University of Alberta
Edmonton, Alberta, T6E 2ES8
{afoss,weinan,zaiane } @cs.ualberta.ca

Abstract: Clustering data generally involves
some input parameters or heuristics that are
usually unknown at the time they are needed.
We discuss the general problem of parame-
ters in clustering and present a new approach,
TURN, based on boundary detection and ap-
ply it to the clustering of web log data. We also
present the use of different filters on the web
log data to focus the clustering results and dis-
cuss different coefficients for defining similarity
in a non-Euclidean space.

1 Introduction

We are interested in the clustering of web users or
web access sessions in the context of web applica-
tions such as distance education web-based systems
and e-commerce sites. This pertains to what is usu-
ally refered to as web usage mining, data mining
from large web access logs. Web logs represent a
vast resource of information but one that can only
be tapped through the techniques of data mining.
An important technique of data mining is clustering
which can reveal usage patterns for the benefit of
site managers such as the educators whose logs we
studied. The results of clustering can give insight
to the users’ behaviour in a web site and have sig-
nificant applications in personalization, recommen-
dation systems, adaptive sites, etc. Unfortunately,
current clustering algorithms require the user to
specify some parameters before the processing can
be undertaken but without running the algorithm
it is difficult to choose suitable values, especially for
those unacquainted with data mining. We sought

*Research is supported in part by TeleLearning-NCE
(Canadian Networks of Centres of Excellence).

to find a new algorithm that does not require in-
put parameters. In the particular application we
are developing, an intelligent web-based learning
environment for distance education, a major user
is the educator trying to evaluate the learning pro-
cess of on-line students based on access history from
web logs. This specific user is not necessarily savvy
in data mining techniques, and thus requesting pa-
rameters to oversee and control the mining process
would be cumbersome and even objectionable.

Web usage mining is the application of data min-
ing techniques on web access logs. Most of the cur-
rent studies in this area are very new, but more
and more work is being done. [14] is a recent sur-
vey paper which discusses some concept definitions
and provides an up-to-date survey of Web Usage
mining. [8] described the architecture of the Web-
Miner system, one of the first systems for Web Us-
age mining. WebLogMiner described in [15] uses
a multidimentional datacube approach with on-line
analytical mining to discover pertinent patterns in
web logs but does not perform clustering per se. [5]
is a paper defining user sessions and discussing clus-
tering user sessions based on the pair-wise dissim-
ilarities using a robust fuzzy clustering algorithm.
There is also interesting work on personalization [9)
and web adaptation and evaluation [6] relevant to
web usage clustering. Overall there are few reports
on real applications so far. An interesting cluster-
ing experiment on web log transactions using the
known BIRCH algorithm was reported in [2], but
the clustering is performed on generalized transac-
tions using concept hierarchies of pages in a site.

In this paper we assert that the most natural way
of determining whether data point A lies in clus-
ter X or cluster YV is by determining the natural

boundary between X and Y. If that is found, then
the data point can be easily assigned to the appro-
priate cluster. If X and Y are areas of high den-
sity of data points, then somewhere between them
the data point density will decline to a minimum
and start rising again. This is the natural cluster
boundary and is an example of a turning point or
minimum in the distribution. Since, locally, there
can be many turning points, the main challenge is
to rank the turning points. Examples of major and
minor turning points discovered by our algorithm
TURN are seen in Figure 1. Ranking the turning
points allows us to discover the interesting levels
of resolution and the clustering at each level. Web
log mining presents an example of a non-Euclidean
space to which we applied our approach. This de-
veloped approach is the main concern of this paper.
While we have applied it to web log mining, our
algorithm TURN can be used for clustering an ar-
bitrary data space.

In the next section we give more motivation for
our research and examine some initial concepts sup-
porting our algorithm. We discuss in Section 3 web
usage mining, in particular cleaning and filtering
of the data and the methods tried for determining
the similarity between sessions and users. Filter-
ing is important because it provides user control
over TURN’s output. Section 4 introduces the al-
gorithm for TURN, discusses its costs, and com-
pares it with the ROCK algorithm, an efficient al-
gorithm for clustering categorical data. A cluster
quality measure is devised for comparison. Section
5 presents our results using TURN and ROCK for
clustering, including the use of TURN to automate
parameter discovery for ROCK.

2 Preliminaries

A large number of problems involve the clustering
and classification of data. Clustering is essentially a
problem of boundary determination but most clus-
tering algorithms don’t attempt to do this directly.
The human eye and optic processor actually only
sees boundaries, working somewhat like a video
games renderer that defines a polygon (the bound-
ary) and then calls a fast fill routine. Further, given
a pattern, a human asked to group the points would
look for the spaces between groups. When referring
to turning points, we refer only to these minima

in the distribution. The difficulty arises because in
any real-world distribution there are many turning
points reflecting different levels of resolution. Small
variations could be declared noise but one person’s
noise is another’s important data. For instance,
the Cosmic Microwave Background was first seen
as noise but now we know that its very fine varia-
tions should reveal the distribution of matter at a
very early stage of the universe’s history.

Current approaches prefer to apply some heuris-
tic such as a threshold beyond which a boundary is
presumed to exist. Examples of this are k-means [4],
CLARANS [10], BIRCH [16], CURE [11] , ROCK
[3], etc. For all these methods, the user needs to
specify the number of clusters and often a thresh-
old value. The difficulties with this are obvious. For
instance, the heuristic applied at the beginning is
essentially a guess and is unlikely to be optimum
and even if an optimum is found for one part of the
distribution it may not represent other parts well.

One algorithm, WaveCluster [13], attempts to
find cluster boundaries without the usual param-
eters. After digitising the data, which, in itself,
involves a heuristic as this removes a certain level
of granularity in the data, WaveCluster applies a
filter (another potential imposed bias) and then
uses wavelets to seek high frequency changes in the
distribution which will indicate sharp changes or
boundaries. This algorithm could well be adapted
to scan different resolutions automatically but, as
presented, the resolution viewed is a user input pa-
rameter. As far as we know WaveCluster is yet to
be adapted for non-Euclidean distributions.

Current cluster-
ing algorithms including WaveCluster involve cer-
tain heuristics. Our approach is to detect turning
points (minima) without applying any smoothing
or noise filters and then apply the approach recur-
sively. To accomplish this, we repeatedly differenti-
ate the series and look for changes of sign. We refer
to such a change of sign as a ‘turn’. If one differen-
tiates n times, then 2" points are involved in a turn
so the view becomes increasingly global removing
fluctuations that involve smaller numbers of points.
Because we use turning points to define clusters we
call our approach TURN. It does not depend on any
parameters even in the pre-processing stage.

Figure 1 illustrates how TURN picks out cluster

boundaries and assigns an amplitude to the change
in a Euclidean distribution such as a time series. In
this graph, the data is a time series with a couple
of events where the measured attribute rose sharply
and many minor fluctuations. The bottom graph
shows peaks or spikes at the turning points found
in the upper graph. The major events in the upper
graph are picked out by the largest spikes, which
then allow us to group the points in between as
clusters. Within this we can see smaller peaks in-
dicating another level of structure and even within
the background there are small spikes which in some
experimental situations, such as astronomy, could
represent interesting events. It can be observed that
some of the larger secondary spikes do not indicate
sharp changes in the distribution but rather the be-
ginning of a persistent upward or downward trend.
The heights of the peaks are used to rank the turns
and the algorithm is used recursively to detect clus-
ters within this distribution.

g1l

Figure 1: TURN detects cluster boundaries in a
time series

The algorithm presented here is adapted to the
problem of a non-Euclidean space as in the case of
web log mining. Web log analysis presents a partic-
ular challenge because there is no straightforward
way of defining a Euclidean distribution among the
data points. Each data point is in fact a graph
consisting of many URLs so there is no mean or
medoid. This precludes the use of clustering algo-
rithms which depend on these such as k-means [4],
CLARANS [10], BIRCH [16], etc. However, one
can use measures of similarity to define distance
between data items (sessions or users). This also
means that the distribution of points with respect
to one point is a series starting from 100% similar
and declining to 0% similar. There are no minima

but there are turning points in the differentiated
series at any level.

In the work reported here we took the rate of
change of the acceleration or second differential of
the series. At this level, flattening of the curve after
a decline produces a spike or change in sign in the
differentiated series. This can be seen in Figure 2.
The third differential was chosen because a change
of sign at this level rather clearly corresponded to a
visual event or ‘boundary’ in the series. There are
many spikes of different sizes corresponding to dif-
ferent degrees of sharpness of the turns. We found
from observation that in this web log analysis case
that it was sensible to take the first turn or ‘spike’,
whatever its frequency. This approach entirely re-
moved any need for parameterization in the bound-
ary discovery but did not test our algorithm for res-
olution discovery, which remains a work in progress.
We are also studying the use of differentiation at
different levels.

Sriwfy Cirtbuben Screan S

Figure 2: Distribution obtained with Jaccard coef-
ficients and turns found by TURN (negative spikes)

Figure 2 illustrates TURN applied to a non-
Euclidean distribution. The figure shows a typical
plot of similarity between one session and 999 oth-
ers, given 1000 sessions. When TURN finds a turn,
it produces a spike with an amplitude related to
the importance of the turn. Here these spikes are
shown as negative values. Typically, there are some
sessions that have zero distance from the reference
session and then there is a sharp drop off followed
by a series of smaller adjustments until it drops to
zero similarity.

One recent algorithm which is well suited to non-
Euclidean spaces is ROCKI[3]. ROCK clusters a
sample of the data using an arbitrary similarity

measure that returns a value between 0 and 1 and
proceeds hierarchically by merging clusters with
common neighbour exceeding a given threshold 6
until reaching a fixed number k of desired clusters.
We choose to compare our algorithm TURN with
ROCK since ROCK handles categorical data. How-
ever, our algorithm does not sample the data but
considers all data points.

3 Web Usage Mining

Web usage mining allows for the discovery of pat-
terns in the behaviour of visitors to a web site allow-
ing management to optimize the site for the benefit
of visitors. Cluster discovery is an important part
of finding patterns. The mining usually has three
main steps: 1) data preprocessing, 2) data min-
ing, and 3) pattern evaluation. In our work, the
data preprocessing step contains two phases: data
cleaning, which is done automatically using some
heuristics, and data filtering, which is under user
control. Data cleaning involves the removal of en-
tries which contain an error flag, requests for im-
ages and other embedded files, applets and other
script codes, requests generated by web agents such
as web crawlers, etc. Some entries are also trans-
formed into ‘actions’. For example a CGI script call
with given parameters could be replaced with the
action pertaining to the script.

After cleaning the data we then seek to iden-
tify useful groupings of the transactions. We iden-
tified both users and sessions. Fu et al. [2] de-
scribe how these are identified. They employed At-
tribute Oriented Induction and the clustering algo-
rithm BIRCH [16]. This scaled well over increas-
ingly large data sets and produced meaningful clus-
tering results. However, BIRCH involves the setting
of a threshold to determine ‘closeness’ as well as its
sensitivity to the order of data input. [2] does not
discuss how they set the threshold or how the ‘close-
ness’ between sessions was computed. In this paper,
we seek to avoid user defined thresholds as well as
offering additional options to the user beyond but
including Attribute Oriented Induction. Mobasher
et al. [7] used clustering on a web log using the Co-
sine coefficient and a threshold of 0.5. No mention
is made of the actual clustering algorithm used as
the paper is principally on Association Rule mining.

Our results with ROCK on the site we investigated
suggest that 0.5 may be somewhat low.

Transactions (cleaned web log entries) are
grouped into sessions and sessions are grouped, if
desired, by user in order to investigate patterns in
the usage of the site in individual user sessions or
over time by individual users. Prior to seeking any
rules, it is desirable to find if there are any clusters
or groupings within this data. We might find, for
instance that many of the visitors to a particular
university course web page also accessed some help
page. This might identify a need which the admin-
istration could respond to.

Data cleaning is followed by user-controlled fil-
tering. Many filters could be defined. Some ob-
vious ones, are ‘generalize to level’, ‘remove dupli-
cate pages’, ‘remove duplicates to levels’, and ‘re-
move short duration pages’. ‘Generalize to level’
would mean that all URLs would be generalized to
a certain level of the site tree, essentially Attribute
Oriented Induction [2]. For example, on a univer-
sity web site computer science courses might ap-
pear on the third level of the university domain -
Root/Department/Course. By generalizing to the
third level and removing duplicates, one would be
able to cluster all sessions or users primarily viewing
one course.

Removing short duration pages is a very logi-
cal choice to eliminate click-throughs and is gener-
ally more effective than Maximal Forward Reference
(MFR) [1] for this. Applying MFR was investigated
in our study and has very little effect on sites with a
strong horizontal movement component. Most web
sites today are like this as they contain links on each
page to most other pages.

The interface of our application offers the user
various ways of filtering the transactions. Here we
define a transaction as a cleaned URL in the log
file. All filters apply to a single session or user de-
pending on which filters the user selects to cluster.
The user can also choose the similarity coefficient
to apply during clustering. Various coefficients have
been proposed in the literature such as Jaccard [3],
Dice [12], Cosine [12] and Overlap [12]. Jaccard and
Dice have been found to be functionally equivalent
so we did not consider Dice. The Overlap coeffi-
cient tends to yield a much larger number of iden-
tical items, which could lead to very large clusters.

For instance, a session consisting of A/B/C will be
judged identical to a session consisting of A/B/C,
A/B/C/D, and any number of other URLs. We feel
this is likely to give results that a user might judge
as extraneous. We compared Jaccard with Cosine
and found little difference in the results so only Jac-
card was used for the work presented in this paper.

4 TURN clustering algorithm

To decide which cluster to assign a data point to,
we need to locate the natural boundary between the
clusters. If shown a picture with patches of black
on it, we would naturally define them as clusters by
identifying white or grey areas between the darker
ones. This amounts to searching for the minima
in the distribution of ‘blackness’ - turning points.
TURN is an attempt to do this and in the case of
web log analysis, it seeks to find the sessions/users
close to each other by grouping sessions that fall
within the range of the 1st turning point. The
distribution is differentiated n times looking for a
change of sign which we take as a ‘turn’. In this
application where a similarity measure is used and
the distances are sorted to find the closest items,
changes of sign only occur for n > 3. The sign
changes for n = 3 identify boundary type events as
can be seen in Figure 2 and only the first turn was
used as beyond that cluster quality declined sharply.
This is a result of the algorithm which, like ROCK,
joins neighbours of neighbours and as the distance
between an item and its neighbours increases the
cluster spreads out and it becomes increasingly dif-
ficult to see why the items have been grouped. This
method gives a more global solution and is a valu-
able feature of both ROCK and TURN but can also
be a problem if the distance between a point and
its neighbours is too great.

More generally in other applications, n > 3 and
turns are ranked to discover meaningful levels of
granularity within the data, which may ultimately
involve a heuristic to terminate the search. In this
present application, beside the choices just listed,
the approach is entirely free of parameters. User
control is provided by the user by the choice of fil-
ters and similarity coefficients.

The version of the algorithm used here is:

1 Select an unclassified item A as a seed;

2 Compute all distances between A and all other
non-classified items;

3 Sort this result;

4 Search through the sorted result until the first
‘turn’;

5 Classify all items up to the first ‘Turn’ into the
same cluster as A;

6 Take each item classified as the seed and iterate
recursively the above until no new items are
added.

The sorting of the difference data introduces an
O(nlog(n)) cost. This could be reduced substan-
tially by introducing a heuristic that the first turn
must be within 50% similarity and thus any data
with similarity < 50% can be discarded. In re-
source bounded reality, heuristics are always attrac-
tive. Other than that, TURN’s complexity is O(kn)
where 1 < k < n and k is a function of the number
of clusters and their sizes. It goes to O(n) when only
one cluster is found and O(n?) when every point is
deemed an outlier.

TURN’s memory requirements are O(n). Since
applying certain sensible filters can reduce the num-
ber of transactions by 75% or more, very large logs
can still be held in main memory. Even if the web
log is too large to be held in memory, part can be
held on disk. As TURN classifies sessions/users
these no longer need to be held in memory so at
some point in processing, no further disk accesses
are required.

ROCK [3] is a robust agglomerative heirarchical
clustering algorithm, which is particularly suitable
for clustering categorical attributes. Since session
information is also a kind of categorical attribute,
ROCK is suited to clustering web log data. ROCK’s
cluster similarity is based on the number of shared
neighbours and it follows an iterative process of
merging clusters pairs on the basis of a measure
of best merging ‘goodness’. This iteration will ter-
minate when the number of remaining clusters has
reached the specified number, or when no further
clustering can take place.

ROCK, like TURN can find clusters of arbitrary
shape and can be applied in a non-Euclidean space,
unlike many clustering algorithms. Its computa-
tion complexity is O(n®) and the memory space

complexity of the algorithm is O(n?). Because of
this ROCK clusters on a sample. This and the
choice of a threshold for choosing neighbours make
ROCK rather unstable. Changes in the parame-
ters can substantially affect the clustering result. It
is difficult for the user to predict what parameters
are appropriate especially for a non-Euclidean space
which is much more difficult to conceive.

For this reason we were looking for a method
for finding parameters automatically and initially
developed TURN to find parameters for ROCK.
While the method we employed for doing this is
rather simple, the results as shown in Table 4 in-
dicate how TURN has adjusted to the changing of
filters and produced quite consistent results. Even
the best parameters for ROCK, give less consistent
results across filter choices.

The method of parameter discovery was to let
TURN count the number of turns in the similarity
distribution for a sample of the data set and com-
pute the mean of these. As many of these turns may
not be important, this gives us a larger figure than
ROCK is likely to find but as ROCK stops before
reaching the user defined cluster number when it
can not find an improvement by further clustering,
this was an effective if not very rigorous approach.
We also took the mean of the thresholds found for
the first turn and used that as the threshold for
ROCK. Optimising this choice might well improve
the results. We compared these results to those for
TURN and ROCK given different threshold values.

We developed an interface to give the user im-
mediate access to the functionality with views on
the site and on the consequences or results of any
action. The interface lets the user open a cleaned
web log and look at any session or user and compare
it with an other and see the similarity computed
between them with any coefficient of similarity se-
lected. It is also possible to see the similarity or
distance between any one session or user of the web
site and all others and the points marked as ‘turns’
by TURN. This can be viewed either in a text win-
dow (Figure 3) or graphically (Figure 2).

The ability to easily study sessions from the site
allows the user to quickly determine sensible set-
tings for the filters, level of generalisation (At-
tribute Oriented Induction) and other options.

= Thics. DLEFsreytisl

Figure 3: Visualization of turning points on the
third differential

5 Results

We used a web log from a on-line university con-
taining transactions of registered learners accessing
a variety of courses and on-line activities. After
cleaning of the log data, the user of our interface
can choose between various similarity coefficients
and various filters before clustering. There are a
very large number of possible combinations. Of the
similarity coeflicients, we found the Jaccard coef-
ficient to be the most useful. The only coefficient
that produced significantly different results was the
Overlap coefficient and, as we have explained above,
this causes very different sessions (intuitively) to be
classified as similar. Thus the results presented here
are for the Jaccard coefficient which simply com-
putes the intersection of two sets of URLSs over their
union. Which parts of the URLs and which URLs
we select from within any session are determined by
the filters.

We studied three filter combinations: 1) Remove
short duration pages (< 60 seconds); 2) Filter 1
plus ‘remove duplicate pages’; and 3) Filter 2 plus
‘remove duplicates after generalizing to the third
level’. Generalizing to any level is the process of
Attribute Oriented Induction discussed above. It
lets us group sessions by the visits to a certain nodal
level of the site tree. For instance to the course level
or chapter level on an academic site. This reduced
the number of transactions on our test web log by
75.6%, 86.4%, and 92.2% respectively.

In order to assess the clustering of the two algo-

rithms TURN and ROCK, we computed a cluster
quality measure. This is simply the mean similarity
1 between all data items in the cluster. That is,

2 n
h= n(n —1) ,Z,Slmii
1,7,0<]

where sim is the similarity between sessions i and
j computed as a percentage using the selected coef-
ficient, and n is the number of sessions in the clus-
ter. Outliers are excluded (cluster size < 3) to get a
meaningful metric of cluster quality. For example,
if the metric differences between them are all zero,
this gives a mean similarity of 100%. For TURN, we
also computed the value of £ where the complexity
is O(kn) plus the cost of sorting.

ROCK has no defined means of dealing with out-
liers. We considered all clusters with less than three
members as outliers for both algorithms. The ta-
bles are computed on a 1000 sessions with a 10%
sampling rate for ROCK. Both algorithms scale up
though ROCK’s sampling rate has to be reduced as
the data size increases.

- Cluster No. of No. of -
Filters Quality (%) | Clusters | Outliers | CoMPlexity
None 86.20 I 574 96
T 83.64 13 583 193
3 53.12 6 550 358
3 99.39 36 T2 351

Table 1: Clustering Results for TURN.

Filtore Cluster No. of No. of
Quality (%) Clusters | Outliers

None 48.50 8 489

T 61.00 26 500

2 70.39 32 127

3 70.08 17 127

Table 2: Clustering Results for ROCK using a 40%
Threshold.

Filtore Cluster No. of No. of
Quality (%) Clusters | Outliers

None 64.87 12 855

T 50.38 18 768

z 95.70 15 320

3 100 o8 T80

Table 3: Clustering Results for ROCK using a 70%
Threshold.

Since ROCK requires parameters, we selected two
reasonable sets representing a looser and tighter
cluster definition. As can be seen in Table 3,
ROCK’s cluster quality was higher with the tighter
cluster definition but the results were much poorer
when no filters were applied. We also used TURN
to suggest parameters to ROCK (Table 4) and while
ROCK can be fine tuned to get better results with
the right filters and parameters, TURN’s parameter
choices were more consistent across filters.

Further it is clear that the most consistent results
come from the use of TURN as a clustering algo-
rithm in its own right. TURN found more clusters
and left fewer outliers than ROCK which could be
expected from ROCK’s clustering being based only
on a sample. Small clusters could easily be missed
by a sampling process. TURN also had a some-
what higher cluster quality overall and particularly
so when no filters were applied.

. Cluster No. of No. of
Filters Quality (%) | Clusters | Outliers | ©1reshold
None 82.83 31 638 76
T 87.19 22 699 52
2 64.62 33 519 45
3 80.72 18 73 48
Table 4: Clustering Results for ROCK using

TURNSs Threshold Parameters.

While ROCK runs faster than TURN due to only
clustering a sample, TURN avoids the potential er-
rors due to sampling and has substantially lower
complexity and memory requirements.

6 Conclusion

In the work reported here we looked at the possibil-
ity of non-parametric clustering in a non-Euclidean
space as well as issues particularly pertinent to web
log data analysis by session and user. While experts
may succeed after some trials in optimising cluster-
ing results through judicious choice of parameters,
the need for the user to specify parameters remains
the major difficulty in clustering. This difficulty
is particularly acute in web log analysis where the
non-Fuclidean space makes it difficult to visualise
even for experts and users will rarely have data min-
ing expertise. Thus, we have presented the algo-
rithm TURN as the first entirely non-parametric

approach to clustering in data mining. We also in-
vestigated the use of various filters and different co-
efficients of similarity to improve clustering. We
compared TURN to another important recently de-
veloped algorithm ROCK. ROCK is one of the few
clustering algorithms that can be applied in a non-
Euclidean space.

TURN allowed for efficient clustering without any
request to the user for parameters, the principle
drawback of most clustering algorithms. While
wavelets [13] have been applied to give non-
parametric clustering in certain applications, this
has not been applied to metric spaces such as
web log analysis as far as we are aware. While
WaveCluster does not require normal parameters,
the user has to specify a resolution which is a key
input parameter, besides the choice of a noise filter.

In our case, while the user has no direct paramet-
ric control of the clustering produced by TURN, it
can be controlled by the choice of filters all of which
have a rationale and can easily be understood by a
naive user. Our interface - WebSiteMiner - also al-
lows the user to compare sessions or users before
and after applying the different filters as well as the
similarity measures so as to get a feel for the effect
they produce.

The interface we developed allows the user to vi-
sualize the clustering results in terms of a distribu-
tion of frequent items in the clusters both in a grid
format and graphically.

We also plan to present TURN as applied to Eu-
clidean spaces and investigate the automatic discov-
ery of boundaries at different levels of granularity
or resolution.

References

[1] Ming-Syan Chen, Jong Soo Park, and Philip S. Yu.
Efficient data mining for path traversal patterns.
IEEE Transaction on Knowledge and Data Engi-
neering, 10(2):209-221, March/April 1998.

[2] Yongjian Fu, Kanwalpreet Sandhu, and Ming-Yi
Shih. Clustering of web users based on access pat-
terns. In Workshop on Web Usage Analysis and
User Profiling (WEBKDD399), August 1999.

[3] Studipto Guha, Rajeev Rastogi, and Kyuseok
Shim. ROCK: a robust clustering algorithm for
categorical attributes. In 15th Int’l Conf. on Data
Eng., 1999.

[4] J.MacQueen. Some methods for classification and
analysis of multivariate observations. In Proc. 5th
Berkeley Symp. Math. Statist. Prob., 1967.

[6] A. Joshi and K. Joshi. On mining web access
logs. Technical report, CSEE Department, UMBC,

1999. nttp://www.csee.umbe.edu/-ajoshi/web-mine/trl.ps.gz.

[6] Spiliopoulou M. and Pohle C. Data mining for mea-
suring and improving the success of web sites. Data
Mining and Knowledge Discovery, Special Issue on
Electronic Commerce, 2000.

[7] B. Mobasher, R. Cooly, and J. Srivastava. Auto-
matic personalization based on web usage mining.
Technical Report TR99-010, Department of Com-
puter Science, Depaul University, 1999.

[8] B. Mobasher, N. Jain, E. Han, and J. Srivastava.
Web mining: pattern discovery from world wide
web transactions. Technical report, Department of
Computer Science, University of Minnesota, 1996.

[9] M.D. Mulvenna, S. S. Anand, and A. G. Biichner.
Personalization on the net using web mining. Com-
munications of the ACM, 43(8), August 2000.

R. Ng and J. Han. Efficient and effective cluster-
ing method for spatial data mining. In Proc. 199/
Int. Conf. Very Large Data Bases, pages 144-155,
Santiago, Chile, September 1994.

K. Shim S. Guha, R. Rastogi. CURE: An efficient
clustering algorithm for large databases. In SIG-
MOD’98, Seattle, Washington, 1998.

G. Salton and M.J. McGill. Introduction to mod-
ern information retrieval. McGraw-Hill, New York,
1982.

G. Sheikholeslami, S. Chatterjee, and A. Zhang.
Wavecluster: a multi-resolution clustering ap-
proach for very large spatial databases. In 24th
VLDB Conference, New York, USA, 1998.

[10]

[11]

[12]

[13]

[14] Jaideep Srivastava, Robert Cooley, Mukund Desh-
pande, and Pang-Ning Tan. Web usage mining:
discovery and applications of usage patterns from

web data. ACM SIGKDD Ezxplorations, Jan 2000.

[15] Osmar R. Zaiane, Man Xin, and Jiawei Han. Dis-
covering web access patterns and trends by apply-
ing OLAP and data mining technology on web logs.
In Proc. Advances in Digital Libraries ADL’98,

pages 19-29, Santa Barbara, CA, USA, April 1998.

T. Zhang, R. Ramakrishnan, and M. Livny.
BIRCH: an efficient data clustering method for
very large databases. In Proc. 1996 ACM-
SIGMOD Conf. Management of Data, pages 103—
114, Montrea, Canada, June 1996.

[16]

