
Brainstormers 2002 - Team Des
riptionM. Riedmiller, A. Merke, A. Ho�mann,M. Ni
ks
has, D. Withopf, and F. Za
hariasLehrstuhl Informatik I, Universit�at Dortmund, 44221 Dortmund, GermanyAbstra
t. The main interest behind the Brainstormers' e�ort in therobo
up so

er domain is to develop and to apply ma
hine learning te
h-niques in 
omplex domains. Espe
ially, we are interested in reinfor
ementlearning methods, where the training signal is only given in terms of su
-
ess or failure. Our �nal goal is a learning system, where we only plug in'win the mat
h' - and our agents learn to generate the appropriate be-haviour. Unfortunately, even from very optimisti
 
omplexity estimationsit be
omes obvious, that in the so

er domain, both 
onventional solutionte
hniques and also advan
ed today's reinfor
ement learning te
hniques
ome to their limit - there are more than (108 � 50)23 di�erent statesand more than (1000)300 di�erent poli
ies per agent per half time. Thispaper des
ribes a modular approa
h of the Brainstormers team to ta
klethis 
omplex de
ision problem at di�erent levels.1 The Ar
hite
tureThe environment of the So

erserver testbed does 
onfront us with 3 ma-jor levels of diÆ
ulty. These are: 1. maintenan
e of an up to date worldmodel, 2. development of individual abilities for the parti
ipating agents3. eÆ
ient 
ombinations of agent abilities to a team winning strategy.The ar
hite
ture of our agent does re
e
t this subdivision into di�erent
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Fig. 1. Ar
hite
ture of Brainstormers 2002 Agentlevels, 
f. �gure 1. To this end the agent is divided into independent mod-ules, whi
h are loosely 
oupled. Information 
ow between the modulestakes pla
e along the sket
hed arrows.



The main purpose of the world model module is the pro
essing of datafrom the environment and 
reation of an approximated view of the 
ur-rent So

erserver state1. The de
ision module is now 
onfronted with atime dis
rete (markov) de
ision pro
ess. In the ideal 
ase it gets a fulldes
ription of the 
urrent state s(t) and generates a 
ommand a(t).The pro
edure of generating a 
ommand a(t) is subdivided into twosteps. The ta
ti
s module abstra
ts from basi
 So

erserver 
ommands(i.e. ki
k, turn, dash) and de
ides whi
h move within the skills moduleshould be applyed. A move generates then the basi
 
ommand a(t), whi
h
an be sent ba
k to the server.2 Reinfor
ement Learning of MovesA move is a sequen
e of basi
 a
tions, that transforms a 
urrent situa-tion s(0) into a new situation s(t) some time steps later. The resultingsituation is one of a set of terminal states Sf , whi
h might be eitherpositive/desired out
omes (S+) or negative/undesired situations (S�).The move ends, if either a terminal state is rea
hed (s(t) 2 Sf ), or thetime ex
eeds a 
ertain limit (t > tmax).For example, the move inter
ept-ball terminates if either the ball is withinthe player's ki
k range (S+) or if it en
ounters a situation, where it isno more possible for the player to rea
h the ball (S�).Sin
e ea
h move has a 
learly de�ned goal, it is now possible to �ndsequen
es of basi
 
ommands, that �nally rea
h the de�ned goal. This
an be done either by 
onventional programming, or, as it is the 
asein our approa
h, by reinfor
ement learning methods. In both 
ases, it isimportant that the goal of a move is reasonably 
hosen, that means thatthe solution poli
y is not too 
omplex (e.g. a move 'win that game' wouldbe desirable but its implementation will be as 
omplex as the originalproblem).The above move de�nition dire
tly allows to formulate the problem of'programming' a move as a (sequential) Reinfor
ement Learning (RL)problem. The general idea of reinfor
ement learning is that the agentis only told, what the eventual goal of its a
ting is. The agent is onlyprovided with a number of a
tions, that it 
an apply arbitrarily. In the
ourse of learning, it should in
rementally learn a (
losed-loop) poli
y,that rea
hes the �nal goal in
reasingly better in terms of a de�ned op-timisation 
riterion. Here we apply Real-Time Dynami
 Programmingmethods [1℄, that solve the problem by in
rementally approximating theoptimal value fun
tion in repeated 
ontrol trials. A feedforward neuralnetwork is used to approximate the value fun
tion [4℄.In the 
urrent version of our agent �ve main moves use reinfor
ementlearning te
hniques: 1. a ki
k move whi
h 
an a

elerate the ball to playit with high velo
ity in a desired dire
tion, 2. an inter
ept ball move thatenables the agent to interse
t eÆ
iently the traje
tory of a rolling ball,3. a dribble move that makes it possible to run without losing 
ontrolover the ball, 4. a goto position move whi
h rea
hes a parti
ular position1 This pro
edure is somewhat te
hni
al and is not dis
ussed further in this paper.



while avoiding 
ollisions with other players and �nally 5. a stop ball movewhi
h is a supplementary move spe
ialised in stopping high velo
ity balls.See [6℄ for more information about move learning in our team.3 Reinfor
ement Learning of Team StrategiesHaving high quality moves is an important requirement for a su

essfulteam strategy. But as the attention by moves is put on individual agentgoals (like inter
epting the ball) a higher level learning s
heme is requiredto rea
h team oriented goals. As we already stressed in [3, 2℄ the teamlearning task 
annot be des
ribed by a markov de
ision pro
ess anymore,one requires multi agent de
ision pro
esses (MMDP). In this paper wepresent one possibility to learn with individual learners (IL)2 in a MMDP.Using IL one looses theoreti
al guarantees about rea
hing optimality inlearning, but as we show in this paper, the results are en
ouraging tofurther explore in this dire
tion.We 
ondu
ted experiments with di�erent numbers of atta
kers againstsome number of defenders (for example 7 atta
kers versus 8 defenders or3 atta
kers versus 4 defenders). In the following we report about exper-iments with 3 atta
kers against 4 defenders, as this problem is sophisti-
ated enough to show the general tenden
y. In Figure 2 we pi
tured
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L1 L3 L4L2Fig. 2. Starting positions of learning, dotted player owns the ball.four start position from whi
h we start our learning traje
tories. Thenumber of visited states is a
tually mu
h larger due to the explorationof the agents and the sto
hasti
 nature of all a
tions. The learning isdone in epo
hes. We start with a random poli
y whi
h 
hooses for ea
hatta
ker one of 10 a
tions. The a
tion set 
omprises going to one of eightdire
tions, moving towards one's home position and inter
epting the ball.The defenders pursue a �xed poli
y, that of the Brainstormers team 2000(runner up in the Melbourne 
ompetition, in whi
h they got just 4 goalsin 11 tournament games). This defending strategy has a parameter ofusing an aggressive o�side trap, whi
h is swit
hed o� during learning.The learning is now done using the following s
heme1. set example set to E = ;. Ea
h example in E 
omprises of a situationand the 
orresponding reward.2. run 
urrent poli
y until approximately 10 su

essful traje
tories 
ouldbe stored. Dis
ard not su

essful traje
tories, but use situations2 Individual learners were 
alled bla
k box agents in [3℄.



where the ball was stu
k as immediate negative examples (i.e. justthe �nal situation is punished, not the whole traje
tory).3. add situations along a su

essful traje
tory to E. The 
ost of ea
hsituation depends on the time from that situation to the goal state.Exploit symmetries during generation of examples from traje
tories.4. use the full set E for 
omputing the gradient in RPROP learning ofthe neural network for 5000 iterations.5. return to step 2At the moment we use all positions of the players and the position andvelo
ity of the ball as input to a neural network (whi
h has 18 inputdimensions, 10 hidden units). Simultaneously we also work on a featureextra
tion s
heme, whi
h will enable us to ignore the exa
t number ofdefenders and to lower the dimension of the en
oding input ve
tor. On
ethe example set E is available learning is done in a supervised manner.The updates of the neural network are performed with a variant of theba
kpropagation algorithm 
alled RPROP (
f. [5℄). In step 3 of the abovealgorithm one 
ould obje
t that the set E should be emptied before ea
hnew RPROP learning epo
h. But keeping the old examples prevents theagent from forgetting former su

essful (but maybe not time optimal)traje
tories. We observed that it is better to a

umulate more examples(with partially slightly wrong values, but the right tenden
y) to rea
hbetter generalisation results then to dis
ard su
h valuable experien
e.
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T1 T3T2Fig. 3. Testing positions of learning, dotted player owns the ball.The results of our learning s
heme are very promising. The main ques-tions of the above approa
h are1. are we able to generalise to di�erent situations on the �eld.2. are we able to generalise if playing against another teams.Answering the �rst question is simple: 
onsider di�erent representativesituations and test them. In our presentation we 
on
entrate on just3 further situation depi
ted in �gure 3, whi
h are di�erent enough toshow the a
tual tenden
y. Answering the se
ond question is mu
h morediÆ
ult. This 
an just be indi
ated by using another set of strong teams3,and we do this here by using the same sophisti
ated defending team, butwith the o�side trap turned on. This does not 
laim universality butjust indi
ates that the learned poli
y is stable against de
isive opponentstrategy 
hanges. The following table summerises our results by showingsu

ess rates in rea
hing a goal, and 
ompares them to the programmedo�ense used in the Melbourne 
ompetition.3 Confer [3, 2℄ for more details on this problem



Against known defense Against unknown defenselearned o�ense Melbourne o�ense learned o�ense Melbourne o�ensegoal stu
k goal stu
k goal stu
k goal stu
kL1 0.585 0.025 0.01 0.925 0.645 0.03 0.0 0.97L2 0.43 0.005 0.4 0.08 0.225 0.145 0.01 0.505L3 0.485 0.0 0.01 0.94 0.45 0.04 0.0 0.965T1 0.605 0.0 0.4 0.04 0.655 0.01 0.31 0.205T2 0.55 0.01 0.485 0.14 0.39 0.035 0.14 0.0T3 0.52 0.005 0.515 0.08 0.445 0.05 0.145 0.4154 Con
lusionThe 
urrent version is an intermediate step within our Brainstormers
on
ept of a learning agent. The �nal goal is to have an agent, whi
h haslearned all of its de
ision behaviour by (reinfor
ement) learning. How-ever, until then a lot of work has to be done in the �eld of multi-agentRL, on Semi- Markov De
ision Pro
esses, partially observable domains(POMDPs) and on large-s
ale RL problems. Some of very re
ent RLideas have already been su

essfully realised. For example, our moves-
on
ept is 
losely related to Sutton's et.al 'options'-framework [7℄. Alsoour experiments with learning of an atta
king team strategy are verypromising and 
an be extended to other game situations in the future.Referen
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