Brainstormers 2002 - Team Description

M. Riedmiller, A. Merke, A. Hoffmann,
M. Nickschas, D. Withopf, and F. Zacharias

Lehrstuhl Informatik I, Universitdt Dortmund, 44221 Dortmund, Germany

Abstract. The main interest behind the Brainstormers’ effort in the
robocup soccer domain is to develop and to apply machine learning tech-
niques in complex domains. Especially, we are interested in reinforcement
learning methods, where the training signal is only given in terms of suc-
cess or failure. Our final goal is a learning system, where we only plug in
'win the match’ - and our agents learn to generate the appropriate be-
haviour. Unfortunately, even from very optimistic complexity estimations
it becomes obvious, that in the soccer domain, both conventional solution
techniques and also advanced today’s reinforcement learning techniques
come to their limit - there are more than (108 x 50)* different states
and more than (1000)3%° different policies per agent per half time. This
paper describes a modular approach of the Brainstormers team to tackle
this complex decision problem at different levels.

1 The Architecture

The environment of the Soccerserver testbed does confront us with 3 ma-
jor levels of difficulty. These are: 1. maintenance of an up to date world
model, 2. development of individual abilities for the participating agents
3. efficient combinations of agent abilities to a team winning strategy.
The architecture of our agent does reflect this subdivision into different

Brainstormers 2002

Decision Module

'
'
'
'
' Skills Module
'

'

World Model Tactics

1 Kick M
Environment | Modle Module {wekmove]

'

' I Intercept Ball Move
(Soccer Server) 1

!

'

'

)

'

'

'

'

'

[E—

I Dribble Move

Fig. 1. Architecture of Brainstormers 2002 Agent

levels, cf. figure 1. To this end the agent is divided into independent mod-
ules, which are loosely coupled. Information flow between the modules
takes place along the sketched arrows.

The main purpose of the world model module is the processing of data
from the environment and creation of an approximated view of the cur-
rent Soccerserver state'. The decision module is now confronted with a
time discrete (markov) decision process. In the ideal case it gets a full
description of the current state s(¢) and generates a command a(t).
The procedure of generating a command a(t) is subdivided into two
steps. The tactics module abstracts from basic Soccerserver commands
(i.e. kick, turn, dash) and decides which move within the skills module
should be applyed. A move generates then the basic command a(t), which
can be sent back to the server.

2 Reinforcement Learning of Moves

A move is a sequence of basic actions, that transforms a current situa-
tion s(0) into a new situation s(#) some time steps later. The resulting
situation is one of a set of terminal states S/, which might be either
positive/desired outcomes (ST) or negative/undesired situations (S~).
The move ends, if either a terminal state is reached (s(t) € S§7), or the
time exceeds a certain limit (¢ > tmaa).

For example, the move intercept-ball terminates if either the ball is within
the player’s kick range (S™1) or if it encounters a situation, where it is
no more possible for the player to reach the ball (§7).

Since each move has a clearly defined goal, it is now possible to find
sequences of basic commands, that finally reach the defined goal. This
can be done either by conventional programming, or, as it is the case
in our approach, by reinforcement learning methods. In both cases, it is
important that the goal of a move is reasonably chosen, that means that
the solution policy is not too complex (e.g. a move 'win that game’ would
be desirable but its implementation will be as complex as the original
problem).

The above move definition directly allows to formulate the problem of
‘programming’ a move as a (sequential) Reinforcement Learning (RL)
problem. The general idea of reinforcement learning is that the agent
is only told, what the eventual goal of its acting is. The agent is only
provided with a number of actions, that it can apply arbitrarily. In the
course of learning, it should incrementally learn a (closed-loop) policy,
that reaches the final goal increasingly better in terms of a defined op-
timisation criterion. Here we apply Real-Time Dynamic Programming
methods [1], that solve the problem by incrementally approximating the
optimal value function in repeated control trials. A feedforward neural
network is used to approximate the value function [4].

In the current version of our agent five main moves use reinforcement
learning techniques: 1. a kick move which can accelerate the ball to play
it with high velocity in a desired direction, 2. an intercept ball move that
enables the agent to intersect efficiently the trajectory of a rolling ball,
3. a dribble move that makes it possible to run without losing control
over the ball, 4. a goto position move which reaches a particular position

! This procedure is somewhat technical and is not discussed further in this paper.

while avoiding collisions with other players and finally 5. a stop ball move
which is a supplementary move specialised in stopping high velocity balls.
See [6] for more information about move learning in our team.

3 Reinforcement Learning of Team Strategies

Having high quality moves is an important requirement for a successful
team strategy. But as the attention by moves is put on individual agent
goals (like intercepting the ball) a higher level learning scheme is required
to reach team oriented goals. As we already stressed in [3,2] the team
learning task cannot be described by a markov decision process anymore,
one requires multi agent decision processes (MMDP). In this paper we
present one possibility to learn with individual learners (IL)? in a MMDP.
Using IL one looses theoretical guarantees about reaching optimality in
learning, but as we show in this paper, the results are encouraging to
further explore in this direction.

We conducted experiments with different numbers of attackers against
some number of defenders (for example 7 attackers versus 8 defenders or
3 attackers versus 4 defenders). In the following we report about exper-
iments with 3 attackers against 4 defenders, as this problem is sophisti-
cated enough to show the general tendency. In Figure 2 we pictured

eo‘—'—‘To

¥ 8 & 08
o
o
3 8 & 8
¥ o8 & 08

3 8 & 8

Fig. 2. Starting positions of learning, dotted player owns the ball.

four start position from which we start our learning trajectories. The
number of visited states is actually much larger due to the exploration
of the agents and the stochastic nature of all actions. The learning is
done in epoches. We start with a random policy which chooses for each
attacker one of 10 actions. The action set comprises going to one of eight
directions, moving towards one’s home position and intercepting the ball.
The defenders pursue a fixed policy, that of the Brainstormers team 2000
(runner up in the Melbourne competition, in which they got just 4 goals
in 11 tournament games). This defending strategy has a parameter of
using an aggressive offside trap, which is switched off during learning.

The learning is now done using the following scheme
1. set example set to E = (). Each example in E comprises of a situation
and the corresponding reward.
2. run current policy until approximately 10 successful trajectories could
be stored. Discard not successful trajectories, but use situations

? Individual learners were called black box agents in [3].

where the ball was stuck as immediate negative examples (i.e. just
the final situation is punished, not the whole trajectory).

3. add situations along a successful trajectory to E. The cost of each
situation depends on the time from that situation to the goal state.
Exploit symmetries during generation of examples from trajectories.

4. use the full set E for computing the gradient in RPROP learning of
the neural network for 5000 iterations.

5. return to step 2

At the moment we use all positions of the players and the position and
velocity of the ball as input to a neural network (which has 18 input
dimensions, 10 hidden units). Simultaneously we also work on a feature
extraction scheme, which will enable us to ignore the exact number of
defenders and to lower the dimension of the encoding input vector. Once
the example set E is available learning is done in a supervised manner.
The updates of the neural network are performed with a variant of the
backpropagation algorithm called RPROP (cf. [5]). In step 3 of the above
algorithm one could object that the set E should be emptied before each
new RPROP learning epoch. But keeping the old examples prevents the
agent from forgetting former successful (but maybe not time optimal)
trajectories. We observed that it is better to accumulate more examples
(with partially slightly wrong values, but the right tendency) to reach
better generalisation results then to discard such valuable experience.

2 0o w ow @ ® » w0 woam @ 2 oo woaw @

5 B 8 &5 ¥
8
8

Fig. 3. Testing positions of learning, dotted player owns the ball.

The results of our learning scheme are very promising. The main ques-
tions of the above approach are

1. are we able to generalise to different situations on the field.

2. are we able to generalise if playing against another teams.
Answering the first question is simple: consider different representative
situations and test them. In our presentation we concentrate on just
3 further situation depicted in figure 3, which are different enough to
show the actual tendency. Answering the second question is much more
difficult. This can just be indicated by using another set of strong teams®,
and we do this here by using the same sophisticated defending team, but
with the offside trap turned on. This does not claim universality but
just indicates that the learned policy is stable against decisive opponent
strategy changes. The following table summerises our results by showing
success rates in reaching a goal, and compares them to the programmed
offense used in the Melbourne competition.

% Confer [3,2] for more details on this problem

Against known defense Against unknown defense
learned offense|Melbourne offense(learned offense|Melbourne offense
goal | stuck | goal stuck goal | stuck | goal stuck
L1]0.585| 0.025 |0.01 0.925 0.645| 0.03 0.0 0.97
L2/ 0.43| 0.005 | 0.4 0.08 0.225| 0.145 |0.01 0.505
L3]0.485| 0.0 0.01 0.94 0.45| 0.04 0.0 0.965
T1{0.605 0.0 04 0.04 0.655| 0.01 |0.31 0.205
T2{0.55| 0.01 [0.485 0.14 0.39| 0.035 |0.14 0.0
T3|0.52| 0.005 [0.515 0.08 0.445| 0.05 |0.145 0.415

4 Conclusion

The current version is an intermediate step within our Brainstormers
concept of a learning agent. The final goal is to have an agent, which has
learned all of its decision behaviour by (reinforcement) learning. How-
ever, until then a lot of work has to be done in the field of multi-agent
RL, on Semi- Markov Decision Processes, partially observable domains
(POMDPs) and on large-scale RL problems. Some of very recent RL
ideas have already been successfully realised. For example, our moves-
concept is closely related to Sutton’s et.al ’options’-framework [7]. Also
our experiments with learning of an attacking team strategy are very
promising and can be extended to other game situations in the future.

References

1. A. G. Barto, S. J. Bradtke, and S. P. Singh. Learning to act using
real-time dynamic programming. Artificial Intelligence, 72:81-138,
1995.

2. A. Merke. Reinforcement Lernen in Multiagentensystemen. Master’s
thesis, Universitat Karlsruhe, 1999.

3. A. Merke and M. Riedmiller. Karlsruhe brainstormers - a reinforce-
ment learning way to robotic soccer. In P. Stone, editor, RoboCup-
2001: Robot Soccer World Cup V, LNCS. Springer, 2001.

4. M. Riedmiller. Concepts and facilities of a neural reinforcement learn-
ing control architecture for technical process control. Journal of Neu-
ral Computing and Application, 8:323-338, 2000.

5. M. Riedmiller and H. Braun. RPROP: A fast and robust backpropa-
gation learning strategy. In Marwan Jabri, editor, Fourth Australian
Conference on Neural Networks, pages 169 — 172, Melbourne, 1993.

6. M. Riedmiller, A. Merke, D. Meier, A. Hoffmann, A. Sinner, O. Thate,
C. Kill; and R. Ehrmann. Karlsruhe brainstormers - a reinforcement
learning way to robotic soccer. In A. Jennings and P. Stone, editors,
RoboCup-2000: Robot Soccer World Cup IV, LNCS. Springer, 2000.

7. R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps:
A framework for temporal abstraction in reinforcement learning. Ar-
tifictal Intelligence, 112:181 211, 1999.

