
Performance and Program Complexity in Contemporary
Network-based Parallel Computing Systems
Technical Report No: HPPC-96-02 March 1996

Steve VanderWiel
Dafna Nathanson
David J. Lilja

Department of Electrical Engineering • Department of Computer Science • Minneapolis • Minnesota • 55455 • USA
High-Performance Parallel Computing Research Group

Performance and Program Complexity in Contemporary
 Network-based Parallel Computing Systems

Steven VanderWiel * Dafna Nathanson † David J. Lilja *
svw@ee.umn.edu nathan@mountains.ee.umn.edu lilja@ee.umn.edu

* Department of Electrical Engineering
†Department of Computer Science

University of Minnesota
200 Union St. SE

Minneapolis, MN 55455
and

†Computing Devices, International
Bloomington, MN

ABSTRACT

It is commonly assumed that if a programmer is willing to invest the potentially significant effort
required to port an application program to run on a multiprocessor system using a low-level
parallel language or library, they will be able to take advantage of a larger degree of
parallelism to achieve higher performance than when using a higher-level language or an
automatically parallelizing compiler. However, there has been little work examining the
relationship between programming complexity (or ease-of-use) and performance. As a first step
towards quantifying this relationship, we use the cyclomatic program complexity metric,
borrowed from the software engineering field, and the number of program source statements as
measures of the relative complexity of a parallel implementation of a application program
compared to it’s equivalent sequential implementation. We compare several different
programming paradigms across a common set of application programs executed on two
workstation clusters, a shared-memory multiprocessor, an IBM SP2 and a Cray T3D. We find
that message-passing languages tend to be both the most widely supported and the most
complex. Other programming paradigms such as shared-memory and High-Performance Fortran
produce more compact and easily understood programs than message-passing languages but are
not yet well supported.

Keywords: multiprocessor performance; program complexity; HPF; automatic parallelization
cyclomatic complexity; SPMD; message-passing; networks of workstations.

2

1. Introduction

Drawn by the promise of faster response times and increased throughput, users with large

computational demands often require the performance capabilities provided by multiprocessor

systems. However, once the decision is made to employ such a system, developers are faced with a

daunting array of choices. Not only must potential parallel application developers choose a

hardware platform, but they must also choose the best approach for porting their codes.

Unfortunately, parallel language development has not kept pace with the growing demand for

parallel applications and, as a result, software development costs can easily surpass that of the

parallel hardware. In fact, the ease with which a programming paradigm can be used to port

existing software will often dictate the choice of the parallel hardware platform.

Central to the software porting process is the choice of an appropriate parallel programming

paradigm. Nearly all parallel systems offer several programming environments from which to

choose, ranging from automatic parallelizing compilers to low-level machine-specific programming

libraries. The appeal of the former approach is the minimal amount of reprogramming required to

parallelize an application while the latter approach is generally taken to maximize performance.

The specific choice of programming language or library requires the developer to weigh the

performance benefits against the cost and effort for which this performance can be obtained.

Given the importance of balancing these often conflicting factors, surprisingly little empirical data

exists to aid the parallel programmer in settling upon a parallel programming paradigm. For

example, it is commonly believed that automatic compiler parallelization will produce parallel

programs with lower performance than rewriting the application with explicit parallel constructs.

Presumably, if one is willing to put forth the significant effort required to use an explicitly parallel

paradigm one will be able to take advantage of a larger degree of parallelism to achieve higher

performance. However, there has been essentially no work that quantifies the relationship among

programming complexity and performance.

Completely evaluating all parallel languages and paradigms on all computing platforms is clearly

an impossible task. Additionally, quantifying such inherently subjective factors as programming

complexity is fraught with numerous definitional traps and pitfalls. Nevertheless, in this work we

propose a methodology and a group of metrics for quantifying the program complexity (or ease-of-

3

use) and compare this to the resulting performance on a variety of different parallel architectures.

We examine four different programming paradigms: 1) automatic compiler parallelization, using

the KAP front-end translator [15] supplied with the Silicon Graphics Challenge system; 2)

message-passing, as exemplified by MPI [7] and PVM [4]; 3) shared-memory programming using

both UNIX shared-memory libraries and the Cray T3D Shmem library[2]; and 4) an intrinsically

parallel language, High-Performance Fortran [8].

We use the cyclomatic program complexity metric [13], borrowed from the software engineering

field, and the number of source code statements [5] to quantify the relative complexity of a parallel

implementation of a application program compared to it’s equivalent sequential implementation.

We compare performance, measured as the total execution time, on two workstation clusters, a

shared-memory multiprocessor, an IBM SP2 and a Cray T3D.

In the remainder of the paper, Section 2 defines our metrics and describes our experimental

methodology in more detail. Section 3 describes the experimental environment used in this study,

with the corresponding results presented in Section 0. The last section summarizes our results and

conclusions.

2. Metrics of Program Characteristics

2.1. Performance

Implicit in the decision to use a parallel processing system is the need for high performance. The

ability of a language to produce executables which take advantage of the underlying parallel

hardware is therefore a primary concern. We define a normalized run time,
�

Tn
m , to gauge the

performance of executables compiled from the language suite :

�

()
T

T

MAX Tn
m n

m

n

=

where
�

Tn
m is the normalized run time of test program n on machine m, Tn

m is the parallel execution

time for program n on machine m, and MAX(Tn) is the maximum time taken to execute program n

4

across all machines. As will be shown in Section 4.1, this metric will be useful in comparing both

machine performance and language performance.

In calculating Tn
m, execution time is taken to be the run time of the program kernels only. Startup

and data initialization times are not included in the reported execution times. Although different

parallel languages vary in the amount of time necessary to spawn processes, initialize task ids and

so forth, this startup time is assumed to be small and constant relative to the overall execution time.

In addition, to obviate time-sharing effects, execution times where taken during periods of

dedicated machine time whenever possible. Typically, timing values were calculated by taking the

average of three timing runs. If the three timing runs showed a significant variance, additional runs

were added until the variance was reduced to an acceptable level.

2.2. Ease of Use

In contrast to execution time, a programming language’s relative ease-of-use is difficult to

quantify. Parallel programmers have an intuitive sense for this quality of a language and, after

extensive use, often come to share similar opinions regarding a particular language or paradigm.

However, because programmers typically have experience with only a subset of the parallel

languages and are subject to personal bias, a comprehensive comparison cannot be based on an

opinion poll. Rather, we borrow some techniques from the branch of software engineering known

as software metrics.

Software metrics are often used to give an indication of a program’s complexity. Not to be

confused with algorithmic complexity, or Ο() notation, software metrics have been found to be

useful in reducing software maintenance costs by giving a quantitative indication of a program

module’s understandability. For example, it has been found that program modules with high

complexity indices have a higher frequency of failures [10]. By using software complexity metrics,

software engineers isolate error-prone source code modules as those with high complexity values.

These modules are then subjected to recoding or further modularization to reduce module

complexity and increase overall program reliability.

Our interest in complexity metrics is motivated by the desire to quantitatively compare the relative

effort of using different parallel programming languages to encode a given algorithm. As such, the

5

effects of program modularity are ignored and all programs are treated as though they are

contained in a single module. It is also important to note that we consider only user-level code

when doing complexity measurements. Language library function bodies are not included since

their underlying code is not specified by the application programmer and therefore does not add to

the effort of coding the test programs.

So that we may concentrate on language complexity rather than program complexity, the metrics

used in the following experiments will be normalized relative to their sequential versions. That is,

given a complexity metric, C, its normalized value will be defined as

�

C
C

C
L

s

=

where Cs is the value of the complexity metric when applied to a sequential version of the test

program and CL is the is value of the complexity metric when applied to a version of the test

program written in language L.

Several complexity metrics exist [6], each designed to measure different factors affecting program

complexity. Two popular metrics that will be used in this study are non-commented source code

statements (NCSS) and McCabe’s cyclomatic complexity (MCC). These metrics were chosen for

their reliability as complexity indicators and their appropriateness for this study.

2.2.1. Non-Commented Source Code Statements

NCSS [5] is often used to track the size of program modules in large software projects. Since

lengthy modules can become difficult to comprehend, software developers will often place an upper

limit on a module’s NCSS value. Note that this metric is not the same as counting lines of source

code (LOC). Here, NCSS includes all executable source code statements without regard to the

placement of carriage returns or other stylistic elements. In addition, variable declarations,

preprocessor directives and comments will be excluded from the calculation of NCSS so that we

may focus on the more salient features of a language.

6

Non-commented source code statements can also be thought of as a measurement of the quantity

of source code required to accomplish a given task. Given two versions of a program, the one with

a lower NCSS value suggests a cleaner solution. For example, a message-passing language

supporting a one-to-all broadcast library function would have a much lower NCSS value than a

language lacking this feature. The latter language would require the application programmer to

encode his own broadcast function, thereby increasing the total number of source code statements.

Although NCSS is a good indication of the amount of code required to accomplish a programming

task, it does not offer much information concerning the content of the program. The situation is

analogous to judging two books based on their relative thickness. The books may contain the same

number of pages but it would be more informative to the potential reader to know that one is

written by James Joyce while the other is the latest Steven King novel. Cyclomatic complexity,

introduced in the following section, complements NCSS by offering additional insight into a

program’s “readability.”

2.2.2. Cyclomatic Complexity

McCabe introduced cyclomatic complexity in 1977 as an indication of a program module’s control

flow complexity. Derived from a module’s control graph representation, MCC has been found to

be a reliable indicator of complexity in large software projects [17]. This metric is based on the

assumption that a program’s complexity is related to the number of control paths through the

program. For example, a 20 line program consisting of 20 assignment statements is clearly less

complex than a 20 line program consisting of 10 if-then statements. The former program

would contain a single control path whereas the latter would have over a thousand possible paths.

Unfortunately, it is generally not possible to count the total number of paths through a given

program since backward branches lead to a potentially infinite number of control paths. Instead,

cyclomatic complexity is defined in terms of basic paths which, when taken in combination, can be

used to generate every possible control path through a program. From basic graph theory [1], the

number of basic paths within a graph, G, is bounded by the graph’s cyclomatic number which is

defined as

V G e n p() = − + 2

7

where e is the number of edges in G, n is the number of graph nodes and p is the number of

connected components. For our present purposes, p will always equal 1 and the interested reader is

referred to [13] for a full discussion of this parameter’s role in calculating V(G).

As an example of how cyclomatic complexity is applied, the program source code segment given

in Listing 1 is represented as a control graph in Figure 1. This program segment’s complexity

would then be calculated as

 V G e n() = − + = − + =2 7 6 2 3.

A simplified version of the program segment given in Listing 1 is shown in Listing 2. Here we

condense the two for loops into one reducing the control flow graph to that shown in Figure 2.

Note that although the two versions of the program have the same value for NCSS (6), the second

version has a lower cyclomatic complexity of

V G e n() = − + = − + =2 4 4 2 2.

Although NCSS and MCC tend to be insensitive to programming style, this last example

demonstrates how algorithmic preferences can affect complexity measurements. To mitigate the

effect of individual programmer style, the programs used in this study were written using

standardized style guidelines and were subjected to peer review to confirm conformance to these

guidelines. Algorithmic changes in different versions of a given benchmark program were allowed

only when the changes were due to features of the programming language.

Together, NCSS and MCC capture most of the salient language differences in which we are

interested. More will be said about how these metrics were useful for this study in Section 4.2.

/* reverse the string s */

len = strlen(s);

for (i = 0 to len - 1)

temp[i] = s[i];

for (j = 0 to len - 1) {

s[j] = temp[i];

i = i - 1;

}

Listing 1. An example program

/* reverse s in place */

j = strlen(s) - 1;

for (i = 0 to j){

c = s[i];

s[i] = s[j];

s[j] = c;

j = j - 1;

}

Listing 2. A simpler version of Listing 1

8

3. Experimental Environment

A suite of representative programs was used to compare the various machines and languages

presented in this study. Each test program was ported to several different parallel systems using

languages available on each system. It is felt that these test programs represent the types of parallel

program kernels one might expect to find running on a typical parallel processing systems. The

systems and languages used in this study are also considered to be a representative cross-section

of parallel languages and systems currently in use. The following sections describe in more detail

these programs and systems.

3.1. Test Programs

The test programs can be roughly divided into three categories, each containing two programs.

The sobel and filter image processing programs where chosen to represent regular, easily

parallelized code. Hough and warp require larger data transfers and use less regular

communications patterns than those of sobel and filter but they do not send a large number of

messages. Finally, gauss and trfd represent a class of communication-intensive problems that

require a large number of various sized messages. More detailed descriptions of the test programs

are given below.

n1

e1

e2

e3 e4

n2

n3

e5

e6 e7

n4

n5

n6

Figure 1. Control graph of Listing 1

n1

e1

e2

e3 e4

n2

n3

n4

 Figure 2. Control graph of Listing 2

9

Sobel calculates magnitude and direction gradients of an input image. An output image element

value is a function of the corresponding input image value and its eight neighboring elements.

Image matrices are distributed across processors by partitioning the original matrix into

submatricies in a block-checkerboard fashion. Interprocessor communication results from

communicating shared input data between processors holding data from adjoining input image

submatricies.

Filter is an averaging (low-pass) image filtering program. This program calculates the value of an

output image element as the weighted sum of up to 36 neighboring pixel elements in the input

image. Data are partitioned in a fashion similar to Sobel.

Hough is used to detect shapes in images. As an instance of the more general Hough transform

[3], the test program used for this project detects straight lines in the input image by finding points

of intersections between lines. This algorithm therefore relies on both nearest neighbor and global

communications.

Warp is a spatial domain image restoration algorithm that aligns an input image along a given axis

[18]. Such algorithms are useful in restoring satellite images which have been warped due the

curvature of the earth’s atmosphere, for example. This program exhibits very irregular

communications patterns due to the nature of the problem. Pixel elements may need to be shifted

substantially depending on their proximity to the axis in question.

Gauss is an implementation of the familiar Gaussian elimination with back-substitution algorithm

used to solve large systems of equations. The rows of the input matrix are distributed in a cyclic

pattern to the available processors in the multiprocessor system. This algorithm is very

communication intensive, requiring several point-to-point, broadcast and reduction operations.

TRFD is a member of the Perfect Club benchmark suite which simulates a two-electron integral

transformation using a fourth-order tensor equation [12]. The algorithm is implemented as a series

of matrix multiplications and transpositions and therefore requires several point-to-point

communication operations. The serial version of TRFD was altered from the original Perfect Club

version which was heavily optimized to reduce it’s memory requirements and therefore not

comparable to the parallel versions of TRFD. The altered version is a more straightforward

implementation of the same algorithm.

10

3.2. Programming Languages

The above applications were written using five different parallel programming languages The

word “language” is used rather loosely here. Often, parallel programs use ordinary C or Fortran

compilers and link with libraries that facilitate parallel operations, such as message-passing,

synchronization or setting up shared-memory arenas. The lone exception is High-Performance

Fortran (HPF) which contains special parallel constructs within the language definition. However,

for the sake of convenience, we will hereafter refer to all of these parallel programming paradigms

as “languages.” A description of each language follows.

PowerC and PowerFortran [15] are parallelizing compilers for SGI symmetric multiprocessors

(SMPs) that take unadorned C and Fortran source code and automatically generate parallel

executables. Such compilers require no recoding of the serial program to take advantage of

parallel processing hardware.

PVM [4] is a popular message-passing language developed at Oak Ridge National Labs. In a

message-passing paradigm, the programmer explicitly specifies the exchange of data and process

synchronization. In addition to point-to-point messages, PVM contains broadcast and reduction

group communication operations. PVM version 3.3.10 was used for all non-commercial

implementations. The commercial version of PVM for the SP2, PVMe 2.1, is an implementation

of PVM 3.3 with extensions. Cray Research’s PVM 3.3.4 was used on the T3D.

MPI [7] is another message-passing language that shares many common features with PVM.

MPI, however, is a proposed standard for message-passing with many implementations available

from several different sources. MPI also differs from PVM in the way parallel processes are

spawned, in the manner in which data are buffered and in other, more subtle ways. By allowing

programmers more control over how a parallel computation proceeds than other proposed

approaches, message-passing languages like PVM and MPI are generally assumed to provide

superior performance on distributed memory multiprocessors. Most public-domain MPI

implementations used in this study were MPI ch-p4 version 1.0.11 jointly developed by Argonne

National Laboratory and Mississippi State University. MPI on the T3D used the EPCC

implementation, version 1.3a, which was developed by Edinburgh University in collaboration with

Cray Research. The commercial version of MPI used on the SP2 is version 2.1, which is an

implementation of MPI 1.0.

11

Explicit Shared-memory programming requires the programmer to explicitly fork parallel threads

and allocate shared-memory arenas through which these threads may communicate data. Although

this approach still requires the programmer to explicitly specify the parallelism in a program, SMP

programming is often considered to be an simpler programming paradigm than message-passing

due to the presence of a single, global name space. Indeed, much of the impetus behind the design

of shared-distributed memory [11,14] and shared virtual memory [9] systems is the perceived

benefits of this programming model.

The T3D Shmem library [2] takes advantage of the T3D’s shared-distributed memory

architecture by allowing the programmer to directly access a remote processor’s memory through

simple memory-to-memory copying. The Shmem library also includes simple group

communications operations. This model of programming can be seen as a cross between the

message-passing and shared-memory programming models.

High-Performance Fortran [8] is another proposed standard for parallel programming. This

language represents a class of parallel languages that extend the semantics of ordinary serial

programming languages to include vector and array operations. In HPF, the programmer explicitly

specifies data partitioning but allows the compiler to generate any necessary data communications.

This language can therefore be considered a compromise between automatic parallelization and

explicit parallel programming. HPF is an emerging standard with several planned implementations

for various parallel architectures. The version used here is a beta release of the IBM XL HPF

compiler. As such, execution times may not reflect the performance of the release version.1

3.3. Multiprocessor Systems

The parallel processing systems used in this study are summarized in Table 1. These systems are

described in more detail below.

The IBM SUR Cluster is composed of 8 IBM system 590 workstations with 66MHz Power2

processors. The workstations are connected via a 100Mb/s ATM switch. The cluster was

programmed using PVM and MPI.

1 Author’s note : The release date of XL HPF version 1.0 is scheduled soon after the time of this writing.

It is expected that version 1.0 performance figures will be available in time for the final draft of this paper.

12

The SGI Challenge Cluster consists of four SGI Challenges SMPs each containing four 200MHz

MIPS R4400 processors. The four systems are connected via a 266 Mbit/s Fibre Channel

network. Programs running on the Challenge Cluster were written in PVM and MPI.

The SGI Challenge is a 16 processor SMP configured with 1GB of main memory. Each

processor is a 200 MHz R4400. PowerC, PowerFortran, PVM and explicit shared-memory

programming were all used on this machine.

Although the IBM SP2 is often viewed as a custom multiprocessor system, its internal

construction is similar to a cluster of IBM RS/6000 workstations. The system used in this study is

composed of 10 rack-mounted 66MHz Power2 workstation cabinets, 8 of which participated in the

actual computations. The important difference between the SP2 and a true workstation cluster lies

in the 40MB/s multistage network connecting the workstation cabinets and in the custom software

made to take advantage of this network. In addition to public-domain implementations of PVM

and MPI, commercial versions of these languages are also used to program the SP2. A

commercial version of High-Performance Fortran was also used.

The Cray T3D consists of 512 150MHz Alpha processors connected via a custom, 300MB/s 3D

torus interconnect. T3D execution times were derived from a 64 node partition. The memory of

the T3D is logically shared but physically distributed across processors. The vendor-supplied

version of PVM, the EPCC version of MPI and Cray’s Shmem library were used to program the

T3D.

 Table 1. The five parallel processing systems used in this study

Machines Processors Interconnect Languages
SGI Challenge
Cluster

4 SGI Challenges each w/ 4
200MHz MIPS R4400 processors

shared-memory /
Fibre Channel

MPIch, PVM

IBM SUR
Cluster

8 IBM System 590s each w/
66MHz IBM Power2 processors

ATM MPI, PVM

SGI Challenge 16 processor SGI Challenge w/
200MHz MIPS R4400 processors

1GB shared-
memory

PowerC, PowerFortran,
MPIch, PVM

IBM SP2 8 “thin” nodes w/ 66MHz IBM
Power2 processors

custom
multistage

HPF, MPI, MPIch,
PVM, PVMe

Cray T3D 64 150MHz DEC Alpha
processors

custom 3D torus MPI, Cray PVM

13

4. Results

The six test programs were ported to each of the above machine/language pairs. Each version of

these programs was then tested to judge the performance and ease-of-use of the language used to

code the program. These criteria are compared in the following sections using the metrics and

methodology defined in Section 2.

4.1. Performance Results

Using the methodology described in Section 2.1, the relative performance of different

machine/languages pairs was compared. These performance results are summarized in Figure 3 -

7 below. Recall that execution times are normalized relative to the longest execution time for a

particular application. For example, in Figure 4, the normalized execution time of Warp using

MPI is unity, indicating that for all machine/language pairs, the IBM SUR Cluster using MPI

produced the slowest execution time for Warp. This normalization technique was chosen to give

both an indication of performance across machines and relative language performance within a

machine. For example, from Figure 3 we see that Hough using MPI ran approximately twice as

fast as the PVM version on the Challenge Cluster, but only about a third of the speed of the T3D

Shmem version.

Note that there are some exclusions in performance results denoted by an execution time of zero.

These exclusions are due to programs which, although logically correct, compiled but did not run

on the given machine. These failures can sometimes be attributed to memory limitations (Warp on

the T3D, for instance) but more often were the result of instabilities in the language

implementations. Although it is often possible to circumvent troublesome communications library

calls by replacing them with less intuitive calls, this approach was not taken. Rather, the failed

programs were allowed to exist as a comment on the stability of the language implementation.

The large number of machine/language/application combinations makes a complete analysis of

these results impractical. Instead, we will concentrate on finding general trends in the data. As a

start, we compare the relative execution times of executables written in the two portable message-

passing languages used in this study. Four of the five systems under study support both PVM and

MPI; the two cluster-based systems, the SP2 and the T3D. Note that the SP2 provides both

14

commercial and public-domain versions of PVM and MPI. The data labels MPI-IBM and PVMe

denote the commercial versions while MPI-ch and PVM represent the public-domain versions.

Across these machines, neither MPI nor PVM showed a clear performance advantage. Within a

given system, only the IBM SUR cluster showed a consistent trend with the PVM programs always

out performing their MPI equivalents. Similarly, performance was not correlated to specific test

programs. Indeed, what is most notable about the MPI and PVM data is its unpredictability. For

example, the public-domain versions of these languages on the SP2 show significantly varying

results between the warp and gauss test programs. The former program ran several times faster

using PVM, but this situation is reversed for gauss. We again emphasize that the reported times

are consistent, repeatable and are not the result of measurement fluctuations.

Referring once again to Figure 5, note that the commercial versions of PVM and MPI showed

comparatively consistent behavior on the SP2. Differences in execution time between the two

languages tended to less pronounced and performance was consistently better than the public

domain versions. The Cray T3D results shown in Figure 6 also show relatively small variations

between PVM and MPI execution times. In general, language versions implemented by the

machine vendor or, as in the case of MPI on the T3D, with their collaboration, tend to produce

more predictable execution times.

One partial explanation for this observation may be that these language implementations are better

tuned to a specific system as a result of the vendor’s involvement. For example, the SP2 supports

a low-level messaging protocol that runs in user space which is used in the commercial version of

MPI. This allows an alternative to using the IP protocol upon which the public domain MPI

implementation is built. By circumventing the higher-level protocols, programs using the user-level

protocol may send and receive messages with less software overhead. Figure 8 illustrates the

benefits of such an approach. In this figure, each SP2 program uses the vendor-supplied version of

MPI under three different conditions: using the SP2 high-speed switch with a user-level protocol,

using the same switch with an IP protocol, and using Ethernet with an IP protocol. These times

have been normalized to this last case.

15

� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �

� � �� � �� � �
� � �� � �
� � �� � �� � �
� � �� � �

� � � �� � � �� � � �
� � � �

� � �� � �� � �
� � �

� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �

� � �� � �� � �
� � �� � �
� � �� � �� � �
� � �� � �
� � �� � �� � �

� � � �� � � �� � � �
� � �� � �� � �

� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �

� �� �� �
� �� �
� �� �� �
� �� �
� �� �� �
� �� �
� �� �

	 	 	 		 	 	 		 	 	 	
	 	 	 		 	 	 	
	 	 	 		 	 	 		 	 	 	
	 	 	 		 	 	 	
	 	 	 		 	 	 		 	 	 	

	 	 		 	 		 	 	
	 	 		 	 	
	 	 		 	 		 	 	
	 	 		 	 	
	 	 		 	 		 	 	

� � � �� � � �� � � �
� � � �

� � �� � �� � �
� � �

� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �

� � �� � �� � �
� � �� � �
� � �� � �

Test Program

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

sobel filter hough warp gauss trfd

PVM
� �� �
� �

MPI

Figure 3. Language performance on SGI Challenge Cluster

� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �

� � �
� � �� � �� � �
� � �� � �
� � �� � �� � �
� � �� � �
� � �� � �

� � � �
� � � �� � � �� � � �

� � �
� � �� � �� � �

� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �

� � �
� � �� � �� � �
� � �� � �
� � �� � �� � �
� � �� � �

� � � �
� � � �� � � �� � � �
� � � �� � � �

� � �
� � �� � �� � �
� � �� � �

� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �

� �
� �� �� �
� �� �
� �� �� �
� �� �

� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �

� � �
� � �� � �� � �
� � �� � �
� � �

� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �

� � �
� � �� � �� � �
� � �� � �
� � �� � �� � �
� � �� � �
� � �� � �� � �
� � �� � �
� � �� � �� � �
� � �

� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �

� � �
� � �� � �� � �
� � �� � �
� � �� � �� � �
� � �� � �
� � �� � �� � �
� � �� � �
� � �� � �� � �
� � �

� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �

� � �
� � �� � �� � �
� � �� � �
� � �� � �� � �
� � �� � �
� � �� � �� � �
� � �� � �
� � �� � �� � �
� � �� � �
� � �� � �� � �
� � �� � �
� � �� � �� � �
� � �� � �

� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �

� � �
� � �� � �� � �
� � �� � �
� � �� � �� � �
� � �� � �
� � �� � �� � �
� � �� � �
� � �� � �� � �
� � �� � �
� � �� � �� � �
� � �� � �
� � �� � �� � �
� � �� � �
� � �� � �� � �

� � �
� � �� � �� � �
� � �� � �
� � �� � �� � �
� � �� � �
� � �� � �� � �
� � �� � �
� � �� � �� � �
� � �� � �
� � �� � �� � �
� � �� � �
� � �� � �� � �
� � �� � �
� � �� � �� � �

� � �
� � �� � �� � �
� � �� � �
� � �� � �� � �
� � �� � �
� � �� � �� � �
� � �� � �
� � �� � �� � �
� � �� � �
� � �� � �� � �
� � �� � �
� � �� � �� � �
� � �� � �
� � �� � �� � �

� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �

� � �
� � �� � �� � �
� � �� � �
� � �� � �� � �
� � �� � �
� � �� � �� � �
� � �� � �
� � �� � �� � �
� � �� � �
� � �� � �� � �
� � �� � �
� � �� � �� � �
� � �� � �
� � �� � �� � �

Test Program

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

sobel filter hough warp gauss trfd

� �
� �

PVM
� �� �

MPI

Figure 4. Language Performance on the IBM SUR Workstation Cluster

� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �

� � � �� � � �
� � � �� � � �� � � �

� � �� � �
� � �� � �� � �
� � �� � �

! ! !! ! !
! ! !! ! !

" " " "" " " "
" " " "" " " "" " " "
" " " "" " " "
" " " "

#
#
#
#
#
#
#
#

$ $ $ $$ $ $ $
$ $ $ $$ $ $ $$ $ $ $
$ $ $ $

% % %% % %
% % %% % %% % %
% % %% % %
% % %% % %% % %
% % %% % %
% % %% % %% % %
% % %% % %
% % %% % %% % %
% % %% % %
% % %% % %% % %
% % %% % %
% % %% % %% % %
% % %% % %
% % %% % %

& & && & &
& & && & && & &
& & && & &
& & && & && & &
& & && & &
& & && & && & &

' ' ' '' ' ' '
' ' ' '' ' ' '' ' ' '
' ' ' '

((((((((
((((((((((((
((((((((
((((((((((((
((((((((
((((

))))))))
))))))))))))
))))))))
))))))))))))
))))))))
))))))))

* * ** * *
* * ** * ** * *

+ + ++ + +
+ + ++ + ++ + +
+ + ++ + +
+ + ++ + ++ + +
+ + ++ + +
+ + +

, , , ,, , , ,
, , , ,, , , ,

- - - -- - - -
- - - -- - - -- - - -
- - - -- - - -
- - - -- - - -- - - -
- - - -- - - -

.
.
.
.
.
.
. . . .

/ / // / /
/ / // / // / /
/ / // / /
/ / // / // / /
/ / // / /
/ / // / // / /
/ / // / /
/ / // / // / /
/ / // / /
/ / /

0 0 00 0 0
0 0 00 0 00 0 0
0 0 00 0 0
0 0 00 0 00 0 0
0 0 00 0 0
0 0 00 0 00 0 0
0 0 00 0 0
0 0 00 0 00 0 0
0 0 00 0 0
0 0 00 0 00 0 0
0 0 00 0 0
0 0 00 0 00 0 0
0 0 00 0 0
0 0 00 0 0

Test Program

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

sobel filter hough warp gauss trfd

MPI-IBM
1 1 11 1 1

PVMe
2 2 2
2 2 2

MPI-ch
3 3 33 3 33 3 3

PVM
4 4 44 4 4
4 4 4

HPF

Figure 5. Language Performance on the IBM SP2

16

5 5 5 5
5 5 5 55 5 5 55 5 5 5
5 5 5 55 5 5 5
5 5 5 55 5 5 55 5 5 5
5 5 5 55 5 5 5
5 5 5 55 5 5 55 5 5 5
5 5 5 55 5 5 5
5 5 5 55 5 5 55 5 5 5
5 5 5 55 5 5 5
5 5 5 55 5 5 55 5 5 5
5 5 5 55 5 5 5
5 5 5 55 5 5 55 5 5 5

5
55
5
55
55
5
55
55
5
55
55
5
55
55
5
55
55
5

6 6 6 6
6 6 6 66 6 6 66 6 6 6
6 6 6 66 6 6 6
6 6 6 66 6 6 66 6 6 6
6 6 6 66 6 6 6
6 6 6 66 6 6 66 6 6 6
6 6 6 66 6 6 6
6 6 6 66 6 6 66 6 6 6
6 6 6 66 6 6 6
6 6 6 66 6 6 66 6 6 6
6 6 6 66 6 6 6
6 6 6 66 6 6 66 6 6 6

6
66
6
66
66
6
66
66
6
66
66
6
66
66
6
66
66
6

7 7 7 7
7 7 7 77 7 7 77 7 7 7
7 7 7 77 7 7 7
7 7 7 77 7 7 77 7 7 7
7 7 7 77 7 7 7
7 7 7 77 7 7 77 7 7 7
7 7 7 77 7 7 7
7 7 7 77 7 7 77 7 7 7
7 7 7 77 7 7 7
7 7 7 77 7 7 77 7 7 7
7 7 7 77 7 7 7
7 7 7 77 7 7 77 7 7 7
7 7 7 77 7 7 7

7
77
7
77
77
7
77
77
7
77
77
7
77
77
7
77
77
7
77

8 8 8 8
8 8 8 88 8 8 88 8 8 8
8 8 8 88 8 8 8
8 8 8 88 8 8 8

8
88
8
88
88

9 9 9 9
9 9 9 99 9 9 99 9 9 9
9 9 9 99 9 9 9
9 9 9 99 9 9 99 9 9 9

9
99
9
99
99
9

: : : :
: : : :: : : :: : : :
: : : :: : : :
: : : :: : : :: : : :
: : : :: : : :
: : : :: : : :: : : :
: : : :: : : :
: : : :: : : :: : : :
: : : :: : : :
: : : :: : : :: : : :
: : : :: : : :
: : : :: : : :: : : :
: : : :

:
::
:
::
::
:
::
::
:
::
::
:
::
::
:
::
::
:
:

; ; ; ;
; ; ; ;; ; ; ;; ; ; ;
; ; ; ;; ; ; ;
; ; ; ;; ; ; ;; ; ; ;
; ; ; ;; ; ; ;
; ; ; ;; ; ; ;; ; ; ;
; ; ; ;; ; ; ;
; ; ; ;; ; ; ;; ; ; ;
; ; ; ;; ; ; ;
; ; ; ;; ; ; ;; ; ; ;
; ; ; ;; ; ; ;
; ; ; ;; ; ; ;

;
;;
;
;;
;;
;
;;
;;
;
;;
;;
;
;;
;;
;
;;
;;

< < < <
< < < << < < << < < <
< < < << < < <
< < < << < < << < < <
< < < << < < <
< < < << < < << < < <
< < < << < < <
< < < << < < << < < <
< < < << < < <
< < < << < < << < < <
< < < << < < <

<
<<
<
<<
<<
<
<<
<<
<
<<
<<
<
<<
<<
<
<<

= = = =
= = = == = = == = = =
= = = == = = =
= = = =

=
==
=
==
=

> > > >
> > > >> > > >> > > >
> > > >> > > >
> > > >> > > >> > > >

>
>>
>
>>
>>
>

? ? ? ?
? ? ? ?? ? ? ?? ? ? ?
? ? ? ?? ? ? ?
? ? ? ?? ? ? ?? ? ? ?
? ? ? ?? ? ? ?
? ? ? ?? ? ? ?? ? ? ?
? ? ? ?? ? ? ?
? ? ? ?? ? ? ?? ? ? ?
? ? ? ?? ? ? ?
? ? ? ?? ? ? ?? ? ? ?
? ? ? ?? ? ? ?
? ? ? ?

?
??
?
??
??
?
??
??
?
??
??
?
??
??
?
??
?

@ @ @ @
@ @ @ @@ @ @ @@ @ @ @
@ @ @ @@ @ @ @
@ @ @ @@ @ @ @@ @ @ @
@ @ @ @@ @ @ @
@ @ @ @@ @ @ @@ @ @ @
@ @ @ @@ @ @ @
@ @ @ @@ @ @ @@ @ @ @
@ @ @ @@ @ @ @
@ @ @ @@ @ @ @@ @ @ @

@
@@
@
@@
@@
@
@@
@@
@
@@
@@
@
@@
@@
@

A A A A
A A A AA A A AA A A A
A A A AA A A A
A A A AA A A AA A A A
A A A AA A A A
A A A AA A A AA A A A
A A A AA A A A
A A A AA A A AA A A A
A A A AA A A A
A A A AA A A AA A A A
A A A AA A A A
A A A AA A A AA A A A

A
AA
A
AA
AA
A
AA
AA
A
AA
AA
A
AA
AA
A
AA
AA
A

B B B B
B B B B

B
B C C C C

C C C CC C C CC C C C

C
CC
C

D D D D
D D D DD D D DD D D D
D D D DD D D D
D D D D

D
DD
D
DD
D

Test Program

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

sobel filter hough warp gauss trfd

E E E
E E E

PVM

F F F
F F FF F F

MPI

G G GG G GG G G
Shmem

Figure 6. Language Performance on the Cray T3D

H H H HH H H HH H H H
H H H HH H H H
H H H HH H H HH H H H
H H H HH H H H
H H H HH H H HH H H H
H H H HH H H H

HH
H
HH
HH
H
HH
HH
H
HH

I I I II I I II I I I
I I I II I I I
I I I II I I II I I I

II
I
II
II
I

J J JJ J JJ J J
J J JJ J J
J J JJ J JJ J J
J J JJ J J
J J JJ J JJ J J

JJ
J
JJ
JJ
J
JJ
JJ
J

K K K KK K K KK K K K
KK
K

L L L LL L L L LL M M M MM M M MM M M M
MM
M

N N N NN N N NN N N N
N N N NN N N N
N N N NN N N NN N N N
N N N NN N N N
N N N NN N N NN N N N
N N N NN N N N

NN
N
NN
NN
N
NN
NN
N
NN

O O O OO O O OO O O O
O O O OO O O O
O O O OO O O OO O O O
O O O OO O O O
O O O O

OO
O
OO
OO
O
OO
O

P P P PP P P PP P P P
P P P PP P P P
P P P PP P P PP P P P
P P P PP P P P
P P P PP P P PP P P P
P P P PP P P P
P P P PP P P PP P P P
P P P PP P P P
P P P PP P P PP P P P
P P P PP P P P
P P P PP P P P

PP
P
PP
PP
P
PP
PP
P
PP
PP
P
PP
PP
P
PP
PP

Q Q Q QQ Q Q QQ Q Q Q
Q Q Q QQ Q Q Q
Q Q Q QQ Q Q QQ Q Q Q

QQ
Q
QQ
QQ
Q

R R R RR R R RR R R R
R R R RR R R R
R R R R

RR
R
RR
R

S S S SS S S SS S S S
S S S SS S S S
S S S SS S S SS S S S
S S S SS S S S
S S S SS S S SS S S S
S S S SS S S S
S S S SS S S SS S S S
S S S SS S S S
S S S SS S S SS S S S
S S S SS S S S
S S S SS S S SS S S S
S S S SS S S S
S S S SS S S SS S S S
S S S SS S S S

SS
S
SS
SS
S
SS
SS
S
SS
SS
S
SS
SS
S
SS
SS
S
SS
SS
S
SS

T T T TT T T TT T T T
T T T TT T T T
T T T TT T T T

TT
T
TT
TT

U U U UU U U UU U U U
U U U UU U U U
U U U UU U U UU U U U
U U U UU U U U
U U U UU U U UU U U U
U U U UU U U U
U U U UU U U UU U U U
U U U UU U U U
U U U UU U U UU U U U
U U U U

UU
U
UU
UU
U
UU
UU
U
UU
UU
U
UU
UU
U
U

V V V VV V V VV V V V
V V V V

VV
V
V

W W W WW W W WW W W W
W W W WW W W W
W W W WW W W W

X X X XX X X XX X X X
X X X XX X X X

XX
X
XX

Test Program

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

sobel filter hough warp gauss trfd

Y Y YY Y YY Y Y
UNIX SMP

Z Z ZZ Z Z
Z Z Z

PVM
[[[
[[[

PowerC/F77

Figure 7. Language Performance on the SGI Challenge

Note that these results are application-specific. In sobel and filter, a small number (3 - 9) of

medium sized messages (roughly 4-64KB each) are sent per node. The benefit of using a user-level

protocol versus IP is quite slight compared to the benefit of using a faster network. This effect is

even more pronounced in warp and hough where the number of messages is still relatively small

but the messages sizes are large, ranging from 1 to 6MB on average. Here, the increased

bandwidth of the high-speed network clearly plays the more dominate role in reducing run time.

This is not the case with gauss and trfd, however. These applications both transfer a large number

17

of messages which vary in size. Here, the software latency of sending and receiving many

messages plays a more substantial role in overall program performance.

Although establishing specific factors that cause one language implementation to provide better

performance than another is beyond the scope of this work, the above discussion demonstrates the

potential for taking advantage of particular system features. Moreover, this process can clearly be

aided by designers familiar with the target system.

\ \ \ \
\ \ \ \\ \ \ \
\ \ \ \\ \ \ \\ \ \ \
\ \ \ \\ \ \ \
\ \ \ \\ \ \ \\ \ \ \
\ \ \ \\ \ \ \
\ \ \ \\ \ \ \\ \ \ \
\ \ \ \\ \ \ \
\ \ \ \\ \ \ \\ \ \ \

\
\\
\\
\
\\
\\
\
\\
\\
\
\\
\\
\

]]]]
]]]]]]]]
]]]]]]]]]]]]
]]]]]]]]
]]]]]]]]]]]]
]]]]]]]]
]]]]]]]]]]]]
]]]]]]]]
]]]]]]]]]]]]
]]]]]]]]
]]]]]]]]]]]]
]]]]

]
]]
]]
]
]]
]]
]
]]
]]
]
]]
]]
]
]]
]]
]
]

^ ^ ^
^ ^ ^^ ^ ^
^ ^ ^^ ^ ^

^
^^
^^

_ _ _ _
_ _ _ __ _ _ _
_ _ _ __ _ _ __ _ _ _
_ _ _ _

_
__
__
_
_

` ` ` `
` ` ` `` ` ` `
` ` ` `` ` ` `` ` ` `
` ` ` `` ` ` `
` ` ` `` ` ` `` ` ` `
` ` ` `` ` ` `
` ` ` `` ` ` `` ` ` `
` ` ` `

`
``
``
`
``
``
`
``
``
`
`

a a a
a a aa a a
a a aa a aa a a
a a aa a a
a a aa a aa a a
a a aa a a
a a aa a aa a a
a a a

a
aa
aa
a
aa
aa
a
aa
aa
a
a

b b b b
b b b bb b b b
b b b bb b b bb b b b
b b b bb b b b
b b b bb b b bb b b b
b b b bb b b b
b b b bb b b bb b b b
b b b bb b b b
b b b bb b b bb b b b

b
bb
bb
b
bb
bb
b
bb
bb
b
bb
bb
b

c c c c
c c c cc c c c
c c c cc c c cc c c c
c c c cc c c c
c c c cc c c cc c c c
c c c cc c c c
c c c cc c c cc c c c
c c c cc c c c
c c c cc c c cc c c c
c c c cc c c c
c c c cc c c cc c c c
c c c c

c
cc
cc
c
cc
cc
c
cc
cc
c
cc
cc
c
cc
cc
c
c

d d d d
d d d dd d d d
d d d dd d d dd d d d

d
dd
dd
d

e e e e
e e e ee e e e
e e e ee e e ee e e e
e e e e

f f f f
f f f ff f f f
f f f ff f f ff f f f
f f f ff f f f
f f f ff f f ff f f f
f f f ff f f f
f f f ff f f ff f f f
f f f ff f f f
f f f ff f f ff f f f
f f f ff f f f
f f f ff f f ff f f f
f f f f

f
ff
ff
f
ff
ff
f
ff
ff
f
ff
ff
f
ff
ff
f
f

g g g g
g g g gg g g g
g g g gg g g gg g g g
g g g gg g g g
g g g gg g g gg g g g
g g g gg g g g
g g g gg g g gg g g g
g g g gg g g g
g g g gg g g gg g g g
g g g gg g g g
g g g gg g g gg g g g

g
gg
gg
g
gg
gg
g
gg
gg
g
gg
gg
g
gg
gg
g

h h h h
h h h hh h h h
h h h hh h h hh h h h
h h h hh h h h
h h h hh h h hh h h h
h h h hh h h h
h h h hh h h hh h h h
h h h hh h h h
h h h hh h h hh h h h
h h h hh h h h
h h h hh h h hh h h h
h h h hh h h h
h h h hh h h hh h h h
h h h hh h h h
h h h hh h h h

h
hh
hh
h
hh
hh
h
hh
hh
h
hh
hh
h
hh
hh
h
hh
hh
h
hh
hh

i i i i
i i i ii i i i
i i i ii i i ii i i i
i i i ii i i i
i i i ii i i ii i i i
i i i ii i i i
i i i ii i i ii i i i
i i i ii i i i
i i i ii i i ii i i i
i i i ii i i i
i i i ii i i ii i i i
i i i ii i i i
i i i ii i i ii i i i
i i i ii i i i
i i i ii i i i

i
ii
ii
i
ii
ii
i
ii
ii
i
ii
ii
i
ii
ii
i
ii
ii
i
ii
ii

j j j j
j j j jj j j j
j j j jj j j jj j j j
j j j jj j j j
j j j jj j j jj j j j
j j j jj j j j
j j j jj j j jj j j j
j j j jj j j j
j j j jj j j jj j j j
j j j jj j j j
j j j jj j j jj j j j
j j j jj j j j
j j j jj j j jj j j j
j j j jj j j j
j j j jj j j j

j
jj
jj
j
jj
jj
j
jj
jj
j
jj
jj
j
jj
jj
j
jj
jj
j
jj
jj

k k k k
k k k kk k k k
k k k kk k k kk k k k
k k k kk k k k
k k k kk k k kk k k k
k k k kk k k k
k k k kk k k kk k k k
k k k kk k k k
k k k kk k k kk k k k
k k k kk k k k
k k k kk k k kk k k k
k k k kk k k k
k k k kk k k kk k k k
k k k kk k k k
k k k kk k k k

k
kk
kk
k
kk
kk
k
kk
kk
k
kk
kk
k
kk
kk
k
kk
kk
k
kk
kk

l l l l
l l l ll l l l
l l l ll l l ll l l l
l l l ll l l l
l l l ll l l ll l l l
l l l ll l l l
l l l ll l l ll l l l
l l l ll l l l
l l l ll l l ll l l l
l l l ll l l l
l l l ll l l ll l l l
l l l ll l l l
l l l ll l l ll l l l
l l l ll l l l
l l l ll l l l

m m m m
m m m mm m m m
m m m mm m m mm m m m
m m m mm m m m
m m m mm m m mm m m m
m m m mm m m m
m m m mm m m mm m m m
m m m mm m m m
m m m mm m m mm m m m
m m m mm m m m
m m m mm m m mm m m m
m m m mm m m m
m m m mm m m mm m m m
m m m mm m m m
m m m mm m m m

m
mm
mm
m
mm
mm
m
mm
mm
m
mm
mm
m
mm
mm
m
mm
mm
m
mm
mm

Test Program

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

sobel filter warp hough gauss trfd

n n n
n n nn n n

Switch-User
o o oo o o
o o o

Switch-IP
p p p
p p pp p p

Ethernet

 Figure 8. The Effects of Software Latency and Network bandwidth on the SP2

The remaining four languages were not available on multiple platforms as were the message-

passing languages and therefore cannot be used for cross-architectural comparisons. These

language results are included here, however, for intrasystem comparisons and for later reference.

The Shmem library results for the T3D shown in Figure 6 show a slight performance improvement

than both MPI and PVM for all test programs but hough. The large reduction operations in hough

may be more efficiently implemented by the MPI library function than its hand-coded Shmem

equivalent. Note that PVM and MPI times were not available for the warp benchmark on the T3D

due to lack of sufficient memory space. This was not the case for the Shmem library which adds

comparatively little space overhead.

Figure 7 compares the performance of three language alternatives for the SGI Challenge SMP.

18

In general, the explicit shared-memory programming model produced the fastest executables, with

the exception of filter which ran slightly faster using the PowerFortran compiler. PVM programs

varied in execution time relative to the explicit shared-memory programs. In general, the

PowerFortran and PowerC compilers performed well compared to their hand-coded counterparts.

Unlike the other languages which used only mild (-O2) compiler optimizations, the PowerFortran

and PowerC compilers were allowed to use more aggressive serial optimizations. This, in part,

may account for the compilers’ surprisingly good performance.

(Note to reviewers : Few of the HPF run times are reported here, as shown in Figure 5.

Although the HPF compiler generated executables for the test programs, run times were often

too high to be considered representative. It is hoped that the final release of the XL HPF

compiler will generate executables with run times comparable to the other languages used in this

study).

4.2. Complexity Results

The normalized NCSS and MCC values for each of the languages used in this study are

summarized in Figure 9 and Figure 10. In these figures, all parallel complexity values have been

normalized relative to their equivalent serial program complexity values. Absolute complexity

values for the serial versions of the test programs are provided in Table 2 as a reference. In this

table, LOC represents lines of source code. This table shows complexity metric values for both the

entire source code file and for the computational kernals. The kernel complexity values are used to

calculate the scaled complexity values shown in Figures 9 and 10.

Note that we have distinguished between PVM for the cluster systems and the version of PVM

used by the Cray T3D. MPI programs were identical across all the machines and are therefore

 Table 2. Serial Source Code Metrics

Test Total Source Code File Kernel Source Code
Program LOC NCSS MCC LOC NCSS MCC

sobel 360 130 25 67 49 13
filter 368 120 15 52 22 3
hough 403 161 38 110 87 26
warp 395 150 23 53 18 7
gauss 271 120 22 67 30 10
trfd 292 98 34 247 91 33

19

represented by a single value. Although not explicitly shown, note that the complexity of parallel

programs generated by the SGI Power compilers will always normalize to unity, since these

parallelizing compilers operate directly on the sequential source code.

4.2.1. Message-passing Languages

From Figure 9 and Figure 10, it is clear that programs written in a message-passing language tend

to be substantially more complex than the equivalent sequential programs. Among the message-

passing languages, normalized NCSS values range from 1.2 to 16 while normalized MCC values

range from 1.1 to 20.

The message-passing versions of filter and warp show the most pronounced increase in

complexity. The serial versions of these programs have relatively small computational kernels

which iterate over the input image. The addition of message-passing code therefore adds a

significant amount of complexity since simple memory references in the serial code must be

replaced with several message sends and receives with neighboring processors. Warp adds

the additional complication of an irregular communication pattern that must be resolved at run

time. As a result, it shows a greater increase in NCSS than filter. Sobel has communication

requirements similar to filter but its computational kernel is larger. Since this large kernel is

essentially the same in both the serial and message-passing versions, the complexity added by

message-passing is less pronounced.

The hough benchmark does not show as significant an increase in complexity as sobel, filter and

warp. Hough’s predominate communication operation involves finding a set of maximum arrays

values and the message-passing languages provide support for this type of global reduction. Given

an array distributed across several processors, PVM and MPI are able to reduce these arrays to a

single maximum, minimum, sum, etc. with a single function call. Similar reduction operations are

to be found in gauss, but gauss also requires several broadcast and point-to-point messages that

tend to offset this advantage of message-passing. The communication patterns in gauss do not

involve multiple sends and receives on each node, however, and therefore add only a moderate

amount of programming overhead.

20

q q q q
q q q qq q q q
q q q qq q q qq q q q
q q q qq q q q
q q q qq q q qq q q q
q q q qq q q q
q q q q

r r r r
r r r rr r r r
r r r rr r r rr r r r
r r r rr r r r
r r r rr r r rr r r r
r r r rr r r r
r r r rr r r rr r r r
r r r rr r r r
r r r rr r r rr r r r
r r r rr r r r
r r r rr r r rr r r r
r r r rr r r r
r r r rr r r rr r r r
r r r rr r r r
r r r r

s s s s
s s s ss s s s
s s s ss s s ss s s s

t t t t
t t t tt t t t
t t t tt t t tt t t t
t t t tt t t t
t t t tt t t tt t t t
t t t tt t t t
t t t tt t t tt t t t
t t t tt t t t
t t t tt t t tt t t t
t t t tt t t t
t t t tt t t tt t t t
t t t tt t t t
t t t tt t t tt t t t
t t t tt t t t
t t t tt t t tt t t t
t t t tt t t t
t t t tt t t tt t t t
t t t tt t t t
t t t tt t t tt t t t
t t t tt t t t
t t t tt t t tt t t t
t t t tt t t t
t t t tt t t tt t t t
t t t tt t t t
t t t tt t t tt t t t

u u u u
u u u uu u u u
u u u uu u u uu u u u
u u u uu u u u
u u u uu u u uu u u u
u u u uu u u u
u u u uu u u u

v v v v
v v v vv v v v
v v v vv v v vv v v v
v v v v

w w w w
w w w ww w w w
w w w ww w w ww w w w
w w w ww w w w
w w w ww w w ww w w w
w w w ww w w w

x x x x
x x x xx x x x
x x x xx x x xx x x x
x x x xx x x x
x x x xx x x xx x x x
x x x xx x x x
x x x xx x x xx x x x
x x x xx x x x
x x x xx x x xx x x x
x x x xx x x x
x x x xx x x xx x x x
x x x xx x x x
x x x x

y y y y
y y y yy y y y
y y y yy y y yy y y y

z z z z
z z z zz z z z
z z z zz z z zz z z z
z z z zz z z z
z z z zz z z zz z z z
z z z zz z z z
z z z zz z z zz z z z
z z z zz z z z
z z z zz z z zz z z z
z z z zz z z z
z z z zz z z zz z z z
z z z zz z z z
z z z zz z z zz z z z
z z z zz z z z
z z z zz z z zz z z z
z z z zz z z z
z z z zz z z zz z z z
z z z zz z z z
z z z zz z z zz z z z
z z z zz z z z
z z z zz z z zz z z z
z z z zz z z z
z z z zz z z zz z z z

{ { { {
{ { { {{ { { {
{ { { {{ { { {{ { { {
{ { { {{ { { {
{ { { {{ { { {{ { { {
{ { { {{ { { {
{ { { {

} } } }
} } } }} } } }
} } } }} } } }} } } }
} } } }} } } }
} } } }} } } }

~ ~ ~ ~
~ ~ ~ ~~ ~ ~ ~
~ ~ ~ ~~ ~ ~ ~~ ~ ~ ~
~ ~ ~ ~~ ~ ~ ~
~ ~ ~ ~~ ~ ~ ~~ ~ ~ ~
~ ~ ~ ~~ ~ ~ ~
~ ~ ~ ~~ ~ ~ ~~ ~ ~ ~
~ ~ ~ ~~ ~ ~ ~
~ ~ ~ ~

� � � �
� � � �� � � �
� � � �� � � �� � � �

� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �

� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �

� � � �
� � � �� � � �
� � � �� � � �� � � �

� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �

� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �

� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �

� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �

� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �

� � � �
� � � �� � � �
� � � �� � � �

� � � �
� � � �� � � �
� � � �� � � �� � � �

� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �

� � � �
� � � �� � � �
� � � �

� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �

� � � �
� � � �� � � �
� � � �� � � �� � � �

� � � �
� � � �

Test Pr ogr am

N
or

m
al

iz
ed

 N
C

S
S

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

sobel fi lter hough warp gauss trfd

MPI
� �� �
� �

PVM
� �� �

T3D PVM

� �
� �� �

Shmem
� �� �

SMP

� �
� �� �

HPF

Figure 9. NCSS measurements for the different parallel languages

� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �

� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �

� � � �
� � � �� � � �� � � �
� � � �

� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �

� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �

� � � �
� � � �� � � �� � � �
� � � �

� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �

� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �

� � � �
� � � �� � � �� � � �

� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �

� � � �
� � � �� � � �� � � �
� � � �� � � �
� � � �� � � �� � � �

� � � �
� � � �� � � �� � � �
� � � �

¡ ¡ ¡ ¡
¡ ¡ ¡ ¡¡ ¡ ¡ ¡¡ ¡ ¡ ¡
¡ ¡ ¡ ¡¡ ¡ ¡ ¡
¡ ¡ ¡ ¡¡ ¡ ¡ ¡¡ ¡ ¡ ¡
¡ ¡ ¡ ¡¡ ¡ ¡ ¡
¡ ¡ ¡ ¡¡ ¡ ¡ ¡¡ ¡ ¡ ¡
¡ ¡ ¡ ¡¡ ¡ ¡ ¡
¡ ¡ ¡ ¡¡ ¡ ¡ ¡¡ ¡ ¡ ¡
¡ ¡ ¡ ¡¡ ¡ ¡ ¡
¡ ¡ ¡ ¡¡ ¡ ¡ ¡

¢ ¢ ¢ ¢
¢ ¢ ¢ ¢¢ ¢ ¢ ¢¢ ¢ ¢ ¢

£ £ £ £
£ £ £ ££ £ £ ££ £ £ £
£ £ £ ££ £ £ £
£ £ £ ££ £ £ ££ £ £ £
£ £ £ ££ £ £ £
£ £ £ ££ £ £ ££ £ £ £
£ £ £ ££ £ £ £
£ £ £ ££ £ £ ££ £ £ £
£ £ £ ££ £ £ £
£ £ £ ££ £ £ ££ £ £ £
£ £ £ ££ £ £ £
£ £ £ ££ £ £ ££ £ £ £

¤ ¤ ¤ ¤
¤ ¤ ¤ ¤¤ ¤ ¤ ¤¤ ¤ ¤ ¤
¤ ¤ ¤ ¤¤ ¤ ¤ ¤
¤ ¤ ¤ ¤¤ ¤ ¤ ¤¤ ¤ ¤ ¤

¥ ¥ ¥ ¥
¥ ¥ ¥ ¥¥ ¥ ¥ ¥¥ ¥ ¥ ¥

¦ ¦ ¦ ¦
¦ ¦ ¦ ¦¦ ¦ ¦ ¦¦ ¦ ¦ ¦
¦ ¦ ¦ ¦¦ ¦ ¦ ¦
¦ ¦ ¦ ¦

§ § § §
§ § § §§ § § §§ § § §
§ § § §§ § § §
§ § § §§ § § §§ § § §
§ § § §§ § § §
§ § § §§ § § §

¨ ¨ ¨ ¨
¨ ¨ ¨ ¨¨ ¨ ¨ ¨¨ ¨ ¨ ¨
¨ ¨ ¨ ¨

© © © ©
© © © ©© © © ©© © © ©
© © © ©© © © ©

ª ª ª ª
ª ª ª ªª ª ª ªª ª ª ª
ª ª ª ªª ª ª ª
ª ª ª ª

« « « «
« « « «« « « «« « « «

¬ ¬ ¬ ¬
¬ ¬ ¬ ¬¬ ¬ ¬ ¬¬ ¬ ¬ ¬
¬ ¬ ¬ ¬¬ ¬ ¬ ¬
¬ ¬ ¬ ¬¬ ¬ ¬ ¬

® ® ® ®
® ® ® ®® ® ® ®® ® ® ®
® ® ® ®® ® ® ®

¯ ¯ ¯ ¯
¯ ¯ ¯ ¯¯ ¯ ¯ ¯¯ ¯ ¯ ¯
¯ ¯ ¯ ¯¯ ¯ ¯ ¯
¯ ¯ ¯ ¯¯ ¯ ¯ ¯¯ ¯ ¯ ¯
¯ ¯ ¯ ¯¯ ¯ ¯ ¯
¯ ¯ ¯ ¯¯ ¯ ¯ ¯¯ ¯ ¯ ¯
¯ ¯ ¯ ¯¯ ¯ ¯ ¯
¯ ¯ ¯ ¯¯ ¯ ¯ ¯¯ ¯ ¯ ¯

° ° ° °
° ° ° °° ° ° °° ° ° °
° ° ° °° ° ° °

± ± ± ±
± ± ± ±± ± ± ±± ± ± ±
± ± ± ±± ± ± ±

Test Pr ogr am

N
or

m
al

iz
ed

 M
C

C

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

sobel fi lter hough warp gauss trfd

MPI
² ²
² ²

PVM

³ ³³ ³³ ³
T3D PVM

´ ´
´ ´

Shmem

µ µµ µ
µ µ

SMP
¶ ¶¶ ¶

HPF

Figure 10. MCC measurements for five different parallel languages

21

Trfd shows a comparatively small increase in complexity despite being one of the more

communication-intensive programs. There are two explanations for this apparent discrepancy.

First, like sobel, the computational kernel of trfd is comparatively large. Secondly although trfd

generates many messages at run time, these messages originate from only a few message-passing

function calls which are called repeatedly within looping constructs.

Note that PVM programs generally show slightly higher complexity values than those of MPI

programs. The source of this increased complexity is a result of several subtle differences in the

languages. For example, the PVM programs required more data packing/unpacking operations and

PVM provides less powerful reduction operations than MPI. The main difference in complexity

between standard PVM programs and their Cray PVM equivalents is due to the former’s method of

spawning processes and assigning task identifiers. Both Cray PVM and MPI handle this these

startup operations somewhat more elegantly than standard PVM.

4.2.2. Shared-memory Languages

The shared-memory programs tend to produce noticeably lower complexity values compared to

their message-passing equivalents. Much of this difference can be attributed to the absence of data

packing, unpacking and buffering operations which are an intrinsic part of message-passing

languages but are not needed in the shared-memory languages. Instead, shared objects are

referenced directly without the need to first copy them into and then out of buffer space.

Note that the programs written using the Cray Shmem library typically showed higher complexity

values than the respective SMP programs. This difference is a consequence of the Shmem

library’s distributed view of memory. Although objects on different processors may share the same

name, remote references to these objects must be made through Shmem library calls prefaced by a

PE number in a fashion similar to message-passing. For example, if a one hundred element array,

A, is distributed across processors P0 and P1, and P0 wishes to write into P1’s portion of this

array, P0’s program would be similar the following code segment:

int A[50]; /* Half of the total array size */
int B[10]; /* Data to be written to A */

main(){

/* Write 10 ints from B into A on processor 1 */
Shmem_put(B, A, 10, 1);

}

22

In fact, this code shares much in common with a send message-passing operation although no

matching receive is required. The Shmem library’s hybrid design is reflected in it’s complexity

values which typically fall between those of the message-passing languages and true shared-

memory code.

The exception to this observation occurs in hough which actually produced slightly higher

complexity ratings for the SMP version than the Shmem and the message-passing versions. This

increase in the SMP complexity is a result of the reduction operations in hough for which message-

passing languages have built-in support but is not part of the SMP library and therefore had to be

hand-coded.

4.2.3. High-Performance Fortran

HPF programs do not explicitly specify process spawning, communication or synchronization.

Consequently, they tend to require fewer source code statements to encode a given program than

the other languages. In fact, hough and trfd written in HPF actually required fewer statements than

the original serial versions. HPF produces low statement counts for these programs because they

are easily described as sequences of matrix operations. A major strength of HPF is its support of

high-level vector and matrix operations which are not found in ordinary serial programs. For

example, a sequential element-wise addition of two matrices would be written in standard Fortran

as

However, the equivalent operation in HPF would require only a single assignment statement :

Turning to the MCC complexity results, we see that HPF does not fare as well as with the NCSS

comparisons. The MCC ratings values for HPF tend to be high compared to the NCSS values for

the same program because of HPF’s “shorthand” forall statements notation for array

do 20 i = 1, x
do 10 j = 1, y

C(i,j) = A(i,j) + B(i,j)
10 continue
20 continue

C(1:x, 1:y) = A(1:x, 1:y) + B(1:x, 1:y)

23

operations. A single forall statement typically contains several predicates. For example, the

following code fragment was taken from the HPF version of warp:

Note that this code fragment would produce an NCSS value of 2 (one forall statement plus one

assignment statement). An equivalent sequential program would require three nested do loops and

one assignment statement resulting in an NCSS value of 4. However, both versions produce MCC

values of 3. Determining meaningful complexity values for a parallel language such as High-

Performance Fortran is an open question. For this study, we have chosen to treat forall

statements, such as that given above, as a single statements that produces an MCC value equal to

its sequential equivalent.

4.3. Complexity Summary

With the exceptions noted above, porting a sequential program to a parallel language tends to add,

often significantly, to the program’s complexity. The amount of added complexity is language

dependent. Message-passing languages tend to add the most programming overhead. Shared-

memory languages and HPF add less complexity than message-passing. HPF produces very

concise programs as evidenced by its low NCSS ratings, but may actually add more control

complexity than SMP programming as indicated by its MCC values. The added source code

complexity of parallel languages can largely be attributed to five main factors, to varying degrees

depending of the language:

1. Separate control paths for different “classes” of parallel threads - Often, the code executed

by a particular parallel thread depends on what role that thread is currently playing in the

overall parallel computation. For example, recall that when doing Gaussian elimination using

partial pivoting, the pivot row (or column) requires special processing. If the input matrix is

partitioned among processors, the processor holding the pivot row will need to execute along a

different control path than the other processors to handle the special processing of the pivot

row. This type of code dichotomy is common in message-passing and shared-memory

programs but has no analogue in HPF programs.

forall(i = 1:16; j = 1:16, k = 1:4)
warp_coeff (k, j, i) = q(k,j) * q(1,i)

24

2. Explicit exchange of data in using communications library calls - Partitioning data among

several processors usually necessitates communicating data between processors. The bulk of

the message-passing libraries consists of functions which implement various types of

interprocessor communications operations. The T3D Shmem library does not require both a

sender and receiver and therefore adds less complexity in this regard. In addition to the

communication call itself, several message-passing source code statements may be required to

either pack data to be sent or to unpack received data. Using HPF, interprocessor

communications operations are generated by the compiler and therefore hidden by the

compiler.

3. The need to spawn several parallel threads - Process spawning is normally done explicitly

in PVM and SMP programming, whereas MPI, Shmem and HPF programs spawn the

appropriate number of processes automatically based on command line options or the run time

environment.

4. Data partitioning - Data partitioning is done explicitly in HPF when data objects are

declared. With MPI, PVM and Shmem, data are implicitly distributed. The global data objects

are then programmer abstractions constructed by combining these distributed objects. Shared-

memory does not require explicit data partitioning.

5. Explicit synchronization library calls - Although the passing of messages between processors

often serves as a form of process synchronization, it is sometimes necessary to insert explicit

synchronization calls into message-passing programs. Shared-memory languages do not have

the inherent synchronization implied by the sending and receiving of data and therefore

generally require more such operations than message-passing languages. HPF requires no

explicit processes synchronization.

5. Conclusions

Clearly, message-passing languages dominate the current network-based parallel programming

terrain. Standard message-passing languages, as exemplified by PVM and MPI, run on a variety

of parallel platforms ranging from workstation clusters to large MPPs. Our survey suggests that

neither language presents a clear performance advantage over the other. Of more importance than

the choice between PVM and MPI is choosing an efficient implementation of either message-

passing language for the given system. These implementations can vary widely in performance and

stability across different platforms and across different implementations within a single platform.

25

Language implementations based on a thorough understanding of the underlying system are

essential to good run time performance.

Compared to other possible alternatives, message-passing languages tend to produce more complex

programs as measured by the NCSS and MCC software metrics. Although MPI programs

typically produce less complex programs than PVM, the differences are small compared to the

shared-memory or HPF programming styles. It is not yet clear that these alternatives can achieve

the same level of performance as message-passing on distributed memory multiprocessors,

however.

Distributed-shared architectures that support the shared-memory programming model are not yet

available. Although virtual shared-memory software packages exist, these programming

environments are usually built atop a message-passing language and, therefore, are not likely to

offer any performance benefits. The Shmem library on the Cray T3D presents an interesting

compromise between message-passing and shared-memory programming. This hybrid

programming paradigm produced lower complexity ratings than PVM and MPI while producing

shorter execution times. It is not clear, however, if such a language can be used outside of a

shared-distributed architecture.

While the run times of programs generated with the beta HPF compiler used in this study were

often disappointing, HPF compilers are only now becoming widely available. Consequently, final

judgment should wait for the regular release versions of the compiler. Our complexity

measurements show that HPF programs tended to be much more compact than other programming

paradigms. However, the MCC complexity values suggest that shared-memory programming may

actually produce programs with simpler control flow.

We conclude that the performance benefits and wide availability of PVM and MPI on network-

based multiprocessors will continue to fuel their usage in the near-term despite the relatively high

complexity of the programs they produce. Shared memory programming, using both an SMP

model and the model adopted by the Shmem library, tend to produce less complex programs than

message-passing but are likely to require architectural support to be made feasible for distributed

systems. High-Performance Fortran is less architecturally dependent than the shared-memory

26

languages and produces less complex programs than message-passing but currently lacks a

performance benefit over message-passing. Thus, the current predominance of message-passing

languages on network-based multiprocessors supports the conclusion that performance and

complexity share an inverse relationship. Emerging trends in both parallel language design and

multiprocessor architectures show promise in remediating this situation, however.

6. Acknowledgments

Support for this project was provided in part by Computing Devices International, Inc., National

Science Foundation grant no. MIP-9221900, and a University of Minnesota McKnight Land-Grant

Professorship. Steve VanderWiel was supported in part by an IBM Graduate Fellowship. Access

to the machines used in this work was provided by Pittsburgh Supercomputer Center grant no.

ASC950001P, the University of Minnesota-IBM Shared Research Project, National Science

Foundation equipment grant no. CDA-9414015, and by the Army Research Office contract no.

DAALO3-89-C-0038 with the University of Minnesota Army High Performance Computing

Research Center (AHPCRC) and the DoD Shared Resource Center at the AHPCRC.

The authors would also like to acknowledge the programming efforts of Joshua Simer, Dawn

Sweno and C.J. Chen.

27

7. References
1. Berge, C., Graphs and Hypergraphs, Amsterdam, The Netherlands:North-Holland, 1973.

2. Cray Research, Inc, SHMEM Technical Note, technical report SN-2516 2.3, Eagan, MN,
1994.

3. Ferretti, M. “The Generalized Hough Transform on Mesh-Connected Computers,” J. Parallel
and Distributed Computing, v19, 1993, pp. 51-57.

4. Geist, A., et al., “PVM 3 User's Guide and Reference Manual,” Oak Ridge National Labs
Tech. Report ORNL/TM-12187, 1993.

5. Grady, R. “Successfully Applying Software Metrics,” Computer, v27, n9, 1994, pp. 18-26.

6. Grady, R., Practical Software Metrics For Project Management, Prentice Hall, Englewood
Cliffs, NJ, 1992.

7. Gropp, W, E. Lusk and A. Skjellum, Using MPI, MIT Press, Cambridge, MA, 1994.

8. High Performance Fortran Forum, High Performance Fortran Language Specification
version 1.1, technical report CRPC-TR92225, Center for Research on Parallel Computation,
Rice University, November, 1994.

9. Kai, L “Shared Virtual Memory on Loosely Coupled Multiprocessors,” Ph.D. Thesis, Yale
University, September 1986.

10. Lanning, D.L. and T.M. Khoshgoftaar, “Modeling the Relationship Between Source Code
Complexity and Maintenance Difficulty,” Computer, v27, n9, 1994, pp. 35-41.

11. Lenoski, D., et al. “The Standford DASH Multiprocessor,” IEEE Computer, v23 n3, March
1992, pp. 63-79.

12. Lilja, D.J. and J. Schmitt, “A Data Parallel Implementation of the TRFD Program from the
Perfect Benchmarks,” EUROSIM International Conference on Massively Parallel Processing
Applications and Development, Delft, The Netherlands, 1994, pp. 355-362.

13. McCabe, T.J, “A Complexity Measure,” Trans. on Software Eng., v13, n10, 1977, pp. 308-
320.

14. Nitzberg, B. and V. Lo “Distributed Shared Memory : A Survey of Issues and Algorithms,”
IEEE Computer, v24 n8, August 1991, pp. 52-60.

15. Silicon Graphics Inc. Fortran 77 Programmers Guide. Mountain View CA, 1994.

16. Thinking Machines Corporation, The Connection Machine CM-5 Technical Summary,
Cambridge MA, 1991.

17. Ward, W. “Software Defect Prevention Using McCabe’s Complexity Metric,” Hewlett
Packard J., v40, n2, 1989, pp. 64-69.

18. Wolberg, G. and T. Boult “Separable Image Warping with Spatial Lookup Tables,” Computer
Graphics, v.23 n.3, July 1989.

