
Binarising Camera Images for OCR

Mauritius Seeger and Christopher Dance
Xerox Research Centre Europe
61 Regent Street, Cambridge
CB2 1AB, United Kingdom

seeger@xrce.xerox.com, dance@xrce.xerox.com

Abstract

In this paper we describe a new binarisation method de-
signed specifically for OCR of low quality camera images:
Background Surface Thresholding or BST. This method is
robust to lighting variations and produces images with very
little noise and consistent stroke width. BST computes a
”surface” of background intensities at every point in the
image and performs adaptive thresholding based on this re-
sult. The surface is estimated by identifying regions of low-
resolution text and interpolating neighbouring background
intensities into these regions. The final threshold is a com-
bination of this surface and a global offset. According to
our evaluation BST produces considerably fewer OCR er-
rors than Niblack’s local average method while also being
more runtime efficient.

1. Introduction

Our research has been motivated by the convenience
of using digital video cameras as opposed to conventional
scanning devices. Cameras occupy little space on a user’s
desk, provide excellent feedback for alignment, capture
instantly and allow documents to be scanned face up.
However, since cameras acquire images under less con-
strained conditions than devices specifically designed for
high-quality document capture, they can introduce severe
image variations and degradations. This makes it especially
hard to obtain reliable OCR result from these images.

Hence our aim was to design a binarisation algorithm
specifically for OCR of camera images. In order to yield
acceptable error rates in conjunction with off-the-shelf OCR
software, this method must perform well in the presence
of degradations such as low-resolution, lighting variations,
blur, noise and compression artefacts. Specifically, it should
work robustly with images at a resolution of 120-140 dpi in
any lighting condition and with a minimal computational
overhead. In engineering our method we therefore decided

to measure and design for two criteria which are directly
related to the usability of our camera scanning system: OCR
error rates and runtime efficiency.

We have found that global thresholding methods typi-
cally designed for images acquired on flatbed scanners are
unsuitable for camera images [3, 4, 8], mainly due to the
presence of lighting variations and blur. Although local
adaptive algorithms yield considerably better results [6],we
have found that local average methods such as Niblack’s
method [2], which is often quoted as one of the best adap-
tive algorithms, tend to break down in the presence of large
homogeneous areas and hence require post-processing [7].
Yanowitz and Bruckstein’s method [9], which has been
shown [6] to perform almost as well as Niblack’s method,
derives a threshold surface by extracting and interpolating
from areas identified as character boundaries. However, it
also requires a post processing step and is not particularly
runtime efficient due to its iterative interpolation scheme.
Furthermore, this method results in ”noisy” threshold val-
ues since pixels lying on character boundaries have particu-
larly variable grey values [5].

This paper presents a simple but novel adaptive thresh-
old algorithm that achieves considerably better OCR per-
formance than Niblack’s method, while being more runtime
efficient. This method is called background surface thresh-
olding or BST. As the name suggests, this algorithm deter-
mines the background intensity at every pixel in order to de-
rive a suitable threshold surface. In the following section we
present an overview of BST. We then give a more detailed
description of the algorithm, and finally present the results
of a comparison between BST and Niblack’s method.

2. BST Method

BST can conceptually be divided into the following
parts:

� Labelling of text areas at low-resolution

Greyscale

image Block

average

Block

variance Remove text blocks

from average by

thresholding variance

Interpolate

background

Find

offsetThreshold
Binary

image
Upsample

Figure 1. Outline of the BST algorithm

� Estimation of background intensity in text areas by in-
terpolation

� Performing thresholding at the background plus some
offset.

The initial segmentation between fore- and background re-
lies on the assumption that page illumination is slowly vary-
ing. More specifically, that the scale of background varia-
tions is larger than that of foreground variations, i.e. tran-
sitions such as character edges. This is mostly observed
in practice: the variance of grey levels in a small neigh-
bourhood of pixels is larger in areas containing text, than
in background regions. Hence using a measure of variance
and a suitable threshold for this, our algorithm is able to
distinguish between fore- and background.

In the next stage, the background in areas containing text
is estimated by a linear interpolation of surrounding back-
ground intensities. To obtain good results, it is important
to avoid filling foreground regions with incorrectly labelled
background. Hence our priority was to conservatively label
blocks as foreground even if they contain little or no text,
since given the nature of the slowly varying illumination,
background estimation is much more robust to mislabelling
of this kind.

The image is binarised in a third stage. Pixels are la-
belled as fore- or background given a threshold which is the
sum of the background surface and a global offset. This off-
set is proportional to the average distance between the fore-
and background surface.

Figure 1 outlines the main computational steps of BST.
Examples of intermediate results are shown in figure 2.

2.1. Text Labelling at Low Resolution

Based on the assumption that pixels in a window contain-
ing text have a higher variance than background regions, we
have designed a variance test to label pixels as foreground.
We compute a mean,

�������	��

, and variance, � �����	��
 image,

as shown in figure 2, using adjacent
 by
 pixel blocks
(where
������). An assumption here is that
 is larger
that the character stroke width, since we cannot expect a
higher variance in homogeneous foreground regions, than

a b

c d

Figure 2. Intermediate results: (a) block aver-
age; (b) block variance (high variance shown
by bright areas); (c) block average with high
variance areas removed; (d) missing areas in-
terpolated to yield a continuous background
estimate. Original input: 640 � 480; size after
pre-processing: 1440 � 1920; size of interme-
diate results: 131 � 175

in background areas. On the other hand, if the block width
is too large spaces between text lines may not be detected
correctly or background regions with rapid lighting varia-
tions may be classified as foreground. For 12 pt text at 120
dpi, good results are obtained for block sizes of between 7
and 19, and results are given here for
������ .

Areas of text are initially identified by thresholding the
variance image at the local average variance, ��������� �����	��
 ,
computed using an � by � window of block variances, where���! #" . We have found this method to be more robust
than attempting to detect text regions from average intensity
information.

At this stage we also estimate a global measure of the
variance due to noise in background regions. This step is
crucial in making the method robust to images acquired un-

2

F
req

u
en

c
y

Grey value

Split characters

Merged characters

and noise

Optimal

OCR

threshold

Figure 3. Idealised histogram of a camera im-
age of text

der different conditions of lighting, contrast, camera noise
and blur. Using an initial guess of ����$	%'&��(�)�+* , we refine
the background variance in a first pass using the following
variance threshold surface:,.-/�����	��
 ��01�1�����2� �3�4�5�6
�7 �1��$5%8&�� � (1)

where 09�;:=< " yields the best OCR results according to our
experiments, and the method remains robust in the range0>�!:=< 9?�:=< @ . By averaging the variance of all pixels
for which � �����	��
BAC,.-/�����	��

, we obtain a refined esti-
mate of �1��$	%'&�� . In a second pass using equation 1 and the
updated � ��$5%'&�� , we ”remove” foreground pixels from the
block-average image,

�������	��

, as shown in figure 2 c.

2.2. Interpolation

The background intensity for the “removed” pixels is es-
timated by interpolating from neighbouring pixels. This
yields a continuous background surface, D �����	��
 , as shown
in figure 2 d. For efficiency we perform a 1-D linear inter-
polate between the closest two neighbouring points along
rows and columns separately and combine the results later.
In cases where missing points are not situated between two
known background values, the interpolate is set equal to
the nearest background value. Row and column results are
combined by selecting values from the most accurate in-
terpolate. This accuracy is measured using the distance in
pixels between the closest know background value and the
position of the interpolated pixel. For each pixel we select
the interpolate that minimises this distance. The combined
results are then smoothed by using a box blur of size 5 to
reduce artefacts created during interpolation and then bilin-
early upsampled by a factor of
��E��� to match the resolu-
tion of the original image.

2.3. Thresholding

In a final step we threshold the original grey level im-
age, F �����	��
 . Figure 3 illustrates an idealised histogram typ-
ical of a camera image of text in the absence of lighting

variations. Usually, it is not bimodal for resolutions below
200 dpi, even though bimodality is assumed by many global
thresholding methods [4]. The best choice of threshold is a
tradeoff of the following risks:

� Split characters if the threshold is too low

� Merged characters and noise if the threshold is too
high.

Typically we find that OCR engines such as ScanSoft
TextBridge are most sensitive to split characters and back-
ground noise. Hence, as shown by figure 3, the best choice
of threshold is somewhere just below the background peak.
In typical camera images of documents, most of the light-
ing variation experienced is of a diffuse nature, and hence
observed pixel values G might be described as a product be-
tween an incident illuminant H and a suitably normalised
“underlying” image I , with additive sensor noise J ,

GK�LHMI 7 JN< (2)

This formula suggests that the threshold be selected as
some multiple of the background surface. However, our
experience is that thresholding at an offset from the back-
ground gives better performance in practice. This might
be because the threshold is largely influenced by the noiseJ whose variance does not change much with the illumi-
nant. Use of an offset also appears more robust in situations
where an unknown gamma correction has been applied to
the image by a camera.

The threshold surface is a weighted sum of the previ-
ously determined background, D �3�4�5�6
 and a global offset,O

, which is the average distance between the foreground and
background:

O �
PRQTS�U V�WYX�Z � F ���4�5��
 ?[D �����	��
	
\]^\ �

(3)

where] �E_ �����	��
 \ D �3�4�5�6
a` F ���4�5��
2b <
The threshold surface is then given by:

,M�����	��
 �cD ���4�5��
 ?[d O < (4)

The factor, d , determines the thickness of character strokes
and thus also the amount by which characters are either
merged or split. We present results for d[����< e , and find
that these results remain stable in the range df�R��< @g?h��< * .
3. Pre-processing

We have been able to dramatically improve OCR results
by pre-processing images before binarisation [5]. Images

3

c

b

a

Figure 4. Quality improvement of text images
gained by pre-processing (a) original image
(b) BST without pre-processing (c) BST after
pre-processing

are deblurred using a simple sharpening or high frequency
boost filter [1] and upsampled bicubically by a factor of
three. This enhances the high frequencies and allows what
we call binary super-resolution [5]: trading of grey scale in-
tensity resolution for spatial resolution. Figure 4 illustrates
the advantage gained from this type of pre-processing.

4. Results

We have compared the performance of BST with
Niblack’s local average thresholding method [2]. The
Niblack method operates on the following threshold sur-
face: ,M�����	��
 � ���3�4�	��
47Bi.j � �3�4�	��
�� (5)

where
���3�4�	��

and � �����	��
 are the local mean and variance
respectively computed using a moving window of size
 .

A previous comparison of binarisation methods by Trier
and Jain [6] concluded that Niblack is the best performer
when the goal is character recognition. However, as shown
in figure 5, we found that Niblack produces noisy results
when used with the recommended window size of
k���le
(
m�)@/e for our 3x up-sampled images) and inconsistent
stroke width when used with larger windows, causing some
characters to merge and others to split. More importantly,
an evaluation of OCR performance shows that Niblack bi-
narised images produce significantly higher character error
rates. We have also found that the runtime of an efficient im-
plementation of Niblack is roughly twice that of BST. The
runtime excluding pre-processing on a 700MHz PC is 0.5

a b

c d

Figure 5. BST vs. Niblack (a) Original grey
level image of 12 pt Times New Roman at 120
dpi; (b) Niblack w=45, k=-0.4; (c) w=200, k=-1;
(d) BST

seconds for BST v.s. 1.25 seconds for Niblack, when bina-
rising a 1440 � 1920 image. Pre-processing (3 � upsampling
and sharpening of a 640 � 480 image) can be completed in
0.5 seconds.

We compared the OCR performance of BST and Niblack
using 17 images of A6 portions of magazine articles, news-
paper articles and office documents, with 10-12 pt text ac-
quired with a Philips Vesta Pro video-conferencing camera
at 110-130 dpi. ScanSoft TextBridge was employed for
OCR and the character error rates were computed as the
Levenstein (string edit) distance between the output and the
manually derived ground truth.

To achieve a fair comparison, we fine-tuned the perfor-
mance of Niblack’s method by choosing parameters
 andi

and the parameters of our pre-processing step to minimise
the average OCR error rate. As shown in figure 6, Niblack
performs significantly better with a large window and in the
best case achieves an average character error rate of 3.1%
compared to 2.3% for BST. The error rates observed were
highly variable from image to image, hence the significance
of the average error rate is questionable here. Indeed, in two
cases the Niblack method produced more than 10% errors.
Nonetheless for all but one of the images, the error rate for
BST was less than that for the Niblack method.

Error rates with Niblack were especially high for small
windows (
 A #:�:) due to the large amount of noise
in background regions. For larger windows (
 ` #:�:)

4

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

50 100 200 400 600 800 1000

Window size (pixels)

O
C

R
 e

r
r
o

r
 r

a
te

 (
%

)

 k = -1.5

k = -1

k = -0.5

Figure 6. Character error rates achieved with
Niblack’s method for different window sizes
w, and variance gains k. Best performance:
3.1% for w=800, k=-1

the noise is reduced, but Niblack becomes less robust to
lighting variations, since it then effectively behaves like a
global threshold, and also less robust to large changes in the
amount of foreground in the window.

5. Conclusion

Our comparison suggest that BST performs better binari-
sation of camera images for OCR than Niblack’s method. In
addition, the BST implementation can be more runtime ef-
ficient. We feel that the poor OCR performance of Niblack
is in particular due to noisy background regions produced
when using small windows and inconsistent stroke width
when using larger windows. Since BST uses a threshold
that is globally offset from the background, it is much less
susceptible to misclassification of large homogeneous re-
gions. Also, since threshold levels in BST are not locally
related to neighbouring features it produces characters with
more consistent stroke width.

References

[1] A. K. Jain. Fundamentals of Digital Image Processing. Pren-
tice Hall, Englewood Cliffs, 1989.

[2] W. Niblack. An Introduction to Digital Image Processing.
Prentice Hall, Englewood Cliffs, 1986.

[3] L. O’Gorman. Binarization and multithresholding of docu-
ment images using connectivity. CVGIP: Graphical Models
and Image Processing, 56(6):494–506, 1994.

[4] P. K. Sahoo, S. Soltani, A. K. C. Wong, and Y. C. Chen. A sur-
vey of thresholding techniques. Computer Vision, Graphics,
and Image Processing, 41:223–260, 1988.

[5] M. J. Taylor and C. R. Dance. Enhancement of document
images from cameras. In SPIE Conference on Document
Recognition V, volume 3305, pages 230–241. SPIE, Septem-
ber 1998.

[6] Ø. D. Trier and A. K. Jain. Goal-directed evaluation of bina-
rization methods. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 17(12):1191–1201, 1995.

[7] J. S. Valverde and R. Grigat. Optimal binarisation of technical
document images. In ICIP 2000 Proceedings, pages 985–988.
IEEE, September 2000.

[8] H. Yan. Unified formulation of a class of image thresholding
techniques. Pattern Recognition, 29(12):2025–2032, 1996.

[9] S. D. Yanowitz and A. M. Bruckstein. A new method for
image segmentation. Computer Vision, Graphics and Image
Processing, 46(1):82–95, 1989.

5

