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The goal of the LAPACK project is to provide efficient and portable software for dense
numerical linear algebra computations. By recasting many of the fundamental dense matrix
computations in terms of calls to an efficient implementation of the BLAS (Basic Linear
Algebra Subprograms), the LAPACK project has, in large part, achieved its goal. Unfortu-
nately, the efficient implementation of the BLAS results often in machine-specific code that is
not portable across multiple architectures without a significant loss in performance or a
significant effort to reoptimize them. This article examines whether most of the hand
optimizations performed on matrix factorization codes are unnecessary because they can (and
should) be performed by the compiler. We believe that it is better for the programmer to
express algorithms in a machine-independent form and allow the compiler to handle the
machine-dependent details. This gives the algorithms portability across architectures and
removes the error-prone, expensive, and tedious process of hand optimization. Although there
currently exist no production compilers that can perform all the loop transformations
discussed in this article, a description of current research in compiler technology is provided
that will prove beneficial to the numerical linear algebra community. We show that the
Cholesky and optimized automatically by a compiler to be as efficient as the same hand-
optimized version found in LAPACK. We also show that the QR factorization may be
optimized by the compiler to perform comparably with the hand-optimized LAPACK version
on modest matrix sizes. Our approach allows us to conclude that with the advent of the
compiler optimizations discussed in this article, matrix factorizations may be efficiently
implemented in a BLAS-less form.
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1. INTRODUCTION

The processing power of microprocessors and supercomputers has increased
dramatically and continues to do so. At the same time, the demand on the
memory system of a computer is to increase dramatically in size. Due to
cost restrictions, typical workstations cannot use memory chips that have
the latency and bandwidth required by today’s processors. Instead, main
memory is constructed of cheaper and slower technology, and the resulting
delays may be up to hundreds of cycles for a single memory access.
To alleviate the memory speed problem, machine architects construct a

hierarchy of memory where the highest level (registers) is the smallest and
fastest and where each lower level is larger but slower. The bottom of the
hierarchy for our purposes is main memory. Typically, one or two levels of
cache memory fall between registers and main memory. The cache memory
is faster than main memory, but is often a fraction of the size. The cache
memory serves as a buffer for the most recently accessed data of a program
(the working set). The cache becomes ineffective when the working set of a
program is larger than its size.
The three factorizations considered in this article—the LU, Cholesky,

and QR—are among the most frequently used by numerical linear algebra
and its applications. The first two are used for solving linear systems of
equations, while the last is typically used in linear least-squares problems.
For square matrices of order n, all three factorizations involve on the order
of n3 floating-point operations for data that need n2 memory locations.
With the advent of vector and parallel supercomputers, the efficiency of the
factorizations were seen to depend dramatically upon the algorithmic form
chosen for the implementation [Dongarra et al. 1984; Gallivan et al. 1990;
Ortega 1988]. These studies concluded that managing the memory hierar-
chy is the single most important factor governing the efficiency of the
software implementation computing the factorization.
The motivation of the LAPACK [Anderson et al. 1995] was to recast the

algorithms in the EISPACK [Smith et al. 1976] and LINPACK [Dongarra et
al. 1979] software libraries with block ones. A block form of an algorithm
restructures the algorithm in terms of matrix operations that attempt to
minimize the amount of data moved within the memory hierarchy while
keeping the arithmetic units of the machine occupied. LAPACK blocks
many dense matrix algorithms by restructuring them to use the level 2 and
3 BLAS [Dongarra et al. 1988; 1990]. The motivation for the Basic Linear
Algebra Subprograms (BLAS) [Lawson et al. 1979] was to provide a set of
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commonly used vector operations so that the programmer could invoke the
subprograms instead of writing the code directly. The level 2 and 3 BLAS
followed with matrix-vector and matrix-matrix operations, respectively,
that are often necessary for high efficiency across a broad range of
high-performance computers. The higher-level BLAS better utilize the
underlying memory hierarchy. As with the level 1 BLAS, responsibility for
optimizing the higher-level BLAS was left to the machine vendor or
another interested party.
This article investigates whether a compiler has the ability to block

matrix factorizations. Although the compiler transformation techniques
may be applied directly to the BLAS, it is interesting to draw a comparison
by applying them directly to the factorizations. The benefit is the possibil-
ity of BLAS-less linear algebra package that is nearly as efficient as
LAPACK. For example, in Lehoucq [1992], it was demonstrated that on
some computers the best optimized set of BLAS was available.

We deem an algorithm blockable if a compiler can automatically derive
the most efficient block algorithm (for our study, the one found in LA-
PACK) from its corresponding machine-independent point algorithm. In
particular, we show that LU and Cholesky factorizations are blockable
algorithms. Unfortunately, the QR factorization with Householder transfor-
mations is not blockable. However, we show an alternative block algorithm
for QR that can be derived using the same compiler methods as those used
for LU and Cholesky factorizations.

This article has yielded two major results. The first, which is detailed in
another paper [Carr and Kennedy 1992], reveals that the hand loop
unrolling performed when optimizing the level 2 and 3 BLAS [Dongarra et
al. 1988; 1990] is often unnecessary. While the BLAS are useful, the hand
optimization that is required to obtain good performance on a particular
architecture may be left to the compiler. Experiments show that, in most
cases, the compiler can automatically unroll loops as effectively as hand
optimization. The second result, which we discuss in this article, reveals
that it is possible to block matrix factorizations automatically. Our results
show that the block algorithms derived by the compiler are competitive
with those of LAPACK [Anderson et al. 1995]. For modest-sized matrices
(on the order of 200 or less), the compiler-derived variants are often
superior.

We begin our presentation with a review of background material related
to compiler optimization. Then, we describe a study of the application of
compiler analysis to derive the three block algorithms in LAPACK consid-
ered above from their corresponding point algorithms. We present an
experiment comparing the performance of hand-optimized LAPACK with
the compiler-derived algorithms attained using our techniques. We also
briefly discuss other related approaches. Finally, we summarize our results
and provide and draw some general conclusions.
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2. BACKGROUND

The transformations that we use to create the block versions of matrix
factorizations from their corresponding point versions are well known in
the mathematical software community [Dongarra et al. 1991]. This section
introduces the fundamental tools that the compiler needs to perform the
same transformations automatically. The compiler optimizes point versions
of matrix factorizations through analysis of array access patterns rather
than through linear algebra.

2.1 Dependence

As in vectorizing and parallelizing compilers, dependence is a critical
compiler tool for performing transformations to improve the memory per-
formance of loops. Dependence is necessary for determining the legality of
compiler transformations to create blocked versions of matrix factorizations
by giving a partial order on the statements within a loop nest.
A dependence exists between two statements if there exists a control flow

path from the first statement to the second and if both statements refer-
ence the same memory location [Kuck 1978].

—If the first statement writes to the location, and the second reads from it,
there is a true dependence, also called a flow dependence.

—If the first statement reads from the location, and the second writes to it,
there is an antidependence.

—If both statements write to the location, there is an output dependence.

—If both statements read from the location, there is an input dependence.

A dependence is carried by a loop if the references at the source and sink
(beginning and end) of the dependence are on different iterations of the
loop and if the dependence is not carried by an outer loop [Allen and
Kennedy 1987]. In the loop below, there is a true dependence from A(I,J)
to A(I-1,J) carried by the I -loop, a true dependence from A(I,J) to
A(I,J-1) carried by the J -loop and an input dependence from A(I,J-1) to
A(I-1,J) carried by the I -loop (see Figure 1).
To enhance the dependence information, section analysis can be used to

describe the portion of an array that is accessed by a particular reference or
set of references [Callahan and Kennedy 1987; Havlak and Kennedy 1991].

Fig. 1. Loop-carried dependencies.
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Sections describe common substructures of arrays such as elements, rows,
columns, and diagonals. As an example of section analysis consider the loop
in Figure 2.
If A were declared to be 1003100, the section of A accessed in the loop

would be that shown in the shaded portion of Figure 3.
Matrix factorization codes require us to enhance basic dependence infor-

mation because only a portion of the matrix is involved in the block update.
The compiler uses section analysis to reveal that portion of the matrix that
can be block updated. Section 3 discusses this in detail.

3. AUTOMATIC BLOCKING OF DENSE MATRIX FACTORIZATIONS

In this section, we show how to derive the block algorithms for the LU and
the Cholesky factorizations using current compiler technology and section
analysis to enhance dependence information. We also show that the QR
factorization with Householder transformations is not blockable. However,
we present a performance-competitive version of the derivable by the
compiler.

3.1 LU Factorization

The LU decomposition factors a nonsingular matrix A into the product of
two matrices, L and U, such that A 5 LU [Golub and Van Loan 1996].
L is a unit lower triangular matrix, and U is an upper triangular matrix.
This factorization can be obtained by multiplying the matrix A by a series
of elementary lower triangular matrices, Mn21· · ·M1 and pivot matrices

Fig. 3. Section of A.

Fig. 2. Section analysis.
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Pn21· · ·P1, where L21 5 Mn21Pn21· · ·M1P1 and U 5 L21A. (The pivot
matrices are used to make the LU factorization a numerically stable
process.)
We first examine the blockability of LU factorization. Since pivoting

creates its own difficulties, we first show how to block LU factorization
without pivoting. We then show how to handle pivoting.

3.1.1 No Pivoting. Consider the algorithm for LU factorization (Figure
4).
This point algorithm is referred to as an unblocked right-looking [Don-

garra et al. 1991] algorithm. It exhibits poor cache performance on large
matrices. To transform the point algorithm to the block algorithm, the
compiler must perform strip-mine-and-interchange on the K-loop [Lam et
al. 1991; Wolf and Lam 1991]. This transformation is used to create the
block update of A. To apply this transformation, we first strip the K-loop
into fixed-size sections (this size is dependent upon the target architec-
ture’s cache characteristics and is beyond the scope of this article [Coleman
and McKinley 1995; Lam et al. 1991]), as shown in Figure 5.
Here KS is the machine-dependent strip size that is related to the cache

size. To complete the transformation, the KK-loop must be distributed
around the loop that surrounds statement 20 and around the loop nest that
surrounds statement 10 before being interchanged to the innermost posi-
tion of the loop surrounding statement 10 [Wolfe 1986]. This distribution
yields the algorithm shown in Figure 6.
Unfortunately the loop is no longer correct. This loop scales a number of

values before it updates them. Dependence analysis allows the compiler to
detect and avoid this change in semantics by recognizing the dependence
cycle between A(I,KK) in statement 20 and A(I,J) in statement 10
carried by the KK-loop.
Using basic dependence analysis only, it appears that the compiler would

be prevented from blocking LU factorization due to the cycle. However,
enhancing dependence analysis with section information reveals that the
cycle only exists for a portion of the data accessed in both statements.
Figure 7 shows the sections of the array A accessed for the entire execution
of the KK-loop. The section accessed by A(I,KK) in statement 20 is a subset
of the section accessed by A(I,J) in statement 10 .

Fig. 4. Right-looking LU factorization.

Compiler Blockability of Dense Matrix Factorizations • 341

ACM Transactions on Mathematical Software, Vol. 23, No. 3, September 1997.



Since the recurrence exists for only a portion of the iteration space of the
loop surrounding statement 10 , we can split the J -loop into two loops—one
loop iterating over the portion of A where the dependence cycle exists and
one loop iterating over the portion of A where the cycle does not exist—
using a transformation called index-set splitting [Wolfe 1987]. J can be split
at the point J 5 K 1 KA – 1 to create the two loops as shown in Figure 8.

Fig. 5. Stripping the K-loop.

Fig. 6. Distributing the KK–loop.

Fig. 7. Sections of A in LU factorization.
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Now the dependence cycle exists between statements 20 and 30 , and
statement 10 is no longer in the cycle. Strip-mine-and-interchange can be
continued by distributing the KK-loop around the two new loops as shown in
Figure 9.
To finish strip-mine-and-interchange, we need to move the KK-loop to the

innermost position in the nest surrounding statement 10 . However, the
lower bound of the I -loop contains a reference to KK. This creates a
triangular iteration space as shown in Figure 10. To interchange the KK-
and I - loops, the intersection of the line I 5KK11 with the iteration space at
the point (K,K 11) must be handled. Therefore, interchanging the loops
requires the KK-loop to iterate over a trapezoidal region with an upper
bound of I-1 until I – 1 . K 1 KS – 1 (see Wolfe [1987] and Carr and
Kennedy [1992] for more details on transforming nonrectangular loop
nests). This gives the loop nest shown in Figure 11.
At this point, a right-looking [Dongarra et al. 1991] block algorithm has

been obtained. Therefore, statement 10 is a matrix-matrix multiply that
can be further optimized depending upon the architecture. For superscalar
architectures whose performance is bound by cache, outer loop unrolling on

Fig. 8. Index-set splitting.

Fig. 9. Strip-mine-and-interchange.
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nonrectangular loops can be applied to the J - and I -loops to further
improve performance [Carr and Kennedy 1992; 1994]. For vector architec-
tures, a different loop optimization strategy may be more beneficial [Allen
and Kennedy 1987].

Many of the transformations that we have used to obtain the block
version of LU factorization are well known in the compiler community and
exist in many commercial compilers (e.g., HP, DEC, and SGI). One of the
contributions of this article to compiler research is to show how the
addition of section analysis allows a compiler to block matrix factorizations.
We remark that none of the aforementioned compilers uses section analysis
for this purpose.

3.1.2 Adding Partial Pivoting. Although the compiler can discover the
potential for blocking in LU decomposition without pivoting using index-set

Fig. 10. Iteration spce of the LU factorization.

Fig. 11. Right-looking block LU decomposition.
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splitting and section analysis, the same cannot be said when partial
pivoting is added (see Figure 12 for LU decomposition with partial pivot-
ing). In the partial-pivoting algorithm, a new recurrence exists that does
not fit the form handled by index-set splitting. Consider sections of code,
shown in Figure 13, after applying index-set splitting to the algorithm in
Figure 12.

The reference to A(IMAX,J) in statement 25 and the reference to A(I,J)
in statement 10 access the same sections. Distributing the KK-loop around
both J -loops would convert the true dependence from A(I,J) to A(IMAX,J)
into an antidependence in the reverse direction. The rules for the preserva-
tion of data dependence prohibit the reversing of a dependence direction.
This would seem to preclude the existence of a block analogue similar to
the nonpivoting case. However, a block algorithm that ignores the prevent-
ing recurrence and distributes the KK-loop can still be mathematically
derived [Dongarra et al. 1991].
Consider the following. If

Fig. 13. LU decomposition with partial pivoting.

Fig. 12. LU decomposition with partial pivoting.
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M1 5 S 1 0
2 m1 I D, P2 5 S 1 0

0 P̂2
D

then

P2M1 5 S 1 0

2 P̂2m1 I DS 1 0

0 P̂2
D [ M̂1P2 (1)

This result shows that we can postpone the application of the eliminator
M1 until after the application of the permutation matrix P2 if we also
permute the rows of the eliminator. Extending Eq. (1) to the entire
formulation, we have

U 5 Mn21M̂n22M̂n23· · ·M̂1Pn21Pn22Pn23· · ·P1A 5 MPA.

In the implementation of the block algorithm, Pi cannot be computed until
step i of the point algorithm. Pi only depends upon the first i columns of

A, allowing the computation of k Pi and M̂i, where k is the blocking factor,

and then the block application of the M̂i [Dongarra et al. 1991].
To install the above result into the compiler, we examine its implications

from a data dependence viewpoint. In the point version, each row inter-
change is followed by a whole-column update in which each row element is
updated independently. In the block version, multiple row interchanges
may occur before a particular column is updated. The same computations
(column updates) are performed in both the point and block versions, but
these computations may occur in different locations (rows) of the array. The
key concept for the compiler to understand is that row interchanges and
whole-column updates are commutative operations. Data dependence alone
is not sufficient to understand this. A data dependence relation maps
values to memory locations. It reveals the sequence of values that pass
through a particular location. In the block version of LU decomposition, the
sequence of values that pass through a location is different from the point
version, although the final values are identical. Unless the compiler under-
stands that row interchanges and column updates commute, LU decompo-
sition with partial pivoting is not blockable.
Fortunately, a compiler can be equipped to understand that operations

on whole columns are commutable with row permutations. To upgrade the
compiler, one would have to install pattern matching to recognize both the
row permutations and whole-column updates to prove that the recurrence
involving statements 10 and 25 of the index-set split code could be ignored.
Forms of pattern matching are already done in commercially available
compilers. Vectorizing compilers pattern match for specialized computa-
tions such as searching vectors for particular conditions [Levine et al.
1991]. Other preprocessors pattern match to recognize matrix multiplica-
tion and, in turn, output a predetermined solution that is optimal for a
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particular machine. So, it is reasonable to believe that pivoting can be
recognized and implemented in commercial compilers if its importance is
emphasized.

3.2 Cholesky Factorization

When the matrix A is symmetric and positive definite, the factorization
may be written as

A 5 LU 5 LD~D21U! 5 LD1/ 2D1/ 2LT [ L̂L̂T,

where L̂ 5 LD1/ 2 and where D is the diagonal matrix consisting of the
main diagonal of U. The decomposition of A into the product of a triangular
matrix and its transpose is called the Cholesky factorization. Thus, we need
only work with the lower triangular half of A, and essentially the same
dependence analysis that applies to the LU factorization without pivoting
may be used. Note that with respect to floating-point computation, the
Cholesky factorization only differs from LU in two regards. The first is that
there are n square roots for Cholesky, and the second is that only the lower
half of the matrix needs to be updated.
The strip-mined version of the Cholesky factorization is shown in Figure

14.
As is the case with LU factorization, there is a recurrence between

A(I,J) in statement 10 and A(I,KK) in statement 20 carried by the
KK-loop. The data access patterns in Cholesky factorization are identical to
LU factorization (see Figure 7); index-set splitting can be applied to the
J -loop at K1KS-1 to allow the KK-loop to be distributed, achieving the
LAPACK block algorithm.

3.3 QR Factorization

In this section, we examine the blockability of the QR factorization. First,
we show that the algorithm from LAPACK is not blockable. Then, we give
an alternate algorithm that is blockable.

Fig. 14. Strip-mined Cholesky factorization.
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3.3.1 LAPACK Version. The LAPACK point algorithm for computing
the QR factorization consists of forming the sequence Ak11 5 VkAk for
k 5 1, . . . , n 2 1. The initial matrix A1 5 A has m rows and n
columns, where for this article we assume m $ n. The elementary
reflectors Vk 5 I 2 tkvkvk

T update Ak so that the first k columns of
Ak11 form an upper triangular matrix. The update is accomplished by
performing the matrix-vector multiplication wk 5 ATvk followed by the
rank-one update Ak11 5 Ak 2 tkvkwk

T. Efficiency of the implementation
of the level 2 BLAS subroutines determines the rate at which the factoriza-
tion is computed. For a more detailed discussion of the QR factorization see
Golub and Van Loan [1996].
The LAPACK block QR factorization is an attempt to recast the algo-

rithm in terms of calls to level 3 BLAS [Dongarra et al. 1991]. If the level 3
BLAS are hand-tuned for a particular architecture, the block QR algorithm
may perform significantly better than the point version on large matrix
sizes (those that cause the working set to be much larger than the cache
size).
Unfortunately, the block QR algorithm in LAPACK is not automatically

derivable by a compiler. The block application of a number of elementary
reflectors involves both computation and storage that do not exist in the
original point algorithm [Dongarra et al. 1991]. To block a number of
eliminators together, the following is computed:

Q 5 ~I 2 t1v1v1
T !~I 2 t2v2v2

T !· · ·~I 2 tn21vn21vn21
T !

5 I 2 VTVT.

The compiler cannot derive I 2 VTV T from the original point algorithm
using dependence information. To illustrate, consider a block of two ele-
mentary reflectors

Q 5 ~I 2 t1v1v1
T !~I 2 t2v2v2

T !,

5 I 2 ~v1v2!S t1 t1t2~v1
Tv2!

0 t2
DS v1

T

v2
T D.

The computation of the matrix

T 5 S ti t1t2~v1
Tv2!

0 t2
D

is not part of the original algorithm. Hence, the LAPACK version of block
QR factorization is a different algorithm from the point version, rather
than just a reshaping of the point algorithm for better performance. The
compiler can reshape algorithms, but it cannot derive new algorithms with
data dependence information. In this case, the compiler would need to
understand linear algebra to derive the block algorithm.
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In the next section, a compiler-derivable block algorithm for QR factor-
ization is presented. This algorithm gives comparable performance to the
LAPACK version on small matrices while retaining machine independence.

3.3.2 Compiler-Derivable QR Factorization. Consider the application of
j matrices Vk to Ak,

Ak1j 5 ~I 2 tk1j21vk1j21vk1j21
T !· · ·~I 2 tk11vk11vk11

T !~I 2 tkvkvk
T !Ak.

The compiler-derivable algorithm, henceforth called cd-QR, only forms
columns k through k 1 j 2 1 of Ak1j and then updates the remainder of
matrix with the j elementary reflectors. The final update of the trailing
n 2 k 2 j columns is “rich” in floating-point operations that the
compiler organizes to best suit the underlying hardware. Code optimization
techniques such as strip-mine-and-interchange and unroll-and-jam are left
to the compiler. The derived algorithm depends upon the compiler for

Fig. 15. Strip-mined point QR decomposition.
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efficiency, in contrast to the LAPACK algorithm which depends on hand
optimization of the BLAS
Cd-QR can be obtained from the point algorithm for QR decomposition

using array section analysis. For reference, segments of the code for the
point algorithm after strip mining of the outer loop are shown in Figure 15.
To complete the transformation of the code in Figure 15 to obtain cd-QR,
the I -loop must be distributed around the loop that surrounds the compu-
tation of Vi and around the update before being interchanged with the
J -loop. However, there is a recurrence between the definition and use of
A(K,J) within the update section and the definition and use of A(J,I) in
the computation of Vi. The recurrence is carried by the I -loop and appears
to prevent distribution.
Figure 16 shows the sections of the array A(:,:) accessed for the entire

execution of the I -loop. If the sections accessed by A(J,I) and A(K,J) are
examined, a legal partial distribution of the I -loop is revealed (note the
similarity to the LU and Cholesky factorization). The section accessed by
A(J,I) (the black region) is a subset of the section accessed by A(K,J)
(both the black and gray regions), and the index-set of J can be split at the
point J 5 –I 1 IB – 1 to create a new loop that executes over the
iteration space where the memory locations accessed by A(K,J) are disjoint
from those accessed by A(J,I) . The new loop that iterates over the disjoint
region can be further optimized by the compiler, depending upon the target
architecture.

3.3.3 A Comparison of the Two QR Factorizations. The algorithm cd-QR
does not exhibit as much cache reuse as the LAPACK version on large
matrices. The reason is that the LAPACK algorithm is able to take
advantage of the level 3 BLAS routine DGEMM, which can be highly opti-

Fig. 16. Regions of A accessed by QR decomposition.
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mized. Cd-QR uses operations that are closer to the level 2 BLAS and that
have worse cache reuse characteristics. Therefore, we would expect the
LAPACK algorithm to perform better on larger matrices, as it could
possibly take advantage of a highly tuned matrix-matrix multiply kernel.

3.4 Summary of Transformations

In summary, Table I lists the analyses and transformations that must be
used by a compiler to block matrix factorizations. Items 1 and 2 are
discussed in Section 2. Items 3 through 7 are discussed in Section 3.1. Item
8 is discussed in the compiler literature [Coleman and McKinley 1995; Lam
et al. 1991]. Item 9 is discussed in Section 3.1.2. Many commercial
compilers (e.g., IBM [Sarkar 1997], HP, DEC, and SGI) contain items 1, 3,
4, 5, 6, 7, and 8. However, it should be noted that items 2 and 9 are not
likely to be found in any of today’s commercial compilers.

4. EXPERIMENT

We measured the performance of each block factorization algorithm on four
different architectures: the IBM POWER 2 model 590, the HP model
712/80, the DEC Alpha 21164, and the SGI model Indigo2 with a MIPS
R4400. Table II summarizes the characteristics of each machine. These
architectures were chosen because they are representative of the typical
high-performance workstation.
On all the machines, we used the vendor’s optimized BLAS. For example,

on the IBM Power2 and SGI Indigo2, we linked with the libraries –lessl
(Engineering and Scientific Subroutine Library [IBM 1994]) and –lblas ,
respectively.
Our compiler-optimized versions were obtained by hand using the algo-

rithms in the literature. The reason that this process could not be fully
automated is because of a current deficiency in the dependence analyzer of
our tool [Callahan et al. 1987; Carr 1992]. Table III lists the Fortran
compiler and the flags used to compile our factorizations.
In Tables IV–IX, performance is reported in double-precision megaflops.

The number of floating-point operations for the LU, QR, and Cholesky

Table I. Summary of the Compiler Transformations Necessary to Block Matrix
Factorizations

1 Dependence Analysis (Section 2.1 [Goff et al. 1991; Kuck 1978])
2 Array Section Analysis (Section 2.1 [Callahan and Kennedy 1987; Havlak and Kennedy
1991])

3 Strip-Mine-and-Interchange (Section 3.1 [Wolfe 1987; Wolfe and Lam 1991])
4 Unroll-and-Jam (Section 3.1 [Carr and Kennedy 1994])
5 Index-Set Splitting (Section 3.1)
6 Loop Distribution (Section 3.1 [Wolfe 1986])
7 Handling of Nonrectangular Iteration Spaces (Section 3.1 [Carr and Kennedy 1992; Wolfe
1987])

8 Automatic Block-Size Selection [Coleman and McKinley 1995; Lam et al. 1991]
9 Pattern Matching for Pivoting (Section 3.1.2)
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factorizations are 2 / 3n3, 2mn2 2 2 / 3n3, and 1 / 3n3, respectively,
where m and n are the number of rows and columns, respectively. We used
the LAPACK subroutines dgetrf , dgeqrf , and dpotrf for the LU, QR,
and Cholesky factorizations, respectively. Each factorization routine is run

Table II. Machine Characteristics

Clock
Speed Peak Cache Line Size

Machine (MHz) MFLOPS Size (KB) Associativity (Bytes)

IBM POWER2 66.5 264 256 4 256
HP 712 80 80 256 1 32
DEC Alpha 250 500 8 1 32
SGI Indigo2 200 100 16 1 32

Table III. Fortran Compiler and Switches

Machine Compiler Flags

IBM POWER2 xlf AIX v1.3.0.24 -O3
HP 712 f77 v9.16 -O
DEC Alpha f77 v3.8 -O5
SGI Indigo2 f77 v5.3 -O3 -mips2

Table IV. LU Performance on IBM and HP

IBM POWER2 HP 712

Size LABlk LAMf CBlk CMf Speedup LABlk LAMf CBlk CMf Speedup

25325 1,16,32,64 21 8,16 44 2.10 1 21 8 21 1.00
50350 32 48 8,16 74 1.54 1 33 8 28 0.83
75375 16 81 16 95 1.17 1 26 8 31 1.17
1003100 16 106 16 112 1.06 1 25 8 31 1.23
1503150 16 132 16 132 1.00 64 21 16 31 1.49
2003200 32 143 16 138 0.965 64 20 16 33 1.63
3003300 32 157 32 147 0.936 32 18 32 36 2.03
5003500 64 166 32 161 0.970 32 17 32 40 2.28

Table V. LU Performance on DEC and SGI

DEC Alpha SGI Indigo

Size LABlk LAMf CBlk CMf Speedup LABlk LAMf CBlk CMf Speedup

25325 1 43 8 53 1.25 8 20 8 21 1.05
50350 8 74 8 78 1.05 8 34 8 28 0.824
75375 16 96 8 96 1.00 8 34 8 29 0.853
1003100 16 116 8 110 0.95 8 37 8 29 0.784
1503150 32 138 8 113 0.82 8 39 8 28 0.718
2003200 32 156 8 124 0.79 8 40 16 29 0.725
3003300 32 181 16 132 0.73 8 41 16 30 0.732
5003500 32 212 8 148 0.70 38 32 32 29 0.763
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with block sizes of 1, 2, 4, 8, 16, 24, 32, 48, and 64.1 In each table, the
columns should be interpreted as follows:

—LABlk: The best blocking factor for the algorithm.

—LAMf: The best megaflop rate for the algorithm (corresponding to
LABlk).

—CBlk: The best blocking factor for the compiler-derived algorithm.

—CMf: The best megaflop rate for the compiler-derived algorithm (corre-
sponding to CBlk).

In order to explicitly set the block size for the LAPACK factorizations, we
have modified the LAPACK integer function ILAENV to include a common
block.
All the benchmarks were run when the computer systems were free of

other computationally intensive jobs. All the benchmarks were typically
run two or more times. The differences in time were within 5%.

4.1 LU Factorization

Tables IV and V show the performance of the compiler-derived version of
LU factorization with pivoting versus the LAPACK version.
The IBM POWER2 results (Table IV) show that as the size of the matrix

increases to 100, the compiler-derived algorithm’s edge over LAPACK
diminishes. And for the remaining matrix sizes, the compiler-derived
algorithm stays within 7% of the LAPACK one. Clearly, the Fortran
compiler on the IBM Power2 is able to nearly achieve the performance of
the hand-optimized BLAS available in the ESSL library for the block
matrix factorizations.
For the HP 712, Table IV indicates an unexpected trend. The compiler-

derived version performs better on all matrix sizes except 50 by 50, with
dramatic improvements as the matrix size increases. This indicates that
the hand-optimized DGEMMdoes not efficiently use the cache. We have
optimized for cache performance in our compiler-derived algorithm. This is
evident when the size of the matrices exceeds the size of the cache.
The significant performance degradation for the 50-by-50 case is interest-

ing. For a matrix this small, cache performance is not a factor. We believe
the performance difference comes from the way code is generated. For
superscalar architectures like the HP, a code generation scheme called
software pipelining is used to generate highly parallel code [Lam 1988; Rau
et al. 1992]. However, software pipelining requires a lot of registers to be
successful. In our code, we performed unroll-and-jam to improve cache
performance. However, unroll-and-jam can significantly increase register
pressure and cause software pipelining to fail [Carr et al. 1996]. On our
version of LU decomposition, the HP compiler diagnostics reveal that

1Although the compiler can effectively choose blocking factors automatically, we do not have
an implementation of the available algorithms [Coleman and McKinley 1995; Lam et al. 1991].
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software pipelining failed on the main computational loop due to high
register pressure. Given that the hand-optimized version is highly software
pipelined, the result would be a highly parallel hand-optimized loop and a
not-as-parallel compiler-derived loop. At matrix size 25 by 25, there are not
enough loop iterations to expose the difference. At matrix size 50 by 50, the
difference is significant. At matrix sizes 75 by 75 and greater, cache
performance becomes a factor. At this time, there are no known compiler
algorithms that deal with the trade-offs between unroll-and-jam and soft-
ware pipelining. This is an important area of future research.
For the DEC Alpha, Table V shows that our algorithm performs as well

as or better than the LAPACK version on matrices of order 100 or less.
After size 100 by 100, the second-level cache on the Alpha, which is 96K,
begins to overflow. Our compiler-derived version is not blocked for multiple
levels of cache, while the LAPACK version is blocked for two levels of cache
[Kamath et al. 1994]. Thus, the compiler-derived algorithm suffers many
more cache misses in the level 2 cache than the LAPACK version. It is
possible for the compiler to perform the extra blocking for multiple levels of
cache, but we know of no compiler that currently does this. Additionally,
the BLAS algorithm utilized the following architectural features that we do
not [Kamath et al. 1994]:

—the use of temporary arrays to eliminate conflicts in the level 1 direct-
mapped cache and the translation lookaside buffer [Coleman and McKin-
ley 1995; Lam et al. 1991] and

—the use of the memory-prefetch feature on the Alpha to hide latency
between cache and memory.

Although each of these optimizations could be done in the DEC product
compiler, they are not. Each optimization would give additional perfor-
mance to our algorithm. Using a temporary buffer may provide a small
improvement, but prefetching can provide a significant performance im-
provement because the latency to main memory is on the order of 50 cycles.
Prefetches cannot be issued in the source code, so we were unable to try
this optimization.
The results on the SGI (Table V) are roughly similar to those for the DEC

Alpha. It is difficult for us to determine exactly why our performance is
lower on smaller matrices, because we have no diagnostic tools. It could
again be software pipelining or some architectural feature of which we are
not aware. We do note that the code generated by the SGI compiler is worse
than expected. Additionally, the two-level cache comes into play on the
larger matrices.
Comparing the results on the IBM POWER2 and the multilevel cache

hierarchy systems (DEC and SGI), shows that our compiler-derived ver-
sions are very effective for a single-level cache. It is evident that more work
needs to be done in optimizing the update portion of the factorizations to
obtain the same relative performance as a single-level cache system on a
multilevel cache system.
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4.2 Cholesky Factorization

Tables VI and VII show the performance of the compiler-derived version of
Cholesky factorization versus the LAPACK version.
The IBM POWER2 results (Table VI) show that as the size of the matrix

increases to 200, the compiler-derived algorithm’s edge over the LAPACK
diminishes. And for the remaining matrix sizes, the compiler-derived
algorithm stays within 8% of the LAPACK one. As was the case for the LU
factorization, the compiler version performs very well. Only for the large
matrix sizes does the highly tuned BLAS used by the LAPACK factoriza-
tion cause LAPACK to be faster. Table VI shows a slightly irregular
pattern for the block size used by the compiler-derived algorithm. We
remark that for matrix sizes 50 through 200, the MFLOP rate for the two
block sizes 8 and 16 were nearly equivalent.
On the HP (Table VI), we observe the same pattern as we did for LU

factorization. When cache performance is critical, we outperform the LA-
PACK version. When cache performance is not critical, the LAPACK
version gives better results, except when the matrix is small. Our algo-
rithm performed much better on the 25-by-25 matrix most likely due to the
high overhead associated with software pipelining on short loops. Since
Cholesky factorization has fewer operations than LU factorization in the
update portion of the code, we would expect a high overhead associated
with small matrices. Also, the effects of cache are not seen until larger

Table VI. Cholesky Performance on IBM and HP

IBM POWER2 HP 712

Size LABlk LAMf CBlk CMf Speedup LABlk LAMf CBlk CMf Speedup

25325 1,32,64 24 4 45 1.86 1 10 8 21 2.00
50350 32 53 16 81 1.53 1 42 8 38 0.67
75375 32 81 8 114 1.41 1 37 8 31 0.83
1003100 32 105 8 132 1.26 1 33 8 33 1.00
1503150 32 136 16 151 1.11 1 32 16 34 1.05
2003200 32 154 8 158 1.03 1 33 16 36 1.11
3003300 32 185 32 170 0.920 1 23 16 39 1.72
5003500 64 205 32 191 0.932 32 17 16 43 2.56

Table VII. Cholesky Performance on DEC and SGI

DEC Alpha SGI Indigo2

Size LABlk LAMf CBlk CMf Speedup LABlk LAMf CBlk CMf Speedup

25325 1 36 4 53 1.50 1 19 4 23 1.21
50350 1 71 4 107 1.50 1 31 4 32 1.03
75375 1 94 4 117 1.25 1 33 4 34 1.03
1003100 1 104 4 131 1.27 8 33 4 34 1.03
1503150 1 113 4 141 1.24 16 36 4 34 0.94
2003200 1 116 4 145 1.25 16 38 4 34 0.895
3003300 64 134 4 146 1.09 16 40 4 34 0.850
5003500 64 162 4 149 0.92 16 40 4 32 0.800
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matrix sizes (compared to LU factorization). This is again due to the
smaller update portion of the factorization.
On the DEC (Table VII) we outperform the LAPACK version up until the

5003500 matrix. This is the same pattern as seen in LU factorization
except that it takes longer to appear. This is due to the smaller size of the
update portion of the factorization.
The results on the SGI show that the compiler-derived version performs

better than the LAPACK for matrix sizes up to 100. As the matrix size
increases to 500 from 150, the compiler-derived algorithm’s performance
decreases by 15% compared to that of the LAPACK factorization. We
believe that this has to do with the two-level cache hierarchy.
We finally remark that although Tables VI and VII show a similar

pattern as Tables IV and V, there are differences. Recall, that as explained
in Section 3.2, the Cholesky factorization only has approximately half of
the the floating-point operations of LU, because it neglects the strict (above
the diagonal) upper triangular portion of the matrix during the update
phase. Moreover, there is the computation of the square root of the
diagonal element during each of the n iterations.

4.3 QR Factorization

Tables VII and IX show the performance of the compiler-derived version of
QR factorization versus the LAPACK version. Since the compiler-derived
algorithm for block QR factorization has worse cache performance than the
LAPACK algorithm, but O~n2! less computation, we expect worse perfor-
mance when the cache performance becomes critical. In plain words, the
LAPACK algorithm uses the level 3 BLAS matrix multiply kernel DGEMM,
but the compiler-derived algorithm can only utilize operations similar to
the level 2 BLAS.
On the HP (Table VIII), we see the same pattern as before. However,

because the cache performance of our algorithm is not as good as the
LAPACK version, we see a much smaller improvement when our algorithm
has superior performance. Again, we also see that when the matrix sizes
stay within the limits of the cache, LAPACK outperforms our algorithm.

Table VIII. QR Performance on IBM and HP

IBM POWER2 HP 712

Size LABlk LAMf CBlk CMf Speedup LABlk LAMf CBlk CMf Speedup

25325 32,64 30 8 52 1.73 1 21 1 21 1.00
50350 64 60 8 84 1.4 1 37 2 28 0.75
75375 1 81 4 97 1.20 1 38 4 29 0.76
1003100 8 101 4 108 1.07 1 38 4 30 0.80
1503150 8 127 2 116 0.913 1 28 8 29 1.07
2003200 8 144 8,16 118 0.819 64 25 16 31 1.23
3003300 16 164 16 121 0.738 32 25 32 31 1.25
5003500 16,32 183 32 123 0.676 32 23 32 31 1.38
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For the IBM Power2 (Table VIII) and DEC and SGI machines (Table IX),
we see the same pattern as on the previous factorizations, except that our
degradations are much larger for large matrices. Again, this is due to the
inferior cache performance of cd-QR. An interesting trend revealed by
Table VIII is that the IBM POWER2 has a slightly irregular block size
pattern as the matrix size increases. We remark that only for matrix sizes
less than or equal to 75, is there interesting behavior. For the first two
matrix sizes, the optimal block size is larger than the dimension of the
matrix. This implies that no blocking was performed; the level 3 BLAS was
not used by the LAPACK algorithm. For the matrix size 75, the rate
achieved by the LAPACK algorithm with block size 8 was within 4–6% of
the unblocked factorization.

5. RELATED WORK

We briefly review and summarize other investigations parallel to ours. It is
evident that there is an active amount of work to remove the substantial
hand coding associated with efficient dense linear algebra computations.

5.1 Blocking with a GEMM-Based Approach

Since LAPACK depends upon a set of highly tuned BLAS for efficiency,
there remains the practical question of how they should be optimized. As
discussed in the introduction, an efficient set of BLAS requires a nontrivial
effort in software engineering. See Kägström et al. [1995a] for a discussion
on software efforts to provide optimal implementations of the level 3 BLAS.
An approach that is both efficient and practical is the GEMM-based one

proposed by Kägström et al. [1995a] in a recent study. Their approach
advocates optimizing the general matrix multiply and add kernel _GEMM
and then rewriting the remainder of the level 3 BLAS in terms of calls to
this kernel. The benefit of their approach is that only this kernel needs to
be optimized—whether by hand or the compiler. Their thorough analysis
highlights the many issues that must be considered when attempting to
construct a set of highly tuned BLAS. Moreover, they provide high-quality
implementations of the BLAS for general use as well as a performance
evaluation benchmark [Kägström et al. 1995b].

Table IX. QR Performance on DEC and SGI

DEC Alpha SGI Indigo2

Size LABlk LAMf CBlk CMf Speedup LABlk LAMf CBlk CMf Speedup

25325 1 50 4 66 1.31 1 15 8 23 1.53
50350 1 85 2 98 1.15 4 26 8 30 1.15
75375 1 100 2 107 1.07 8 29 8 29 1.00
1003100 16 114 4 111 0.98 8 34 8 29 0.853
1503150 16 138 8 110 0.79 8 38 8 28 0.737
2003200 16 158 16 115 0.72 8 39 8 27 0.692
3003300 16 180 16 114 0.64 8 40 8 25 0.625
5003500 32 213 16 115 0.54 8 39 8 25 0.641
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We emphasize that our study examines only whether the necessary
optimizations may be left to the compiler and whether they should be
applied directly to the matrix factorizations themselves. What is beyond
the ability of the compiler is that of recasting the level 3 BLAS in terms of
calls to _GEMM

5.2 PHiPAC

Another recent approach is the methodology expressed for developing a
Portable High-Performance matrix-vector libaries in ANSI C (PHiPAC)
[Bilmes et al. 1996]. The project is motivated by many of the reasons as
outlined in our introduction. However, there is a major difference in
approaches that does not make it a parallel study. As in the GEMM-based
approach, they seek to support the BLAS and aim to be more efficient than
the vendor-supplied BLAS. However, unlike our study or the GEMM one,
PHiPAC assumes that ANSI C is the programming language. Because of
various C semantics PHiPAC instead seeks to provide parameterized
generators that produce the optimized code. See Bilmes et al. [1996] for a
discussion on the inhibitors in C that prevent an optimizing compiler from
generating efficient code.

5.3 Autoblocking Matrix Multiplication

Frens and Wise [1997] present an alternative algorithm for matrix-matrix
multiply that is based upon a quadtree representation of matrices. Their
solution is recursive and suffers from the lack of interprocedural optimiza-
tion in most commercial compilers. Their results show that when paging
becomes a problem on SGI multiprocessor systems, the quadtree algorithm
has superior performance to the BLAS 3. On the smaller problems, the
quadtree algorithm has inferior performance. In relation to our work, we
could not expect the compiler to replace the BLAS 3 with the quadtree
approach when appropriate, as it is a change in algorithm rather than a
reshaping. In addition, the specialized storage layout used by Frens and
Wise calls into question the effect on an entire program.

6. SUMMARY

We have set out to determine whether a compiler can automatically
restructure matrix factorizations well enough to avoid the need for hand
optimization. To that end, we have examined a collection of implementa-
tions from LAPACK. For each of these programs, we determined whether a
plausible compiler technology could succeed in obtaining the block version
from the point algorithm.
The results of this article are encouraging: we have demonstrated that

there exist implementable compiler methods that can automatically block
matrix factorization codes to achieve algorithms that are competitive with
those of LAPACK. Our results show that for modest-sized matrices on
advanced microprocessors, the compiler-derived variants are often supe-
rior. These matrix sizes are typical on workstations.
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Given that future machine designs are certain to have increasingly
complex memory hierarchies, compilers will need to adopt increasingly
sophisticated memory-management strategies so that programmers can
remain free to concentrate on program logic. Given the potential for
performance attainable with automatic techniques, we believe that it is
possible for the user to express machine-independent point matrix factor-
ization algorithms without the BLAS and still get good performance if
compilers adopt our enhancements to already existing methods.
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