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Abstract

In this paper it is $rown that the dynamics of a conventional type of blended multiple model system are
only weakly related to the locd models from which it is formed. A novel class of velocity-based biended
multiple model systems is proposed for which the dynamics are diredly related to the locd models.
Indedd, the solution to the blended multiple model system, locdly to a spedfic operating point, is
approximated by the weighted linea combination of the solutions to the locd models. Moreover, in
contrast to conventional blended multiple model systems, the velocity-based blended multiple model
systems employs linear locd models, thereby providing a degree of continuity with established linea
methods and, consequently, facilit ating analysis and design.

Notation

P

v.p state, state velocity, output and scheduling variable of blended multiple model system (both
conventional and velocity-based since no scope for confusion).

r input.

i validity function associated with i loca model.

X, W, Y, state, state velocity and output of i loca model.

X, W,y state, state velocity and output of first-order series expansion (also perturbation forms
oX,dy ).

X,W,Y,P state, state velocity, output and scheduling variable of general nonlinea system.

X ,W',y  weighted linea combinations of solutions to velocity-based locad models.

X.,W.,r., Y. state, state velocity, input and output of velocity-based blended multiple @ntroller.

Vet referenceinput to controller.

X W, Y, State, state velocity and output of i locd controller.

€, 1€, €y residual terms.

subscript ;  denotes evaluation at some spedfic operating point; for example, (Xy, r1).

1. Introduction

Under quite genera conditi ons, the solution to a nonlinea system approximates the solution to another
nonlinea system over any finite timeinterval provided the terms in the differential equations describing the
two systems are sufficiently similar (see for example, Khalil 1992 Theorem 2.5). Hence by employing a
sufficiently accurate representation of the termsin the differential equation describing a nonlinea system, a
nonlinea system may be obtained which is an approximation to the origina system. The representation of
the nonlinea mappings aswociated with differential equations describing nonlinea systems is currently
recaving considerable dtention in the literature (see for example, the review by Johansen & Murray-smith
1997). However, a common difficulty is the so-cdled “curse of dimensionality” whereby the number of
parameters in the representation increases extremely rapidly as the order of the nonlinea dynamic system
increases. This grongly motivates the investigation of representations which can acarately describe high
order nonlinea systems with arelatively small number of parameters.

One promising classof representations is blended multiple model systems wherein a small number of
relatively simple dynamic systems are, in some sense, blended together. Blended multiple model systems



have been studied in a number of quite diverse fields (Johansen & Murray-Smith 1997). In the ntext of
fuzzy inference systems, Takagi & Sugeno (1985) consider the gproximate decompasition of an algebraic
nonlinea mapping into a set of fuzzy rules ead of the form “IF system is in operating region i THEN
output is <affine function of inpus>". Whilst Takagi & Sugeno (1985) restrict consideration to linea-type
membership functions and to algebraic mappings, the extension to more general forms of membership
function and to dynamic systems is graightforward (see for example, Johansen & Murray-Smith 1997).
In the mntext of neural networks, Johansen & Foss (1993 consider the gproximation of the discrete-time
nonlinea dynamic system, y(t)=F(P(t-1))+e(t) with Qt-1)=[y'(t-1), y'(t-2),...,u’(t-1),u’(t-2),...,e"(t-

1).€'(t-2),...]", by aloca model network of the form, y(t) =y F (W(t D)W, (P(t-1))+e(t), wherey isthe

output, u and e are the inputs, F and w, are smooth nonlinea functions, and IEi are dfine locd models.

Gawthrop (1995) considers the goproximation of a @ntinuous-time nonlinea dynamic system, in the
vicinity of the equili brium operating points, by a continuous-time locd model network.

Typicdly, each simple system isalocd model which describes the dynamics of the nonlinea system in
some small region of the operating space The role of the blending is to provide smocth interpdlation, in
some sense, between the locd models with the @m of achieving an acarate representation with only a
small number of locd models. The blendingis, therefore, central to the utility of the gpproach. Sincethe
operating regions, in which no single locd model dominates and several locd models contribute
significantly to the blended multiple model system, constitutes the greaer part of the operating space it is
the investigation of the charaderistics of the blended multiple model system in these regions that is of
primary concern and which is the subjed of the present paper. Whilst central to the utility of blended
multiple model representations, this issue is largely negleded in the literature (with the notable exception
of Shorten et al. 1998). It should be noted that another motivation for adopting a blended multiple model
systemsisto suppat adivide and conquer phil osophy whereby the operating spaceof a nonlinea systemis
decompaosed into operating regions within which the dynamics are described by a particular model. Eadch
model in the blended multiple model system is valid in an extended operating region and blending is
confined to small transition regions at the boundaries between these main operating regions. In this
context, blending plays a relatively minor role and the goproadc is more &in to piecewise goproximation.
In this paper, consideration is confined to the former situation; that is, to blended multiple model systems
where blending is employed to interpolate between a small number of locd models and for which the
operating regions where anumber of locd models are blended together include the greder part of the
operating space

The paper is organised as follows. In sedion 2, the conventional type of blended multiple model
system isinvestigated. In sedion 3, the velocity-based lineaisation approach proposed in Leith & Leithead
(19984) is briefly reviewed and a novel class of velocity-based bended multi ple model systemsis proposed
and analysed. An exampleis presented in sedion 4 and the conclusions are summarised in sedion 5.

2. Blended multiple model systems

Consider the conventional type of blended multi ple model system
X=sFEDWE),  ¥=3G6ENWEp) )
p(X.,r)=0kp X+0;pr 2
where, X OO",r OO™,y OO, p(X,r)00% The F and G, are differentiable nonlinea functions with
Lipschitz continuous first derivatives. The ; are differentiable mappings, with Lipschitz continuous first

derivatives, from the operating space ® 0O"x0™, onto the positive red line such that YU (p)=1. The

guantity, p(x,r), embodying the dependence of the blending on the state and input, is assumed to be linea
in the state, X, and input, r: no loss of generality is involved since ayy nonlinea dependence ca be
absorbed into the vaidity functions, ;. It is assumed, in addition, that the input and initial conditions are
restricted such that the solution to (1) lies within the operating space ®. Thisclass of blended multi ple
model systems is smilar to that considered by, for example, Gawthrop (1995) and Shorten et al. (1998)



and is closely related to the systems considered by Johansen & Foss (1993, abeit in a @ntinuous-time
rather than discrete-time setting.

Thelocd models associated with the blended multi ple model system are

ii :ﬁi(ii!r)! Yi :Gi(iiir) (3
Typicdly (Johansen & Foss 1993 Johansen & Murray-smith 1997), affine locd models are employed; that
is,

F(Xr)=a,+AX+Br, G/(Xr) =f,+Cx+Dyr @
where @,,A,,B,,B,,C,, D, are onstants. It should be noted that, when the blended multiple model system
describes a smooth nonlinea system, a crresponding smoathness requirement is imposed on the right-
hand sides in (1) which, for a particular choice of the validity functions, constrains the choice of locd
models.  This constraint can be included during leaning/identification by, for example, the dassicd
regularisation approach of Tikhonov & Arsensin (1977), originaly developed in the context of optimisation
theory, whereby the identification cost function is augmented with a penalty term which is related to the
nornsmoothness of the blended multi ple model system.

To determine the dynamic behaviour of the blended multiple model system, (1), locdly to an operating
point, (X 1,r1), consider the first-order series expansion of (1) relative to the operating paint,

&= 3 F (R Fa)M, (B2) +2 (0,F (R ra )it (o) +F (r) O, (BT + 3 (0, F (Koo )i (B) + B (Ru,r) 0k ()T p)r - (5)

= iZ(Dxéi (X0, )M (P1) + Gy (X1, ) (El)Dxﬁ)& + iE(Dréi (X0, )M (P1) + Gy (X )0h ()0, 5)& (6)
where
Pi=0ip X#0pra, r=r-ry, y=yG(X,.r)W(p) +8y, X =8%X + Xy, X =0X  (7)

It should be noted that the expansion is carried aut relative to the fixed operating point, (X 1,r1), as opposed
to atrgjedory passng through (X 1,r1), and the derivative of X ; is, therefore, zero. It is emphasised that
(5)-(7) is a well-defined system in its own right, distinct from the nonlinea system (1), with state 6X .
Furthermore, the point, (X 1,r1), need not be an equili brium operating paint and, indeed, may lie far from
the locus of equilibrium operating points. When (X ,r1) is an equilibrium operating point, the
inhomogeneous termin (5) is zero in which case the dynamics of (5)-(7) are determined solely by the terms
in dX and &r (note that, in general, the wntributions to these terms from both p; and Oy, are significant).
However, when (X 1,r4) is a non-equilibrium operating point the inhomogeneous term may be etremely
large and can dominate the solution to (5)-(7).

Combining (5) and (6) with the locd input, output and state transformations, (7), the first-order
representation, (5)-(7), may be reformulated as
X= 3R 00r M (By) = 3 (LR (ur )i (B) +F (R r) i (BT, - 5 (TR (R ra)i (B) +F (R, r) D ()L )

+ (B (R (0:) +F (8 r) 0 ()L IR+ 3 (0 F (o r )k (B2) +F (K r )0 (BT, B
y= IZé. CHPICHE iZ(Dxéi (X H (P1) + Gy (X3 )Th, (51)Dx5)i1 - iZ(Dréi (CHATICHEICACHA T CH ] E)rl

+3 (0.6 o) (P) + G (Kur )b (PUTP)R+ 5 (06, (Rur b (B2) +6, (%)W (B) B

8
In contrast to (5)-(7), the state, input and output are now the same & every operating point, (X 1,r1). When
the locd models are dfine, (4), the first-order representation, (8), is

X= iZ(ai Ki(P) — (@ +A%X, +Bir,) 0l (51)51) ©
+ iZ(Z\i Wi (P1) +(0; +AX, +Biry )T (p)D,P)X + iZ(Ei K (P1) +(@; + Ay +Biry )T (P, )



y=3(B w(B) (B +Cx. +Dr )0 (.)5y) 0

+3(C HB +CX, +Dr )T (p)TPX+ 3 (D, +(B, + CX, +Dir )0 ()0, p)r

The blending in a blended multiple model system is required to provide smoath interpolation, in some
sense, between the locd models to achieve an accurate representation over the whole operating spacewith
only asmall number of locd models. The operating regions, in which no single locd model dominates and
several locd models contribute significantly to the blended multiple model system, constitute the greaer
part of the operating space However, to fadlitate analysis and design, the dynamics of the blended
multiple model system in these regions are still required to be diredly related to the locd models. This
property, for example, underlies control design approaches sich as that of Hunt & Johansen (1997,
whereby a linea controller is designed for ead locd model and the members of the family of linea
controll ers obtained are blended to obtain a nonlinea controller. Locdly to the operating point, (X 1,r4),
the solution, X, to the blended multi ple model system is approximated by the solution, X, to the first-order
series expansion (8) (Leith & Leithead 199&; see &so sedion 3.1). However, it is evident from (8) that
the relationship between the first-order series expansions and the locd modelsis not straightforward. The
dynamics of the blended multiple model system are not described by a ssimple blend of dynamics of the
locd models. Indedd, in operating regions where the derivative, Ou;, of any validity function is large, the
dynamics of the first-order series expansions may be strongly influenced by the varying reture of the
validity functions and only weakly related to the dynamics of the locd models. Hence the utility of this
class of blended multiple model systems is diminished considerably.  Furthermore, athough widely
employed in the literature, it is noted that affine locad models do not provide continuity with established
linea methods and, in particular, do not passessthe superposition property which is fundamental to linea
systems. It is emphasised that the magnitude of the inhomogeneous term in an affine locd model may be
extremely large and can strongly influence the solution. When the inhomogeneous term varies from one
locd model to another, it introduces an implicit feedbadk from the state and/or input of the overall blended
multiple model system. Hence the inhomogeneous term cannot, in general, smply be treaed as a
disturbance or small approximation error.

3. Veocity-based blended multiple model systems

Two dfficulties with the conventional approach to blended multiple model systems using affine locd
models are noted above; namely, the lack of a dired relationship, between the dynamics of the blended
multi ple model system and the dynamics of the locd models, and the lack of lineaity of the locd models
themselves. To circumvent these difficulties the velocity-based representation of nonlinea dynamics
systems of Leith & Leithead (199&) is adopted; that is, the dynamics are represented by a velocity-based
nonlinea system or, equivalently, avelocity-based lineaisation family.

3.1Veocity-based linearisation families

Before proceeding, the velocity-based approach of Leith & Leithead (1998) is briefly reviewed.
Consider nonlinea plants with dynamics,

X=F(x,r), y=G(x,r) (11
where F(+,?) and G(-,) are differentiable nonlinea functions with Lipschitz continuous first derivatives and
rO0™ denotes the input to the plant, y O O the output and x 0 0" the states. The set of equili brium
operating points of the nonlinea plant, (11), consists of those paints, (Xo, o), for which

F(Xoro) =0 (12
and the crresponding equili brium output is
Yo = G(Xo, I'0) (13

Let ®:0"x0™ denote the space onsisting of the union of the states, x, with the inputs, r. The set of
equili brium operating points of the nonlinea plant, (11), forms a locus of paints, (Xo, o), in ® and the
response of the plant to a general time-varying input, r(t), is depicted by atrgjedory in @.
The nonlinea system, (11), may be reformulated, equivalently, as
X =Ax + Br +f(p), y=Cx+Dr +g(p) (19



where A, B, C, D are gpropriately dimensioned constant matrices, f(¢) and g(¢) are nonlinea functions
and p(x,r)009% g<m+n, embodes the nonlinea dependence of the dynamics on the state and input with
0P, O,p functions of p done. Trivially, this reformulation can always be achieved by letting p = [x" r'],
in which case g=m+n. However, the nonlineaity of the system is frequently dependent on only a subset of
the states and inputs, in which case the dimension, q, of p islessthan m+n. Since,p, O, p are functions of
p aone, the variable, p(x,r), equals the mnstant value, p;, upon a surfaceof co-dimension qin ® and Oyp
and O,p are mnstant over eat surface Hence, the normal to ead surfaceisidentical at every point on the
surface ad ead surfaceis, therefore, affine. Moreover, to ensure that p is a unigue function of x and r,
these surfaces must be paralel for al p. Consequently, it may in fad be asumed, without loss of
generality, that Oyp and [J;p are mnstant.

Suppose that the nonlinea system, (14), is evolving aong atrgedory, (x(t), r(t)), in ® and at time, t;,
the trgjedory has readed the point, (xq, ry). It is emphasised that the paint, (x4, r1), neel not be a
equili brium operating point and, indeed, may lie far from the locus of equili brium operating points. From
Taylor series expansion theory, the subsequent behaviour of the nonlinea system can be gproximated,
locdly to the paint, (Xg, r1), by the first order representation,

8X = (Axg+Bry+(py)) + (A+0f(ps) Dhp )3X + (B+Of(py) Cyp )3r (19
3y =(C+0g(py) Okp )0X + (D+0g(p1) Orp )or (16)
Pi=p(Xs,F1), O =r-ry, ¥ =Cxy+Dry+g(p)+38y, X =38X +xg, X =8X (17)

provided x;+0X O Ny ry+0r [0 N;, where the neighbourhoods, N, and N,, of, respedively, x; and r; are
sufficiently small. When 8X (ty) is zero,

X (t) = x1 = X(ty) (18)
%(tl) = Axy+Bri+f(py) = X (tl) (19
X (t2) = (A+0f(p1) Oxp X (t2)) X (to) + (B+0f(py) Trp ) 1 (t2) = X (ty) (20)
Y (t1) = Cx1 + Dry+ g(p1) = y(t2) (21)
Y (t2) = (C+0g(py) 0w ) X (t)+(D+0g(p1) Trp )t (t2) =V (1) (22

Hence, the solution, X (t), to (15)-(17), initially at timety, istangential to the solution, x(t), of (14). Indeed,
locdly to time t;, X (t) provides a first-order approximation to X (t) and a second-order approximation to
x(t) and y (t) provides afirst-order approximation to y(t).

The solution, X (t), to the first-order series expansion, (15)-(17), provides a valid approximation only
while the solution, x(t), to the nonlinea system remains in the vicinity of the operating point, (X1, r1).
However, the solution, x(t), to the nonlinea system need not stay in the vicinity of a single operating point.
Consider the time interval, [0,T]; the initial time can, without loss of generality, always be taken as zero.
An approximation to x(t) is obtained by partitioning the interval into a number of short sub-intervals. Over
ead sub-interval, the gproximate solution is the solution to the first-order series expansion relative to the
operating point readied at the initial time for the sub-interval (with the initial conditions for ead sub-
interval chosen to ensure wntinuity of the gproximate solution). The number of locd solutions employed
is dependent on the duration of the sub-intervals, but the locd solutions are acarate to second order; that
is, the gproximation error is proportional to the duration of the sub-interval cubed. Hence as the number
of sub-intervals increases, the goproximation error associated with each rapidly deaeases and the overal
approximation error also deaeases. Inded, the overall approximation error tends to zero as the maximum
size of the sub-intervals tends to zero. Hence, the family of first-order series expansions, with members
defined by (15)-(17), can provide an arbitrarily acarate gproximation to the solution of the nonlinea
system. Moreover, this approximation property holds throughout @ and is not confined to the vicinity of a
single eguilibrium operating point or even of the locus of equili brium operating points.

It should be noted that the state, input and output transformations, (17), depend on the operating point
relative to which the series expansion is carried out. When the solution to the nonlinea system is confined
to a neighbourhood about a single operating paint, the transformations, (17), are static and the dynamic
behaviour is described by the system, (15)-(16), alone. However, when the solution to the nonlinea system
traces a trgjedory which is not confined to a neighbourhood about a single operating point, the
transformations, (17), are no longer static and the dynamic behaviour is no longer described solely by the



system, (15)-(16). Instead, the dynamic behaviour is described by (15)-(17). Combining (15) and (16)
with the locd input, output and state transformations, (17), eaty member, (15)-(17), of the family of first-
order representations may be reformulated as,

X ={ f(po)-Uf(p2) Uxp X1-Of (p) Lrp 11 } + (A+0f(py) Dxp ) X + (B+Uf(py)Tip )r (23
¥ ={ 9(P1)-09(p)Uxp x1-HUg(po)Lrp r1} + (C+0g(py)Uxp ) X +(D+Ug(py)ip ) ¥ (24
In contrast to the representation, (15)-(16), the state, input and output are now the same for all members of
the reformulated family. The dynamics, (23)-(24), of an individual member of the family are affine rather
than linea even when (X, r,) is an equili brium operating point. The inhomogeneous terms in (23)-(24)
may, in general, be extremely large and can dominate the solution.
On differentiating (23)-(24)

X =W (25
W = (A+0f(p1) Ok ) W + (B+0f(py) Cip ) ¥ (26)
y = (C+0Og(ps) Oup ) W + (D+0g(py) 0rp ) ¥ (27

The system, (25)-(27), is dynamicdly equivalent to the system, (23)-(24), in the sense that with appropriate
initial conditions, namely,

X(t) =x1, W)= AxetBri+f(py), ¥ (ty) = Cxy+Dri+g(py) (28
the solution, X, to (25)-(27), isthe same as the solution, X, to (23)-(24). However, in contrast to (23)-(24)
, the transformed system, (25)-(27), is linea. The relationship between the nonlinear system and its
velocity-based lineaisation, (25)-(27), is direct. Differentiating (14), an aternative representation of the
nonlinea system s

X =w (29
W = (A+0Of(p) Oyp )w + (B+Of(p) Trp ) £ (30)
y = (C+0g(p) Uxp )w + (D+0g(p) LUkp ) ¢ (31)

Dynamically, (29)-(31), with appropriate initial conditions corresponding to (28), and (14) are equivalent
(have the same solution, x). (Whenw = F(x, r), y = G(X, r) isinvertible for every (x, r), so that x may be
expresed as a function of w, r and y, then the transformation relating (29)-(31) to (14) is, in fad,
algebraic). When

X (t) =x(t2), W(t)= w(ty), Y(t)=y(t) (32
it foll ows from (25)-(27) and (29)-(31) that

X ()= W(t) = X(t) (33

i(tl) = (A+0f(py) Okp X (W) W (ty) + (B+0f(pr) Orp ) 1 (1) = X (t) (34

YV (t) = (A+0f(py) Oxp X (1)) W (ty) + (B+Of(py) Lhp ) T (ta) = W (ta) (39

Y (t2) = (C+Ug(p1) Uxp ) W (t)+(D+0g(p1) Urp ) F (t) =Y (1) (36)

Hence X (t) and y (t) still provide asecond- and first-order approximation to, respedively, x(t) and y(t)

and W (t) provides afirst-order approximation to w(t). Clealy, the velocity-based lineaisation, (25)-(27),
is smply the frozen form of (29)-(31) at the operating point, (X1, r1).

There exists a velocity-based lineaisation, (25)-(27), for every point in ®. Hence, a velocity-based
lineaisation family, with members defined by (25)-(27), can be assciated with the nonlinea system, (14).
Similarly to the family of first-order expansions, the solutions to the members of the family of velocity-
based lineaisations, (25)-(27), can be piecal together (with the initial conditions for ead sub-interval
chosen to ensure @ntinuity of X, wand y) to approximate the solution to the nonlinea system, (29)-(31)

to an arbitrary degreeof accuracy. However, it should be noted that, for any particular partition of [0,T],
the goproximate solutions, obtained using the family of velocity-based lineaisations and the family of first-
order expansions, differ even though both converge on the solution to (14).

There &ists a rigorous, and dred, relationship between the dynamic charaderistics of a nonlinea
system and those of arelated family of linea systems, namely, the velocity-based lineaisation family, and
arelated family of affine systems, namely the first-order series expansion family. Since the solutions to the
members of the families can be combined to approximate the solution to the nonlinea system arbitrarily
acarately, the families embody the entire dynamics of the nonlinea system, (14), with no loss of
information and therefore provide dternative representations of the nonlinea system.  Whilst these
representations are equivaent in the sense that they ead embody the entire dynamics of the nonlinea



system, they are not necessarily equivalent with resped to ather considerations. In particular, the direct
relationship between the velocity-form of the nonlinea system and the velocity-based lineaisation family
and the lineaity of the members of the latter family provides continuity with established linea theory
which, for example, fadlitates analysis (Leith & Leithead 199&) and controller design (Leith & Leithead
199&).

3.2Velocity-based blended multiple model systems

Instead of using the dired forms of the locd models, consider constructing a blended multi ple model
system using the velocity-based forms; that is, consider the velocity-based bended multi ple model system

X =W

(3an@ )i+ zan®) @7

w

7= (3 ® i 3y )
where @ ,q',y! andy! are mnstant matrices. The rresponding locd models, from which the blended
multi ple model system is constituted, are

X, = W,
Wi :(Qi(Wi +(prir (39
Vi :yixWi +y,f
It should be noted that the locd models are linear. Assume that the loca models satisfy
@ =), @ =@ (), Yy =YXy =Y, (Xr) (39

where
(pX(XI ’ri ) = DX(p(X!r)|(Xi’ri)’ (n' (XI ’ri) = qux,r)kxirri)

yx(xi ’ri ) = ny(x’r)|(xi,ri)’ yr (Xi 'ri) = Dry(x’r)|(xi,ri)

and @(+,*) and y(*,*) are differentiable nonlinea functions with Lipschitz continuous first derivatives.
Each locd model then corresponds to the velocity-based lineaisation, at the operating paint (X, ,r;), of the
nonlinea system
X=@(x,r), y=yr) (41)

Since the functions, @(¢,*) and y(*,»), are abitrary (other than being required to be smocth), this
requirement is sSmply a smocothness condition which serves a role similar to the regularisation measures
required with blended multiple model systems, (1). Inthe extreme situation where an infinite number of
locd models are employed and the (X; ,r;) form a cntinuum in the operating space this condition can be
interpreted as an integrability condition: whilst always satisfied in the scdar case, it is a rather strong
condition in the multi-dimensional case when nand/or m are greaer than unity. However, in the situation
considered in this paper, where the number of locd modelsis finite and small, the condition is very weak
sinceit only requiresthat the wefficients of the locad models can be interpolated by integrable functions.

Suppase that the blended multiple model system is evolving along atrgjedory in @ and at time, t;, the
trajedory has readed the point, (X;, r;). Similarly to the discussion in sedion 3.1 concerning the

relationship of (25)-(27) to (29)-(31), the solution to the frozen form of (37) at the operating point ( X, ,r 1)

(40

o= ot B o+ 5ol B | @2

y= [izv;ui(ﬁl)jW+[;lviui(ﬁ)jf

P 1=0xp X1+ pr
with initial conditions



X(ty) = X(ty), W(t,) =w(t,), y(t,)=y(t) (43

is, initialy at time t;, tangential to the solution to the blended multiple model system, (37). Indedd, X isa
second-order approximation to X, W is a first-order approximation to w and ¥ is a first-order

approximation to y . Hence, the dynamics of the blended multiple model system, locdly to the operating
point (X, ,r), areindicated by the dynamics of the crresponding frozen-form linea system, (42). Clealy,
the frozen-form, (42), of the blended multiple model system is diredly related to the locd models, (38),

from which it is constructed. Spedficaly, the frozen-form at the operating point, (X ,r4), is a weighted
linea combination of the locd models with the weighting assgned to ead locad model just the value of the
corresponding validity functionat (X 4,r;). Hence, the dynamics of the blended multiple model system are
diredly related to the locd models as required; that is, the dynamics are described by a straightforward
blend of the locd models.

The weighted linea combination of the solutions to the locd models, (38), satisfies

iZ?aui (51) = iXWi M (51)

20, 5) = (300 6 | 394 B+ 30 B + 30 (B - T T 0w Bw (5,) 49
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which may be reformulated as

X =W
O PTTNCR) TR TR R @)
y ( i (Py) jw +(zv'u(pl)jr+s
where
SRS TCARE LRSS ACR 49
£, =(iz; (cp;—cp:)wiuj(ﬁl)ui(al)j, > :(;zj (v;—vi)wiui(ﬁl)u,-(ﬁl)] (47)

It follows that, provided ¢ . andsy* are sufficiently small, the solution to the frozen form is described by

the weighted linear combination of the solutions to the locd models. Since @ (X,r) andy, (X,r) are
Lipschitz continuousin @, there ists apaositive finite constant, L, such that

FE (Z ZL{IX; =% —rjl)IWiluj(ﬁl)ui(ﬁl)j (49

£, < (Z > L(lii - ij|+|ri - rj|)|Wi|Uj(51)Ui (51)] (49
[
Hence the magnitudes of €. andsy* are proportional to the distance between the centres, (X ;,r;), of the

locd models and the overlap in the validity functions, ;. Evidently, € . andsy* tend to zero as the

distance between the centres tends to zero provided the overlap is confined to neighbouring locd models
and the solutions, W;, are bounded. When the magnitudes of € . andsy* are sufficiently small, they can

be negleded in (45). In these drcumstances, the solution to (42) (and therefore the solution, locdly to
(X 1,r1), to the blended multiple model system) can be gproximated by the weighted linear combination of
the solutions to the locd models. Of course, the degree of acaracy to which this approximation
corresponds, like the degreeof accuracy of representation of the blended multiple model system, is related
to the number of locd models and a suitable, contextually dependent, compromise must be readed to keep
this number small.



Furthermore, consider the nonlinea system, (14), for which the velocity-based lineaisation family is

(25)-(27) and let

@ =A+0,f(pX.r)0,pe, @ =B+0f(p(X.r))0,p

Yy = C+0,09(p(X,.r)0,p, Y =D+0,g(p(X,.r)0,p (50

O0p=0,p Op=0p
When pi( X; ,ri) isunity and p(X; ,ri), j#i, is zero, the frozen-form of the blended multiple model system at
the operating point (X, ,r;) is predsely the velocity-based lineaisation of (14) at (X, ,r;). At other
operating points, ( X, ,r1), the frozen form, (42), isthe gproximation to the velocity-based lineaisation of
(14) obtained by interpolating, using the validity functions, between the velocity-based lineaisations at the
operating points, (X, ,r;). A frozen form, (42), is associated with every operating point and the resulting
family of frozen forms is an approximation to the velocity-based lineaisation family of (14). Hence the
blended multiple model system, (37), is an approximation to the velocity-form, (29)-(31), of the nonlinea
system, (14), and the solution X to the blended multiple model system approximates the solution x to (14)
over any finite time interval (seg for example, Khalil 1992Theorem 2.5). Indedd, locdly to the operating
point, (X 1,r1), the solution x to the nonlinea system, (14), is approximated by the solution to the velocity-

based lineaisation, (25)-(27), which in turn is approximated by the solution X to the gproximate velocity-
based lineaisation, (42).

3.3Higher-order local models

In section 3.2, it is assumed that @, q',y. andy! are cnstant in the locd models, (38). However, the
analysisis essentially unchanged when @,q@',y. andy! are dlowed to vary with X and r. For example,
when the locd models are

X =W
W =@ (X,r)W+@q (X,r)f (52
Y=V (WY, (X1 )f
where
(p:((iu 1) = A+0,f(p(X,r))0,p, (n'l(il 1) =B+0,f(p(x.r;)0,p
Y (X, 1) =C+0,g(p(X,.r))0,p, v, (X.r;)=D+0,9(p(X,r)C,p (52
Op=0,0, O,p=0p
ead locd modd approximates the velocity-based lineaisations of the nonlinea system, (14), in a
neighbourhood about the operating paint, (X, ,r;), thereby augmenting the interpolation provided by the

validity functions. Of course, the associated paential improvement in acairacy must be balanced against
the increased complexity of the locd models.

3.4Veocity-based blended multiple controllers

The requirement for a dired relationship between the dynamics of a blended multiple model system and
the locd models is motivated, in part, by control design requirements. For example, in the mntext of locd
model networks, Hunt & Johansen (1997 consider the design of a nonlinea controller whereby a linea
controller is designed for ead locd model and the members of the family of linea controll ers obtained are
blended to oltain a nonlinea controller. However, the design procedure is complicaed considerably by
the ladk of a dired relationship between the dynamics of such blended multiple model systems and the
locd models on which the control designisbased. Moreover, the locd models employed are dfine and do
not provide cntinuity with established linea methods. In particular, they do not possessthe superposition
property which is fundamental to linea systems. The magnitude of the inhomogeneous term in an affine
locd model may be etremely large and can strongy influence the solution. Furthermore, when the
inhomogeneous term varies from one locd model to another, it introduces an implicit feedbad from the
state and/or input of the overall blended multiple model system. Hence, the inhomogeneous term cannot, in
general, simply be treaed as a small disturbance to be rejeced by the mntroller and this leads to Hunt &



Johansen (1997 introducing slow variation requirements which are quite distinct from those encountered in
conventional gain-scheduling.

In contrast to conventional blended multi ple model systems, the dynamics of the vel ocity-based blended
multiple model system, (37), in the blended regions are directly related to the locd models. Moreover, the
locd models are linea. Control design based on a blended multiple model plant representation is thereby
considerably facilit ated. Consider the nonlinea plant, (37), and the nonlinea controller

% =W
.= (300 @ i+ 0B . 59

Yo = (z Vi M (5)]ch +(zvicui(5)jr'c
where r, 0™ denotes the input to the cntroller, y, 00 ™ the output and X, O™ the state. Since the

requirement is to design a feedbadk controller, to fadlit ate the analysis it is assumed the input, T, to the
plant is the output, Y., of the controller and the input vedor, 1, to the controller is the eror, .4 -V .

Assume, in addition, that y! and y‘rc are ze¢o. These asmptions are employed only to simplify the
analysis and it is straightforward to extend to analysis to include more general configurations, including
two degreeof freedom controllers and situations where y, andy,_are not zero. The cmbined closed-loop
dynamics are

W @ @Y | W N
{\ij—[;{_@cy; (p)i(c :||Ji(p)]|:\-l~vc:|+iZ(|:(pric:|lJi(p)]yref tE, (54

=
1]
=3
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where
(R'I(yi _ylx )\Tvc ~ ~
= Ce ¢ A . 5
ey izg{_(n.c(y,x_y.x)w}u.(p)u,(p) (59
The perturbation term, €,, , vanishes when
(izv‘xui(ﬁ)j=c, (;v‘xcui(ﬁ)j%c (56)

with C and C. constant matrices. This requires the output of the plant and the output of the ntroller,
respedively, to be linealy related to the state of the plant and the state of the wntroller. More generaly,
the magnitude of €,, is dependent on the distance between the centres, (X; ,r;), of the locd models and the

overlap in the validity functions, p; (smilarly to € and € ). Clealy, the discussion foll owing (48)-(49)
is edion 3.2 also applies to g, and, when required, the magnitude of €, can be kept sufficiently small that
it can be negleded.

Observe that the dynamics of the dosed-loop combination of thei™ individual plant locd model and the
i™ individual controller locad model are

X =W, X, =W,

Wi (p>l< (pflylx Wi O

. = A O — VAT °
|:W0ii| |:_(pr|cylx (p;c i||:W°ii|+|:(prlci|yr (57)
y, :[yiX V:V;C]{%\/i}

It is evident that, provided the perturbation term, €, is sufficiently small, the dosed-loop d/namics, (54),
of the blended multiple model system are described simply by the weighted combination of the dosed-loop



locd models. Owing to this very dired relationship, and the lineaity of the locd models, the velocity-
based bilended multi ple model approach clealy offers the potential to facilit ate controller design.

3.5 Realisation of velocity-based blended multiple model systems

Owing to the differentiation and integration operations associated with the velocity-form locd models,
the order of the velocity-based bended multiple model system, (42), is greder than the order of (1).
Moreover, some cae is required when redising the blended multi ple model system, (42), sincetheinput is
I rather thanr.

Regarding the order of (42), it should be noted that the quantity, X, only affeds the input-output
charaderistics of (42) through itsinfluenceon p(X,r) , and thereby on ;. Hence, (42) can be reformulated

equivalently as
p=0pW+0pr

i = (ich;ui(a)va{iz@ui(a)jr‘ (59

v=(3vin® i+ (3vin@ )
Sincethe degreeof p is often lower than that of X, the order of the formulation, (58), is frequently lower

than that of (42). Inthe context of system identification, the initial condition of pin (58) can be chosen

arbitrarily since any constant offset is absorbed within the nonlinea validity functions, p;. When the
mapping from (X ,r) isinvertible in the sensethat X may be expressed asafunctionof W, r and y , then

p isrelated algebraicdly to (W, r, §) and the order of the blended multiple mode! system can be further

reduced.

Regarding the input being 1 rather than r in the velocity-based form, when the blended multi ple model
satisfies an integrability condition it may, by integrating, be reformulated as a nonlinea system of the
form, (14) (Leith & Leithead 1996 1998y see &so the example in sedion 4 below). The input to the
reformulated system is r but the terms in the resulting integrated system are related to the terms in the
blended multiple model system by an integral equation. Alternatively, when the locd models contain
integral adion, the blended multiple model system can be redised in velocity-based form (Leith &
Leithead 1996 1998h). This has the distinct advantage that the dements in the redisation are related
directly to (42). In the mntext of control systems, pure integral adion is frequently encountered. In the
context of system identification and modelling, the plant under consideration can be realily augmented
with integral adion. For example, system identificaion and modelling require the design and application
of a suitable test input to provide information regarding the plant dynamics; rather than designing a test
input corresponding to r, it is graightforward to design instead a test input corresponding to r which is
then integrated to oltain the test input applied to the adua plant. Alternatively, when a @ntrol system
aswciated with the plant contains integral adion, this can be included with the plant dynamics for
modelling purposes. The redisation of velocity-based systems, including situations where integral adion
isnot present, isdiscussed in detail in Leith & Leithead (1996 1998b)

4. Example
Consider the second-order nonlinea system

{:}{g —Z}Kj{ﬂf{-qiwl)} y=[1 O]{:} (59

where Q = 2946, b=1.21. The nonlineaity is dependent on x; and consideration is confined to the
operating space where x;0[0, 1. The first-order series expansion of (59) about the operating point
(X].O!XZO!rO) IS



X+

(

1__ 0 . 0 1 X1+O V_lo)v(l 50
_.2_— -Qsin(x,,) + QCos(X;4) X0 -Qcos(X,,) —Q| %, b r, y—[ ])v(2 (60)

A blended multiple model system with affine locd models, obtained by diredly blending the first-order
series expansions about the operating points at which x; is0, W2 and 11, is

T X, - . 3 X, -
= Z(Gi +A{~ j|+Bir]p’i(Xl)1 y= ZC{~ i|p’i(xl) (61)
_XZ_ i=1 Xz i=1 X2
where
= 0 A = 0 1 B = 0 C=(10 62
%= -Qsin(x,; ) + Qcos(Xy; )Xy |’ L -Qcos(xy;) -QF ' |b : i_[ ] (62

X11= 0, X1p = W2, X;3= T and the y; are & depicted in figure 1. In figure 2a, the right-hand side of the
differential equation for x, in (59) is compared with the right-hand side of the differential equation for X ,
in the blended multi ple model system, (61) (with x, and r zero). It can be seen that, owing to the blending
of the inhomogeneous terms in the affine locd models, an offset exists in the blended multiple model
system compared to the nonlinea system, (59). The off set causes a ansiderable differencein the output of
the blended multi ple model system when compared to the output of the nonlinea system, (59). At the st
of weakening the @mnnedion between the locd models and the first-order series expansions, (60), this
offset is reduced by adjusting the inhomogeneous terms in the locd models to
B 0
7 -Qsin(e, ) + Quostx, ), + 30
It can be seen from figure 2b that the right-hand side of the differential equation for X , in the modified
blended multiple model system is a somewhat better approximation to right-hand side of the x, equation in
(59). The output of the nonlinea system, (59), in response to atest input is depicted in figure 3a. The test
input is quite demanding since it is slected so that the nonlinea system operates nea the mid-point
between two locd models, where x, is approximately /4. The diff erence between the output of (59) and
the output of the modified blended multiple model system, in response to the same input, is shown in figure
3b. The output of the modified blended multi ple model system is a reasonable goproximation to the output
of the nonlinea system, (59), although a steady offset is gill evident. In figure 4, the output, y , from the

modified blended multiple model system is compared with the weighted linea combination of the outputs,
¥, , from the locd models (with weighting 1;(0.75) for the solution to the i locd model since the mean
value of x4, for the test input considered, is approximately 0.75rad). Clealy, and in accordance with the
analysisin section 2, the solution to the blended multi ple model system is not a straightforward biend of the
solutions to the locd models.

The velocity-form of the nonlinea system, (59), is

{:j{\‘”v"j {V\j\\llj{-QcoZ(xl) g}mHﬂf y=[1 O]L,V:,/j (64)

and the velocity-based lineaisation at an operating point, (X10,Xo0,10), 1S Obtained by simply “freezing” (64)
a that operating point. A velocity-based blended multiple model system, obtained by blending the
velocity-based linearisations associated with the operating points at which x; is0, /2 and 1, is

iy
LV” - zﬂg g}{m * mr]“ ()= [—flafxi (%) g]{m ' mr (69

(63

where a= Qcos(0), a= Qcos( 172), as= Qcos(1). In figure 5, the right-hand side of the differential equation
for w, in the velocity-based blended multiple model system is compared to the right-hand side of the
differential equation for w,in (64) (with w, and i zero). The difference between the output of (59) and the



output of the velocity-based blended multiple model system, in response to the same input, is depicted in
figure 3b. It is evident that the output of the velocity-based bended multiple model system is a rather
acarrate goproximation to the output of the nonlinea system, (59). The wrresponding state solution, W, ,

to the velocity-based blended multiple model system is dhown in figure 6a. The difference between w,

and the weighted linea combination of the solutions to the locd models is shown in figure 6b. Similar
results are obtained with regard to w,, and it is clea that the solution to the velocity-based bended

multiple model system is very closely related to the solutions to the locd models, as expeded from the
analysisin section 3.2.

The velocity-based blended multiple model system , (64), is depicted in figure 7a.  Of course, since
pure derivative adion cannot be redised, (64) cannot, in general, be redised as in figure 7a unless  is
available. However, by integrating, (64) may be reformulated equivaently as

EHS g}m{ﬂ”bﬁi)} v=lt O]m (69

where
~ X 3
AR,) = T am (9)ds (67)
The redisation, (66), depicted in figure 7b, does not necesstate adifferentiation element.

5. Conclusions

The blending in a blended multiple model system is required to provide smooth interpolation, in some
sense, between the locd models with the dm of adhieving an acairate representation with only a small
number of locd models. The operating regions, in which no single locd model dominates and several locd
models contribute significantly to the blended multiple model system, constitute the greder part of the
operating space ad it is required that dynamics of the blended multiple model system in these regions are
diredly related to the locd models. However, it is shown that the cnventional type of blended multiple
model system does not med this requirement. Furthermore, although widely employed in the literature, it
is noted that affine locd models do not provide ntinuity with established linea methods and, in
particular, do not possess the superposition property which is fundamental to linea systems. The
magnitude of the inhomogeneous term in an affine locad model may be extremely large and can strongly
influence the solution. When the inhomogeneous term varies from one locd model to another, it introduces
an implicit feedbadk from the state and/or input of the overall blended multiple model system. Hence, the
inhomogeneous term cannot, in general, simply be treded as a disturbance or small error.
A novel class of velocity-based blended multiple model systems is proposed which resolves these
difficulties. For blended multiple model systemsin this class
e thedynamics are diredly related to the locd models: the solution to a velocity-based biended multiple
model system, locdly to a spedfic operating point, is described by the solution to the linear system
obtained by “freeing” the blended multiple model system at the relevant operating point. The
resulting frozen system is smply a weighted linea combination of the locd models.

e the solution to the blended multiple model system, locdly to a spedfic operating point, is
approximated by the weighted linear combination of the solutions to the locad models.

e thelocd models are linear, thereby providing a degree of continuity with established linea methods
and, consequently, fadlitating analysisand design.

¢ when combined with a @rresponding \elocity-based blended multiple model controller, the dosed-
loop d/namics are gproximately described by the weighted combination of the dosed-loop locd
models, thereby fadlit ating controll er design and analysis.

These benefits gdem diredly from the aloption of the velocity-based lineaisation framework for the

anaysis of nonlinea systems.
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Figure 7 Redisations of velocity-based blended multi ple model system.




