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1 Introduction

There has been a wealth of research showing that a phase transition in solvability
of NP-complete problems is often correlated with a peak in hardness of solving
those problems. We attempt to understand why phase transitions so often yield
hard instances. We do so in the context of graph coloring.

Our main conclusion is that hard instances are well out of reach of even in-
telligent algorithms. Intelligent algorithms can take account of small local struc-
tures in instances to reduce search. For example, our graph coloring algorithm
identifies 4-cliques as making a graph non 3-colorable. However, we have found
that at phase transitions, the structures which cause unsolvability are very large.
In graph coloring, when there are not 4-cliques in graphs, there are often hun-
dreds of critical edges which must be used in proving unsolvability. It is therefore
unimaginable to adapt an algorithm to check for them explicitly, suggesting that
hardness at phase transitions is indeed an algorithm independent property. We
expect that similar behavior will be seen in many other NP problems. For exam-
ple, in SAT it is known that resolution proofs become large in the overconstrained
region [4]. Tt is likely that a similar result also holds at the phase transition. We
conjecture that NP problems with hard phase transitions are those in which
the smallest structures responsible for unsolvability are well beyond the reach of
reasonable algorithms.

We also investigate another important point in the phase transition, the “first
frozen’ point. In coloring, this i1s the first point at which two nodes are frozen
together, i.e. must be colored the same way in all valid colorings. It also is the
first time that a search algorithm can make a mistake at its first branching point
by setting two nodes to different colors. The possibility of early mistakes has
been associated with exceptionally hard instances (ehi’s). It has been further
suggested that ehi’s are responsible for a second phase transition, from polyno-
mial to exponential average case [8]. However, our results suggest that the first
frozen point converges on the threshold in colorability and is also similar to the
threshold in other ways. Again we expect that similar behavior will be seen in
many other NP problems, including those like SAT and constraint satisfaction
in which ehi’s are well studied.

To support our conclusions we look at critical subgraphs of unsolvable graphs:
that is a minimal uncolorable subgraph. We observe that an instance cannot be
hard if it is unsolvable for reasons detected by an algorithm in polynomial time: in
the case of coloring this occurs when instances contain a small critical subgraph.
As we increase the number of nodes, we see that small critical graphs disappear,
and we see a huge jump in the size of critical graphs. The result is that more
intelligent algorithms cannot be expected to perform significantly better, unless
some remarkable new method for proving uncolorability with structures other
than subgraphs is discovered. Thus phase transition instances can be expected
to be hard for all algorithms.

Monasson et al have studied the change from polynomial to non-polynomial
search cost in SAT [12]. We suggest that future studies of this kind can use the
existence or not of small reasons for unsolvability as an indicator of whether a



sudden jump from polynomial to non-polynomial behavior can be expected.

After background material we describe the techniques we use to identify
the threshold in colorability and frozen pairs of nodes. We then describe three
empirical studies which support our conclusions. These are for 4-coloring random
graphs, 3-coloring random graphs, and 3-coloring triangle-free graphs. We discuss
related and future work before concluding.

2 Background

Many problems exhibit the characteristics of a phase transition: as the number
of variables goes to infinity, there is a threshold density above which the prob-
ability of an instance being insoluble goes to zero, below which the probability
goes to one. In graph coloring and other NP problems, Cheeseman et al pointed
out the correlation between a phase transition in the solvability of random prob-
lems, and the occurrence of difficult instances for search algorithms [3]. In many
problems, no algorithm has been found which eliminates hard instances at phase
transitions. Such instances are often used for benchmarking in domains such as
satisfiability [11] and constraint satisfaction problems [14, 16]. However there is
no simple correlation between hard instances and phase transitions. For exam-
ple, there is a classic phase transition in the solvability of random Hamiltonian
cycle instances [9] but hard instances do not seem to be found there [19].

A secondary effect has been noted in many domains. Underconstrained and
usually solvable instances are typically easy but occasional ones are exception-
ally hard instances. This has been seen in graph coloring [8], satisfiability [5],
constraint satisfaction problems [17] and quasigroup completion [7]. Hogg and
Williams suggested that the occurrence of ehi’s might be associated with a sec-
ond phase transition, in this case a transition from polynomial to exponential
average search cost [8].

In general, graph coloring is the problem of partitioning the set of vertices
of a graph G = (V, E) into subsets called color classes. Typically, the classes
are given labels, called colors, from the set {1...k}. A vertex v in class ¢ under
some coloring c¢ is said to have color ¢[v] = i. A coloring ¢ is legal if for each edge
(u,v) € E, the vertices of the edge fall in distinct color classes; i.e. c[u] # c[v].
For the remainder of the paper, unless it is otherwise made clear, we refer only
to legal colorings. We use C = Cj(G) to refer to the set of all legal k-colorings of
a graph G. The decision version, which 18 NP-complete, gives us k& and requires
us to determine whether or not G is k-colorable, that is does Ci(G) # 0.

Given an uncolorable graph, we will be interested in the reasons for uncol-
orability, and in particular critical subgraphs and critical sets of edges. A critical
subgraph of G is a subgraph which 1s uncolorable, but which becomes colorable
if any edge is removed from it. The critical set of edges in G is the set of edges
that occur in every critical subgraph of the graph. Thus, these act as a lower
bound on the size of the smallest critical subgraph, although the smallest critical
subgraph can be arbitrarily larger than the critical set of the graph. Note that



an edge is in the critical set iff its removal from G makes G uncolorable. This
gives a straightforward way of computing the critical set.

3 Threshold in Colorability and Frozen Pairs

By taking many samples it can be determined empirically at what density of
constraints the problems become 50% unsolvable, and this point is usually con-
sidered to represent the threshold, even when no phase transition has been proven
to exist.

For problems such as SAT the threshold in satisfiability is associated with a
sharp rise in the number of variables that have a single value under all satisfying
assignments for the soluble instances [13, 12]. Such variables are called frozen
variables, and the single value available to a variable is its frozen value. The
instance becomes unsatisfiable exactly when a clause is added which requires
that at least one of these variables takes a value different than its frozen value.

In graph coloring, due to symmetry under relabeling of the color classes,
vertices (the variables of the problem) are never frozen to any value or color in
any colorable instance. Instead a solvable instance becomes unsolvable exactly
when an edge is added to a pair of vertices that are always the same color in
every k-coloring of the instance. We refer to such a pair in a solvable instance as
a frozen same pair. We can restate this by saying that a pair is frozen the same
if under all colorings the pair are always in the same color class of the partition;
formally u and v are frozen the same when c[u] = ¢[v],Ye € C. We observe a
sharp rise in the number of frozen same pairs as we near this threshold: however
in this study we restrict ourselves to studying the first frozen pair.

Note that it is also possible that a pair of vertices are in distinct partition
elements under every coloring of a soluble instance. This is trivially the case for
edges; the more interesting case is for non-edge pairs. We refer to these pairs as
frozen different. Adding an edge for a frozen different pair has no impact on the
set of colorings of the graph.

For purposes of this study, we consider a model based on the set of (g) pairs
of vertices {(u,v),u,v € V} where the vertices of a pair are unordered and
distinct and n = |V|. We generate at random one of the (})! permutations of
the set of pairs, calling this the input sequence. We build a graph of m edges
by choosing the first m pairs from the input sequence. For a given sequence we
can determine (using binary search) in O(logn) coloring attempts the smallest
value m* such that the graph on the first m* edges is not k-colorable. We define
the threshold T'(n) as the average over the set of all input sequences IT of the
minimum values m*.

Note that T'(n) is well defined for all n, although not necessarily easy to compute.
Using this model gives several advantages in studying the phase transition, in-
cluding an expected reduction in variance on computing 7'(n) for a given sample



size. One of the conjectures on the coloring phase transition says that for each
k, T'(n)/n converges to a constant «j as n — oo.

We can also compute the smallest value m/ of m such that there is some
pair (z,y) of vertices (necessarily with index in the sequence greater than m/)
frozen the same. There may be more than one pair which are forced to be the
same color by the addition of the m/th edge. We call m/ the first edge causing
a frozen same pair, or the first frozen for short. We define

The computation of m/ is also based on binary search. Starting from the can-
didate value of m/, we add each edge in turn. If this causes uncolorability the
pair of nodes were frozen, and we can next try a smaller value of m?. If the
graph is still colorable, we remove the edge and add the next edge: if no edge
can be added to force uncolorability we have to try a larger value of m/ . This in-
volves many coloring attempts, although some can be saved. First, when we find
a coloring 1n each attempt, we can remove from consideration any future edge
between nodes given different colors in that coloring. Second, when we reduce
the candidate value of mf, we need only continue testing from the frozen pair
we found, since removing edges cannot make any more pairs frozen. (In some
cases we read off the first frozen points from fuller data exploring the full frozen
development.)

Our reason for studying the first frozen point m/ is its correlation to the
possible existence of the ‘double phase transition’[8] and the appearance of rare
exceplionally hard instances [17, 5]. This is because it is only when we are at or
beyond m/ that a search algorithm can make a single early mistake by setting two
nodes different which should be the same, and then start thrashing. Our results
suggest that the double phase transition is an effect that will only be seen at
small problem sizes. However it remains possible that algorithms could thrash
due to making a number of decisions which together make a graph uncolorable.

Clearly, for every sequence 7, m/ (x) < m*(w). Thus, v = lim,_, F(n)/n
(assuming it exists) must be bounded above by a. The evidence we present here
strongly suggests that as n — oo, v — «, and possibly even that the absolute
difference between T'(n) and F(n) converges. While it might exist for small n,
the double phase transition appears to be converging to one phase transition.

Throughout this paper we report results using a backtracking graph coloring
program developed by the first author.® This program is tuned to perform well
on coloring problems with small numbers of colors: in this paper we report results
on 3- and 4-coloring. On such problems we find the program to be competitive
with the state of the art algorithms.

# Unfortunately at the time of writing no report on this algorithm is available.



ratio of edges to nodes

4 Four coloring Random graphs

We start our empirical investigations with a classic problem, that of 4-coloring
random Gy, graphs. These are random graphs with n vertices and exactly m
edges chosen without restriction.
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Fig. 1. Comparison of 4-colorability of random graphs at first frozen point and
the threshold in colorability. Left: ratio of mean number of edges to n. Right:
search cost for uncolorable graphs immediately after addition of critical edge. 50
samples at each n (except 175 for first frozen, where the sample is only 27.)

Our experiments strongly suggest that as n increases, there is very little
difference between first frozen and threshold graphs. Fig. 1 shows the ratios at
which the threshold and first frozen points occur. Interestingly, the first frozen
ratio F'(n)/n is converging to the critical threshold 7T'(n)/n. closing the gap from
a difference of 0.51 at n = 25 to 0.09 at n = 175. We note that the samples in the
two cases are not from the same set of graphs, which might slightly increase the
variance in the difference between the mean ratios. Indeed, it is possible that
the absolute difference T'(n) — F(n) is convergent: we saw the difference vary
between 12 and 18 edges, with no obvious increasing or decreasing pattern. We
also show the difficulty of coloring these graphs in Fig. 1. We report statistics
on the number of search nodes, the most reliable measure of difficulty for the
program we are using. At the first frozen point, we use the uncolorable graph in
which an edge is added between the two nodes frozen the same. At the threshold
we include the graph with the critical edge that makes it uncolorable. The cost
in all cases is clearly increasing at an exponential rate. The threshold and first
frozen non-colorable instances seem to be almost indistinguishable in difficulty.
There seems to be no evidence that the first frozen graphs are exceptionally
hard, as there is no systematic difference between the maximum cost at the two
points. As expected (but not shown here), the colorable instances without the



critical edges are easier, with the graphs at the first frozen being much easier
since there are more colorings there.

To support our main conjecture, we need to know if there are small reasons
for uncolorability of either first frozen or threshold graphs. To do so we study the
critical subgraphs and critical sets of edges in random graphs. The importance
of critical subgraphs to the search process is that any search must examine every
edge in at least one critical subgraph. While it is not necessarily true that this
need be an expensive examination, in NP we would expect that search must be
exponential in the size of the smallest critical subgraph. Unfortunately we are
not currently able to find the smallest critical subgraphs, though we hope to do
so 1n the future in collaboration with Isla Ross. However, we are able to find a
single critical subgraph of each graph, and the critical set of edges in a graph.

Critical Subgraphs at First Frozen|Critical Subgraphs at Threshold|Difference

n| Mean  Std Mean/n Min  Max| Mean Std Mean/n Min Max| Mean/n

25| 26.36 1881 1.0 10 73| 40.0217.09 1.60 10 74 0.55
50| 88.12 55.28 1.76 10 168]119.12 38.02  2.38 10 168| 0.62
75(198.44 80.72 2.65 10 268|233.1039.44 3.11 10 270{ 0.46
100|310.44 103.77  3.10 10 382|346.5224.59 3.47 294 395 0.37

Table 1. The number of edges in random critical subgraphs at the first
frozen(top) and the number of edges in random critical subgraphs at the thresh-
old for k = 4 sample of 50 at each n.

We first study critical subgraphs of the uncolorable graphs at first frozen and
threshold points. We can do this only up to n = 100 because of the computational
expense. The size of these graphs grows at least linearly with n at both points,
suggesting that critical graphs have size O(n). As n increases in Table 1, we see
that the sizes of critical subgraphs at the first frozen point and threshold are
converging. Indeed, comparison of the distribution of the sizes of graphs shows
that the convergence is stronger than the table suggests. In figure 2 we compare
the histograms of the sizes of critical subgraphs found in the non-4-colorable
graphs at the first frozen index with the first encountered frozen pair added, and
the threshold graph. These come from 50 samples at n = 100. Note that the
distributions are very similar, except for 5 graphs with 10 edges, i.e. b-cliques, in
the first frozen instances. This seems to indicate that the critical subgraphs in
either case are mostly the same, with the exception that occasionally there may
occur a near clique while n remains small. A near-5-clique (nbc), a 5-clique with
one missing edge, is the smallest subgraph® that can force a pair of vertices to

4 Smallest as measured by either v or e. We evaluate the expected occurrences of n5c’s
as the last edge of the critical subgraph is forced.



be the same color under all 4-colorings. We note that if we discount the 5 critical
subgraphs of size 10 at n = 100 in the first frozen instances, then the average

ratio is 3.43, very close to the 3.47 value for the threshold critical graphs.

Random Critical Subgraph at First Frozen

Random Critical Subgraph at Threshold

“threshold” ——

Fig. 2. Comparison of distribution of critical graph sizes on n = 100,k = 4 at

100 150 200

100 150 200

the first frozen pair (left) and the critical index (right), 50 samples each.

Critical Sets at First Frozen Critical Sets at Threshold |Difference

n| Mean Std Mean/n Min Max(Mean Std Mean/n Min Max| Mean/n
25( 19.90 11.48 0.80 7 52|17.26 10.98 0.69 2 44| -0.11
50| 51.38 33.57 1.03 10 117({29.8821.36 0.60 2 90| -0.43
75(102.1049.36  1.36 10 199(50.16 36.01 0.67 2 137 -0.69
100{163.12 72.47 1.63 10 316{69.8053.64 0.70 4 239] -0.93

Table 2. The number of critical edges in first frozen graphs(top) and the number
of critical edges in the threshold graphs for k& = 4 sample of 50 at each n.

We have been reporting the size of an arbitrary critical subgraph, the first
that we find. This makes possible in principle that some very small critical
subgraphs exist which our procedure does not find. However, this is not the case
in 4-coloring. The size of critical sets of edges grows linearly in both cases, as
seen in Table 2, and every critical edge must be in every critical subgraph. The
smaller size of critical sets at the threshold compared to the first frozen point
is because the extra edges create new critical subgraphs, thereby reducing the
the intersection of all critical subgraphs. Table 2 also adds further support to



our conclusion that large graphs must be searched to prove uncolorability. Since
every search must look at every edge in the critical set, we cannot hope that
more intelligent algorithms will be able to prove graphs uncolorable easily. °

The tables and histograms we have presented show that we have found only
two kinds of critical subgraphs: small cliques or near-cliques, and large graphs
growing in size linearly with n. In fact, straightforward analysis shows that the
small graphs disappear as n increases. We can estimate the expected number
of near-5-cliques where the edge probability is p by F[#nbc] = (g)p9(1 —p)10
Using p = e/(g), with the empirical e = 398.56 as the average number of edges
at the first frozen index with n = 100 this expectation is 0.0985, which when
multiplied by the 50 samples gives us 4.92. ® Under the assumption that the
critical threshold ratio converges to a constant, the expected number of nbc’s
at the critical threshold (and at the first frozen) is bounded by O(1/n*) and so
must tend rapidly to zero as n — oo.

It is not possible that near-5-cliques will be replaced in making graphs uncol-
orable by other small subgraphs. Given a graph G, the exact formula for E[G]
in random graphs depends on the automorphisms of G, but it will be O(1/n¢~?)
where G contains v vertices and e edges. Every node in a critical subgraph must
have at least degree k, the number of colors. In this case k& = 4, so even at
the first frozen point where we add the final edge to produce uncolorability,
e > 2v — 1. So any specific larger graph than nbc disappears even faster. Even
families of bounded size critical subgraphs disappear, since there is only a finite
number of graphs of a given size, each one eventually becoming vanishingly im-
probable. Our empirical evidence shows that even at n = 100, nbc is the only
small graph which occurs even occasionally. Taken together, this analysis and
our experiments show that uncolorability at either the threshold or first frozen
point occurs because of critical subgraphs of size O(n).

To summarise, we have given strong evidence to support two conclusions.
First, that problems at the uncolorability phase transition are well out of reach
of intelligent algorithms. Since there are not small and easily checkable sub-
graphs which can be used to confirm uncolorability quickly, we cannot hope to
build more intelligent algorithms to avoid hard problems at the phase transition.
Second, that there is little difference between graphs at the point where the first
pair of nodes become frozen, and at the threshold in colorability. This suggests
that there is not a double phase transition in four-coloring random graphs.

® Cautionary note: The first frozen critical graphs are canonical, while the threshold
critical graphs are random subgraphs. Thus, there may be correlations in the first
frozen critical graphs not present in the threshold critical subgraphs. This does not
affect the other measures.

Note that this is not necessarily as indicative as it appears. It is quite possible that
the larger critical graphs have an n5¢c embedded in them, but that the first frozen pair
chosen to make the graph non-4-colorable was not the missing edge of the n5c. Also
note that e is not a fixed value but is the first frozen point: so that the expectation
at a fixed value of e is not the same as the expectation at the first frozen point.

[



ratio of edges to nodes

5 Three coloring Random graphs

We also experimented on 3-coloring instances. Figure 3 shows the ratios of the
threshold and first frozen points. For the non-3-colorable subgraphs the threshold
ratio T'(n)/n seems to be converging towards the standard value of 2.3, equivalent
to an average degree of 4.6. The size of the first frozen uncolorable graphs appears
to be increasing, but it is not clear if convergence is towards the same bound.
We also plot the search cost at these points, and again there is no evidence that
problems at the first frozen point produce exceptionally hard instances.
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Fig. 3. Comparison of 3-colorability of random graphs at first frozen point and
the threshold in colorability. Left: ratio of mean number of edges to n. Right:
search cost for uncolorable graphs immediately after addition of critical edge.

There is a much larger gap between first frozen and threshold points in 3-
coloring than in 4-coloring. This is partly explained by the smaller critical sub-
graphs that occur in 3-coloring. The uncolorable 4-clique has 6 edges and 4
nodes. The near-4-clique (ndc), that is the 4-clique with one edge missing, has
5 edges. Thus, the expected number of these in a graph with edge probability p
is F[#ndc] = (Z)p5(1 — p)6 where p &~ 2(5’;1 Thus, the expected number grows
as O(1/n). Eventually the expectation converges to 0. The convergence is much
slower than the O(1/n*) in 4-coloring, and this is responsible for the less clearcut
behaviour of 3-coloring. For example, in 300 node graphs, 78 of first frozen pairs
were caused by an n4c out of a sample of 100. Nevertheless, our conclusions from
the previous section are still supported. Of the remaining 300 node graphs, one
contained a critical subgraph with fewer than 12 edges, but the minimum size
of critical subgraphs in the remaining 21 instances was 407 edges. The empirical
evidence suggests that as the 4-clique disappears as the critical subgraph of the
first frozen, then the size of the critical subgraphs jumps to O(n) edges. Data
suggesting this is shown in Table 7 in the Appendix.




The conclusions we can draw from these experiments and analysis in 3-
coloring are the same as in 4-coloring. Asymptotically, we do not expect to
see a double phase transition or small uncolorable subgraphs at the phase tran-
sition. However, the decay of the near-4-cliques is only O(1/n) and they are still
important at n = 300. This does mean that it is impossible for us to experi-
ment on large enough graphs from the G, distribution in which near-4-cliques
disappear to confirm our claims.

6 Triangle-free Graphs

Finally, we studied small 3-coloring problems with structure more like those of
large graphs after near-4-cliques have disappeared. Analysis shows that asymp-
totically, graphs at the phase transition have only O(1) triangles, and for sim-
plicity we ban triangles completely and generate triangle-free graphs. The graph
coloring problem generators at http://www.cs.ualberta.ca/~joe allow for this,
by generating girth 4 graphs. The girth ¢(G) of a graph G is the length of the
smallest cycle, and is 3 if a graph contains a triangle. The reason for having this
feature is that algorithms such as DSATUR depend on finding large cliques, or
clique-like regions that restrict the colorings allowed locally in the graph. With
girth ¢ > 3 the largest clique is a 2-clique, or edge. Many heuristics and algo-
rithm designs are thus thwarted. Girth 4 graphs seem to be harder for most
programs than unrestricted random graphs.

Girth inhibited graphs are generated as follows. The set of vertex pairs is
randomly ordered, and then edges are added in order of this permutation. When
an edge x, y 1s added to the graph, all paths including the edge z, y of length up
to g — 1 are checked. Any non-edge vertex pair (u, v) in any path is deleted from
the set of vertex pairs remaining to be selected. For this experiment, no hidden
coloring was given. (The generator also allows the variance in vertex degrees to
be restricted, but this was avoided by choosing the maximum delta.) The edge
density (probability) was set to 1.0, which means that in each case a maximally
dense girth ¢ = 4 graph was produced. The algorithm is complete, in that any
g > 4 graph can be generated, but it is unknown if it is uniform: that is we do not
claim that each triangle-free graph is equally likely. Once generated, a procedure
lists the edges of the graph in random order, and this is the permutation sequence
input to our various tests. For small n there 1s a chance that the graph is three
colorable, but this never occurred for the range tested here.

Our experiments on 3-coloring triangle-free graphs give very similar results
to the 4-coloring results presented earlier. As n increases, there is very little
difference between first frozen and threshold graphs. © Fig. 4 shows the ratios at
which the threshold and first frozen points occur. Once again, we see threshold
ratio T'(n)/n and first frozen ratio F(n)/n converging. Again it is possible that
even T(n) — F(n) converges, since at n = 100 the difference is 23, but by n =
300 1t has fallen to 18. We also show the difficulty of coloring these graphs in

7 An interesting aside is that the threshold ratio starts high and goes down.
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Fig. 4. Comparison of triangle-free graphs at first frozen point and the threshold
in colorability. Left: ratio of mean number of edges to n. Right: search cost for
uncolorable graphs immediately after addition of critical edge.

Fig. 4. The cost in all cases seems to be increasing at an exponential rate,
usually doubling or more for each increase of 25 vertices for the non-colorable
instances. The threshold and first frozen non-colorable instances seem to be
almost indistinguishable in difficulty. There seems to be no evidence that the
first frozen graphs are exceptionally hard, as there is no systematic difference
between the maximum cost at the two points.

Critical Subgraphs at First Frozen|Critical Subgraphs at Threshold|Difference

n| Mean Std Mean/n Min Max| Mean Std Mean/n Min Max| Mean/n

50| 62.1816.77 1.24 21 93| 76.26 11.74 1.53 46 98 0.29
75| 99.50 20.66 1.33 54 138|114.58 18.79  1.53 74 149 0.20
100(148.52 25.28 1.49 86 192|160.9222.80 1.61 102 201 0.12
125|206.46 29.26 1.65 113 260\217.8220.49 1.74 154 253 0.09

Table 3. Number of edges in Canonical Critical Subgraphs of the triangle-free
graphs. The canonical critical graph 1s obtained by deleting as many edges as
possible choosing them in vertex order.

The size of critical sets and subgraphs are shown in tables 3 and 4. We can
do this only up to n = 125 because of the computational expense. As n increases
in Table 3, we see that the size of critical subgraphs converges at the first frozen
point and threshold. The size of these graphs grows at least linearly with n,
suggesting that critical graphs have size O(n). The size of critical sets in Table 4



Critical Sets at First Frozen Critical Sets at Threshold |Difference
n| Mean Std Mean/n Min Max(Mean Std Mean/n Min Max| Mean/n
50( 33.9014.69 0.68 11 83[17.5013.52 0.35 1 60| -0.33
75| 60.3222.76 0.80 21 108|27.0420.17 0.36 1 91| -0.44
100] 83.7029.19 0.84 30 139]32.76 24.34 0.33 4 89| -0.51
125|112.4245.21 0.90 17 203|44.42 28.47 0.36 3 128] -0.54

Table 4. Number of edges in the critical sets of triangle free graphs

is also growing linearly at both points.

To summarise, empirical evidence was not clear in the case of 3-coloring ran-
dom graphs, so we studied triangle-free graphs, which are similar in structure to
large random graphs. The evidence supports our conclusions that hard instances
at phase transitions are well out of reach of intelligent algorithms, and that the
double phase transition merges into one.

7 Related and Further Work

Exceptionally hard instances (ehi’s) are usually understood to arise as the result
of a mistake early in the search process: for example a single incorrect variable
setting can lead to an unsolvable subproblem using much search, any other set-
ting leading to an easily solved problem [5]. Baker identified this as a thrashing
process [1] and Smith and Grant were able to predict with some accuracy the
frequency and search cost of ehi’s for a very simple backtracking algorithm [18].
Unlike hard instances at phase transitions, ehi’s are highly algorithm depen-
dent, and so the distribution of search cost over runs with different heuristics is
important [8, 7].

To understand both hard instances at phase transitions and ehi’s, a number
of authors have studied ‘minimal unsatisfiable subproblems’ (MUS’s) [6, 2, 10].
Given an unsatisfiable instance, an MUS is an unsatisfiable subproblem such that
every strict subproblem in it is satisfiable. In this paper we have studied MUS’s
in coloring, but use the graph theoretic name ‘critical graph’: a critical subgraph
of an uncolourable graph is exactly an MUS of it. Gent and Walsh first noted that
MUS’s helped to explain ehi’s [6]. They observed that ehi’s typically had small
and unique MUS’s, while hard problems at phase transitions had MUS’s which
were larger and not unique. Our results are consistent with this, but suggest
that on larger problems than they were able to examine, this behavior is likely
to have changed. As in coloring, we would expect there to be a large jump in
MUS size as small pathological graphs become vanishingly improbable.

There have been studies in SAT of how variables freeze to a single value.
Parkes showed that at the satisfiability threshold, many variables have frozen
although some are almost free [13]. He suggested that he would not expect a



double phase transition in SAT. Monasson et al have used the frozen development
in SAT to study the transition from P to NP [12]. Our studies also relate to this
question, because problems will have good average case behavior when some
polynomial check often helps to prove unsolvability. We suggest that in many
NP complete problems, like graph coloring, there is no such cheap check and
pathological behavior occurs at phase transitions in solvability as a result.

Chvatal and Szemeredi have shown that resolution proofs for overconstrained
SAT problems are almost certainly long asymptotically [4]. Interestingly, this has
not been shown for problems at a SAT phase transition, though it is likely that
proofs in that region must be even longer. Extending this proof from resolution
to any algorithm would prove NP # co-NP, but it is likely that in SAT, coloring,
and other NP problems, proofs of unsolvability must be long.

We conjecture that similar results will apply to other NP-complete problems
in which phase transitions provide hard instances. Two obvious examples are
satisfiability and general constraint satisfaction problems, but it would also be
interesting to study problems such as the TSP, in which the analogue of critical
graphs are not so obvious. A follow on in coloring would be to determine the
minimum critical subgraph in each instance. Unfortunately this will likely prove
difficult, possibly almost as hard as listing all critical graphs. This last would
be the ultimate way to analyse the critical subgraphs of uncolorable graphs, but
will inevitably be limited to small sizes. Further investigation is needed on how
to compute all critical graphs [15].

8 Conclusions

We conclude that problems at the uncolorability phase transition are well out of
reach of intelligent algorithms. Also, we conclude that there is little difference
between graphs at the point where the first pair of nodes become frozen, and
at the threshold in colorability. This suggests that the double phase transition
in graph coloring is only an effect seen in small graphs: as the number of nodes
increases the double phase transition converges to a single one. These results
are likely to apply to any NP-complete problem where instances from phase
transitions are hard for all known algorithms, and that our results help to explain
this phenomenon.

Since there are not small and easily checkable subgraphs which can be used
to confirm uncolorability quickly, we cannot hope to build more intelligent al-
gorithms to avoid hard problems at the phase transition. For example, it is
unlikely that learning algorithms would help significantly because the nogoods
to be learnt must be inevitably be large.

More general lessons can be learnt from our study. An exciting application of
our work is in understanding the difference between polynomial and exponential
complexity. Many NP-complete problems have natural polynomial subclasses,
for example 2-SAT within SAT. Since these subclasses are easily checkable, our
results help to explain the sudden jump seen by Monasson et al from P-like
behavior to NP-like behavior in the mixed 24+p-SAT model [12]. We expect



that as the easily checked 2-SAT part of instances stops being responsible for
unsolvability, large proofs will be necessary giving hard exponential behavior.
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9 Appendix

This appendix contains tabular versions of some graphs, as well as some data

not contained in any form in the main body of the paper.

First Frozen Size (m/ + 1) Threshold Size (m*) Difference

n| Mean Std Mean/n Min Max| Mean Std Mean/n Min Max| Mean/n
25| 75.04 8.91 3.00 54 96| 87.68 6.23 3.51 69 100| 0.51
50|177.56 13.57 3.55 140 197(193.04 9.74 3.86 169 215 0.31
75|287.18 15.13  3.83 240 309(304.34 10.16 4.06 275 325 0.23
100|398.56 12.44 3.99 355 414|414.2010.16 4.14 383 433| 0.15
125|512.8213.31 4.10 442 530]526.46 10.48 4.21 505 550| 0.11
150(623.92 8.84 4.16 603 641|635.8012.53 4.24 607 671| 0.08
175*%|733.48 12.37 4.19 701 754|749.4810.36 4.28 718 778 0.09

Table 5. Size of non-4-colorable graphs at first frozen(top) and at the thresh-
old(bottom) for & = 4, 50 samples at each n ( * except 175 for first frozen, where
the sample is 27.)

First Frozen Size (m/ + 1) Threshold Size (m*) Difference

n| Mean  Std Mean/n Min Max| Mean Std Mean/n Min Max| Mean/n
50| 75.32 18.58 1.51 29 107(106.84 10.00 2.14 61 121, 0.63
75|118.42 27.62 1.58 46 168(165.7410.70 2.21 131 185] 0.63
100|164.29 35.28 1.64 45 226|223.5110.02 2.24 202 253] 0.60
200(355.36 80.64 1.78 105 460(456.04 13.32 2.28 412 484 0.50
225/405.11 84.17 1.80 177 519|513.1412.41 2.28 471 545 048
300/562.70 109.48 1.88 139 702|689.1513.06 2.30 655 715 0.42

Table 6. Sizes of first frozen(top) and threshold non-colorable graphs, k& = 3,
100 samples at each n. For n = 50...100, the results come from the same set of
graphs: this might increase the variance in the calculated difference, but should

not affect the mean.

This article was processed using the ¥TEX macro package with LLNCS style



Critical Subgraphs of First Frozen

Small Cases

Remaining Cases

n #4-cliques #< 12

# Min Size Max Size Mean

50 83 3| 14 25 53 41.93
75 80 4| 16 13 109 61.75
100 81 3| 16 13 149 102.44
200 78 30 19 234 353 296.95
225 73 2| 25 248 412 346.36
300 78 1] 21 407 595 510.57
350* 5 0] 5 600 657 620.80

Critical Subgraphs of Threshold

Small Cases

Remaining Cases

n #4-cliques #< 12| # Min Size Max Size Mean
50 9 3| 88 15 76 47.36
50 11 2| 87 15 80 48.09
75 2 0] 98 16 131 78.04
75 2 0] 98 16 151 79.97

100 0 0{100 27 161 114.27
100 0 0{100 45 174 114.73
125 3 0] 97 78 211 162.03
150 3 0] 97 36 276 202.90

Table 7. Size distributions of the critical subgraphs of the first frozen graphs,
k = 3. 100 samples were taken at each n. In addition, two random critical
subgraphs were computed for each of the threshold graphs for n = 50...100,
and thus the double listing for each of these entries. Due to long run times,
only ten samples completed at n = 350 for first frozen. Notice that for larger n
first-frozen graphs, there seem to be very few critical subgraphs that are between

the 6-edge 4-clique and graphs with a few hundred edges.




Critical Sets of the First Frozen graphs
n Mean  Std Mean/n Min Max
50 9.74 9.58 019 6 48
75 11.64 15.35 016 6 86
100 14.79 23.09 015 6 118
6
6

200 37.56 69.07 0.19 240
225 56.00 91.99 0.25 314
300 70.73 132.86 024 6 466

Critical Sets from Threshold graphs

n Mean  Std Mean/n Min Max
50 16.80 11.62 034 1 49
75 26.96 18.68 036 1 83
100 31.85 21.12 032 1 85
3
5

125 41.50 29.92 0.33 160
150 51.18 34.63 0.34 140

Table 8. The critical sets, that is the number of edges that must occur in every
critical subgraph of the first frozen and threshold non-3-colorable graphs.

First Frozen Size (m/ + 1) Threshold Size (m*) Difference
n| Mean Std Mean/n Min Max| Mean Std Mean/n Min Max| Mean/n
50|117.08 831 2.34 105 141(138.6214.58 2.77 114 175 0.43
75|170.16 8.23 2.27 149 194(192.38 11.45 2.57 174 224 0.30
100|228.82 8.26 2.29 214 249|251.6411.28 2.52 230 280 0.23
125129091 7.10 2.33 273 304(309.69 7.87 2.48 290 328| 0.15
150|1349.42 7.41 2.33 335 363|368.1010.82 2.45 344 401| 0.12
175/408.26 7.04 2.33 393 425|424.30 8.68 2.42 408 449| 0.09
200/1466.02 8.06 2.33 449 481/484.3010.06 2.42 464 508 0.09
225(525.02 8.98 2.33 503 546/542.90 7.49 241 522 561| 0.08
250(583.54 9.77 2.33 556 603|600.10 12.61 2.40 573 635 0.07
275/644.38 7.89 2.34 625 660/660.5210.21 2.40 636 693| 0.06
300(703.38 12.20 2.34 660 730|721.3211.93 240 689 747| 0.06

Table 9. Empirical Measures of Frozen Development on Girth 4 & = 3 Coloring
Problems.



First Frozen Non-colorable
N Mean Std Ratio to Prev Min  Max

50 2.24 3.11 — 0 12

75 5.66 5.66 253 0 24
100 15.04 15.89 266 0 77
125 4216  35.45 280 1 177
150 77.84  47.19 1.85 9 178
175 197.64 161.24 2.54 12 714
200 299.68 229.42 1.52 27 1029
225 606.66 549.63 2.02 13 2795
250 1793.08 2622.69 2.96 22 16687
275 3496.66 4218.19 1.95 261 22971
300 8377.46 10755.89 2.40 311 55523

First Frozen Colorable
N Mean Std Ratio to Prev Min  Max

50 11.50 3.22 — 6 19

75 13.62 3.64 1.18 6 24
100 16.94 5.40 1.24 5 31
125 22.32 9.70 1.32 8 64
150 32.24 18.33 1.44 13 126
175 5348  37.44 1.66 19 166
200 64.30  48.77 1.20 20 198
225 138.18 153.13 2.15 28 961
250 389.60 588.32 2.82 25 2643
275 428.66 486.60 1.10 18 1876
300 1728.16 3689.39 4.03 35 23487

Threshold Non-colorable
N Mean Std Ratio to Prev Min  Max

50 3.02 2.08 — 1 12

75 7.66 5.38 254 1 24
100 14.62 10.10 1.91 2 42
125 49.66  38.42 3.40 11 172
150 95.28  73.53 1.92 17 413
175 201.20 141.90 2.11 18 527
200 320.38 238.96 1.59 37 1169
225 704.28 555.17 220 20 2471
250 1793.58 2057.81 2.55 1562 12292
275 3186.78 4418.67 1.78 542 31060
300 9381.28 21080.33 2.94 601 151296

Threshold Colorable
N Mean Std Ratio to Prev Min  Max

50 8.68 2.99 — 3 16

75 12.98 5.48 150 5 28
100 20.98 8.97 1.62 8 45
125 4248  28.89 2.02 10 138
150 59.52  44.90 1.40 13 252
175 132.06 113.98 2.22 20 533
200 175.52 157.86 1.33 19 598
225 396.46 470.56 226 19 2486
250 964.48 1245.71 243 25 6017
2751314.36 1819.94 1.36 85 11964
300 5400.08 14984.26 4.11 74105976

Table 10. Number of Backtrack Nodes to Solve Various instances in triangle-free
graphs



