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1 IntroductionThere has been a wealth of research showing that a phase transition in solvabilityof NP-complete problems is often correlated with a peak in hardness of solvingthose problems. We attempt to understand why phase transitions so often yieldhard instances. We do so in the context of graph coloring.Our main conclusion is that hard instances are well out of reach of even in-telligent algorithms. Intelligent algorithms can take account of small local struc-tures in instances to reduce search. For example, our graph coloring algorithmidenti�es 4-cliques as making a graph non 3-colorable. However, we have foundthat at phase transitions, the structures which cause unsolvability are very large.In graph coloring, when there are not 4-cliques in graphs, there are often hun-dreds of critical edges which must be used in proving unsolvability. It is thereforeunimaginable to adapt an algorithm to check for them explicitly, suggesting thathardness at phase transitions is indeed an algorithm independent property. Weexpect that similar behavior will be seen in many other NP problems. For exam-ple, in SAT it is known that resolution proofs become large in the overconstrainedregion [4]. It is likely that a similar result also holds at the phase transition. Weconjecture that NP problems with hard phase transitions are those in whichthe smallest structures responsible for unsolvability are well beyond the reach ofreasonable algorithms.We also investigate another important point in the phase transition, the `�rstfrozen' point. In coloring, this is the �rst point at which two nodes are frozentogether, i.e. must be colored the same way in all valid colorings. It also is the�rst time that a search algorithm can make a mistake at its �rst branching pointby setting two nodes to di�erent colors. The possibility of early mistakes hasbeen associated with exceptionally hard instances (ehi's). It has been furthersuggested that ehi's are responsible for a second phase transition, from polyno-mial to exponential average case [8]. However, our results suggest that the �rstfrozen point converges on the threshold in colorability and is also similar to thethreshold in other ways. Again we expect that similar behavior will be seen inmany other NP problems, including those like SAT and constraint satisfactionin which ehi's are well studied.To support our conclusions we look at critical subgraphs of unsolvable graphs:that is a minimal uncolorable subgraph. We observe that an instance cannot behard if it is unsolvable for reasons detected by an algorithm in polynomial time: inthe case of coloring this occurs when instances contain a small critical subgraph.As we increase the number of nodes, we see that small critical graphs disappear,and we see a huge jump in the size of critical graphs. The result is that moreintelligent algorithms cannot be expected to perform signi�cantly better, unlesssome remarkable new method for proving uncolorability with structures otherthan subgraphs is discovered. Thus phase transition instances can be expectedto be hard for all algorithms.Monasson et al have studied the change from polynomial to non-polynomialsearch cost in SAT [12]. We suggest that future studies of this kind can use theexistence or not of small reasons for unsolvability as an indicator of whether a



sudden jump from polynomial to non-polynomial behavior can be expected.After background material we describe the techniques we use to identifythe threshold in colorability and frozen pairs of nodes. We then describe threeempirical studies which support our conclusions. These are for 4-coloring randomgraphs, 3-coloring random graphs, and 3-coloring triangle-free graphs. We discussrelated and future work before concluding.2 BackgroundMany problems exhibit the characteristics of a phase transition: as the numberof variables goes to in�nity, there is a threshold density above which the prob-ability of an instance being insoluble goes to zero, below which the probabilitygoes to one. In graph coloring and other NP problems, Cheeseman et al pointedout the correlation between a phase transition in the solvability of random prob-lems, and the occurrence of di�cult instances for search algorithms [3]. In manyproblems, no algorithm has been found which eliminates hard instances at phasetransitions. Such instances are often used for benchmarking in domains such assatis�ability [11] and constraint satisfaction problems [14, 16]. However there isno simple correlation between hard instances and phase transitions. For exam-ple, there is a classic phase transition in the solvability of random Hamiltoniancycle instances [9] but hard instances do not seem to be found there [19].A secondary e�ect has been noted in many domains. Underconstrained andusually solvable instances are typically easy but occasional ones are exception-ally hard instances. This has been seen in graph coloring [8], satis�ability [5],constraint satisfaction problems [17] and quasigroup completion [7]. Hogg andWilliams suggested that the occurrence of ehi's might be associated with a sec-ond phase transition, in this case a transition from polynomial to exponentialaverage search cost [8].In general, graph coloring is the problem of partitioning the set of verticesof a graph G = (V;E) into subsets called color classes. Typically, the classesare given labels, called colors, from the set f1 : : :kg. A vertex v in class i undersome coloring c is said to have color c[v] = i. A coloring c is legal if for each edge(u; v) 2 E, the vertices of the edge fall in distinct color classes; i.e. c[u] 6= c[v].For the remainder of the paper, unless it is otherwise made clear, we refer onlyto legal colorings. We use C = Ck(G) to refer to the set of all legal k-colorings ofa graph G. The decision version, which is NP-complete, gives us k and requiresus to determine whether or not G is k-colorable, that is does Ck(G) 6= �.Given an uncolorable graph, we will be interested in the reasons for uncol-orability, and in particular critical subgraphs and critical sets of edges. A criticalsubgraph of G is a subgraph which is uncolorable, but which becomes colorableif any edge is removed from it. The critical set of edges in G is the set of edgesthat occur in every critical subgraph of the graph. Thus, these act as a lowerbound on the size of the smallest critical subgraph, although the smallest criticalsubgraph can be arbitrarily larger than the critical set of the graph. Note that



an edge is in the critical set i� its removal from G makes G uncolorable. Thisgives a straightforward way of computing the critical set.3 Threshold in Colorability and Frozen PairsBy taking many samples it can be determined empirically at what density ofconstraints the problems become 50% unsolvable, and this point is usually con-sidered to represent the threshold, even when no phase transition has been provento exist.For problems such as SAT the threshold in satis�ability is associated with asharp rise in the number of variables that have a single value under all satisfyingassignments for the soluble instances [13, 12]. Such variables are called frozenvariables, and the single value available to a variable is its frozen value. Theinstance becomes unsatis�able exactly when a clause is added which requiresthat at least one of these variables takes a value di�erent than its frozen value.In graph coloring, due to symmetry under relabeling of the color classes,vertices (the variables of the problem) are never frozen to any value or color inany colorable instance. Instead a solvable instance becomes unsolvable exactlywhen an edge is added to a pair of vertices that are always the same color inevery k-coloring of the instance. We refer to such a pair in a solvable instance asa frozen same pair. We can restate this by saying that a pair is frozen the sameif under all colorings the pair are always in the same color class of the partition;formally u and v are frozen the same when c[u] = c[v]; 8c 2 C. We observe asharp rise in the number of frozen same pairs as we near this threshold: howeverin this study we restrict ourselves to studying the �rst frozen pair.Note that it is also possible that a pair of vertices are in distinct partitionelements under every coloring of a soluble instance. This is trivially the case foredges; the more interesting case is for non-edge pairs. We refer to these pairs asfrozen di�erent. Adding an edge for a frozen di�erent pair has no impact on theset of colorings of the graph.For purposes of this study, we consider a model based on the set of �n2� pairsof vertices f(u; v); u; v 2 Vg where the vertices of a pair are unordered anddistinct and n = jV j. We generate at random one of the �n2�! permutations ofthe set of pairs, calling this the input sequence. We build a graph of m edgesby choosing the �rst m pairs from the input sequence. For a given sequence wecan determine (using binary search) in O(logn) coloring attempts the smallestvalue m� such that the graph on the �rst m� edges is not k-colorable. We de�nethe threshold T (n) as the average over the set of all input sequences � of theminimum values m�. T (n) = 1�n2�! X�2�m�(�)Note that T (n) is well de�ned for all n, although not necessarily easy to compute.Using this model gives several advantages in studying the phase transition, in-cluding an expected reduction in variance on computing T (n) for a given sample



size. One of the conjectures on the coloring phase transition says that for eachk, T (n)=n converges to a constant �k as n!1.We can also compute the smallest value mf of m such that there is somepair (x; y) of vertices (necessarily with index in the sequence greater than mf )frozen the same. There may be more than one pair which are forced to be thesame color by the addition of the mf th edge. We call mf the �rst edge causinga frozen same pair, or the �rst frozen for short. We de�neF (n) = 1�n2�! X�2�mf (�)The computation of mf is also based on binary search. Starting from the can-didate value of mf , we add each edge in turn. If this causes uncolorability thepair of nodes were frozen, and we can next try a smaller value of mf . If thegraph is still colorable, we remove the edge and add the next edge: if no edgecan be added to force uncolorability we have to try a larger value of mf . This in-volves many coloring attempts, although some can be saved. First, when we �nda coloring in each attempt, we can remove from consideration any future edgebetween nodes given di�erent colors in that coloring. Second, when we reducethe candidate value of mf , we need only continue testing from the frozen pairwe found, since removing edges cannot make any more pairs frozen. (In somecases we read o� the �rst frozen points from fuller data exploring the full frozendevelopment.)Our reason for studying the �rst frozen point mf is its correlation to thepossible existence of the `double phase transition'[8] and the appearance of rareexceptionally hard instances [17, 5]. This is because it is only when we are at orbeyondmf that a search algorithmcan make a single early mistake by setting twonodes di�erent which should be the same, and then start thrashing. Our resultssuggest that the double phase transition is an e�ect that will only be seen atsmall problem sizes. However it remains possible that algorithms could thrashdue to making a number of decisions which together make a graph uncolorable.Clearly, for every sequence �, mf (�) � m�(�). Thus, 
 = limn!1F (n)=n(assuming it exists) must be bounded above by �. The evidence we present herestrongly suggests that as n ! 1, 
 ! �, and possibly even that the absolutedi�erence between T (n) and F (n) converges. While it might exist for small n,the double phase transition appears to be converging to one phase transition.Throughout this paper we report results using a backtracking graph coloringprogram developed by the �rst author.3 This program is tuned to perform wellon coloring problems with small numbers of colors: in this paper we report resultson 3- and 4-coloring. On such problems we �nd the program to be competitivewith the state of the art algorithms.3 Unfortunately at the time of writing no report on this algorithm is available.



4 Four coloring Random graphsWe start our empirical investigations with a classic problem, that of 4-coloringrandom Gnm graphs. These are random graphs with n vertices and exactly medges chosen without restriction.
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Fig. 1. Comparison of 4-colorability of random graphs at �rst frozen point andthe threshold in colorability. Left: ratio of mean number of edges to n. Right:search cost for uncolorable graphs immediately after addition of critical edge. 50samples at each n (except 175 for �rst frozen, where the sample is only 27.)Our experiments strongly suggest that as n increases, there is very littledi�erence between �rst frozen and threshold graphs. Fig. 1 shows the ratios atwhich the threshold and �rst frozen points occur. Interestingly, the �rst frozenratio F (n)=n is converging to the critical threshold T (n)=n. closing the gap froma di�erence of 0:51 at n = 25 to 0:09 at n = 175. We note that the samples in thetwo cases are not from the same set of graphs, which might slightly increase thevariance in the di�erence between the mean ratios. Indeed, it is possible thatthe absolute di�erence T (n) � F (n) is convergent: we saw the di�erence varybetween 12 and 18 edges, with no obvious increasing or decreasing pattern. Wealso show the di�culty of coloring these graphs in Fig. 1. We report statisticson the number of search nodes, the most reliable measure of di�culty for theprogram we are using. At the �rst frozen point, we use the uncolorable graph inwhich an edge is added between the two nodes frozen the same. At the thresholdwe include the graph with the critical edge that makes it uncolorable. The costin all cases is clearly increasing at an exponential rate. The threshold and �rstfrozen non-colorable instances seem to be almost indistinguishable in di�culty.There seems to be no evidence that the �rst frozen graphs are exceptionallyhard, as there is no systematic di�erence between the maximum cost at the twopoints. As expected (but not shown here), the colorable instances without the



critical edges are easier, with the graphs at the �rst frozen being much easiersince there are more colorings there.To support our main conjecture, we need to know if there are small reasonsfor uncolorability of either �rst frozen or threshold graphs. To do so we study thecritical subgraphs and critical sets of edges in random graphs. The importanceof critical subgraphs to the search process is that any search must examine everyedge in at least one critical subgraph. While it is not necessarily true that thisneed be an expensive examination, in NP we would expect that search must beexponential in the size of the smallest critical subgraph. Unfortunately we arenot currently able to �nd the smallest critical subgraphs, though we hope to doso in the future in collaboration with Isla Ross. However, we are able to �nd asingle critical subgraph of each graph, and the critical set of edges in a graph.Critical Subgraphs at First Frozen Critical Subgraphs at Threshold Di�erencen Mean Std Mean=n Min Max Mean Std Mean=n Min Max Mean=n25 26.36 18.81 1.05 10 73 40.02 17.09 1.60 10 74 0.5550 88.12 55.28 1.76 10 168 119.12 38.02 2.38 10 168 0.6275 198.44 80.72 2.65 10 268 233.10 39.44 3.11 10 270 0.46100 310.44 103.77 3.10 10 382 346.52 24.59 3.47 294 395 0.37Table 1. The number of edges in random critical subgraphs at the �rstfrozen(top) and the number of edges in random critical subgraphs at the thresh-old for k = 4 sample of 50 at each n.We �rst study critical subgraphs of the uncolorable graphs at �rst frozen andthreshold points. We can do this only up to n = 100 because of the computationalexpense. The size of these graphs grows at least linearly with n at both points,suggesting that critical graphs have size O(n). As n increases in Table 1, we seethat the sizes of critical subgraphs at the �rst frozen point and threshold areconverging. Indeed, comparison of the distribution of the sizes of graphs showsthat the convergence is stronger than the table suggests. In �gure 2 we comparethe histograms of the sizes of critical subgraphs found in the non-4-colorablegraphs at the �rst frozen index with the �rst encountered frozen pair added, andthe threshold graph. These come from 50 samples at n = 100. Note that thedistributions are very similar, except for 5 graphs with 10 edges, i.e. 5-cliques, inthe �rst frozen instances. This seems to indicate that the critical subgraphs ineither case are mostly the same, with the exception that occasionally there mayoccur a near clique while n remains small. A near-5-clique (n5c), a 5-clique withone missing edge, is the smallest subgraph4 that can force a pair of vertices to4 Smallest as measured by either v or e. We evaluate the expected occurrences of n5c'sas the last edge of the critical subgraph is forced.



be the same color under all 4-colorings. We note that if we discount the 5 criticalsubgraphs of size 10 at n = 100 in the �rst frozen instances, then the averageratio is 3.43, very close to the 3.47 value for the threshold critical graphs.
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Fig. 2. Comparison of distribution of critical graph sizes on n = 100; k = 4 atthe �rst frozen pair (left) and the critical index (right), 50 samples each.Critical Sets at First Frozen Critical Sets at Threshold Di�erencen Mean Std Mean=nMin Max Mean Std Mean=n Min Max Mean=n25 19.90 11.48 0.80 7 52 17.26 10.98 0.69 2 44 -0.1150 51.38 33.57 1.03 10 117 29.88 21.36 0.60 2 90 -0.4375 102.10 49.36 1.36 10 199 50.16 36.01 0.67 2 137 -0.69100 163.12 72.47 1.63 10 316 69.80 53.64 0.70 4 239 -0.93Table 2. The number of critical edges in �rst frozen graphs(top) and the numberof critical edges in the threshold graphs for k = 4 sample of 50 at each n.We have been reporting the size of an arbitrary critical subgraph, the �rstthat we �nd. This makes possible in principle that some very small criticalsubgraphs exist which our procedure does not �nd. However, this is not the casein 4-coloring. The size of critical sets of edges grows linearly in both cases, asseen in Table 2, and every critical edge must be in every critical subgraph. Thesmaller size of critical sets at the threshold compared to the �rst frozen pointis because the extra edges create new critical subgraphs, thereby reducing thethe intersection of all critical subgraphs. Table 2 also adds further support to



our conclusion that large graphs must be searched to prove uncolorability. Sinceevery search must look at every edge in the critical set, we cannot hope thatmore intelligent algorithms will be able to prove graphs uncolorable easily. 5The tables and histograms we have presented show that we have found onlytwo kinds of critical subgraphs: small cliques or near-cliques, and large graphsgrowing in size linearly with n. In fact, straightforward analysis shows that thesmall graphs disappear as n increases. We can estimate the expected numberof near-5-cliques where the edge probability is p by E[#n5c] = �n5�p9(1 � p)10Using p = e=�n2�, with the empirical e = 398:56 as the average number of edgesat the �rst frozen index with n = 100 this expectation is 0:0985, which whenmultiplied by the 50 samples gives us 4:92. 6 Under the assumption that thecritical threshold ratio converges to a constant, the expected number of n5c'sat the critical threshold (and at the �rst frozen) is bounded by O(1=n4) and somust tend rapidly to zero as n!1.It is not possible that near-5-cliques will be replaced in making graphs uncol-orable by other small subgraphs. Given a graph G, the exact formula for E[G]in random graphs depends on the automorphisms of G, but it will be O(1=ne�v)where G contains v vertices and e edges. Every node in a critical subgraph musthave at least degree k, the number of colors. In this case k = 4, so even atthe �rst frozen point where we add the �nal edge to produce uncolorability,e � 2v � 1. So any speci�c larger graph than n5c disappears even faster. Evenfamilies of bounded size critical subgraphs disappear, since there is only a �nitenumber of graphs of a given size, each one eventually becoming vanishingly im-probable. Our empirical evidence shows that even at n = 100, n5c is the onlysmall graph which occurs even occasionally. Taken together, this analysis andour experiments show that uncolorability at either the threshold or �rst frozenpoint occurs because of critical subgraphs of size O(n).To summarise, we have given strong evidence to support two conclusions.First, that problems at the uncolorability phase transition are well out of reachof intelligent algorithms. Since there are not small and easily checkable sub-graphs which can be used to con�rm uncolorability quickly, we cannot hope tobuild more intelligent algorithms to avoid hard problems at the phase transition.Second, that there is little di�erence between graphs at the point where the �rstpair of nodes become frozen, and at the threshold in colorability. This suggeststhat there is not a double phase transition in four-coloring random graphs.5 Cautionary note: The �rst frozen critical graphs are canonical, while the thresholdcritical graphs are random subgraphs. Thus, there may be correlations in the �rstfrozen critical graphs not present in the threshold critical subgraphs. This does nota�ect the other measures.6 Note that this is not necessarily as indicative as it appears. It is quite possible thatthe larger critical graphs have an n5c embedded in them, but that the �rst frozen pairchosen to make the graph non-4-colorable was not the missing edge of the n5c. Alsonote that e is not a �xed value but is the �rst frozen point: so that the expectationat a �xed value of e is not the same as the expectation at the �rst frozen point.



5 Three coloring Random graphsWe also experimented on 3-coloring instances. Figure 3 shows the ratios of thethreshold and �rst frozen points. For the non-3-colorable subgraphs the thresholdratio T (n)=n seems to be converging towards the standard value of 2:3, equivalentto an average degree of 4.6. The size of the �rst frozen uncolorable graphs appearsto be increasing, but it is not clear if convergence is towards the same bound.We also plot the search cost at these points, and again there is no evidence thatproblems at the �rst frozen point produce exceptionally hard instances.
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Fig. 3. Comparison of 3-colorability of random graphs at �rst frozen point andthe threshold in colorability. Left: ratio of mean number of edges to n. Right:search cost for uncolorable graphs immediately after addition of critical edge.There is a much larger gap between �rst frozen and threshold points in 3-coloring than in 4-coloring. This is partly explained by the smaller critical sub-graphs that occur in 3-coloring. The uncolorable 4-clique has 6 edges and 4nodes. The near-4-clique (n4c), that is the 4-clique with one edge missing, has5 edges. Thus, the expected number of these in a graph with edge probability pis E[#n4c] = �n4�p5(1 � p)6 where p � 2:3n(n2) . Thus, the expected number growsas O(1=n). Eventually the expectation converges to 0. The convergence is muchslower than the O(1=n4) in 4-coloring, and this is responsible for the less clearcutbehaviour of 3-coloring. For example, in 300 node graphs, 78 of �rst frozen pairswere caused by an n4c out of a sample of 100. Nevertheless, our conclusions fromthe previous section are still supported. Of the remaining 300 node graphs, onecontained a critical subgraph with fewer than 12 edges, but the minimum sizeof critical subgraphs in the remaining 21 instances was 407 edges. The empiricalevidence suggests that as the 4-clique disappears as the critical subgraph of the�rst frozen, then the size of the critical subgraphs jumps to O(n) edges. Datasuggesting this is shown in Table 7 in the Appendix.



The conclusions we can draw from these experiments and analysis in 3-coloring are the same as in 4-coloring. Asymptotically, we do not expect tosee a double phase transition or small uncolorable subgraphs at the phase tran-sition. However, the decay of the near-4-cliques is only O(1=n) and they are stillimportant at n = 300. This does mean that it is impossible for us to experi-ment on large enough graphs from the Gnm distribution in which near-4-cliquesdisappear to con�rm our claims.6 Triangle-free GraphsFinally, we studied small 3-coloring problems with structure more like those oflarge graphs after near-4-cliques have disappeared. Analysis shows that asymp-totically, graphs at the phase transition have only O(1) triangles, and for sim-plicity we ban triangles completely and generate triangle-free graphs. The graphcoloring problem generators at http://www.cs.ualberta.ca/~joe allow for this,by generating girth 4 graphs. The girth g(G) of a graph G is the length of thesmallest cycle, and is 3 if a graph contains a triangle. The reason for having thisfeature is that algorithms such as DSATUR depend on �nding large cliques, orclique-like regions that restrict the colorings allowed locally in the graph. Withgirth g > 3 the largest clique is a 2-clique, or edge. Many heuristics and algo-rithm designs are thus thwarted. Girth 4 graphs seem to be harder for mostprograms than unrestricted random graphs.Girth inhibited graphs are generated as follows. The set of vertex pairs israndomly ordered, and then edges are added in order of this permutation. Whenan edge x; y is added to the graph, all paths including the edge x; y of length upto g�1 are checked. Any non-edge vertex pair (u; v) in any path is deleted fromthe set of vertex pairs remaining to be selected. For this experiment, no hiddencoloring was given. (The generator also allows the variance in vertex degrees tobe restricted, but this was avoided by choosing the maximum delta.) The edgedensity (probability) was set to 1.0, which means that in each case a maximallydense girth g = 4 graph was produced. The algorithm is complete, in that anyg � 4 graph can be generated, but it is unknown if it is uniform: that is we do notclaim that each triangle-free graph is equally likely. Once generated, a procedurelists the edges of the graph in random order, and this is the permutation sequenceinput to our various tests. For small n there is a chance that the graph is threecolorable, but this never occurred for the range tested here.Our experiments on 3-coloring triangle-free graphs give very similar resultsto the 4-coloring results presented earlier. As n increases, there is very littledi�erence between �rst frozen and threshold graphs. 7 Fig. 4 shows the ratios atwhich the threshold and �rst frozen points occur. Once again, we see thresholdratio T (n)=n and �rst frozen ratio F (n)=n converging. Again it is possible thateven T (n) � F (n) converges, since at n = 100 the di�erence is 23, but by n =300 it has fallen to 18. We also show the di�culty of coloring these graphs in7 An interesting aside is that the threshold ratio starts high and goes down.
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Fig. 4. Comparison of triangle-free graphs at �rst frozen point and the thresholdin colorability. Left: ratio of mean number of edges to n. Right: search cost foruncolorable graphs immediately after addition of critical edge.Fig. 4. The cost in all cases seems to be increasing at an exponential rate,usually doubling or more for each increase of 25 vertices for the non-colorableinstances. The threshold and �rst frozen non-colorable instances seem to bealmost indistinguishable in di�culty. There seems to be no evidence that the�rst frozen graphs are exceptionally hard, as there is no systematic di�erencebetween the maximum cost at the two points.Critical Subgraphs at First Frozen Critical Subgraphs at Threshold Di�erencen Mean Std Mean=n Min Max Mean Std Mean=nMin Max Mean=n50 62.18 16.77 1.24 21 93 76.26 11.74 1.53 46 98 0.2975 99.50 20.66 1.33 54 138 114.58 18.79 1.53 74 149 0.20100 148.52 25.28 1.49 86 192 160.92 22.80 1.61 102 201 0.12125 206.46 29.26 1.65 113 260 217.82 20.49 1.74 154 253 0.09Table 3. Number of edges in Canonical Critical Subgraphs of the triangle-freegraphs. The canonical critical graph is obtained by deleting as many edges aspossible choosing them in vertex order.The size of critical sets and subgraphs are shown in tables 3 and 4. We cando this only up to n = 125 because of the computational expense. As n increasesin Table 3, we see that the size of critical subgraphs converges at the �rst frozenpoint and threshold. The size of these graphs grows at least linearly with n,suggesting that critical graphs have size O(n). The size of critical sets in Table 4



Critical Sets at First Frozen Critical Sets at Threshold Di�erencen Mean Std Mean=n Min Max Mean Std Mean=n Min Max Mean=n50 33.90 14.69 0.68 11 83 17.50 13.52 0.35 1 60 -0.3375 60.32 22.76 0.80 21 108 27.04 20.17 0.36 1 91 -0.44100 83.70 29.19 0.84 30 139 32.76 24.34 0.33 4 89 -0.51125 112.42 45.21 0.90 17 203 44.42 28.47 0.36 3 128 -0.54Table 4. Number of edges in the critical sets of triangle free graphsis also growing linearly at both points.To summarise, empirical evidence was not clear in the case of 3-coloring ran-dom graphs, so we studied triangle-free graphs, which are similar in structure tolarge random graphs. The evidence supports our conclusions that hard instancesat phase transitions are well out of reach of intelligent algorithms, and that thedouble phase transition merges into one.7 Related and Further WorkExceptionally hard instances (ehi's) are usually understood to arise as the resultof a mistake early in the search process: for example a single incorrect variablesetting can lead to an unsolvable subproblem using much search, any other set-ting leading to an easily solved problem [5]. Baker identi�ed this as a thrashingprocess [1] and Smith and Grant were able to predict with some accuracy thefrequency and search cost of ehi's for a very simple backtracking algorithm [18].Unlike hard instances at phase transitions, ehi's are highly algorithm depen-dent, and so the distribution of search cost over runs with di�erent heuristics isimportant [8, 7].To understand both hard instances at phase transitions and ehi's, a numberof authors have studied `minimal unsatis�able subproblems' (MUS's) [6, 2, 10].Given an unsatis�able instance, an MUS is an unsatis�able subproblem such thatevery strict subproblem in it is satis�able. In this paper we have studied MUS'sin coloring, but use the graph theoretic name `critical graph': a critical subgraphof an uncolourable graph is exactly an MUS of it. Gent and Walsh �rst noted thatMUS's helped to explain ehi's [6]. They observed that ehi's typically had smalland unique MUS's, while hard problems at phase transitions had MUS's whichwere larger and not unique. Our results are consistent with this, but suggestthat on larger problems than they were able to examine, this behavior is likelyto have changed. As in coloring, we would expect there to be a large jump inMUS size as small pathological graphs become vanishingly improbable.There have been studies in SAT of how variables freeze to a single value.Parkes showed that at the satis�ability threshold, many variables have frozenalthough some are almost free [13]. He suggested that he would not expect a



double phase transition in SAT. Monasson et al have used the frozen developmentin SAT to study the transition from P to NP [12]. Our studies also relate to thisquestion, because problems will have good average case behavior when somepolynomial check often helps to prove unsolvability. We suggest that in manyNP complete problems, like graph coloring, there is no such cheap check andpathological behavior occurs at phase transitions in solvability as a result.Chvatal and Szemeredi have shown that resolution proofs for overconstrainedSAT problems are almost certainly long asymptotically [4]. Interestingly, this hasnot been shown for problems at a SAT phase transition, though it is likely thatproofs in that region must be even longer. Extending this proof from resolutionto any algorithm would prove NP 6= co-NP, but it is likely that in SAT, coloring,and other NP problems, proofs of unsolvability must be long.We conjecture that similar results will apply to other NP-complete problemsin which phase transitions provide hard instances. Two obvious examples aresatis�ability and general constraint satisfaction problems, but it would also beinteresting to study problems such as the TSP, in which the analogue of criticalgraphs are not so obvious. A follow on in coloring would be to determine theminimum critical subgraph in each instance. Unfortunately this will likely provedi�cult, possibly almost as hard as listing all critical graphs. This last wouldbe the ultimate way to analyse the critical subgraphs of uncolorable graphs, butwill inevitably be limited to small sizes. Further investigation is needed on howto compute all critical graphs [15].8 ConclusionsWe conclude that problems at the uncolorability phase transition are well out ofreach of intelligent algorithms. Also, we conclude that there is little di�erencebetween graphs at the point where the �rst pair of nodes become frozen, andat the threshold in colorability. This suggests that the double phase transitionin graph coloring is only an e�ect seen in small graphs: as the number of nodesincreases the double phase transition converges to a single one. These resultsare likely to apply to any NP-complete problem where instances from phasetransitions are hard for all known algorithms, and that our results help to explainthis phenomenon.Since there are not small and easily checkable subgraphs which can be usedto con�rm uncolorability quickly, we cannot hope to build more intelligent al-gorithms to avoid hard problems at the phase transition. For example, it isunlikely that learning algorithms would help signi�cantly because the nogoodsto be learnt must be inevitably be large.More general lessons can be learnt from our study. An exciting application ofour work is in understanding the di�erence between polynomial and exponentialcomplexity. Many NP-complete problems have natural polynomial subclasses,for example 2-SAT within SAT. Since these subclasses are easily checkable, ourresults help to explain the sudden jump seen by Monasson et al from P-likebehavior to NP-like behavior in the mixed 2+p-SAT model [12]. We expect
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9 AppendixThis appendix contains tabular versions of some graphs, as well as some datanot contained in any form in the main body of the paper.First Frozen Size (mf + 1) Threshold Size (m�) Di�erencen Mean Std Mean=nMin Max Mean Std Mean=n Min Max Mean=n25 75.04 8.91 3.00 54 96 87.68 6.23 3.51 69 100 0.5150 177.56 13.57 3.55 140 197 193.04 9.74 3.86 169 215 0.3175 287.18 15.13 3.83 240 309 304.34 10.16 4.06 275 325 0.23100 398.56 12.44 3.99 355 414 414.20 10.16 4.14 383 433 0.15125 512.82 13.31 4.10 442 530 526.46 10.48 4.21 505 550 0.11150 623.92 8.84 4.16 603 641 635.80 12.53 4.24 607 671 0.08175* 733.48 12.37 4.19 701 754 749.48 10.36 4.28 718 778 0.09Table 5. Size of non-4-colorable graphs at �rst frozen(top) and at the thresh-old(bottom) for k = 4, 50 samples at each n ( * except 175 for �rst frozen, wherethe sample is 27.)First Frozen Size (mf + 1) Threshold Size (m�) Di�erencen Mean Std Mean=nMin Max Mean Std Mean=n Min Max Mean=n50 75.32 18.58 1.51 29 107 106.84 10.00 2.14 61 121 0.6375 118.42 27.62 1.58 46 168 165.74 10.70 2.21 131 185 0.63100 164.29 35.28 1.64 45 226 223.51 10.02 2.24 202 253 0.60200 355.36 80.64 1.78 105 460 456.04 13.32 2.28 412 484 0.50225 405.11 84.17 1.80 177 519 513.14 12.41 2.28 471 545 0.48300 562.70 109.48 1.88 139 702 689.15 13.06 2.30 655 715 0.42Table 6. Sizes of �rst frozen(top) and threshold non-colorable graphs, k = 3,100 samples at each n. For n = 50 : : :100, the results come from the same set ofgraphs: this might increase the variance in the calculated di�erence, but shouldnot a�ect the mean.This article was processed using the LATEX macro package with LLNCS style



Critical Subgraphs of First FrozenSmall Cases Remaining Casesn #4-cliques #� 12 # Min Size Max Size Mean50 83 3 14 25 53 41.9375 80 4 16 13 109 61.75100 81 3 16 13 149 102.44200 78 3 19 234 353 296.95225 73 2 25 248 412 346.36300 78 1 21 407 595 510.57350* 5 0 5 600 657 620.80Critical Subgraphs of ThresholdSmall Cases Remaining Casesn #4-cliques #� 12 # Min Size Max Size Mean50 9 3 88 15 76 47.3650 11 2 87 15 80 48.0975 2 0 98 16 131 78.0475 2 0 98 16 151 79.97100 0 0 100 27 161 114.27100 0 0 100 45 174 114.73125 3 0 97 78 211 162.03150 3 0 97 36 276 202.90Table 7. Size distributions of the critical subgraphs of the �rst frozen graphs,k = 3. 100 samples were taken at each n. In addition, two random criticalsubgraphs were computed for each of the threshold graphs for n = 50 : : :100,and thus the double listing for each of these entries. Due to long run times,only ten samples completed at n = 350 for �rst frozen. Notice that for larger n�rst-frozen graphs, there seem to be very few critical subgraphs that are betweenthe 6-edge 4-clique and graphs with a few hundred edges.



Critical Sets of the First Frozen graphsnMean Std Mean=n Min Max50 9.74 9.58 0.19 6 4875 11.64 15.35 0.16 6 86100 14.79 23.09 0.15 6 118200 37.56 69.07 0.19 6 240225 56.00 91.99 0.25 6 314300 70.73 132.86 0.24 6 466Critical Sets from Threshold graphsnMean Std Mean=n Min Max50 16.80 11.62 0.34 1 4975 26.96 18.68 0.36 1 83100 31.85 21.12 0.32 1 85125 41.50 29.92 0.33 3 160150 51.18 34.63 0.34 5 140Table 8. The critical sets, that is the number of edges that must occur in everycritical subgraph of the �rst frozen and threshold non-3-colorable graphs.First Frozen Size (mf + 1) Threshold Size (m�) Di�erencen Mean Std Mean=n Min Max Mean Std Mean=nMin Max Mean=n50 117.08 8.31 2.34 105 141 138.62 14.58 2.77 114 175 0.4375 170.16 8.23 2.27 149 194 192.38 11.45 2.57 174 224 0.30100 228.82 8.26 2.29 214 249 251.64 11.28 2.52 230 280 0.23125 290.91 7.10 2.33 273 304 309.69 7.87 2.48 290 328 0.15150 349.42 7.41 2.33 335 363 368.10 10.82 2.45 344 401 0.12175 408.26 7.04 2.33 393 425 424.30 8.68 2.42 408 449 0.09200 466.02 8.06 2.33 449 481 484.30 10.06 2.42 464 508 0.09225 525.02 8.98 2.33 503 546 542.90 7.49 2.41 522 561 0.08250 583.54 9.77 2.33 556 603 600.10 12.61 2.40 573 635 0.07275 644.38 7.89 2.34 625 660 660.52 10.21 2.40 636 693 0.06300 703.38 12.20 2.34 660 730 721.32 11.93 2.40 689 747 0.06Table 9. Empirical Measures of Frozen Development on Girth 4 k = 3 ColoringProblems.



First Frozen Non-colorableN Mean Std Ratio to Prev Min Max50 2.24 3.11 | 0 1275 5.66 5.66 2.53 0 24100 15.04 15.89 2.66 0 77125 42.16 35.45 2.80 1 177150 77.84 47.19 1.85 9 178175 197.64 161.24 2.54 12 714200 299.68 229.42 1.52 27 1029225 606.66 549.63 2.02 13 2795250 1793.08 2622.69 2.96 22 16687275 3496.66 4218.19 1.95 261 22971300 8377.46 10755.89 2.40 311 55523First Frozen ColorableN Mean Std Ratio to Prev Min Max50 11.50 3.22 | 6 1975 13.62 3.64 1.18 6 24100 16.94 5.40 1.24 5 31125 22.32 9.70 1.32 8 64150 32.24 18.33 1.44 13 126175 53.48 37.44 1.66 19 166200 64.30 48.77 1.20 20 198225 138.18 153.13 2.15 28 961250 389.60 588.32 2.82 25 2643275 428.66 486.60 1.10 18 1876300 1728.16 3689.39 4.03 35 23487Threshold Non-colorableN Mean Std Ratio to Prev Min Max50 3.02 2.08 | 1 1275 7.66 5.38 2.54 1 24100 14.62 10.10 1.91 2 42125 49.66 38.42 3.40 11 172150 95.28 73.53 1.92 17 413175 201.20 141.90 2.11 18 527200 320.38 238.96 1.59 37 1169225 704.28 555.17 2.20 20 2471250 1793.58 2057.81 2.55 152 12292275 3186.78 4418.67 1.78 542 31060300 9381.28 21080.33 2.94 601 151296Threshold ColorableN Mean Std Ratio to Prev Min Max50 8.68 2.99 | 3 1675 12.98 5.48 1.50 5 28100 20.98 8.97 1.62 8 45125 42.48 28.89 2.02 10 138150 59.52 44.90 1.40 13 252175 132.06 113.98 2.22 20 533200 175.52 157.86 1.33 19 598225 396.46 470.56 2.26 19 2486250 964.48 1245.71 2.43 25 6017275 1314.36 1819.94 1.36 85 11964300 5400.08 14984.26 4.11 74 105976Table 10. Number of Backtrack Nodes to Solve Various instances in triangle-freegraphs


