
ParBlocks - A new Methodology for Specifying ConcurrentMethod Executions in Opus�Erwin LaureInstitute for Software Technology and Parallel SystemsUniversity of ViennaLiechtensteinstrasse 22, A-1090, Vienna, Austriaerwin@par.univie.ac.atA short version of this report appears in: Proceedings Euro-Par'99, Springer, 1999AbstractMany applications make use of hybrid programmingmodels intermixing task and dataparallelism in order to exploit modern architectures more e�ciently. However, unbalancedcomputational load or idle times due to tasks that are blocked either in I/O or waitingon results from other tasks can cause signi�cant performance problems. Fortunately, suchidle times can be overlapped with useful computation in many cases. In this paper wepropose a simple, yet powerful methodology for specifying intra-object parallelism andsynchronization in the context of the coordination language Opus. Our design combinesboth, static and dynamic synchronization on a high level. We motivate our design withsome examples and discuss implementation strategies for compilation as well as runtimesupport.1 IntroductionWith the advent of teraops supercomputers and the usage of the Internet as a huge \meta-computer", the complexity of simulations being tackled by scientists and engineers is increas-ing exponentially. In order to utilize the available architectures e�ciently, several levels ofparallelism need to be exploited by such simulations.We recently introduced the coordination Language Opus [4, 5] which allows a high levelmanagement of data parallel tasks. Its central concept is the shared abstraction (SDA), whichgeneralizes Fortran 90/HPF modules using an object-based approach and imposing monitorsemantics. SDAs can be internally data parallel while task parallelism is exploited between dif-ferent SDAs. SDAs communicate with one another via synchronous or asynchronous methodinvocation; arguments are passed with copy-in/copy-out semantics.With the monitor semantics of SDAs a consistent state of the SDA data is ensured atthe expense of potential parallelism losses. In fact, there may well be multiple method exe-cutions safely active within an SDA object. Weakening the monitor semantics of SDAs has�The work described in this paper was partially supported by the Special Research Program SFB F011"AURORA" of the Austrian Science Fund. 1

the bene�t of introducing an additional level of parallelism which can e.g. be exploited onsystems with shared address space; but also on systems with distributed memory idle times,due to communication or synchronization with other tasks, can be overlapped with usefulcomputation, thus reaching a better utilization of the available computation nodes.Allowing concurrent executions of multiple methods within an SDA poses a number ofdi�culties (see e.g. [10] for a detailed discussion of intra-object concurrency) among whichthe most important one is how to specify potential parallelism and needed synchronizationamong methods. In general, methods can safely execute concurrently if they do not interfere,i.e. if all write accesses a�ect disjoint data segments [1].Compiler analysis can be used for detecting some potential for intra-SDA parallelism.However, a compiler is generally not able to detect all cases and therefore some support fromthe user is needed in order to exploit intra-SDA parallelism to some greater extent.In this paper we propose a compiler directive called ParBlock which can be used forspecifying potential parallelism and necessary synchronization among methods in a simpleand intuitive way. Synchronization can be speci�ed statically (i.e., independent of an SDA'sinternal state) or dynamically (i.e., state dependent).The remainder of this paper is organized as follows: We motivate the need for intra-SDA parallelism in Section 2 with some application examples. After a short review of somerelated approaches in Section 3 we present our approach in Section 4 and discuss variousimplementation issues in Section 5. In Section 6 we apply our approach to the exampleapplications and conclude the paper with summarizing comments.2 Application Examples2.1 Intra-SDA PipelinesOne important class of applications that can take advantage of intra-SDA parallelism arepipelined problems which can for instance be found in FFT computations. A FFT code istypically structured into four tasks (input, column-�t, row-�t, output); each of those compo-nents could be scheduled on a separate stage of a pipeline. Although such pipelines can beexpressed in Opus by assigning each stage to a separate SDA, this kind of structure imposessigni�cant data transfer overhead among the SDAs. The overhead can be reduced by overlap-ping I/O with computation within an SDA in a pipelined manner. Figure 1 shows the SDAdeclarations for such a scenario (without the speci�cation of the pipelined parallelism whichis given in Section 6).2.2 Partial ConcurrencyMany problems can exploit \partial concurrency" between methods. With partial concurrencywe refer to situations where some methods can execute concurrently but others need to haveexclusive access to the object. One example of such problems are readers/writers-like accessesto data repositories. In a previous paper [4] we demonstrated how the coordination featuresof Opus can be used for synchronizing readers and writers to avoid deadlocks and starvation.However, apart from synchronizing these computational tasks, all accesses to the shared data-SDA have to be executed in a mutual exclusive way, currently. This is too restrictive sincemultiple read requests may obviously be active at the same time, but also multiple write2

SDA TYPE �t stage1TYPE (�t data) :: dataCONTAINSSUBROUTINE read data()...END SUBROUTINESUBROUTINE col �t(result)TYPE (�t data), INTENT(out) :: result...END SUBROUTINEEND SDA TYPE
SDA TYPE �t stage2TYPE (�t data) :: dataCONTAINSSUBROUTINE row �t(input)TYPE (�t data), INTENT(in) :: input...END SUBROUTINESUBROUTINE output()...END SUBROUTINEEND SDA TYPEFigure 1: 2stage FFTrequests may overlap, given that di�erent parts of the data are accessed. The code excerptin Figure 2 shows a data repository for this kind of scenario.3 Related ApproachesBefore we discuss our proposal for specifying intra-SDA parallelism in Opus we briey reviewsome existing approaches for specifying concurrent method executions below. Focus is herebylaid on high level synchronization mechanisms; techniques such as the use of mutexes andcondition variables or the direct speci�cation of data accesses (that can e.g. be found inJade [12]) are beyond our scope.Java [6] The Java multithreading model allows all methods of an object to execute inparallel unless they are explicitly synchronized. This means that the user has to ensurea correct program behavior by either synchronizing methods or code regions. Although thesynchronized attribute for methods is an elegant feature there are some non-trivial problemsinvolved: synchronizing a method only means that it is executed mutually exclusive withother synchronized methods - unsynchronized methods may well interfere with synchronizedones. As a consequence of this, the synchronized attribute is ill suited for expressing partialconcurrency. Moreover, synchronization which is based upon the state of an object's internaldata needs more low level constructs such as wait and notify (cf. Section 6).OpenMP [11] OpenMP, designed for exploiting shared memory parallelism, allows parallelexecutions of methods via work-sharing constructs like the for directive or the sectionsdirective. Similar to Java, methods are called from within such constructs in parallel withoutsynchronization. The user is required to either avoid invoking interfering methods fromwithin work-sharing constructs or to synchronize method executions properly by the use ofsynchronization constructs like the critical or atomic construct.3

SDA TYPE repositoryTYPE (user type) :: data(...)CONTAINSSUBROUTINE read1(...)...END SUBROUTINESUBROUTINE read2(...)...END SUBROUTINE! write1 and write2 a�ect disjoint dataSUBROUTINE write1(...)...END SUBROUTINESUBROUTINE write2(...)...END SUBROUTINEEND SDA TYPE repositoryFigure 2: Data RepositoryFortran 95/HPF [8, 7] Parallelism in Fortran is exploited primarily in the form of dataparallelism. Nevertheless, procedures can be called from within explicitly parallel constructs(e.g. the forall construct) but only if they have the pure attribute. This attribute assuresthat a procedure is free of certain side e�ects that prevent parallel execution. Fortran allowsthe speci�cation of concurrent procedure executions only in a quite restrictive way which doesnot cover all interference-free cases. Moreover, only executions of the same procedure can beoverlapped; specifying concurrent executions of di�erent procedures is not possible.HPF adds a set of explicitly parallel constructs to Fortran. Parallel executions of proce-dures are in particular enabled by the INDEPENDENT directive and the TASK REGION construct.While to INDEPENDENT loops similar restrictions as to the F95 forall construct apply, theTASK REGION construct is restricted in that a procedure called from within a TASK REGION isonly allowed to access data which is mapped to the executing set of processors.Path Expressions [2, 3] Path Expressions are an elegant means of specifying synchroniza-tion between processes by describing how a process is allowed to execute in relation to others,irrespective of their invocation order. In particular, Path Expressions allow the speci�cationof sequences, selections, repetitions and simultaneous execution among a set of processes. PathExpressions not only specify parallelism or synchronization among processes, but also theirexecution order. With the help of Path Expressions complex synchronization patterns can bespeci�ed, however, it is not possible to specify synchronization which depends on the state ofa process. 4

4 The Opus Approach4.1 IntroductionDue to the speci�c properties of SDAs (SDAs are kind of \active" objects which are trig-gered by other objects) we identify a set of properties the speci�cation mechanism for paral-lelism/synchronization has to ful�ll:� Encapsulation: All parallelism/synchronization information should be encapsulated withinan SDA. SDAs can be accessed by a set of tasks which do not necessarily have to beaware of each other. Hence, it is necessary that a consistent internal state is guaranteedby an SDA itself rather than by synchronizing the accessing tasks.� Static and Dynamic Synchronization: Synchronization should be possible in a static(i.e., independent of an SDA internal state) and and dynamic (i.e., state dependent)way. Although static synchronization can be seen as a special case of dynamic synchro-nization, having means for specifying synchronization statically allows more e�cientcompilation. Moreover, specifying synchronization statically is often a more naturalapproach, as can e.g. be seen in Section 6.� High Level: All parallelism/synchronization information should be speci�ed on the high-est possible level. We believe that parallelism/synchronization should be speci�ed onthe method level since methods are the main locus for parallelism in Opus.� User Friendly: User friendliness is required in two ways: apart from having an intuitivemeans of specifying parallelism/synchronization, the user should only be compelled tospecify as much synchronization as necessary. Consequently, exclusive access to an SDAis still the default property of a method.4.2 Existing FeaturesOpus 1.0 [4] already provides some support for dynamic synchronization on the method level:the condition clauses. Condition clauses can be used to guard the execution of a methodwith a side-e�ect free logical condition. However, with this feature only synchronization thatdepends on the state of the SDA can be speci�ed. It is not possible to synchronize two methodexecutions independently of the internal data of the SDA.In addition, the HPF binding of Opus provides means for expressing parallelism: theFortran pure attribute with all the properties described in Section 3.4.3 ParSetsApart from these features, new means for specifying static parallelism and synchronization,in particular pairwise interference freedom among methods, are required. We propose thatevery method should be annotated with a set of method names representing all the methodswith which its execution can safely overlap. This set is called ParSet. Note that ParSetsare symmetric but not transitive. By default, the ParSet of a method is empty and thus themethod has exclusive access to the SDA.ParSets and condition clauses can be used in conjunction: while ParSets statically specifypotential parallelism, condition clauses can be used to synchronize method executions in a5

dynamic way. The execution order of methods is derived implicitly from both, the parallelismspeci�cation and condition clauses, since before launching the execution of a method it isnecessary to check if1. the method is allowed to execute in parallel with all other methods currently beingexecuted, and if2. its condition clause is satis�ed.Obviously, both checks have to form an atomic action.The direct speci�cation of ParSets for every method is a cumbersome task and specifyingParSets in a consistent way is not trivial. Hence, we need higher level constructs for specifyingstatic parallelism/synchronization.In Section 3 we discussed Path Expressionswhich can be used to specify process parallelismat a high level. Such a technique could also be applied to Opus, however, Path Expressionsexplicitly specify the execution order of methods, irrespective of the invocation order. Thedirect speci�cation of the execution order, however, is unwanted, since non-deterministicexecutions are deliberately enabled in Opus; condition clauses can be used for imposingspeci�c execution orders, instead.4.4 ParBlocksInstead of specifying ParSets for every method we propose a new compiler directive calledParBlock for the static speci�cation of parallelism/synchronization. ParSets are derived fromParBlocks by the compiler as described in Section 5. ParBlocks borrow from Path Expressionsin that they allow the speci�cation of parallel and mutual exclusive method executions, butwithout �xing the execution order of methods. Therefore, Path Expression features such assequences or repetition are not available in ParBlocks.ParBlocks are compiler directives specifying either potential parallelism or the need forsynchronization between methods. The body of the ParBlock directive is a list of methodnames where all comma separated methods can execute in parallel while semi-colon separatedmethods need to execute mutually exclusive. We refer to a comma separated list as par-sectionand to a semi-colon separated one as sync-section. Both sections can be arbitrarily nested(using parenthesis) thus allowing complex synchronization patterns. In addition, multipleParBlocks can be speci�ed for an SDA. However, no method name may occur more than oncein a given ParBlock nor in more than one ParBlock. These restrictions prohibit inconsistenciesin the declaration of ParBlocks.Although ParBlocks have enough expressiveness for inter-method parallelism, it is notpossible to specify an overlapping of di�erent instances of the same method. This can be ac-complished by giving the method the F95 \pure" attribute. Thus, the concurrent executionof di�erent instances of the same method is only allowed for pure methods. Moreover, puremethods can safely run mutually in parallel. Therefore, the compiler will generate an addi-tional ParBlock containing all pure methods which is consistent with the F95/HPF standard.6

Syntax: ParBlock Directiveparblock-directive is oc-directive-origin parblock-stmt parblock-bodyoc-directive-origin is !OC$parblock-stmt is PARBLOCKparblock-body is (par-section)or (sync-section)par-section is parblock-element [, parblock-element] ...sync-section is parblock-element ; parblock-element[; parblock-element] ...parblock-element is method-nameor parblock-bodyConstraint: No method-name may occure more than cone in a given PARBLOCK.Constraint: No method-name may occur in more than one PARBLOCK.Summarizing the above, Opus provides a set of features for specifying intra-SDA paral-lelism and synchronization, both dependent and independent of the SDA's internal state:� condition clauses: for specifying dynamic synchronization based upon the internalstate of the SDA,� ParBlocks: for specifying parallelism as well as synchronization independently of theSDA's internal state, and� pure attributes: for specifying potential parallelism according to the Fortran 95 stan-dard.Before discussing the associated compilation techniques and runtime support in moredetail, let us illustrate the use and expressiveness of ParBlocks in the following examples:Example 4.1:Consider an SDA with 6 methods, a, b, c, d, e, and f. All methods areallowed to execute in parallel but with the restrictions that (1) method b and ccannot execute concurrently and (2) method d cannot execute concurrently withneither e nor f.As already mentioned, ParBlocks provide sync-sections for specifying mutual ex-clusion. This concept can be applied to restriction (1) resulting in the followingexpression: (b;c).Restriction (2) is slightly more di�cult, because we need to synchronize a methodwith two other methods which in turn may execute concurrently. Thus, we need7

Method ParSeta b, c, d, e, fb a, d, e, fc a, d, e, fd a, b, ce a, b, c, ff a, b, c, eFigure 3: ParSets forExample 4.1 sync-section sync-section

root

par-section

0

1

DEPTH

2

3

4

par-section

a

b c d

e fFigure 4: AST for Example 4.1to nest a sync-section with a par-section. Let's �rst specify that method e andf can run in parallel: (e,f). Now we extend this expression specifying the syn-chronization of d: (d;(e,f)).We have now speci�ed all the necessary synchronization and can put everythingin a par-section. The resulting ParBlock for our example is:(a,(b;c),(d;(e,f))). In an Opus program the required directive would looklike: !OC$ PARBLOCK(a,(b;c),(d;(e,f))).Example 4.2:Consider another SDA with 4 methods, a, b, c, and d. We want to specifypartial parallelism such that a is allowed to execute in parallel with b and c,and c is allowed to execute in parallel with d. All other combinations cannot beexecuted in parallel.The ParBlock expressing this partial parallelism is (c,(d;(a,b))).ParBlocks can be analyzed by the compiler which annotates every method of an SDA witha ParSet. Figure 3 shows all ParSets for Example 4.1. The algorithm for generating thesesets is introduced in the following section.5 Implementation5.1 CompilationThe Opus compiler parses the ParBlock-directives of an SDA and constructs an AST for everydirective. The nodes of an AST are either par-sections, sync-sections, or method names wherethe method name nodes are the leaf nodes.Example 5.1:Consider the ParBlock from Example 4.1:(a,(b;c),(d;(e,f)))Figure 4 shows the AST which is generated out of this ParBlock.8

Based upon the AST representation a ParSet is generated for each method of an SDAusing Algorithm 5.1:First, the AST is traversed in order to �nd the node representing method x. If such anode is found, all method names belonging to a par-section which lies on the path from theroot to the x-node are added to the ParSet. This is accomplished with help of the routine\AddElements" which adds all method names belonging to the subtree rooted by \Child" toa ParSet \Set".Algorithm 5.1:Notation: Let M denote the Set of all methods of an SDA. The ParSet of amethod x is denoted by Px. � is the empty set.do 8 x 2 M fPx = �;do 8 root 2 ParBlocks fCurrentNode = TraverseTreeFind(root, x);if (CurrentNode == NULL)continue;while (CurrentNode!Father != root) fif (CurrentNode!Father == par-section)AddOtherElements(Px, CurrentNode);CurrentNode = CurrentNode!Father;gggAddOtherElements(Set, Node) fdo 8 Child(Node!Father) fif (Child != Node)AddElements(Set,Child);ggExample 5.2:Consider the construction of Pe from the AST of Example 5.1:Initially, Pe = �. The matching node for e is found at depth 4 and its father isa par-section. Hence, all elements belonging to this par-section are added to Pewhich now is the set ffg. We follow the path from e to the root-node passinga sync-section at depth 2 whose father at depth 1 is a par-section again. Conse-quently, all elements belonging to this par-section are added to Pe resulting in theset ff; a; b; cg. Since the father of this par-section is the root-node, our algorithmterminates for this set. 9

5.2 Runtime SupportIn [9] we discuss in detail the compilation and runtime support for Opus. The main conceptis that an SDA is compiled into an active object consisting of two threads: a server threadresponsible for retrieving incoming request and storing them in a shared memory area (con-sisting of Method Invocation - MI - queues) in form of execution records; and an executionthread which retrieves records from the MI-queues and executes the associated methods. Toallow concurrent method executions within an SDA, an SDA object requires a set of executionthreads instead of only one (cf. Figure 5).
. . .

Arguments

MI Queues

SERVER THREAD

MI MI

* enqueue MIs

* poll for MIs

EXECUTION THREAD
* dequeue MIs

* conditional MI execution

Arguments

execution
record

execution
record

SDA ObjectFigure 5: Structure of an SDA ObjectThe total number of execution threads is system dependent: while on an SMP the numberof execution threads should at least be equal to the number of available processors, on a singleprocessor machine only a few of them are needed. The actual number can be determineddynamically at runtime via environment variables.The execution threads are in duty of validating, whether a new method can start executingin parallel with others. For this purpose, it is kept track of all methods currently beingexecuted. A new method can start its execution if and only if the set of the currentlyexecuting methods is a subset of its ParSet. In addition, its condition clause must be satis�edas well. Obviously, both checks need to be performed in an atomic action. Algorithm 5.2illustrates the method invocation mechanism of an execution thread.Algorithm 5.2:Notation: Let � denote the set of all methods currently being executed..../* begin atomic */if (� � Px) fif (/* condition-clause(x) */) f� = � [fxg/* end atomic *//* launch execution of x */� = � n fxggg... 10

SDA TYPE �t stage1TYPE (�t data) :: data(0:1)! ags used in condition clausesLOGICAL :: read allowed = .TRUE.LOGICAL :: col allowed = .FALSE.! data set indexINTEGER :: active read = 0INTEGER :: active col = 0CONTAINSSUBROUTINE read data() && WHEN (read allowed)read allowed = .FALSE.! read �t data using data(active read)active read = MOD(active read+1,2)col allowed = .TRUE.END SUBROUTINESUBROUTINE col �t(result) && WHEN (col allowed)TYPE (�t data), INTENT(out) :: resultcol allowed = .FALSE.read allowed = .TRUE.! call column �t(data(active col))active col = MOD(active col+1,2)END SUBROUTINE!OC$ PARBLOCK(read data, col �t)END SDA TYPE

SDA TYPE �t stage2TYPE (�t data) :: data(0:1)! ags used in condition clausesLOGICAL :: row allowed = .TRUE.LOGICAL :: output allowed = .FALSE.! data set indexINTEGER :: active row = 0INTEGER :: active out = 0CONTAINSSUBROUTINE row �t(input) && WHEN (row allowed)TYPE (�t data), INTENT(in) :: inputrow allowed = .FALSE.! call row �t(data(active row)=input)active row = MOD(active row+1,2)output allowed = .TRUE.END SUBROUTINESUBROUTINE output()&& WHEN (output allowed)output allowed = .FALSE.row allowed = .TRUE.! call output(data(active out))active out = MOD(active out+1,2)END SUBROUTINE!OC$ PARBLOCK(row �t, output)END SDA TYPEFigure 6: 2stage FFT with ParBlocks6 Applied Application ExamplesIn this Section we show the applicability of our approach for the problems introduced inSection 2.6.1 Intra-SDA pipelinesOur �rst example shows the pipelined execution of SDA methods which can e.g. be appliedto FFT computations. The original code from Figure 1 has to be modi�ed in three aspects:1. An appropriate ParBlock is required.2. A correct pipelined behavior needs to be guaranteed by condition clauses.3. For each stage of the pipeline a separate copy of the FFT data has to be allocated toguarantee interference freedom. 11

Figure 6 shows the necessary code excerpts. Note the combination of a static parallelismspeci�cation and the dynamic synchronization via condition clauses.6.2 Partial ConcurrencyThe data repository examples of Section 2.2 is much simpler, because it is su�cient to specifyparallelism among readers as well as among writers, but to guarantee that no overlapping ofreaders and writers may occur. Thus, all parallelism and synchronization information can bespeci�ed statically via ParBlocks. Figure 7 (a) shows the modi�ed code. The expressivenessand intuitiveness of ParBlocks is also demonstrated in this example by a comparison with anequivalent Java code which is given in Figure 7 (b).SDA TYPE repositoryTYPE (user type) :: data(...)CONTAINSSUBROUTINE read1(...)...END SUBROUTINESUBROUTINE read2(...)...END SUBROUTINESUBROUTINE write1(...)...END SUBROUTINESUBROUTINE write2(...)...END SUBROUTINE!OC$ PARBLOCK && ((read1,read2);(write1,write2))END SDA TYPE repository

public class repository f// dataprivate int n read=0, n write=0;private Object mutex1, mutex2;public data read1(...) fbeforeRead(); ...; afterRead();gpublic data read2(...) fbeforeRead(); ...; afterRead(); gpublic void write1(data) fsynchronized(mutex1) fbeforeWrite(); ...; afterWrite(); ggpublic void write2(data) fsynchronized(mutex2) fbeforeWrite(); ...; afterWrite(); ggprivate synchronized void beforeRead() fwhile (n write != 0) f wait();gn read++; gprivate synchronized void afterRead() fif ({n read == 0) notifyAll(); gprivate synchronized void beforeWrite() fwhile (n read != 0) f wait();gn write++; gprivate synchronized void afterWrite() fif ({n write == 0) notifyAll(); gg(a) (b)Figure 7: Data Repository with ParBlocks (a); and in Java (b)12

One can see that due to the lack of speci�cation possibilities for partial concurrencyadditional counters together with synchronized functions modifying these counters are needed.Moreover, low level wait and notifyAll functions, as well as mutex synchronization of the writemethods are necessary to guarantee correct behavior.7 ConclusionsIn this paper we introduced a simple, yet expressive method for specifying intra-SDA paral-lelism and showed how this method cooperates with a set of powerful synchronization mecha-nisms. Moreover, strategies for implementing both the compilation and runtime support werediscussed in detail. Examples of important application classes proved the applicability of ourapproach and its bene�ts wrt. other approaches, like the Java multithreading model.However, there are some subtleties that have to be considered when using ParBlocks. Mostimportant is that in some special cases a synchronized method may be life-locked. Considere.g. the following ParBlock: (a;(b,c)). If methods b or c are invoked frequently, theremight be little chances for a to ever start executing since it must wait until no other methodis being executed. However, this situation can be overcome by specifying proper conditionclauses for b and c which will prevent them from executing at times, thus giving a a chancefor being executed.The proposed methodology is currently being implemented in our Opus compilation andruntime framework.References[1] G.R. Andrews. Concurrent Programming: Principles and Practice. Ben-jamin/Cummings, 1991.[2] R.H. Campbell. Path Expressions: A technique for specifying process synchronization.PhD thesis, Computing Laboratory, The University of Newcastle Upon Tyne, 1976.[3] R.H. Campbell and A.N. Habermann. The Speci�cation of Process Synchronization byPath Expressions. In G. Goos and J. Hartmanis, editors, LNCS, volume 16. SpringerVerlag, 1974.[4] B. Chapman, M. Haines, E. Laure, P. Mehrotra, J. Van Rosendale, and H. Zima. Opus1.0 Reference Manual. Technical Report TR 97-13, Institute for Software Technologyand Parallel Systems, University of Vienna, October 1997.[5] B. Chapman, M. Haines, P. Mehrotra, J. Van Rosendale, and H. Zima. OPUS: A Coor-dination Language for Multidisciplinary Applications. Scienti�c Programming, 6/9:345{362, Winter 1997.[6] J. Gosling, B. Joy, and G. Steele. The Java Language Speci�cation. Addison-Wesely,1996.[7] High Performance Fortran Forum. High Performance Fortran Language Speci�cationVersion 2.0, January 1997.[8] ISO. Fortran 95 Standard. ISO/IEC 1539 :1997.13

[9] E. Laure, M. Haines, P. Mehrotra, and H. Zima. On the Implementation of the OpusCoordination Language. Concurreny: Practice and Experience, to appear 1999.[10] B. Meyer. Object-Oriented Software Construction, Second Edition. Prentice Hall, 1997.[11] OpenMP C and C++ Application Program Interface Version 1.0.http://www.openmp.org/, October 1998.[12] M.C. Rinard, D.J. Scales, and M.S. Lam. Jade: A High-Level, Machine-IndependentLanguage for Parallel Programming. IEEE Computer, June 1993.

14

