ParBlocks - A new Methodology for Specifying Concurrent
Method Executions in Opus*

Erwin Laure

Institute for Software Technology and Parallel Systems
University of Vienna
Liechtensteinstrasse 22, A-1090, Vienna, Austria

erwin@par.univie.ac.at

A short version of this report appears in: Proceedings Euro-Par’99, Springer, 1999

Abstract

Many applications make use of hybrid programming models intermixing task and data
parallelism in order to exploit modern architectures more efficiently. However, unbalanced
computational load or idle times due to tasks that are blocked either in I/O or waiting
on results from other tasks can cause significant performance problems. Fortunately, such
idle times can be overlapped with useful computation in many cases. In this paper we
propose a simple, yet powerful methodology for specifying intra-object parallelism and
synchronization in the context of the coordination language Opus. Our design combines
both, static and dynamic synchronization on a high level. We motivate our design with
some examples and discuss implementation strategies for compilation as well as runtime
support.

1 Introduction

With the advent of teraflops supercomputers and the usage of the Internet as a huge “meta-
computer”, the complexity of simulations being tackled by scientists and engineers is increas-
ing exponentially. In order to utilize the available architectures efficiently, several levels of
parallelism need to be exploited by such simulations.

We recently introduced the coordination Language Opus [4, 5] which allows a high level
management of data parallel tasks. Its central concept is the shared abstraction (SDA), which
generalizes Fortran 90/HPF modules using an object-based approach and imposing monitor
semantics. SDAs can be internally data parallel while task parallelism is exploited between dif-
ferent SDAs. SDAs communicate with one another via synchronous or asynchronous method
invocation; arguments are passed with copy-in/copy-out semantics.

With the monitor semantics of SDAs a consistent state of the SDA data is ensured at
the expense of potential parallelism losses. In fact, there may well be multiple method exe-
cutions safely active within an SDA object. Weakening the monitor semantics of SDAs has

*The work described in this paper was partially supported by the Special Research Program SFB F011
?”AURORA” of the Austrian Science Fund.

the benefit of introducing an additional level of parallelism which can e.g. be exploited on
systems with shared address space; but also on systems with distributed memory idle times,
due to communication or synchronization with other tasks, can be overlapped with useful
computation, thus reaching a better utilization of the available computation nodes.

Allowing concurrent executions of multiple methods within an SDA poses a number of
difficulties (see e.g. [10] for a detailed discussion of intra-object concurrency) among which
the most important one is how to specify potential parallelism and needed synchronization
among methods. In general, methods can safely execute concurrently if they do not interfere,
i.e. if all write accesses affect disjoint data segments [1].

Compiler analysis can be used for detecting some potential for intra-SDA parallelism.
However, a compiler is generally not able to detect all cases and therefore some support from
the user is needed in order to exploit intra-SDA parallelism to some greater extent.

In this paper we propose a compiler directive called ParBlock which can be used for
specifying potential parallelism and necessary synchronization among methods in a simple
and intuitive way. Synchronization can be specified statically (i.e., independent of an SDA’s
internal state) or dynamically (i.e., state dependent).

The remainder of this paper is organized as follows: We motivate the need for intra-
SDA parallelism in Section 2 with some application examples. After a short review of some
related approaches in Section 3 we present our approach in Section 4 and discuss various
implementation issues in Section 5. In Section 6 we apply our approach to the example
applications and conclude the paper with summarizing comments.

2 Application Examples

2.1 Intra-SDA Pipelines

One important class of applications that can take advantage of intra-SDA parallelism are
pipelined problems which can for instance be found in FFT computations. A FFT code is
typically structured into four tasks (input, column-fft, row-fft, output); each of those compo-
nents could be scheduled on a separate stage of a pipeline. Although such pipelines can be
expressed in Opus by assigning each stage to a separate SDA, this kind of structure imposes
significant data transfer overhead among the SDAs. The overhead can be reduced by overlap-
ping I/O with computation within an SDA in a pipelined manner. Figure 1 shows the SDA
declarations for such a scenario (without the specification of the pipelined parallelism which
is given in Section 6).

2.2 Partial Concurrency

Many problems can exploit “partial concurrency” between methods. With partial concurrency
we refer to situations where some methods can execute concurrently but others need to have
exclusive access to the object. One example of such problems are readers/writers-like accesses
to data repositories. In a previous paper [4] we demonstrated how the coordination features
of Opus can be used for synchronizing readers and writers to avoid deadlocks and starvation.
However, apart from synchronizing these computational tasks, all accesses to the shared data-
SDA have to be executed in a mutual exclusive way, currently. This is too restrictive since
multiple read requests may obviously be active at the same time, but also multiple write

SDA TYPE fft_stagel SDA TYPE fft_stage?

TYPE (fft_data) :: data TYPE (fft_data) :: data
CONTAINS CONTAINS
SUBROUTINE read_data() SUBROUTINE row _fft(input)

TYPE (fft_data), INTENT(in) :: input
END SUBROUTINE
END SUBROUTINE
SUBROUTINE col fft(result)

TYPE (fft_data), INTENT (out) :: result SUBROUTINE output()

END SUBROUTINE END SUBROUTINE
END SDA TYPE END SDA TYPE

Figure 1: 2stage FFT

requests may overlap, given that different parts of the data are accessed. The code excerpt
in Figure 2 shows a data repository for this kind of scenario.

3 Related Approaches

Before we discuss our proposal for specifying intra-SDA parallelism in Opus we briefly review
some existing approaches for specifying concurrent method executions below. Focus is hereby
laid on high level synchronization mechanisms; techniques such as the use of mutexes and
condition variables or the direct specification of data accesses (that can e.g. be found in
Jade [12]) are beyond our scope.

Java [6] The Java multithreading model allows all methods of an object to execute in
parallel unless they are explicitly synchronized. This means that the user has to ensure
a correct program behavior by either synchronizing methods or code regions. Although the
synchronized attribute for methods is an elegant feature there are some non-trivial problems
involved: synchronizing a method only means that it is executed mutually exclusive with
other synchronized methods - unsynchronized methods may well interfere with synchronized
ones. As a consequence of this, the synchronized attribute is ill suited for expressing partial
concurrency. Moreover, synchronization which is based upon the state of an object’s internal
data needs more low level constructs such as wait and notify (cf. Section 6).

OpenMP [11] OpenMP, designed for exploiting shared memory parallelism, allows parallel
executions of methods via work-sharing constructs like the for directive or the sections
directive. Similar to Java, methods are called from within such constructs in parallel without
synchronization. The user is required to either avoid invoking interfering methods from
within work-sharing constructs or to synchronize method executions properly by the use of
synchronization constructs like the critical or atomic construct.

SDA TYPE repository
TYPE (user_type) :: data(...)
CONTAINS
SUBROUTINE readl(...)
END SUBROUTINE
SUBROUTINE read2(...)
END SUBROUTINE

writel and write2 affect disjoint data
SUBROUTINE writel(...)

END SUBROUTINE
SUBROUTINE write2(...)

END SUBROUTINE
END SDA TYPE repository

Figure 2: Data Repository

Fortran 95/HPF [8, 7] Parallelism in Fortran is exploited primarily in the form of data
parallelism. Nevertheless, procedures can be called from within explicitly parallel constructs
(e.g. the forall construct) but only if they have the pure attribute. This attribute assures
that a procedure is free of certain side effects that prevent parallel execution. Fortran allows
the specification of concurrent procedure executions only in a quite restrictive way which does
not cover all interference-free cases. Moreover, only executions of the same procedure can be
overlapped; specifying concurrent executions of different procedures is not possible.

HPF adds a set of explicitly parallel constructs to Fortran. Parallel executions of proce-
dures are in particular enabled by the INDEPENDENT directive and the TASK_REGION construct.
While to INDEPENDENT loops similar restrictions as to the F95 forall construct apply, the
TASK_REGION construct is restricted in that a procedure called from within a TASK_REGION is
only allowed to access data which is mapped to the executing set of processors.

Path Expressions [2, 3] Path Expressions are an elegant means of specifying synchroniza-
tion between processes by describing how a process is allowed to execute in relation to others,
irrespective of their invocation order. In particular, Path Expressions allow the specification
of sequences, selections, repetitions and simultaneous execution among a set of processes. Path
Expressions not only specify parallelism or synchronization among processes, but also their
execution order. With the help of Path Expressions complex synchronization patterns can be
specified, however, it is not possible to specify synchronization which depends on the state of
a process.

4 The Opus Approach

4.1 Introduction

Due to the specific properties of SDAs (SDAs are kind of “active” objects which are trig-
gered by other objects) we identify a set of properties the specification mechanism for paral-
lelism /synchronization has to fulfill:

e Encapsulation: All parallelism /synchronization information should be encapsulated within
an SDA. SDAs can be accessed by a set of tasks which do not necessarily have to be
aware of each other. Hence, it is necessary that a consistent internal state is guaranteed
by an SDA itself rather than by synchronizing the accessing tasks.

e Static and Dynamic Synchronization: Synchronization should be possible in a static
(i.e., independent of an SDA internal state) and and dynamic (i.e., state dependent)
way. Although static synchronization can be seen as a special case of dynamic synchro-
nization, having means for specifying synchronization statically allows more efficient
compilation. Moreover, specifying synchronization statically is often a more natural
approach, as can e.g. be seen in Section 6.

e High Level: All parallelism /synchronization information should be specified on the high-
est possible level. We believe that parallelism/synchronization should be specified on
the method level since methods are the main locus for parallelism in Opus.

o User Friendly: User friendliness is required in two ways: apart from having an intuitive
means of specifying parallelism /synchronization, the user should only be compelled to
specify as much synchronization as necessary. Consequently, exclusive access to an SDA
is still the default property of a method.

4.2 Existing Features

Opus 1.0 [4] already provides some support for dynamic synchronization on the method level:
the condition clauses. Condition clauses can be used to guard the execution of a method
with a side-effect free logical condition. However, with this feature only synchronization that
depends on the state of the SDA can be specified. It is not possible to synchronize two method
executions independently of the internal data of the SDA.

In addition, the HPF binding of Opus provides means for expressing parallelism: the
Fortran pure attribute with all the properties described in Section 3.

4.3 ParSets

Apart from these features, new means for specifying static parallelism and synchronization,
in particular pairwise interference freedom among methods, are required. We propose that
every method should be annotated with a set of method names representing all the methods
with which its execution can safely overlap. This set is called ParSet. Note that ParSets
are symmetric but not transitive. By default, the ParSet of a method is empty and thus the
method has exclusive access to the SDA.

ParSets and condition clauses can be used in conjunction: while ParSets statically specify
potential parallelism, condition clauses can be used to synchronize method executions in a

dynamic way. The execution order of methods is derived implicitly from both, the parallelism
specification and condition clauses, since before launching the execution of a method it is
necessary to check if

1. the method is allowed to execute in parallel with all other methods currently being
executed, and if

2. its condition clause is satisfied.

Obviously, both checks have to form an atomic action.

The direct specification of ParSets for every method is a cumbersome task and specifying
ParSets in a consistent way is not trivial. Hence, we need higher level constructs for specifying
static parallelism /synchronization.

In Section 3 we discussed Path Expressionswhich can be used to specify process parallelism
at a high level. Such a technique could also be applied to Opus, however, Path Expressions
explicitly specify the execution order of methods, irrespective of the invocation order. The
direct specification of the execution order, however, is unwanted, since non-deterministic
executions are deliberately enabled in Opus; condition clauses can be used for imposing
specific execution orders, instead.

4.4 ParBlocks

Instead of specifying ParSets for every method we propose a new compiler directive called
ParBlock for the static specification of parallelism /synchronization. ParSets are derived from
ParBlocks by the compiler as described in Section 5. ParBlocks borrow from Path Expressions
in that they allow the specification of parallel and mutual exclusive method executions, but
without fixing the execution order of methods. Therefore, Path Expression features such as
sequences or repetition are not available in ParBlocks.

ParBlocks are compiler directives specifying either potential parallelism or the need for
synchronization between methods. The body of the ParBlock directive is a list of method
names where all comma separated methods can execute in parallel while semi-colon separated
methods need to execute mutually exclusive. We refer to a comma separated list as par-section
and to a semi-colon separated one as sync-section. Both sections can be arbitrarily nested
(using parenthesis) thus allowing complex synchronization patterns. In addition, multiple
ParBlocks can be specified for an SDA. However, no method name may occur more than once
in a given ParBlock nor in more than one ParBlock. These restrictions prohibit inconsistencies
in the declaration of ParBlocks.

Although ParBlocks have enough expressiveness for inter-method parallelism, it is not
possible to specify an overlapping of different instances of the same method. This can be ac-
complished by giving the method the F95 “pure” attribute. Thus, the concurrent execution
of different instances of the same method is only allowed for pure methods. Moreover, pure
methods can safely run mutually in parallel. Therefore, the compiler will generate an addi-
tional ParBlock containing all pure methods which is consistent with the F95/HPF standard.

Syntax: ParBlock Directive

parblock-directive is oc-directive-origin parblock-stmt parblock-body
oc-directive-origin is '0C$
parblock-stmt is PARBLOCK
parblock-body is (par-section)

or (sync-section)
par-section is parblock-element [, parblock-element]
sync-section is parblock-element ; parblock-element

[; parblock-element]

parblock-element is method-name
or parblock-body

Constraint: No method-name may occure more than cone in a given PARBLOCK.

Constraint: No method-name may occur in more than one PARBLOCK.

Summarizing the above, Opus provides a set of features for specifying intra-SDA paral-
lelism and synchronization, both dependent and independent of the SDA’s internal state:

e condition clauses: for specifying dynamic synchronization based upon the internal
state of the SDA,

e ParBlocks: for specifying parallelism as well as synchronization independently of the
SDA’s internal state, and

e pure attributes: for specifying potential parallelism according to the Fortran 95 stan-

dard.

Before discussing the associated compilation techniques and runtime support in more
detail, let us illustrate the use and expressiveness of ParBlocks in the following examples:

Example 4.1:

Consider an SDA with 6 methods, a, b, ¢, d, e, and £. All methods are
allowed to execute in parallel but with the restrictions that (1) method b and ¢
cannot execute concurrently and (2) method d cannot execute concurrently with
neither e nor f.

As already mentioned, ParBlocks provide sync-sections for specifying mutual ex-
clusion. This concept can be applied to restriction (1) resulting in the following
expression: (b;c).

Restriction (2) is slightly more difficult, because we need to synchronize a method
with two other methods which in turn may execute concurrently. Thus, we need

DEPTH

| Method | ParSet |

root 0
a b,c,d, e f T
b a,d, e, f [par-section | L
c a,d, e f f
d a, b, c a | [sync-section | [sync-section | 2
e a, b, c, f / 7 .
f a, b, c, e ‘ b ‘ ‘ c ‘ ‘ d ‘ ‘ par-section ‘ 3
[e] [1] a

Figure 3: ParSets for

E le 4.1
rampie Figure 4: AST for Example 4.1

to nest a sync-section with a par-section. Let’s first specify that method e and
f can run in parallel: (e,f). Now we extend this expression specifying the syn-
chronization of d: (d;(e,f)).

We have now specified all the necessary synchronization and can put everything
in a par-section. The resulting ParBlock for our example is:

(a,(b;c),(d;(e,£))). In an Opus program the required directive would look
like: '0C$ PARBLOCK(a, (b;c),(d;(e,f))). n

Example 4.2:

Consider another SDA with 4 methods, a, b, ¢, and d. We want to specify
partial parallelism such that a is allowed to execute in parallel with b and c,
and c is allowed to execute in parallel with d. All other combinations cannot be
executed in parallel.

The ParBlock expressing this partial parallelism is (c, (d;(a,b))). n

ParBlocks can be analyzed by the compiler which annotates every method of an SDA with
a ParSet. Figure 3 shows all ParSets for Example 4.1. The algorithm for generating these
sets is introduced in the following section.

5 Implementation

5.1 Compilation

The Opus compiler parses the ParBlock-directives of an SDA and constructs an AST for every
directive. The nodes of an AST are either par-sections, sync-sections, or method names where
the method name nodes are the leaf nodes.

Example 5.1:

Consider the ParBlock from Example 4.1:
(a,(b;c),(d;(e,1)))
Figure 4 shows the AST which is generated out of this ParBlock. m

Based upon the AST representation a ParSet is generated for each method of an SDA
using Algorithm 5.1:

First, the AST is traversed in order to find the node representing method z. If such a
node is found, all method names belonging to a par-section which lies on the path from the
root to the z-node are added to the ParSet. This is accomplished with help of the routine
“AddElements” which adds all method names belonging to the subtree rooted by “Child” to
a ParSet “Set”.

Algorithm 5.1:

Notation: Let M denote the Set of all methods of an SDA. The ParSet of a
method z is denoted by P*. ¢ is the empty set.

doVae € M{
P = 0
do V root € ParBlocks {
CurrentNode = TraverseTreeFind(root, z);

if (CurrentNode == NULL)

continue;
while (CurrentNode—Father != root) {
if (CurrentNode—Father == par-section)

AddOtherElements(P*, CurrentNode);
CurrentNode = CurrentNode—Father;

¥
¥
¥

AddOtherElements(Set, Node) {
do V Child(Node—Father) {
if (Child !'= Node)
AddElements(Set,Child);

Example 5.2:

Consider the construction of P from the AST of Example 5.1:

Initially, P¢ = @. The matching node for e is found at depth 4 and its father is
a par-section. Hence, all elements belonging to this par-section are added to P°
which now is the set {f}. We follow the path from e to the root-node passing
a sync-section at depth 2 whose father at depth 1 is a par-section again. Conse-
quently, all elements belonging to this par-section are added to P€ resulting in the
set {f,a,b,c}. Since the father of this par-section is the root-node, our algorithm
terminates for this set.

5.2 Runtime Support

In [9] we discuss in detail the compilation and runtime support for Opus. The main concept
is that an SDA is compiled into an active object consisting of two threads: a server thread
responsible for retrieving incoming request and storing them in a shared memory area (con-
sisting of Method Invocation - MI - queues) in form of ezecution records; and an execution
thread which retrieves records from the MI-queues and executes the associated methods. To
allow concurrent method executions within an SDA, an SDA object requires a set of execution
threads instead of only one (cf. Figure 5).

MI Queues
execution execution
[[
¥
m Arguments m Arguments
1 MI i MI
SERVER THREAD EXECUTION THREAD
* poll for MIs * dequeue Mls
* enqueue MIs * conditional M| execution
SDA Object

Figure 5: Structure of an SDA Object

The total number of execution threads is system dependent: while on an SMP the number
of execution threads should at least be equal to the number of available processors, on a single
processor machine only a few of them are needed. The actual number can be determined
dynamically at runtime via environment variables.

The execution threads are in duty of validating, whether a new method can start executing
in parallel with others. For this purpose, it is kept track of all methods currently being
executed. A new method can start its execution if and only if the set of the currently
executing methods is a subset of its ParSet. In addition, its condition clause must be satisfied
as well. Obviously, both checks need to be performed in an atomic action. Algorithm 5.2
illustrates the method invocation mechanism of an execution thread.

Algorithm 5.2:
Notation: Let Il denote the set of all methods currently being executed.

/* begin atomic */

if (IT € P%){
if (/* condition-clause(x) */) {
I =1IUuU {z}

/* end atomic */
/* launch execution of a */
M=\ {r)
}
}

10

SDA TYPE fft_stagel
TYPE (fft_data) :: data(0:1)

! flags used in condition clauses
LOGICAL :: read_allowed = .TRUE.
LOGICAL :: col_allowed = .FALSE.

! data set index
INTEGER :: active_read = 0
INTEGER :: active_col = 0

CONTAINS
SUBROUTINE read_data() &

& WHEN (read_allowed)

read_allowed = .FALSE.

!I'read fft_data using data(active_read)
active_read = MOD (active_read+1,2)
col_allowed = .TRUE.

END SUBROUTINE

SUBROUTINE col fft(result) &
& WHEN (col_allowed)
TYPE (fft_data), INTENT (out) :: result
col_allowed = .FALSE.
read_allowed = .TRUE.
I eall column_fft(data(active_col))
active_col = MOD(active_col+1,2)
END SUBROUTINE

!10C$ PARBLOCK((read_data, col fft)

END SDA TYPE

SDA TYPE fft_stage?
TYPE (fft_data) :: data(0:1)

! flags used in condition clauses
LOGICAL :: row_allowed = .TRUE.
LOGICAL :: output_allowed = .FALSE.

! data set index
INTEGER :: active_row = 0
INTEGER :: active_out = 0

CONTAINS
SUBROUTINE row_fft(input) &

& WHEN (row_allowed)

TYPE (fft_data), INTENT(in) :: input
row_allowed = .FALSE.

I eall row_fft(datafactive_row)=input)
active_row = MOD(active_row+1,2)
output_allowed = .TRUE.

END SUBROUTINE

SUBROUTINE output()&

& WHEN (output_allowed)
output_allowed = .FALSE.
row_allowed = . TRUE.

I eall output(data(active_out))
active_out = MOD(active_out+1,2)

END SUBROUTINE

!10C$ PARBLOCK((row_fft, output)

END SDA TYPE

Figure 6: 2stage FFT with ParBlocks

6 Applied Application Examples

In this Section we show the applicability of our approach for the problems introduced in

Section 2.

6.1 Intra-SDA pipelines

Our first example shows the pipelined execution of SDA methods which can e.g. be applied
to FFT computations. The original code from Figure 1 has to be modified in three aspects:

1. An appropriate ParBlock is required.

2. A correct pipelined behavior needs to be guaranteed by condition clauses.

3. For each stage of the pipeline a separate copy of the FFT data has to be allocated to

guarantee interference freedom.

11

Figure 6 shows the necessary code excerpts. Note the combination of a static parallelism
specification and the dynamic synchronization via condition clauses.

6.2 Partial Concurrency

The data repository examples of Section 2.2 is much simpler, because it is sufficient to specify
parallelism among readers as well as among writers, but to guarantee that no overlapping of
readers and writers may occur. Thus, all parallelism and synchronization information can be
specified statically via ParBlocks. Figure 7 (a) shows the modified code. The expressiveness
and intuitiveness of ParBlocks is also demonstrated in this example by a comparison with an
equivalent Java code which is given in Figure 7 (b).

public class repository {
// data
private int n_read=0, n_write=0;
private Object mutex1, mutex2;

SDA TYPE repository

TYPE (user_type) :: data(...) public data readl(...) {

beforeRead(); ...; afterRead();}

CONTAINS

SUBROUTINE readl(...) public data read2(...) {

beforeRead(); ...; afterRead(); }
END SUBROUTINE public void writel(data) {
synchronized (mutex1) {

SUBROUTINE read2(...) beforeWrite(); ...; afterWrite(); }}

END SUBROUTINE public void write2(data) {

synchronized (mutex2) {

SUBROUTINE writel(...) beforeWrite(); ...; afterWrite(); }}

END SUBROUTINE private synchronized void beforeRead() {

while (n_write = 0) { wait();}

SUBROUTINE write2(...) n_read++; }

END SUBROUTINE private synchronized void afterRead() {

10C$ PARBLOCK & if (-n_read == 0) notifyAll(); }

& ((readl,read2);(writel,write2)) private synchronized void beforeWrite() {

while (n_read '= 0) { wait();}

END SDA TYPE repository n_write4++; }

private synchronized void afterWrite() {
if (-n_write == 0) notifyAll(); }
}

(a))

Figure 7: Data Repository with ParBlocks (a); and in Java (b)

12

One can see that due to the lack of specification possibilities for partial concurrency
additional counters together with synchronized functions modifying these counters are needed.
Moreover, low level wait and notifyAll functions, as well as mutex synchronization of the write
methods are necessary to guarantee correct behavior.

7 Conclusions

In this paper we introduced a simple, yet expressive method for specifying intra-SDA paral-
lelism and showed how this method cooperates with a set of powerful synchronization mecha-
nisms. Moreover, strategies for implementing both the compilation and runtime support were
discussed in detail. Examples of important application classes proved the applicability of our
approach and its benefits wrt. other approaches, like the Java multithreading model.

However, there are some subtleties that have to be considered when using ParBlocks. Most
important is that in some special cases a synchronized method may be life-locked. Consider
e.g. the following ParBlock: (a;(b,c)). If methods b or ¢ are invoked frequently, there
might be little chances for a to ever start executing since it must wait until no other method
is being executed. However, this situation can be overcome by specifying proper condition
clauses for b and ¢ which will prevent them from executing at times, thus giving a a chance
for being executed.

The proposed methodology is currently being implemented in our Opus compilation and
runtime framework.

References

[1] G.R. Andrews. Concurrent Programming: Principles and Practice. Ben-
jamin/Cummings, 1991.

[2] R.H. Campbell. Path Frpressions: A technique for specifying process synchronization.
PhD thesis, Computing Laboratory, The University of Newcastle Upon Tyne, 1976.

[3] R.H. Campbell and A.N. Habermann. The Specification of Process Synchronization by
Path Expressions. In G. Goos and J. Hartmanis, editors, LNCS, volume 16. Springer
Verlag, 1974.

[4] B. Chapman, M. Haines, E. Laure, P. Mehrotra, J. Van Rosendale, and H. Zima. Opus
1.0 Reference Manual. Technical Report TR 97-13, Institute for Software Technology
and Parallel Systems, University of Vienna, October 1997.

[5] B. Chapman, M. Haines, P. Mehrotra, J. Van Rosendale, and H. Zima. OPUS: A Coor-
dination Language for Multidisciplinary Applications. Scientific Programming, 6/9:345—
362, Winter 1997.

[6] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-Wesely,
1996.

[7] High Performance Fortran Forum. High Performance Fortran Language Specification
Version 2.0, January 1997.

[8] ISO. Fortran 95 Standard. ISO/IEC 1539 :1997.

13

[9] E. Laure, M. Haines, P. Mehrotra, and H. Zima. On the Implementation of the Opus
Coordination Language. Concurreny: Practice and Erperience, to appear 1999.

[10] B. Meyer. Object-Oriented Software Construction, Second Edition. Prentice Hall, 1997.

[11] OpenMP C and C++ Application Program Interface Version 1.0.
http://www.openmp.org/, October 1998.

[12] M.C. Rinard, D.J. Scales, and M.S. Lam. Jade: A High-Level, Machine-Independent
Language for Parallel Programming. IEEE Computer, June 1993.

14

