
Addressing, Distances and Routing in Triangular Systems with Applications in
Cellular and Sensor Networks

Victor Chepoi
Laboratoire d’Informatique Fondamentale de Marseille,

Université de la Méditerranée,
Faculté des Sciences de Luminy,

F-13288 Marseille Cedex 9, France
chepoi@lidil.univ-mrs.fr

Feodor Dragan
Department of Computer Science,

Kent State University,
Kent, Ohio 44242, USA

dragan@cs.kent.edu

Yann Vaxès
Laboratoire d’Informatique Fondamentale de Marseille,

Université de la Méditerranée,
Faculté des Sciences de Luminy,

F-13288 Marseille Cedex 9, France
vaxes@lidil.univ-mrs.fr

Abstract

Triangular systems are the subgraphs of the regular tri-
angular grid which are formed by a simple circuit of the
grid and the region bounded by this circuit. They are used
to model cellular networks where nodes are base stations.
In this paper, we propose an addressing scheme for triangu-
lar systems by employing their isometric embeddings into
the Cartesian product of three trees. This embedding pro-
vides a simple representation of any triangular system with
only three small integers per vertex, and allows to employ
the compact labeling schemes for trees for distance queries
and routing. We show that each such system with n ver-
tices admits a labeling that assigns O(log2 n) bit labels to
vertices of the system such that the distance between any
two vertices u and v can be determined in constant time by
merely inspecting the labels of u and v, without using any
other information about the system. Furthermore, there is a
labeling, assigning labels of size O(log n) bits to vertices,
which allows, given the label of a source vertex and the la-
bel of a destination, to compute in constant time the port
number of the edge from the source that heads in the di-
rection of the destination. These results are used in solving
some problems in cellular networks. Our addressing and
distance labeling schemes allow efficient implementation of

distance and movement based tracking protocols in cellular
networks, by providing information, generally not available
to the user, and means for accurate cell distance determi-
nation. Our routing and distance labeling schemes provide
elegant and efficient routing and connection rerouting pro-
tocols for cellular networks.

1. Introduction and motivation

Triangular systems are the subgraphs of the regular
triangular grid which are formed by a simple circuit
(with some vertices visited possibly more than once)
of the grid and the region bounded by this circuit. In
other words, the triangular systems are the connected
planar graphs with inner faces of length 3 and inner
vertices of degree 6. Particular instances of triangu-
lar systems are hexagonal networks considered in [9],
which are the isometric subgraphs of the regular tri-
angular grid (e.a., the portion of the regular triangu-
lar grid which is formed by a convex polygon and
the region bounded by this polygon). Motivated by
applications of hexagonal networks in cellular, wire-
less, sensor and interconnection networks, Nocetti et
al. [9] presented a suitable addressing scheme for ver-

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

tices which allowed to derive a simple formula for dis-
tance between vertices and design a very elegant rout-
ing algorithm.

Unfortunately, their method works only for trian-
gular systems which are the distance preserving sub-
graphs of the triangular grid (i.e., for hexagonal net-
works). However, general triangular systems are more
realistic models for cellular, wireless and sensor net-
works since they address a more general case when
receivers or sensors are uniformly located inside some
simply connected region (not necessarily convex and
not necessarily forming an isometric subgraph of the
triangular grid). As possible examples one can con-
sider sensors uniformly distributed in a lake or in a
valley surrounded by mountains. In what follows we
will outline in some details the application of triangu-
lar systems in cellular communications.

Base Stations
Cells

Mobile User

Figure 1. A cellular network modeled by a tri-
angular system.

Cellular communications have experienced an ex-
plosive growth recently. Cellular networks are com-
monly designed as triangular systems, where vertices
serve as base stations (BSs) to which mobile users
must connect to make or receive phone calls. Mobile
users are normally connected to the nearest BSs and,
thus, BSs divide the area such that each BS serves all
users that are located inside a hexagon (a cell) cen-
tered at BS (see Figure 1). Mobile users with cellular
phones have to register frequently to facilitate their lo-
cation when phoning them. They move from cell to
cell, but do not always contact their new cell to up-
date their position since too many messages may be re-
quired and the system may be blocked for regular calls.

In [2], Bar-Noy et al. proposed three dynamic location
update (or registration) schemes: time-based, move-
ment based, and distance-based. It has been shown
that the distance-based scheme is the most efficient
among the three [2]. In the distance-based location
update scheme, a mobile terminal updates its location
when the distance in terms of cells it traveled since the
last update exceeds a predefined threshold.

The location management problem is related to the
efficient search for a mobile terminal upon a call ar-
rival. The incoming call is directed toward the last re-
ported position u of mobile user. The search process
then continues by paging all cells which are located
within cell distance k from u. Here the cell distance is
the number of cells on a shortest route between the two
cells. Cell distance directly corresponds to the num-
ber of retransmissions of paging request, which is eas-
ily controlled by setting a paging counter. Naor et al.
[8] proposed to use cell identification codes (CIC) for
tracking mobile users. Each cell periodically broad-
casts a short message which identifies the cell and its
orientation relative to other cells in the network. Mo-
bile users, to efficiently update their location, use this
information.

Thus, additional to efficient routing protocols, there
is a need in efficient computation of the cell distance
between any two cells. However, it has been claimed
in [2] that it is hard to compute the distance between
two cells, or it requires a lot of storage to maintain
the distance information among all cells [1, 7]. Cur-
rent cellular networks do not provide information that
can be used to derive cell distances. In [9], Nocetti
et al. proposed a very simple method to compute the
cell distance between any two cells in the case when a
cellular network is modeled by a hexagonal network.
The distance computation of [9] is based on a new cell
addressing scheme. The scheme avoids using real geo-
graphic coordinates of BSs and, instead, considers rel-
ative positions of base stations in a cellular network
to arrive at simple representation with three small in-
tegers, one of them being 0. This addressing scheme
provides also a short and elegant routing protocol.

In this paper, we propose an addressing scheme for
triangular systems by employing their isometric em-
beddings into the Cartesian product of three trees (for
benzenoids, which are the dual graphs of triangular
systems, a similar result has been established in [3]).

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

This embedding provides a simple representation of
any triangular system with only three small integers
per vertex, and allows to employ the compact label-
ing schemes for trees for distance queries and routing.
(Note that the addressing scheme of [9] is nothing else
than a result of an isometric embedding of a hexago-
nal network into the product of three paths.) We show
that each such system with n vertices admits a labeling
that assigns O(log2 n) bit labels to vertices of the sys-
tem such that the distance between any two vertices u
and v can be determined in constant time by merely in-
specting the labels of u and v, without using any other
information about the system. Furthermore, there is
also a labeling, assigning labels of size O(log n) bits
to vertices, which allows, given the label of a source
vertex and the label of a destination, to compute in
constant time the port number of the edge from the
source that heads in the direction of the destination.

2. Addressing via isometric embedding into the
product of three trees

In a graph G = (V, E) the length of a path from a
vertex x to a vertex y is the number of edges in the
path. The distance dG(x, y) between x to y is the
length of a shortest path connecting x and y. Given
two connected graphs G = (V (G), E(G)) and H =
(V (H), E(H)) and an integer k, we say that G admits
an isometric embedding into H if there exists a map-
ping

α : V (G) → V (H)

such that

dH(α(x), α(y)) = dG(x, y)

for all vertices x, y ∈ V (G). If there is a mapping

α : V (G) → V (H)

such that

dH(α(x), α(y)) = k dG(x, y)

for all vertices x, y ∈ V (G), then we say that G admits
a scale k isometric embedding into H .

The Cartesian product H = H1 × · · · × Hm of
connected graphs H1, . . . , Hm is defined upon the
Cartesian product of the vertex sets of the correspond-
ing graphs (called factors), i.e., V (H) = {u =

(u1, . . . , um) : ui ∈ V (Hi), i = 1, . . . , m}. Two ver-
tices u = (u1, . . . , um) and v = (v1, . . . , vm) are ad-
jacent in H if and only if the vectors u and v coincide
except at one position i, in which we have two vertices
ui and vi adjacent in Hi. The distance between two
vertices x = (x1, . . . , xm) and y = (y1, . . . , ym) of H
is given by

dH(x, y) =
m∑

i=1

dHi(xi, yi).

To formulate the embedding result we need some
further terminology. Let G be a triangular system
bounded by a simple circuit B. By E1, E2 and E3

denote the edges of G of a given direction. Consider a
graph Gi = (V, Ei) (i = 1, 2, 3) formed by the edges
Ei. Evidently, the connected components of Gi are
paths of G with end–vertices on B; we call them i-
paths of G. One can easily show that every i-path P
is a shortest path. Moreover, P is the unique shortest
path in G that connects the end–vertices of P . Indeed,
let vertices x, y ∈ P be connected by a shortest path Q
outside P and suppose, without loss of generality, that
Q ∩ P = {x, y}. Let f = xx′ be the first edge of Q,
say f ∈ Ej . Clearly f is not collinear with the edges
of P, i.e., j �= i. For every edge e ∈ P there is an edge
e′ ∈ Q contained in the strip bounded by the j-paths
passing via the end–vertices of e. Since a′ �= b′ for
any two distinct edges a, b ∈ P and the edge f ∈ Q
is not an image of an edge of P, we conclude that Q
is longer than the subpath of P comprised between the
vertices x and y, thus yielding a contradiction with the
choice of Q.

A straight line segment c = [p, q] is called an i-cut
segment if p and q are the centers of two edges not be-
longing to Ei, c is parallel to the i-paths, and the graph
obtained from G by removing all edges intersected by
c has exactly two connected components. In this case
we say that c separates any two vertices (or i-paths)
from different connected components. Denote by Ci

the collection of all i-cut segments. Note that every
edge e ∈ Ei is crossed by exactly two cut-segments
(not belonging to Ci).

Define a graph Ti whose nodes are the connected
components of Gi and two such components P ′ and
P ′′ are adjacent in Ti if and only if there exists an edge
e in G with one end in P ′ and the second in P ′′ (see

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Figure 2 for an example). Since G is bounded by a Jor-
dan curve B, every Ti is a tree (the existence of a cycle
in Ti would imply that G contains a non–triangular in-
terior face). Note that there exists a bijection between
the edges of Ti and the cut segments of Ci: if the i-
paths P ′ and P ′′ are adjacent in Ti, then the edges
of G with one end in P ′ and another one in P ′′ are
crossed by the same i-cut segment. Using this obser-
vation and the fact that Ti is a tree, one concludes that,
more generally, any two i-paths P ′ and P ′′ are sepa-
rated by exactly dTi(P

′, P ′′) cut segments.
We obtain the following canonical embedding α of

G into the Cartesian product H = T1 × T2 × T3.
For any vertex v of G put α(v) = (P, Q, R), where
P, Q and R are the connected components of the
graphs G1, G2 and G3, respectively, sharing the ver-
tex v. We claim that α provides a scale 2 isomet-
ric embedding of G into H , i.e., for all vertices x =
(α1(x), α2(x), α3(x)) and y = (α1(y), α2(y), α1(y))
of G,

2 dG(x, y) =
3∑

i=1

dTi(αi(x), αi(y)) (1)

holds. To prove this, pick two arbitrary vertices x and
y of G and suppose that α(x) = (P ′, Q′, R′), α(y) =
(P ′′, Q′′, R′′). From what has been shown above one
concludes that the vertices x and y are separated by
dT1(P

′, P ′′) cut segments from C1, dT2(Q
′, Q′′) cut

segments from C2, and dT3(R
′, R′′) cut segments from

C3. To complete the proof, it suffices to show that the
vertices x and y are separated by exactly 2dG(x, y) cut
segments. Pick an arbitrary shortest path L between x
and y. Any cut segment c separating x and y neces-
sarily intersects at least one edge of L. If, say, c ∈ Ci

intersects two edges u′v′ and u′′v′′ of L, then we arrive
at a contradiction. Indeed, in this case, if the vertices
u′ are u′′ are taken from the same i-path P , then u′

and u′′ would be connected by more than one shortest
path, in contradiction with what has been shown about
P. Thus, every cut segment separating x and y inter-
sects exactly one edge of L. Since every cut segment
crossing an edge of L also separates the vertices x, y
and since every edge of L is crossed by exactly two cut
segments, we obtain (1).

Hence, α is a scale 2 isometric embedding of G into
H . To define three integer addresses of the vertices of

G one can do the following. For a given edge direc-
tion i (i = 1, 2, 3) first find the corresponding edge set
Ei. Then define the graphs Gi and find their connected
components. Having these connected components, it
is easy to construct the trees Ti (i = 1, 2, 3) and index
their nodes from 1 to ki (ki ≤ n) in depth-first-search
order. Now the i–th coordinate (i = 1, 2, 3) of a ver-
tex v of G is the index of that connected component
of Gi which contains v. Clearly, if G consists of n
vertices, then the trees T1, T2, T3 and the three integer
addresses of the vertices of G can be computed in total
O(n) time.

Summarizing the discussion of this section, we con-
clude

THEOREM 2.1 The map α provides a scale 2 isomet-
ric embedding of a triangular system G with n ver-
tices into the graph H = T1 × T2 × T3. The factors
T1, T2, T3 as well as the corresponding three integer
addresses of the vertices of G can be computed in to-
tal O(n) number of operations.

Figure 2. A triangular system, the tree–factors
and the resulting addressing.

3. Distance decoder

A graph family F is said (see [11]) to have an l(n)
distance labeling scheme if there is a function L la-
beling the vertices of each n-vertex graph in F with

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

distinct labels of up to l(n) bits, and there exists an
algorithm, called distance decoder, that given two la-
bels L(v), L(u) of two vertices v, u in a graph from F ,
decides the distance between v and u in time polyno-
mial in the length of the given labels. Note that the al-
gorithm is not given any additional information, other
that the two labels, regarding the graph from which the
vertices were taken.

In this section, we show that triangular systems with
n vertices enjoy a distance labeling scheme with labels
of size O(log2 n) bits and a constant time distance de-
coder.

Let G be a triangular system with n vertices and as-
sume that the tree–factors T1, T2, T3 and the three in-
teger addresses of the vertices of G are given. The dis-
tance formula (1) reduces the problem of computing
dG(x, y) to three similar problems on factors. A ma-
jor advantage is that all three factors are trees. A dis-
tance labeling scheme for n-node trees that uses only
O(log2 n) bit labels but an O(log n) time distance de-
coder has been given in [10]. This result is comple-
mented by a lower bound proven in [4], showing that
Ω(log2 n) bit labels are necessary for the class of all
n-node trees with inner vertices of degree at most 3.

Here we slightly revise the distance labeling scheme
for trees of [10] and show that the modified distance
decoder runs in constant time.

Let T be an arbitrary tree. It is well known that
any tree T with n nodes has a node v (called a me-
dian node) the removal of which breaks T into dis-
connected subtrees T 1, . . . , T k, each with at most n/2
nodes. Using this fact, first we construct a decompo-
sition tree T̂ for the tree T in the following recursive
way. Find a median node v of T and let T 1, . . . , T k

be the connected components of T − v. For each T j

(j = 1, . . . , k) construct a decomposition tree T̂ j re-
cursively and build T̂ by taking v to be the root and
connecting the root of each tree T̂ j as a child of v.
It is easy to see that a decomposition tree T̂ of a tree
T with n nodes has depth at most log2 n and can be
constructed in O(n log n) time since a median node of
a tree can be found in linear time [5]. Indeed, in each
level of recursion we need to find median nodes of cur-
rent subtrees and, since the tree sizes are reduced by a
factor 1/2, the recursion depth is O(log n).

For the tree T̂ we need also a labeling scheme for
depths of nearest common ancestors (NCA-depth la-

beling scheme). NCA-depth labeling scheme for a tree
T̂ with the root v is a scheme that labels the nodes
of T̂ with short labels in such a way that the distance
from v to the nearest common ancestor of two nodes x
and y of T̂ can be determined efficiently by merely in-
specting the labels of x and y, without using any other
information. In [11] such a scheme with O(log2 n) bit
labels but with O(log n) query time was presented for
any tree with n nodes. One can use here the fact that T̂
has the O(log n) depth and get constant query time in
this case. To do this one can simply translate the tech-
nique of Harel and Tarjan [6] to a labeling scheme.
Note that whenever they access global information, it
is associated with an ancestor in a tree. Since the depth
of our tree is O(log n), one can copy this ancestor in-
formation down to each descendant and get the desired
label of O(log2 n) bits. Thus, tree T̂ can be prepro-
cessed in O(n log n) time for depths of nearest com-
mon ancestors. This preprocessing step creates for T̂
an NCA-depth labeling scheme with O(log2 n) bit la-
bels and constant query time.

Now, for each node x of a tree T , let Ax be the la-
bel of x in the NCA-depth labeling scheme of T̂ . Let
also v0, v1, . . . , vh be the nodes of the path of T̂ from
the root v (which is v0) to the node x = vh. Clearly,
h ≤ log2 n. In the distance labeling scheme for T , the
label LT (x) of x will be the concatenation of Ax and
h + 1 distances dT (x, v0), dT (x, v1), . . . , dT (x, vh).
Since the depth of T̂ is O(log n), LT (x) is of length
O(log2 n) bits for any node x. Clearly the computa-
tion of all labels LT (x), x ∈ V (T), takes O(n log n)
total time. To decode the distance in T between x and
y, one can use the following function. Note that, since
the nearest common ancestor nca

T̂
(x, y) of nodes x

and y lies on the path of T between x and y, we have
dT (x, y) = dT (x, nca

T̂
(x, y)) + dT (y, nca

T̂
(x, y)).

function distance decoder trees(LT (x), LT (y))

extract from LT (x) and LT (y) the entries Ax and Ay;
use Ax and Ay to find the depth l in T̂ of the nearest

common ancestor of x and y;
extract from LT (x) and LT (y) the distances dT (x, vl)

and dT (y, vl);
return dT (x, vl) + dT (y, vl).

For a triangular system G with the tree–factors
T1, T2, T3, the label L(x) of a vertex x will be
the concatenation of LT1(α1(x)), LT2(α2(x)) and

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

LT3(α3(x)). Then the distance between vertices x and
y of G can be computed in constant time using the fol-
lowing function.

function distance decoder triang syst(L(x), L(y))

return
(distance decoder trees(LT1(α1(x)), LT1(α1(y)))+
distance decoder trees(LT2(α2(x)), LT2(α2(y)))+
distance decoder trees(LT3(α3(x)), LT3(α3(y))))/2.

Thus, we have proved the following result.

THEOREM 3.1 The family of triangular systems with
at most n vertices admits a distance labeling scheme
with labels of size O(log2 n) bits and a constant
time distance decoder. Moreover, the scheme is con-
structable in time O(n log n).

Figure 3. The distance in triangular system
from the appropriate distances in three tree-
factors.

4. Routing

Following [12], one can give the following formal
definition. A family � of graphs is said to have an l(n)
routing labeling scheme if there is a function L label-
ing the vertices of each n-vertex graph in � with dis-
tinct labels of up to l(n) bits, and there exists an effi-
cient algorithm, called the routing decision, that given

the label of a source vertex v and the label of the des-
tination vertex (the header of the packet), decides in
time polynomial in the length of the given labels and
using only those two labels, whether this packet has
already reached its destination, and if not, to which
neighbor of v to forward the packet.

In this section, we establish that triangular systems
with n vertices enjoy a routing labeling scheme with
labels of size O(log n) bits and a constant time rout-
ing decision. For this, we build up the tree-factors
T1, T2, T3 provided by Theorem 2.1, and to each factor
we employ the routing scheme of Thorup and Zwick
[13].

To make this note self-contained, first we briefly de-
scribe the routing labeling scheme of [13]. Let T be an
arbitrary n-node tree rooted at node r. The weight sv

of a node v is the number of its descendants in the
tree (a node is considered to be a descendant of it-
self). A child of a node v is said to be heavy if its
weight is highest among all children. We let each non-
leaf node have a single heavy child (ties can be broken
arbitrarily). All other children of v are called light.
For convenience, we define r, the root of the tree, to
be heavy. The light level �v of a node v is defined
as the number of light nodes on the path from r to
v, including v if it is light. If v is a non-leaf node,
we let v′ be its heavy child, and v0, v1, . . . , vd−1 be
its light children in non-increasing order of weight,
i.e., sv′ ≥ sv0 ≥ · · · ≥ svd−1

. It is easy to see that
svi ≤ sv/(i + 2), for 0 ≤ i < d. Therefore, each time
an edge from a node to one of its light children is de-
scended, the number of descendants in the correspond-
ing subtree decreases by a factor of at least 2. Thus, the
light level �v of every node v is at most O(log2 n).

We assign the edge vvi, for 0 ≤ i < d, port number
i, and assign the edge vv′ port number d. We enu-
merate the nodes of the tree in depth first order, where
all the light children of a node are visited before its
heavy child. We identify a node v with the number
assigned to it, and let fv be the largest descendant of
v. We let Pv be an array containing in its first ele-
ment Pv[0] the port number corresponding to the edge
from v to its parent, and then in its second element
Pv[1] the port number corresponding to the edge from
v to its heavy child. Let also Lv = (q1, q2, . . . , q�−1)
be the port numbers of the edges leading to the light
nodes on the path from r to v. Instead of storing

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

each port number q in a separate word, one can use
only �log2 q	 + 1 bits, or a single bit if q = 0, and
concatenate all these bit strings. For example, the se-
quence (2, 0, 5, 3) would yield the string 10’0’101’11
(the quotes are, of course, not part of this sequence
and were added for illustration purposes only). In-
stead of the quotes, one can use a mask. Each ’1’ in
this mask would mark the end of a string represent-
ing a number. Thus, the mask corresponding to our
string above would be 01’1’001’01 (again, without the
quotes). With each node v we therefore associate a bit
string Lv and a masking bit string Mv. The length of
each one of them is O(log2 n) as shown in [13].

Now, the routing label LT (x) stored at node x con-
sists of (x, x′, fx, Px, Lx, Mx, kx). We store with x
also the total length kx of first �x − 1 numbers in Lx.
The total size of LT (x) is O(log2 n) bits. The header
of a packet headed towards destination y will consist
only of (y, Ly, My), i.e., HT (y) = (y, Ly, My). The
routing algorithm should now be obvious. Suppose
that a packet with the header (y, Ly, My) arrives at x.
If x = y, we are done. Otherwise, we check whether
y ∈ [x, fx] (where [x, fx] are the integers from x to
fx). If not, then y is not a descendant of x and the
packet is forwarded to the parent of x using port Px[0].
Next, we check whether y ∈ [x′, fx]. If so, then y is a
descendant of a heavy child of x, and the packet is for-
warded to the heavy child of x using port Px[1]. Oth-
erwise, y is a descendant of a light child, in which case
we need to extract the �x-th number coded in Ly. We
only have to do that, however, when y is a descendant
of x, in which case we know that the first �x − 1 num-
bers coded in Ly are exactly the same as those in Lx.
Thus, we can use the number kx stored at x to extract
the required port number from Ly. If the indices in the
bit string Ly start from 0, we need to extract the bit
substring of Ly starting with Ly(kx) and ending with
Ly(kx + j), where j is the smallest non-negative inte-
ger such that My(kx + j) = 1. A formal description
of this constant time routing algorithm is given below.

function routing decision trees(LT (x),HT (y))

if x = y then return ”packet reached its destination”;
if y /∈ [x, fx] then return Px[0];
if y ∈ [x′, fx] then return Px[1];
else

extract from Ly the bit substring starting with Ly(kx)
and ending with Ly(kx + j), where j is the smallest

non-negative integer such that My(kx + j) = 1, and
return the obtained port number.

Returning to a triangular system G = (V, E), recall
that (α1(x), α2(x), α3(x)) is the address of a vertex
x ∈ V in the graph T1 × T2 × T3 defined in Theorem
2.1. Denote by LTi(αi(x)) the Thorup-Zwick label of
the node αi(x) in the tree Ti, i = 1, 2, 3. Let ∆i(x)
be the set of all i-paths different from αi(x) which
pass via a neighbor of the vertex x in G. One can
easily see that δi(x) := |∆i(x)| ≤ 4. Set ∆i(x) :=
{α1

i , ..., α
δi(x)
i }. For each x ∈ V and each index i =

1, 2, 3, we keep an array Oi(x) having δi(x) entries as
well as δi(x) arrays Qj

i (x), j = 1, . . . , δi(x), with one
or two entries each. The array Oi(x) contains the port
numbers corresponding to the edges of Ti from αi(x)
to the nodes of ∆i(x). Each Qj

i (x) contains the port
numbers corresponding to the edges of G from x to its
neighbors in the i-path αj

i . The label LG(x) of a vertex
x of G is the concatenation of the Thorup-Zwick la-
bels LT1(α1(x)), LT2(α2(x)), LT3(α3(x)), of the ar-
rays Oi(x), i = 1, 2, 3, and of the arrays Qj

i (x),
i = 1, 2, 3 and j = 1, . . . , δi(x).

The header HG(y) of a packet with destination
y will consists of the corresponding Thorup-Zwick
headers of the paths α1(y), α2(y), and α3(y). Suppose
that such a packet arrives at a vertex x. For routing de-
cision at x, we use an auxiliary array A indexed by the
port numbers of the edges incident to x in G and whose
entries are initially all set to 0. For each i ∈ {1, 2, 3},
employing the Thorup-Zwick algorithm, we compute
the port number of the edge of Ti incident to αi(x) and
lying on the path between αi(x) and αi(y). If this port
corresponds to an entry of the array Oi(x) (this can
be checked in O(1) time), say the jth entry, then we
increment by 1 all entries of the array A which corre-
spond to port numbers occurring in the array Qj

i (x).
This operation is repeated for each i ∈ {1, 2, 3} un-
til one of the entries of A becomes equal to 2. Then
the packet is forwarded to the neighbor of x via the
corresponding port.

function routing decision triang syst(L(x),H(y))

if (α1(x), α2(x), α3(x)) = (α1(y), α2(y), α3(y))
then return “packet reached its destination”;

set A ← 0;
for each i ∈ {1, 2, 3} do

p ← routing decision trees(LTi
(αi(x)),HTi

(αi(y)));

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

for each j ∈ {1, ..., |Oi(x)|} do
if p = Oi(x)[j] then

for each entry portG of the array Qj
i (x) do

A[portG] ← A[portG] + 1;
if A[portG] = 2 then

return portG.

The correctness of this simple algorithm is a con-
sequence of the following fact: a neighbor z of x is
closer to the destination y than the vertex x if and
only if in exactly two of the trees Ti, i = 1, 2, 3, the
vertex αi(z) belongs to the path between αi(x) and
αi(y). Indeed, by Theorem 2.1, two adjacent vertices
x, z of G have one identical coordinate (say the third
one) and two coordinates corresponding to adjacent
nodes of the first and the second tree factors. Hence
dG(x, y) = dG(z, y) + 1 if and only if α1(z) is be-
tween α1(x) and α1(y) in T1 and α2(z) is between
α2(x) and α2(y) in T2. Only such vertices z will have
entries in A equal to 2. Thus, we obtain the following
result.

THEOREM 4.1 The family of triangular systems with
at most n vertices admits a routing labeling scheme
with labels of size O(log n) bits and a constant
time routing decision. Moreover, the scheme is con-
structable in linear O(n) time.

Figure 4. Choosing a direction to go from v
(direction seen twice is good).

References

[1] I.F. Akyildiz, J.S.M. Ho, and Y.B. Lin, Movement-based
location update and selective paging for PCS networks,
IEEE/ACM Trans. Networking, vol. 4, no. 4, pp. 629-638,
Aug. 1996.

[2] A. Bar-Noy, I. Kessler, and M. Sidi, Mobile users: to update
or not to update, Wireless Networks, vol. 1, no. 2, pp. 175-
185, 1994.

[3] V. Chepoi, On distances in benzenoid systems, J. Chemical
Information and Computer Sciences vol. 36, pp. 1169–1172,
1996.

[4] C. Gavoille, D. Peleg, S. Pérennes, and R. Raz, Distance
labeling in graphs, in Proceedings of the 12th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA 2001), Jan-
uary 7-9, 2001, Washington, DC, USA, ACM-SIAM, pp.
210–219, 2001.

[5] A.J. Goldman, Optimal center location in simple networks,
Transportation Science, vol. 5, pp. 212–221, 1971.

[6] D. Harel, R. Tarjan, Fast algorithms for finding nearest com-
mon ancestor, SIAM J. Comput., vol. 13, pp. 338–355, 1984.

[7] J. Li, H. Kameda, and K. Li, Optimal dynamic location up-
date for PCS networks, IEEE/ACM Trans. Networking, vol.
8, no. 3, pp. 319-327, 2000.

[8] Z. Naor, H. Levy, and U. Zwick, Cell identification codes
for tracking mobile users, Proc. INFOCOM 1999, pp. 28-35,
1999, also available in Wireless Networks, vol. 8, no. 1, pp.
73-84, 2002.

[9] F.G. Nocetti, I. Stojmenovic, and J. Zhang, Addressing and
routing in hexagonal network with application for tracking
mobile users and connection rerouting in cellular networks,
IEEE Trans. on Parallel and Distributed Systems, vol. 13, no.
9, pp. 963-971, 2002.

[10] D. Peleg, Proximity-preserving labeling schemes and their
applications, in Proceedings of the 25th International Work-
shop ”Graph-Theoretic Concepts in Computer Science”
(WG ’99), Ascona, Switzerland, June 17-19, 1999, Lecture
Notes in Computer Science 1665, Springer, pp. 30-41, 1999.

[11] D. Peleg, Informative labeling schemes for graphs, in Pro-
ceedings of the 25th International Symposium ”Mathe-
matical Foundations of Computer Science” (MFCS 2000),
Bratislava, Slovakia, August 28 - September 1, 2000, Lec-
ture Notes in Computer Science 1893, Springer, pp. 579-588,
2000.

[12] D. Peleg, Distributed Computing – A Locality-Sensitive Ap-
proach, Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 2000.

[13] M. Thorup, U. Zwick, Compact routing schemes, in Proc.
13th Ann. ACM Symp. on Par. Alg. and Arch. (SPAA 2001),
ACM, pp. 1–10, 2001.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

