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Front pageillustration: Manipulatedimageof a “metazoan”evolvedin a preliminaryver-
sionof thesystemdescribedin this report. Nuclei have beendrawn andthecolourshave been
adjustedto geta morelifelik e appearance.Thetext “(100 x). HE.” is fictitious. It wasaddedto
thecaptionin orderto improve the illusion of a hematoxilin-eosincolouredmicroscopiccoupe
of arealanimal.The“metazoan”wascalledOntosilicagastrulanssinceits development,during
which threetissuelayersareformed,resemblesa gastrulationprocess.



Abstract

A paradigmsystemfor theevolutionof multicellularanimalsis constructed.In many evolution-
ary models,thenon-linearityof thegenome-phenomemappingis ignored.However, theresults
of evolutionaryparadigmsystemsthatdid includeanon-trivial, complex genome-phenomemap-
ping have suggesteda framework joining seeminglyconflicting evolutionary“points of view”
likeneutralevolution,Punctuatedevolutionand“gradualism”.

Theembryonaldevelopmentof multicellularanimalsaddsmany new levelsof complexity to
the genome-phenomemapping. (1) Genesinteractresultingin a differentiatedpatternof gene
expression:acell type. (2) Cellsinteract,generatingcellulardiversityandpattern.(3) Cellssort
out to form tissuesandorgans.(4) Tissuesandorgansinteract.

Thefirst threelevelsof complexity wereincludedin theparadigmsystem.Artificial evolution
usinga trivial fitnesscriterion resultedin a metastablesequenceof epoches,eachcharacterised
by a predominanttypeof development.Theevolved“metazoans”successively includein their
developmentalprogramscell polarity, cell-cell communication,cell movement,positionalinfor-
mationandgeneticredundancy.

Prelimaryresultssuggestthattheevolvedgenomesarehierarchicallystructured.“Regulatory
genes”,beinghighly sensitive to mutation,control theexpressionof mutationallylesssensitive
“downstream”genes.It is hypothesisedthat evolutionaryinnovationsresultfrom mutationsin
the regulatorygenes,whereassmall scalechangeswithin epochsresult from mutationsin the
downstreamgenes.
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Chapter 1

Intr oduction

Threelinesof reasoningled to theresearchdescribedin this paper.

1.1 Non-linear mapping fr om genotypeto phenotype

For many yearsthestudyof evolution hasbeenshown to befruitful without takinginto account
thatthereis no suchthing asdirectmappingfrom thecodingof anorganismto its fitnessevalu-
ation. In suchstudiesonevolutionarydynamicsa changein thegenotypeof anorganismresults
in anequivalentchangein its phenotype.

The lastdecenniahowever, a numberof paradigmsystemshave beendevelopedthatdo in-
cludeanon-lineargenotypeto phenotypetransition.ThesesystemsincludeNK-landscapes[29]
andmodelson RNA-evolution [10, 23, 22], but alsogeneticalgorithms(GA) [20] andgenetic
programming(GP) [31]. Thestudyof theseparadigmsystemshas,or shouldhave, profoundly
reformedthinkingon evolutionarychange.

Although geneticalgorithmsweredesignednot primarily for the studyof evolutionarydy-
namics,they offer importantinsight into the behaviour of evolutionarysystemshaving a non-
linear genotype-phenotypemapping. In geneticalgorithms,a solutionto a predefinedcompu-
tationalproblemis “evolved” by selectingpossiblesolutionsfrom a population.Thesolutions
thataremoreableto copewith theproblemthantheir brothersandsistersreproduceandform a
new population.During this reproductionsmallchangesaremadeto thesolutionsby meansof
geneticoperatorssuchaspointmutationsandcross-overs.

In many of thesegeneticalgorithmsthe problemscomprisethe settingof parametersin a
predefinedsystem. In somegeneticalgorithmshowever the solution to a predefinedcompu-
tationalproblemis codedin a representationthat is non-linearlyrelatedto the actualsolution.
For example,the parametersettingof a systemcould be encodedin a bitstring. If eachbit in
this would have anequalchanceof beingmutateda changefrom, say, 127 to 255would beas
probableasa changefrom 254to 255. Theperformanceof thesolutionto theproblemthatthis
bitstringrepresentscanbeseenasits phenotype.This phenotypeis now non-linearlyrelatedto
thecoding,or genotypeof theproblem.

Typically, geneticalgorithmsshow metastablebehaviour. Thefitnessof anevolving popula-
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1.1. NON-LINEAR MAPPING FROM GENOTYPETO PHENOTYPE 5

tion remainsratherstablefor awhile, thenincreasesrapidlyasif anew discoveryhasbeenmade,
followedby anotherperiodof evolutionarystasis.Mathematicalanalysisof a simplegenetical-
gorithmsuggeststhatthisbehaviour mightbeverycommongeneticalgorithms[41]. Thegenetic
algorithmthatwasanalysed(the“Royal Road”GA) did nothaveacomplex genotype-phenotype
mapping.Still, thegenotype-fitnessmappingwasnot linearin thesensethatamutationdoesnot
directly result in an equivalentfitness-change.Unlike fitnesschangesin classicalevolutionary
analysis(seef.i. [33]), in the“Royal Road”GA thatwasanalysedseveralmutationsneedto be
“collected” for a jump in fitness.This studysuggeststhatevena slightly non-lineargenotype-
phenotypemappingcanresultin a “punctualist”modeof evolutionarychange.

Studieson RNA-evolution have deepenedtheunderstandingof how genotypesmaymapto
phenotypes,andhow the structureof a phenotypelandscaperesultingfrom a given genotype-
phenotypemappingreflectstheevolutionarydynamics.Thesestudieshave led to a framework
connectingtheseeminglyconflicting typesof evolutionarydynamicsneutralevolution, neutral
evolutionand“gradualism”usinga “selectionist”point of view.

Using energy minimisationalgorithms[19, 13] the secondarystructureof RNA-strings is
now reasonablywell predicted.In this way theconceptof “phenotype-space”wasconstructed,
describingthephenotype(in thecaseof RNA stringsthesecondarystructure)for everypossible
genotype(in the RNA casethesequenceof an RNA string). It appearsthat a givensecondary
structure(phenotype)of anRNA-string is not at all linkedto a certainregion in sequencespace
(genotype-space).Sequencesfolding into a secondarystructurecomefrom all over sequence
space.Thesameis truefor sequences.A cloudof sequencesin asmallregionof sequencespace
folds into secondarystructuresfrom all overphenotypespace.

Evolutionto atargetin phenotypespace(f.i. adoubleloop)againresultedin periodsof stasis
intermittedby suddenfitnessjumps.For example,it hasbeendemonstratedthatRNA-stringscan
evolve “neutrally”, i.e. without a gain in fitness,to a “smooth” part of a phenotype-landscape
if stability is a beneficialproperty, suchasin evolution towardsa predefinedgoal. A “neutral
walk” throughsequencespacebrings the populationto a region whereit is lesssensitive to
mutation[23]. In contrast,if RNA stringsareselectedto changevery fast,suchasin apredator-
prey setting,RNA stringsevolve to “rugged”partsof thephenotypelandscape[22].

Thequestionnow is, whetherthe ideasof evolutionarychangeemerging from the research
on RNA-evolution canbeprojectedontotheevolution of multicellularanimals.Somedatasug-
geststhatmetazoansevolve “metastabily”. Paleontologicalstudiesat leastdo claim to observe
metastabilityin thefossil record(discussedin [18]).

The main reasonto believe that the conceptsdevelopedin the context of RNA evolution
canbe usedto mould our thoughtson the evolution of multicellularity is the exorbitantlynon-
linear genotype-phenotypemappingof multicellular organismsin the senseof the embryonic
development.Thedevelopmentof multicellularorganismsis non-linearatmany structurallevels.
Themappingof theinformationcontainedin a geneto thetertiarystructureof its gene-product
is highly

non-linear. Also, thereis no linear relationbetweenthe geneticinformationandthe setof
differentcell typesthat canbe attainedby the cell containingthis information. This problem,
the dynamicsof geneticregulatorynetworks,hasbeenstudiedin greatdetail in the modelling
framework of theBooleannetwork [29].
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A third level of complexity of multicellularorganismsis thepropertyof thecellsto differen-
tiatein reactionto anexternalsignal,in generalimposedby theothercells. This problemis not
assimpleasit mayseem.Thecellsof a multicellularorganismall containthesamehereditary
informationstoredin theDNA, wherethesecellsshoulddifferentiateinto a largesetof quitedis-
tinct phenotypes.Theevolutionof theability of geneticregulatorynetworksto reacton external
signalsandto berobustto environmentalnoisehasbeenstudiedin theframework of continuous,
Hopfieldlike,regulatorynetworksby [5, 4].

A fourthlevelof complexity, addingto thenon-linearityof thegenotype-phenotypemapping,
is the level of the organism. The informationstoredin a genomeshouldnot only be able to
generatea setof distinctcell types,eachhaving a different“function”. Thesecell typesshould
alsobepatternedin a particularway, suchthatthedifferentcell typesactasa coherentwhole.

In orderto exploretheeffectof thenon-lineargenotype-phenotypemappingin multicellular
organismswe includedthesecond(genometo proteinsets),thethird (cellular interactions)and
partof thefourth level (patternformation)of complexity in themodeldescribedin this report.

Using this systemit may be possibleto make a start in understandingthe structureof the
phenotypelandscapeof multicellularanimals.

1.2 Generationand maintenanceof cellular diversity

Anotherproblemthat is addressedhere,is thegenerationandmaintenanceof cellulardiversity.
Oneof thecentralproblemsin developmentalbiology is, how it is possiblethata singlezygote
givesrise to cell typesasdifferentasred blood cellsandbrain cells. The questionis not only
how it is possiblethatcellshaving identicalgeneticinformationareableto differentiate,but also
how suchdifferencesaregeneratedandpatterned.

Prior to and during the evolution of multicellularity, mechanismsmust have evolved that
initiate, amplify andstabilisedifferencesbetweencellsduringontogeny. Cellulardiversitycan
be generatedwith roughly two distinct mechanisms.A so-called“pre-pattern”,laid down by
maternaldeterminants,may be presentin the zygote. Conversily, dynamicalprocessesmay
generateapatternduringthedevelopment.

Thissecondproblemhasbeenaddressedby severallinesof research.Oneof theapproaches
hasbeeninspiredby the phenomenonof isologousdiversificationand dynamicclusteringin
continuouslystirredbacterialcultures[30]. In this approach,cell differentiationpatternsarise
dueto thedynamicalinteractionof — initially identical— cells.

In this model,no maternal“pre-pattern”is applied. Still, several clustersof bacterialcells
differentiate. Abstractmodel studies [27] have suggestedthat this type of behaviour canbe
understoodin the following way. Considera systemconsistingof chemicalnetworksglobally
coupledvia anexternalmedium.Thenumberof chemicalnetworks,andin this way thedimen-
sion andthe degreeof freedomof the whole system,increasesasa resultof “division” of the
networks. Thedynamicsof thenetworks is chaotic,i.e. thenetworksarevery sensitive to ini-
tial conditions.Hence,tiny differencesbetweentwo networksgrow in time. At thesametime,
however, theglobalcouplingsynchronisesthenetworks’ dynamics.
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So,high dimensionalchaoson theonehand,andcell cell communicationon theotherhand
is ableto generateaclustereddiversificationof cellularphenotypes.

Anotherapproachto theproblemof cellulardiversificationwasinitiatedby studiesonarrays
— growing in sizeby “division” — of locallly coupledBooleannetworks[24,7,6]. In themodel
of Jacksonet al. randomone-dimensionalarraysof Booleannetworkswerestudiedin which a
fixed numberof genescommunicatewith genesof neighbouringcells. Two importantresults
emergedfrom thisresearch.Cell diversificationis maximisedif approximately20% of thegenes
communicatewith neighbouringcells. Secondly, solelyasa resultof cell-cell interactions,two
simplepatternsweregeneratedin asimplemodelorganism.Oneof thesepatternswasrepetitive,
agenewasturnedon in every third cell. Anotherpatternconsistedof ablockof genesexpressed
in two regionsof thecell, whereasthesegeneswereunexpressedin therestof theorganism.

Theevolvability of systemsof locally coupledBooleannetworkswasfirst exploredin work
of [7]. In their model,“creatures”consistingof two-dimensionalarraysof Booleannetworks,
wereevolvedusinggeneticalgorithmsaccordingto fitnessfunctionmaximisingthenumberof
cell types.

1.3 Differ ential adhesiondri venmorphogenesis

Evidencehasbeenfoundthatdifferentialcell adhesionis importantin morphogeneticprocesses.
Dissociatedanimal tissuesand organshave beenreportedto sort out into anatomicallycor-
rectstructuresin a numberof experimentalsystems(reviewed in: [39, 2], earlyamphibianem-
bryos:[40]; wholeseaurchinembryos:[16]; amphibianlimbs: [35]; chickenretinas:[2]).

This cell sortingbehaviour hasbeeninterpretedto be causedby differentialcell adhesion.
For example,ectodermalcells arethoughtto adheremorestronglyto ectodermalcells thanto
endodermalcells[40].

Experimentalresultssuggestthatintercellularaffinitiesmaychangeduringamorphogenetic
process. It hasbeendemonstratedthat at the onsetof seaurchin gastrulation,the ingressing
mesenchymecells decreasethe affinity to their neighboursandto the extracellularmatrix [12,
34].Theseexperimentalresultsindicatethat differentialadhesionmay be an importantdriving
forcebehindmorphogeneticprocesses.Dif ferentialadhesionhasevenbeencalledin a textbook
“the dominantparadigmof morphogenesis”[15].

A recentlydevelopedcellular automatabasedalgorithmhasresultedin biologically defen-
sible modelsof differential adhestiondriven cell sorting [17, 36]. Using this algorithm, the
aggregationandmorphogenesisof Dictyosteliumdiscoideumup to thecrawling slugstagewas
modelled[37].

1.4 Putting the lines of reasoningtogether

Thethreelinesof reasoningbuilt upabovehaveresultedin thefollowing modelsystemof “meta-
zoan”evolution. In thesystemarticifial “metazoans”areselectedfor theability to developand
to maintaincellulardiversity. The“metazoans”areallowedto makeuseof differentialadhesion
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drivencell rearrangementandcontactsignallingin thedevelopmentandmaintenanceof cellular
diversity. It is examinedhow thecomplex genotype-phenotypemappingof these“metazoans”,
beingamodelof thecomplex genotype-phenotypemappingof multicellularanimals,influences
evolutionarydynamics.Themechanismsthe“metazoans”useto build up cellulardiversityare
studied.

In this reportthefollowing styleconventionis used.In themodelseveralentitieshavenames
like “gene” or “metazoan”. In orderto indicatethat thesenamesrefer to modelentitiesrather
thanto biologicalconcepts,they areprintedin slantedstyle.



Chapter 2

The Model

Basically, theparadigmsystemof theevolutionof multicellularanimals,aswell astheevolution
of “real” ex silico metazoans,consistsof two parts:developmentandselection.

Genomesare“executed”during development,resultingin a phenotype.This phenotypeis
“evaluated”in its performanceagainsttheliving andthenon-living environment1.

The developmentalpart of the paradigmsystemis describedin the presentchapter. Chap-
ter3.2describesthedevelopmentof asimpleorganism.In chapter4 theevolutionarypartof the
systemis describedanddiscussed.Additionally in chapter5 theresultsof anevolutionaryrun
arediscussed.

2.1 A generaloverview of “metazoan” development

During the developmentof a multicellular animal,the zygotegivesrise to hundredsandoften
milliards of cells building the adult body. During this process,cells differentiateinto different
cell types,they interact,andthey sortout to form tissuesandorgans.Theseprocessesareinter-
dependent.Cell sortingchangesthe interactionstructurebetweencells. Dif ferent interactions
result for a cell in differentsignals. Dif ferent input signalsmay result in a new differentiated
state.This changein geneexpressioncanresultin differentaffinities for othercells,which can
resultin adifferentcell sorting.

The numberof cells increasesover developmentby division. Cells slowly die if they get
isolatedfrom theothercells. Theprocessestakingpart in thedevelopmentof a “metazoan”are
describedin thefollowing sections.

The cells’ intracellulardynamicsis describedanddiscussedin subsection2.2. The inter-
actionbetweencells is describedanddiscussedin subsection2.3. Cell sortingis describedin
section2.4. A discussionon cell division and inequalcell divisions is given in section2.5.
Finally, aquickoverview of a “metazoan’s” developmentis givenin section2.7.

1For themomentit is ignoredthatembryosfaceselectionalforcesaswell.

9



10 CHAPTER2. THE MODEL

2.2 Intracellular dynamics

The first part of our modelconsistsof the geneticnetwork of the cells. Generegulationtakes
placeat several levels of transcription.On the level of the DNA, transcriptionfactorsbind to
promotersandenhancers,in this way initiating thetranscriptionof a gene.Additionally a gene
productmayneedto modifiedaftertranscription,beforeit is active [1].

We choseto simplify thegeneticregulatorynetwork of our cells,becausewe want to focus
not on the particularpropertiesof transcriptionalregulation,but moreover on interactionsbe-
tweencells. For this simplificationtheformalismof theBooleannetwork wasused.In Boolean
networks,theactivity of agenes is consideredto bebinary. They canbeeitheractiveor inactive.
Thetranscriptionalactivity of ageneis regulatedby afixednumberof othergenes. Thedecision
of ageneto beeitheractiveor inactiveuponacertaincombinationof inputsfrom othergenes, is
madeby aBooleanfunction.

Severalmolecularbiologicalexamplessuggestthat it is defensibleto modelgeneregulation
with Booleanfunctions. A well known exampleis the activation of the lactose-operonin E.
coli [25, 26], whoseregulationremindsof a not ( exclusiverepressor) Booleanfunction. The
genesregulatedby the lac-operonare only transcribedif the bacteriummeetslactose. If no
lactoseis present,a repressorproteinprohibitsbindingof theRNA-polymerasecomplex to the
operon.However, if a lactosemoleculebindsto therepressor, therepressoris releasedfrom the
operonandtranscriptionis initiated.

Wehavechosento fix thenumberof inputspergenein theBooleannetwork on two. In other
words,eachgenein theBooleannetwork is regulatedby exactly two othergenesor receptors.

The propertiesof Booleannetworks have beenextensively studiedby Kauffman [28, 29].
Thesestudiesshow that the dynamicsof Booleannetworks, especiallythosewith two inputs
pergenehasa numberof propertiesremindingof differentiatingcells. First, in a K=2 Boolean
network, differentiationis persistent.A stablestateor statecycle is stableto 80 to 90 percent
of smallperturbationslike transientlyflipping a bit. Second,inductioncanpusha differentiated
Booleannetwork to anotherattractor. In the remaining10 to 20 percent,thenetwork falls into
anotherattractorafterasmallperturbation.Thesepropertiesmake themwell suitedfor our aim:
studyingthebehaviour of interactingcells.

Kauffman [28, 29] suggestedthata statecycle or a stablestatein a regulatorynetwork can
be interpretedasa cell type. In the modeldescribedin this reportthis suggestionis followed.
During the updatesof the booleannetworks the previous statesarescannedin order to detect
statecyclesandstablestates.Whenever a statecycle or a stablestateis detected,a cell is said
to be differentiatedanda colour is assignedto it. This colourdependson the statecycle via a
hashfunction. In thiswayaparticularstatecycle is alwaysassignedto thesamecolourin all the
“metazoans”.

In total, thereare 16 Booleanfunctionshaving two inputs. They are listed in table 2.1,
togetherwith their namesusedthroughoutthis paper.



2.3. CELL CELL COMMUNICATION 11

Name outputs
A=1,B=1 A=0, B=1 A=1, B=0 A=0, B=0

ALL0 0 0 0 0
0 ON 0 0 0 1
xA 0 0 1 0
!B 0 0 1 1
xB 0 1 0 0
!A 0 1 0 1

XOR 0 1 1 0
¡2 0 1 1 1

AND 1 0 0 0
!XOR 1 0 0 1

A 1 0 1 0
!xB 1 0 1 1
B 1 1 0 0

!xA 1 1 0 1
OR 1 1 1 0

ALL1 1 1 1 1

Table 2.1: All possibleBooleanfunctionswith two inputs. Note that the two inputs are not
equivalent.

2.3 Cell cell communication

Cellscommunicatein many differentways.Roughly, two kindsof intercellularcommunication
canbedistinguished.Signalscanbetransmittedby meansof diffusiblemicrohormones,excreted
by thecell in theextracellularmedium.Thesediffusingsignalspossiblyhave a reachof several
cell perimeters.Many intercellularsignallingmechanismsareknown however, whereintimate
contactbetweenthecellsis prerequisite.Biologicalexamplesof suchcontactdependentsignals
arereviewedin [11].

On theonehandfor easeof implementation,on theotherhandto exploretherole of contact
signallingin morphogenesis,in ourmodelcellscommunicateonly via contactdependentsignals.

Contactdependentcell cell signallingin our modelwasimplementedin the following way.
In theBooleannetworks,a numberof genesreceive inputsfrom thenetworksof neighbouring
cells.

Thecellsareassumedto expressanumberof proteins,thatare“presented”atthecell surface.
Theseligandsbind to thecell surfacereceptorsof thesurroundingcells.For everypossibletype
of ligand a receptoris presenton every cell. The outputof sucha receptoris 1 whenever the
ligandmatchingit is presentedby at leastoneof thesurroundingcells.

In the simulationspresentedin this paper, the genes1-6 codefor ligands. The matching
receptorsof theseligand are indicatedwith negative numbers. -1, for instance,indicatesthe
receptorfor theligandexpressedby gene1.

A consequenceof this intercellularcommunicationmay be that many moredifferentstate
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cyclesarepossiblein a systemof coupledBooleannetworks thanin an isolatednetwork. The
networksmay“drive” eachother’sdynamics.2. It is easyto seethatin suchacoupledsystemthe
extra statecyclesare“driven” by neighbouringcycles.

2.4 Differ ential adhesiondri vencell movement

As it wasdiscussedin section1.3, differentialadhesiondriven cell rearrangementis assumed
to beanimportantprocessin themorphogenesisof multicellularanimals.Dif ferentialadhesion
driven cell sorting is easilyandbeautifully modelledusingan energy minimisationalgorithm
devisedby [17]. This algorithmhasbeenfurtherdevelopedfor usein modelsof morphogenetic
processes,suchasthedevelopmentof Dictyosteliumdiscoideum, by [37, 36].

TheGlazierandGraneralgorithmis a cellularautomaton,in which cellsarerepresentedas
pathesof CA cells in thesamestate.This stateuniquelyidentifiesa cell. To avoid confusion,
following Savill andHogeweg, in the restof the text thesepatchesof CA cells will be called
“cells”. Wewill referto CA cellsas“sites”.

In “real” embryos,cell cell adhesionis a complicatedprocess.Cell adhesionis mediated
by cell surfacemoleculessuchasN-CAMs andcadherinsandby adhesionto the extracellular
matrix. In thisalgorithmall thedifferentprocessesplayinga role in cell cell adhesionhavebeen
lumpedtogetherin theconceptof “surfaceenergy”. Thelower thesurfaceenergy betweentwo
cells,thestrongerthey adhere.

Sitesof unequalstate,i.e. sitesbelongingto different“cells”, areconnectedvia dimension-
lessenergy bonds.Thestrengthof theseenergy bondsdependsonthe“geneexpressionpattern”
of thecells.

Thesurfaceenergy of cell i is definedby:

���������
	��
� ����� ���
	��
� �����������
where

���
is thesurfaceenergy of cell i, and

	��
� �
representsthestrengthof thesurfaceenergy

betweencell i andcell j.
In eachiterationof theCA, a randomsiteat theborderof two cells is chosen.It is checked

whethercopying thestateof arandomneighbourinto thissite(onecouldseethisastheextension
of a“phylopodium”)wouldfreeany localsurfaceenergy (i.e. whetherthisoperationwouldresult
in a surfaceenergy drop). If, andonly if this is so, thestateof this randomneighbouris really
copiedinto thesite. In addition,someextra copying stepsdueto “thermalnoise”areallowedto
preventthealgorithmfrom gettingstuckinto localminima.These“thermalnoise”copying steps,
leadingto a surfaceenergy rise, areacceptedaccordingto the Boltzmannprobability function��� �"!$#&%' (fig. 2.1)

Thebestway for acell to minimiseits surfaceenergy, is to decreaseits surface.Therefore,it
is assumedthatacell hasanoptimalsize.If is thecell is smalleror largerthanthisoptimalsize,

2Unreporteddataby Kauffman[29], pp. 547,wouldsuggestthatthenumberof statecyclesin systemof spatially
coupledBooleannetworksis twice thenumberof statecyclesin anisolatednetwork
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Figure2.1: TheBoltzmannprobabilityfunction

anopposing“elastic” forcewill bringit backto its originalsize.Theelasticforceis implemented
by anextra termin theenergy functionof thecells,which is now definedby:

���"�M�&�N	��
� ���O� ���N	��
� �P�Q������� ��RPS�T �VUXW+��Y[Z
where

T �
is theoptimalsize,and

W7�
is theactualsizeof cell i.

R
representstheelasticityof

thecells.Thehigherthis parameter, themoreenergy is neededto deformthecell’smembrane.
In this model,severalbehaviourscanbedistinguishedthatwill beimportantfor understand-

ing the morphogeneticprocessesin the evolved beasts. In table 2.2 someexamplesof these
behavioursareshown. In eachof theseexamples,two cell typesareused.

If thecellsbind moretightly to their own type thanto cellsof theothertype, thecells sort
out. Contrary, if thecellsbindmoretightly to theothertypethanto theirown type,thecellsmix.
Finally, engulfmentoccursif oneof the cell typeshasa highersurfacetensionto the medium
thanto theothertype.

Theadhesionstrengthbetweentwo cells is determinedby theBooleannetworks. Tenof the
bits in theBooleannetworkshave beenassignedthe functionof “cell surfaceprotein”. Five of
theseadhesionbitsactasreceptors,or “locks”, while theotherfivebitsactasdonors,or “keys”.
Someof thereceptor-donorpairsbind morestronglythanotherpairs,in orderto allow thecells
to fine-tunetheir adhesionstrengthto theothercells.

To computethe adhesionstrengthbetweentwo cells, the following procedureis followed.
The adhesionbits (bits 2-11) areextractedfrom the statevectorsof both cells. Oneof these
vectorsis mirrored,suchthatthereceptorbitsof thefirst cell arealignedwith thedonorbitsof the
othercell. Thenthe“matchvector”is computed,whichis thelogicalAND of theadhesionvector
of thefirst andthemirroredadhesionvectorof thesecondcell. Thestrengthof thesurfaceenergy
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Initial configuration

Cell Sorting	�\^]_��`a�*� \b]_��`a�c�d	�e*f[��g�� e*f[��gih 	�\^]_��`a�8� e8f���g

Cell Mixing	�\^]_��`a�*� \b]_��`a�c�d	�e*f[��g�� e*f[��gij 	�\^]_��`a�8� e8f���g
Engulfment	�\^]_��`a�*� e8f��kglh�	�\^]_��`a�8� �����8�m�n�	�e*f[��g�� �����8�m�n�oh�	�\b]��m`a�*� �P�Q�������

No cell cell adhesion	�pk��q5qr� ps�QqAqVj � 	&ps�QqAqr� �����8�m�n�
Table2.2: A list of cell sortingbehavioursin theGlazierandGranermodel
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bondbetweenthetwo cellsis equalthenumberthatis representedby thelogicalORbetweenthe
lower five bits andthemirroredhigherfive bits of thematchvectorto which ansmall “energy-
offset” is added.Theadvantageof thisdefinitionof thesurfaceenergy betweentwo cellsrelative
to alternativedefinitionsis, thatthebindingstrengthbetweentwo cellsis directlydeterminedby
the“geneexpressionpatterns”of thecells. Also, high andlow adhesionstrengtharerelatively
well distributedover the possiblegeneexpressionpatterns.Thesomewhatcomplicatedmirror
operationswerenecessaryto assuresymmetricbinding.Cell A shouldbindasstronglyto cell B
ascell B bindsto cell A.

For determiningtheadhesionstrengthbetweencellsandmedium,it is assumedthathalf of
the“surfaceproteins”encodedby theadhesionbitsarerelatively fatty, or apolar. In otherwords,
they repel the medium. Eachof thesehydrophobicsurfaceproteinsaddsmore or lessto the
surfacetensionbetweenthe cell andthe medium. Justas in the computationof the adhesion
strengthbetweentwo cells,therearestrongandlessstronghydrophobic“surfaceproteins”.The
energy bondbetweena cell andthemediumis equalto thevalueof thefive bit numberformed
by theevenadhesionbits.

2.5 Cell division and maternal “genes”

Duringthedevelopmentof ametazoanthecellsdivide7 times,uponaglobalsignal.Cellsdivide
overtheirshortestaxis.TheBooleannetworksareduplicated,includingtheirstates.Duplication
of the the Booleannetwork canbe seenasduplicationof the DNA. Copying the statevector
resemblescopying the cytoplasmof the cells, in this way introducinga simple form of “cell
memory”.

It wasnecessaryto introducea minimalnumberof unequaldivisionsin orderto “prime” the
diversificatingprocess.After thefirst division in oneof thecellsbit 21 of theBooleannetwork
is flipped. This signalwascalledthe “bicoid” signal,asit resemblesthe Drosophilamaternal
polarisingbicoidsignal[8, 9]. In someruns,suchastherunwithin whichtheorganismdescribed
in chapter3.2wasbred,theseconddivision is unequalaswell. After theseconddivision bit 22
is flippedin oneof thefour cells. This signalwascalled“activin”, inspiredby thepossiblerole
of activin in Xenopusdorsoventralpatterning[3].

2.6 Cell death: “Lonelynesspenalty”

In many preliminaryruns,themetazoanswerepulledtowardsa quiteuninterestingmechanism
to generatecellulardiversity. Non-adheringcellswith very long cyclesweredeveloped.During
developmentmoreandmorecells disattachedfrom the “embryo”. Dependenton the phaseof
their cycle at which they disattachedmany differentcell typeswereproduced.Evenmorecell
typesweregeneratedby a mechanismin which thecells “tickled” eachotherduringa few time
step,in this way“pushing” themoutof their cycle.

In orderto preventthisbehaviour apenaltywasgivento cellsthatdidn’t touchany othercell.
Every time stepa cell was“lonely”, the the cell’s target sizewasdecreasedby onesite with a



16 CHAPTER2. THE MODEL

probabiliythatwasdependenton thesizeof thecells.Largecellsshrunkfasterthansmallcells.

2.7 A detailedoverview of the implementation of a metazoan’s
development

1. TheCA planeis primedwith anelipsoidzygote.Thezygote’sBooleannetwork is primed
with zeros.

2. Thecell divides,theBooleannetworksis duplicated,togetherwith thestateof theBoolean
network.

3. If the cells have divided for the first time and if the bicoid signalhasbeenenabled,the
bicoidbit (bit 21) is flipped.

4. If thecellshavedividedfor thesecondtimeandif theactivin signalhasbeenenabled,the
activin bit (bit 22) is flipped.

5. Thecell’sneighboursaredeterminedandthereceptorvectoris computed.

6. TheBooleannetworksareupdated.Closedcyclesaredetected.

7. Theadhesionbetweenthecellsis computedfrom thenetwork statevectorsof thecells.

8. Thecellularautomatonis updated,resultingin cell movement.

9. Iteratesteps5-8 for 100 stepsafter the first, the secondandthe third division, for 1000
stepsafterthenext divisionsandfor 5000stepsaftertheeighthdivision.

10. Iteratesteps5-8 for another100stepsandcomputelowestcellulardiversityduring these
iterations.



Chapter 3

The ontogenyof a simpleorganism

In thenext chapterit will beexplainedhow themetazoansareevolved. First, however, we will
follow the developmentof a simplemetazoan. This will clarify how the differentpartsof the
modelareput togetherto result in a the simulateddevelopmentof a multicellular “organism”.
Additionally, it may evoke someintuition abouthow the metazoandevelopmentalprogramis
codedin its genome. This mayhelpthereaderin understandingwhathappensduringthemeta-
zoanevolution.

In orderto obtaina simpleexampleorganism,an evolutionarysearchwassetup selecting
for metazoansthatdevelopedstablecell types1. Fromthis run a niceexamplewaschosen.The
developmentof this exampleis describedin detailbelow.

3.1 Analysisof thenetwork: housekeepinganddynamicgenes

The network of our organismis shown in fig. 3.1. The first thing to notice is, that many of
thegenes areconnectedto non-communicatinggenes of theneighbourhoodvector. The inputs
comingfrom thesegenes aresetto zero.

Second,many genes have superfluousinputs. The functionsALL1 andALL0 do not need
any inputat all, while for thefunctionsA, B, !A and!B only oneof theinputsis functional.For
simplicity, wecouldremove from thefigureall thesenon-functionalnodesandconnections.

If we take a closerlook at the network however, many of the genes, for instancethegenes
12,5 and19, turn out to becontinuouslyturnedon or off. Thesegenes arecalledhousekeeping
genes,becausethey arealwaysexpressedor turnedoff in all thecells.

On theotherhand,thereis acoreof genes thatis sensibleto inputsfrom neighbouringcells.
Thecellsdiversifyby changingtheexpressionof thesegenes. Let’scall themdynamicgenes. In
figure3.2,all thenon-communicationconnectionsandhousekeepinggenes have beenremoved
from the graph. Additionally, the namesof the Booleanfunctionshave beensimplified where
possible.

1Thereadermaybeinterestedin thecompleteresultsof theevolutionaryprocessselectingfor stablecell types.
However, dueto time-andsoftware-relatedproblems,therunwasinterruptedataprematurestage.Completeresults
will beavailablelater.
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3.2 Early pattern formation

In figure 3.3(a) the initial condition,or “zygote” of the organismis shown. The statevector
and the neighbourhoodvectorof the zygoteare primed with zeros. After two iterations,the
housekeepinggenes have stabilised. After the first division, the bicoid gene(# 21) will be
flipped. In our caseit was turnedon, so we switch it off. Obviously, after one iteration the
bicoid bit is turnedbackon, becauseof its BooleanfunctionALL1. In spiteof the network’s
insensitivity to thebicoid bit, thedaughtercellsdo differentiateafter thefirst division, because
thecells “sense”eachother’s neighbourhoodvector. Whereasall thebits of theneighbourhood
vectorwereturnedoff in thezygotestage,theneighbourhoodvectorof thetwo cell is now equal
to 001001. It is easyto see,thatbit 16 will beturnedoff, becausebit 1 of theneighbourvector
is turnedon. Bit 1 of the statevector is switchedoff becausebit 4 is turnedon. In the next
iteration,bit 1 will beturnedoff in theneighbourhoodvector, causingbit 16 to flip backon.

After theseconddivision (figure3.3(b)) in oneof thecells the “activin” bit is flipped. The
network needsa mechanismto storethis signal,becauseit is only appliedduringoneiteration.
This is nicely achievedby a feedbackloop on theactivin gene. If theactivin bit is turnedoff, it
inputsa0 to itself. Thenext statewill bea 0 again,andsoforth. If, however, theactivin bit is
turnedon, it will keepitself turnedon.

Interestingly, thestateof theactivin bit is propagatedto asubnetof thebits4, 23, 7, 11 and
3. To understandthebehaviour of this subnet,let usfirst returnto thezygote.In thezygote,all
thebitsof statevectorandtheneighbourhoodvectorwereturnedoff. After thefirst iteration,bit
4 wasswitchedon. Bit 7 wasturnedon,becauseoneof its inputs,bit 23 was0. After thesecond
iteration,bit 23 wasturnedon, becauseits input is 1. This causedbit 7 to be turnedon. As a
result,thebits11 and3 wereswitchedoff afterthefollowing iterationof thenetwork. Now that
activin hasbeenswitchedon,theexpressionof thesubnetis inverted.First,bit 4 is switchedoff.
As a result,thebit 23 is switchedoff, whereasbit 7 is turnedon. Bit 7 finally, switcheson the
bits11 and3.

Now thattheactivin cell hasdifferentiated,theneighbourhoodvectorof thesurroundingcells
changes.In theactivin cell, gene 3 is expressed.By thesemeans,in all thesurroundingcells
gene 17 is suppressedby bit 3 of theneighbourhoodvector.

After thethird division, themainpatternof thecreaturehasbeenlaid down. In figure3.3(d)
two changesareapparent.First, somepink cellshave dedifferentiatedinto graycells. They do
not touchthe “activin” cell any more,so that gene 17 is expressedagain. Second,the black
“activin” cell hasdivided. It differentiatedinto thegreenishbrown cells in aboutthesameway
thegraycellsappearedafterthefirst division. Now that it is connectedto anotherblackcell, bit
3 of theneighbourhoodvectoris expressed,by whichmeansgene 17 is suppressed.

3.3 Mor phogeneticcell movements

Now that the basicpatternof the organismhasbeenlaid down, after the third division cel-
lular movementsbecomeapparent.First, the pink cells engulf the greenishbrown cells (see
figure3.3(d)).Finally, thegraycellsdissociate(figures3.3(g)-3.3(k)).
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(a)Zygote (b) Two cell stage (c) Fourcell stage

(d) Eight cell stage,early (e)Eight cell stage,later (f) Sixteencell stage

(g) Thirty-two cell stage (h) Sixty-fourcell stage (i) 128cell stage,early

Figure3.3: Theontogeny of Ontosilicagastrulanssegundo
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(j) 128cell stage,later (k) 128cell stage,final

Figure3.3: continued.

Interestingly, thesecellularmovementscanbe tracedbackto a striking differencebetween
the cell-mediumadhesionof the cells descendingfrom the “activin” cell, andthe cells thatdo
notdescendfrom the“activin” cell. In thelastparagraphit wasshown thatin theactivincell line
bit 22 is constantlyset.Bit 22 in turnkeepsthebits11, 9, 7, and3 turnedon.

Rememberthat thestrengthof theenergy bondbetweena cell andthemediumis computed
by takingtheevenbitsof thesticky vector, i.e. thebits11, 9, 7, 5 and3. For theactivin lineage
this gives111*1. * is equalto 1 if thecell touchesa cell thatdoesnot expresstheactivin bit.
Addinganenergyoffset of 3 givesanenergy bondof 32or 34. In theothercellstheactivin
bit is reset,giving a energy bondof 5.

Theadhesionstrengthbetweentheactivin cells is computedasdescribedin thelastchapter.
First,oneof thesticky vectors is mirrored,suchthatthekey genes arealignedwith thelock
genes. TheAND of thesevectorsgivesusthematch vector, describingwhichkey-lock
pairsmatchbetweenthecells:

111110*010
010*011111

AND
010*00*010

Again,* representsa1 for thecellsthattouchanon-activin cell.
Theenergy bondbetweenthecells is computedfrom theOR betweentheleft fivebits of the

matchvectorandthemirroredright fivebits:

0*010
0*010

OR
0*010
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So,betweentwoactivincellsthestrengthof theenergy bondis 5 if neitherof thecellstouches
a non-activin cell, otherwiseit is 13. Following thesameprocedure,we find that theadhesion
strengthbetweentwo non-activincellsis always11. Theadhesionstrengthbetweenactivin cells
andnon-activin cellsis 17.

In summary, thefollowing conditionsarevalid:

	&|-p}`~� |*p}`�h � 	&|-p}`~� �P�Q�������
(3.1)	���|_� ��|�j � 	���|_� �����������
(3.2)	���|_� ��|�h 	���|_� |-p}`
(3.3)	&|-p}`~� |*p}`�h 	���|_� |-p}`
(3.4)	&|*p}`~� ��| SQ� 	���|_� �P�Q��������Y*��h 	�|-p}`~� �P�Q������� � 	���|_� �����8�m�n�
(3.5)	&��� �

representstheenergy bondbetweencell typeA andcell typeB, act standsfor cellsof
theactctivin lineageandna standsfor non-activin inducedcells.

Fromtheconditions3.3 and3.4 it is easyto seethat theactivin lineageandthenon-activin
lineagewill remainsortedout (seealsotable2.2). It is alsoclear from condition3.1 that the
activin cells will remainadheredto eachother. In contrast,the non-activincells dissociate,
becausethey adheremore strongly to the mediumthan to eachother. Finally, condition 3.5
shows that thenon-activin cellswill engulf theactivin cells. This canbeunderstoodintuitively
in thefollowing way. In figure3.3(e)thegreenishbrown , activin derivedcellsrepelthemedium.
At thesametime,thepink non-activin cellsadherestronglyto themedium,whereasthey adhere,
albeitweakly, to thegreenishbrown cells.Thiscausesthepink cellsto cover the“hydrophobic”
surfaceof thegreenishbrown cells.

3.4 Final pattern formation

After two moredivisions,in figure3.3(g) two new cell typesappear, a white oneanda purple
one.Thesecell typesarisein aninterestingcascadeof differentiations.First,oneof thegreenish
brown cellsdifferentiatesinto thewhite cell type. Whenthis cell is isolatedfrom thepink cells,
bit 4 of its neighbourhoodvector is set to 0. This causesbit 1 to be turnedon. In the next
iteration,bit 1 switchesoff bit 5.

As aresultof theexpressionof bit 1 in thewhitecell, bit 16is switchedoff in thesurrounding
greenishbrown cells.This resultsin anew — purple— cell type.

In figure3.3(h)thewhite cell hasdivided. In theresultingredpink cell bit 16 is suppressed
by bit 1 of theneighbouringcells.

In parallel,thegraycellsdissociate.Finally they vanish(fig. 3.3(k)),becauseof the“LONE-
LYNESSPENALTY” thatwasgivento dissociatedcells.Also note,thatthegraycellsdifferen-
tiatein thecyan“zygote” cell typeif isolatedfrom theothercells.



Chapter 4

Evolution of the metazoans

4.1 The geneticalgorithm

The evolutionary processof the metazoansis simulatedusing a geneticalgorithm [20] (GA)
on a parallel virtual machine1(PVM) configuration.This configurationconsistsof an arrayof
16 Pentium166Mhz personalcomputersrunningLinux 1.2.13,masteredby a Silicon Graphics
machine.

Thedevelopmentalprocessof themetazoansis simulatedon theLinux machines.A master
process,runningon theSilicon Graphicsmachine,performsthegeneticalgorithm. Theevolu-
tionary processis initiated by generating16 randomgenomes. Thesegenomesaresentto the
slavemachineswherethey aredeveloped.Themasterprocesskeepstrackof the16genomescur-
rentlybeingdevelopedin thesocalledbeastbuffer. Thebeaststorecontainsthelast16genomes
whosedevelopmenthasbeencompleted,togetherwith theirfitnesses.Wheneveraslavemachine
hasfinisheddevelopinga beast,it sendsthefitnessto themasterprocess,togetherwith a dump
of the laststageof themetazoan’s ontogeny. This dumpconsistsof a “snapshot” of theCA, a
dumpof thecell cyclesanda dumpof thestatesof theBooleannetworks. Themasterprocess
writesafossil record, consistingof thegenomesof all themetazoansevolved,togetherwith their
fitness,their beastIDs (a numberrankingthepoint in evolutionarytime at which themetazoan
evolved),their parent’sbeastID andthedumpof thelaststageof their ontogeny.

A tournamentselectionschemeis followed. Whenever a machinehasfinisheddevelopinga
beast,thebeast’sgenomeis shiftedfrom thebeastbuffer to thebeaststore,in thiswayremoving
thebeastthatwaspresentat thisentryof thebeaststorefrom thereproductiveprocess.A sample
of eight individualsis extractedfrom thebeaststore, consistingof the16 mostrecentgenomes
whosefitnesswas known. Out of theseeight individuals the genomeof the bestperforming
metazoanwasmutatedin 50%of thecasesandit wasdevelopedononeof theslavemachines.If
thebestperformingbeastappearedto have developedonly a singlecell type,a randomgenome
wasgenerated.This initial “bootstrap”proceduresavedthealgorithmfrom initial searchesto a
metazoanshaving morethanonecell type. Suchan initial searchwould last very long, dueto

1A recentversionof theParallelVirtual Machinecanbeobtainedfrom:
http://www.epm.ornl.gov/pvm/pvm home.html
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thesmallpopulationdiversity.

4.2 Fitnesscriterion

As it wasdiscussedin chapter1, the aim of the paradigmsystemof the evolution of multicel-
lular creaturesis twofold. Thefirst aim is to make a startin anunderstandingof thephenotype
landscapeand the evolutionary dynamicscausedby the highly complex metazoangenotype-
phenotypemapping.Thesecondaim is to “breed” hypotheseson how cellulardiversitycanbe
producedandmaintainedduringthedevelopmentof multicellularanimalsusingcell communi-
cationandcell movement.

Consequently, thefitnesscriterion thatwasconstructedhadto facethesetwo aims. For the
understandingof the“metazoan”fitnesslandscapewecouldhavesetupandevolutionarysearch
towardsa predefinedmorphologyof cell typepattern.For example,we couldhave selectedfor
“metazoans”exhibiting bilateralor radial symmetry. This strategy hasproven to be fruitful in
thestudyof RNA phenotypelandscape[21]. In thesestudies,anevolutionarysearchwassetup
towardsansecondarystructurewith two loops.

Still, thechoicewasnot to setup anevolutionaryalgorithmto searchfor a predefinedmor-
phology. As afitnesscriterion,ameasurefor cell typediversitywasused.Thiscriterionsatisfied
our secondaim: thegenerationandmaintenanceof cellulardiversity. However, we considerit
moreimportantthatthis fitnesscriterionis trivial with respectto our evolutionarysearchimage.
A metazoanis consideredmorecomplex if it hasmoredifferentcell types,irrespective of how
it producesthem.An evolutionaryschemeselectingfor thenumberof cell typesdevelopedwas
thoughtto besufficiently “undefined”to allow thedevelopingmetazoansin anunpredefinedway.

Selectionfor thenumberof cell typeswasdonein two ways.As afirst try, eachdifferentstate
cycle wassimply calleda differentcell type, regardlessof how differentthecell typesactually
were. In this method,two stablestateshaving differencesastiny asa singleflippedbit, gave as
muchfitnessto anorganismas,say, astablestateandastatecycle.

In a way, this madediversificationto easy. The organismsvery quickly evolved long state
cycles, in orderof 64 steps,that diversifiedby meansof two differentmechanisms.The first
mechanismwas,to propagatea desynchronisationbetweenthecell typesinducedby thebicoid
andtheactivin signalson theonesideandtheothercellson theotherside. This desynchroni-
sationwould inducedifferencesbetweenthecell typeson theorderof severalbits. Thesecond
mechanismwasto evolve very “fluent” cell types(i.e. with a low energy differenceto thesur-
roundingcells).Thesecell typeswouldsqueezeout philopodiabetweentheir surroundingcells.
Onceaphilopodiumtouchedanew cell. it differentiated,anretractedthephilopodium.

The actualfitnesscriterium wasbasedon the diversity of cell typesa “beast” wasable to
develop,ratherthanits numberof cell types.For eachcell typethatwaspresentat themomentof
fitnessevaluation,thedifferenceto theothercell typeswascomputed.Thiswasdoneirrespective
of theubiquity of thecell types. In otherwords,a singlecell of a new cell typecontributesas
muchto thefitnessof abeast astencellsof thisnew cell type. In orderto selectfor metazoans
thatwereableto maintaintheir cellulardiversityfor a periodof time, thefitnessof a metazoan
wasdefinedto belowestcellulardiversityin thelastonehundredtime stepsof its development.
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Thealgorithmcomputatingthefitnessis explainedin box4.3.

4.3 Computation of cell type diversity

First themeanexpressionover timeof eachgenein thestatecyclesis computed

� � � �� �0���� ���"��� � �
�

where � � is themeanexpressionin thestatecycleof genej, � � �
�

is theexpressionof gene�
in phase� of thecycleand

�
is theperiodof thestatecycle.

Then,for eachgeneof thestatecycles,thedifferencein meanexpressionto theotherstate
cyclesis computed.
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of genes in thenetwork and � |_� � is themeanexpressionof gene� in statecycle � .
Thecellulardiversityof theorganismis definedasthemeanexpressiondifferencebetween
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¥
representsthenumberof cell typesof theorganism.

Thefitnessof a metazoanis the lowestdiversity it reachesduring the last100 time stepsof
its ontogeny.
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An evolutionary run

In figure5.1 thecumulativegeneticdistanceof thegenomesrelative to a 90 time stepsyounger
individual is shown. It is clearthat theevolutionarychangeat thegeneticlevel progressesat a
fairly constantrate.Themolecularclock is ticking at its maximumrate,asif therewould beno
selectionatall. Thissuggeststhatnostrongselectionis actingonmostof thepossiblemutations.

However, at thephenotypiclevel, the fitnessof the individualsincreasesstepwise.Periods
of stasis,wherethefitnessof thecreaturesremainsconstant,areintermittedby shortperiodsof
evolutionarychange.

Interestingly, thefitnessjumpsor evolutionaryinnovations, arecorrelatedto key innovations
in thestructureof theBooleannetworks,andasa resultto changesbothin thedevelopmentand
in theadultphenome1 of thecreatures.Table5.5 lists theepochstogetherwith thephenotypic
andgenotypicinnovation that have mostprobablycausedthe transientfrom oneepochto the
next.

In orderto understandwhichstructuralchangesin thegenotypehavecauseda transientfrom
oneepochto thenext, thesameprocedureasin theexampleof chapter3.2 wasfollowed. The
genes whosestatewas stablethroughoutdevelopmentwere strippedof the network and the
Booleanfunctionswereadjusted.For example,from aNOT A function, theB connectionwas
removed and the function’s namewas changedinto NOT. In the sameway, an AND function
whichhadoneof its inputsconstantlysetto one,while theotherwasdynamic,waschangedinto
=.

For eachof theepoches,a typical organismwaschosen.As themorphologyof thesebeasts
wasconsideredtypical for a particularepoch,thesebeastswere called the morphotypeof an
epoch.

In figure 5.3 for eachepochthe morphotypeis shown. For eachof thesemorphotypesthe
network wassimplified asdescribedabove, suchthat only the dynamicgenes remain. These
simplifiednetworksareshown in figure5.4.

Interestingly, thedynamicpartof thenetworksgetslargerandlargeroverevolutionarytime.
Figure5.5shows thenumberof dynamicgenes for eachof themorphotypes.

1Theword phenomeis usedhereto indicatemorphologicalandcyberneticpropertiesof theorganismthatmay
but neednot necessarilydeterminethe fitnessof the organism,asopposedto phenotypethat implies an effect on
fitness.See[32] for a discussionon thewordsgenotype,genome,phenotypeandphenome.
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Figure5.1: The cumulative runningmeangeneticdistancebetweena populationof ten indi-
viduals and ninety time stepsearlier population. This plot shows that the genetic“walking”
speedremainsratherconstantover evolutionarytime. The increasedwalking speedat thestart
of the plot is dueto the initial “bootstrap”procedure.During this procedurerandomgenomes
aregenerateduntil acreaturehaving morethanonecell typeis found.
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Figure 5.2: Runningaverageand running maximumof the fitnessover time. Length of the
runningaverageandmaximumis 100time steps.Thenumbers1-13 indicatetheepoches.The
epochesaredelimitedby thevertical lines. Theepochesarecharacterisedby a particularmode
of development.Seetext for explanation.

Early in evolution, in beast66, only 50%of thegenes is dynamic.Hence,half of thegenes
is ableto diversify. Later in evolution, from beast4000onwards,83% of the genes is ableto
change.

Additionally, the numberof genes being part of a regulatory cycle increases,albeit less
quickly. Beast66 only hasonecycle containingsix genes. In epochthreeten genes areem-
beddedin a cycle. A new cycle arose,consistingof thegenes 13, 23, 18 and3. In bothof the
two coexisting morphotypesof epoch5, ten genesareembeddedom a cycle. In addition,two
genesactas“intermediaries”betweenthetwo cycles. In epoch6, finally, eleven“cyclic” genes
arepresent.

Interestingly, for almostall the transitionsbetweenepochs,a changeat thegeneticlevel ac-
countingfor therisein fitnesswasidentified.Becauseit waspossibleto make “loss-of-function
knock-outs”on thesegenes suchthat the phenotypeof the organismwould “f all back” to the
morphotypeof the precedingepoch,thesestructuralchangeswerecalledkey mutationsresult-
ing in a new morphotype.Thechangeat thephenotypicanddevelopmentallevel betweentwo
epochesis calledakey innovation.
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(a)Beast66,epoch1 (b) Beast256,epoch2 (c) Beast508,epoch3

(d) Beast751,epoch4 (e)Beast907,epoch5 (f) Beast909,epoch5

(g) Beast1124,epoch6 (h) Beast1130,epoch7(?) (i) Beast1389,epoch8

Figure5.3: Morphotypesof theepoches.Morphotypesaremorphologiesconsideredtypical for
anepoch.Themorphotypeswereselectedby a humanobserver scanningthrougha movie file
containingtheadultstagesof theevolvedcreatures.
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(j) Beast1655,epoch8 (k) Beast1867,epoch9 (l) 1940cell stage,epoch10

(m) Beast2126,epoch10 (n) Beast2162,epoch11 (o) Beast2309,epoch12

Figure5.3: continued
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Figure5.4: The Booleannetworks of the beastsshown in. figure 5.3. All the genesthat are
stablyexpressedin all thecell typesandin all thestageshavebeenomitted,in orderto simplify
thenetworks. The namesof the Booleanfunctionshave beensimplified wherepossible.Gray
squaresindicatereceptors. Graydashedarrows indicatereceptor-ligand interactions.
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Figure5.4: continued
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Figure5.5: Thenumberof “dynamicgenes” for theanalysedgenomes.Thenumberof dynamic
genesincreasesoverevolutionarytime. In thisway, thepartof thegenomepotentiallytakingpart
in cellulardiversificationincreases.
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Gene: 2 21(bic) 15 16 22 24
= NOT = AND NOT =

1 0 0 0 0 0 0
2 1 1 0 0 1 0
3 0 0 1 0 1 1
4 1 1 0 1 1 1
5 1 0 1 0 0 1
6 1 0 0 0 1 0
7 0 0 0 0 1 1
8 1 1 0 0 1 1
9 1 0 1 0 1 1

10 1 0 0 1 1 1
11 1 0 0 0 0 1
12 1 0 0 0 1 0 (convergedon step6)

Table5.1: Convergenceto theperiod6 statecycleof thenon-bicoidcell

5.1 Zygotic cell polarity inducestwo cell lines

In thefirst epochtheorganismshavediscoveredtheuseof thebicoidgene. A cycleof six genes
falls into oneof two alternativeperiodsix statecycles,dependingon thestateof thebicoidgene
duringthefirst iteration.

Thetransienttowardsthesetwo statecyclesis shown in thetables5.1and5.2.
The stateof beingtrappedin either the oneor the otherof thesetwo statecyclesis stably

inheritedovercell division. It is easyto seethatthiswill happen,becausethestateof thenetwork
is inherited.

In this way two cell lines arise,the cells descendingfrom the bicoid inducedandthe cells
descendingfrom thenon-bicoidgene. Interestingly, thenon-bicoidcellshavetheslight tendency
to engulf thebicoid cells. This canbeunderstoodfrom thefact that thebicoid cellsadhereless
stronglyto themediumthanthenon-bicoid cells. (seetable5.3)This differencein hydrophoby
is a resultof thedifferencebetweenthestatecyclesof thebicoidandthenon-bicoidcells.

5.2 Discovery of cell cell communication

In epoch2, the beastshave discoveredcell-cell communicationasa way to generatenew cell
types.In thebicoid lineage,gene3 is turnedON duringoneof thesix statesof thestatecycles,
whereasit is turnedON duringtwostepsin thenon-bicoidcells.Asaresult,gene13is suppressed
duringtwo outof six statesin cellstouchinganon-bicoidcell. Therefore,apartfrom non-bicoid
cellstouchingothernon-bicoidcellsandbicoidcellsthatdonot touchabicoidcell, two new cell
typesaredeveloped:bicoid cells touchingnon-bicoid cells (the gray cells at the borderof the
blueandthepink cells)andnon-bicoidcells isolatedfrom theothernon-bicoidcells(thebrown
cellsembeddedin graycells).
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Gene: 2 21(bic) 15 16 22 24
= NOT = AND NOT =

1 0 1 0 0 0 0 (bicoidbit set)
2 1 1 1 0 1 0
3 0 0 1 1 1 1
4 1 1 0 1 0 1
5 1 0 1 0 0 0
6 0 0 0 0 1 0
7 0 1 0 0 1 1
8 1 1 1 0 1 1
9 1 0 1 1 1 1

10 1 0 0 1 0 1
11 1 0 0 0 0 0
12 0 0 0 0 1 0 (convergedon step6)

Table5.2: Convergenceto theperiod6 state-cycleof thebicoidcell

cyclephase J[B][med] J[NB][med] J[B][NB]
1 3 3 3
2 7 3 3
3 9 7 3
4 21 5 4
5 19 19 4
6 3 3 3

Table5.3: Energy bondsbetweenthedifferentlineagesof beast66. B denotesthecellsfrom the
bicoid-inducedembryonalcell, NB denotesthecellsdescendingfrom theotherembryonalcell,
not inducedby bicoid. The energy differencebetweenthe mediumandthe non-bicoidcells is
slightly lower thantheenergy differencebetweenthebicoid cellsandthemedium.This results
in a slightengulfmentof thebicoidcellsby thebicoidcells.
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Thekey mutationfor epochtwo is themutationcouplinggene3 to the6 generegulatoryloop
via thenewly evolvedconnectionfrom gene18to gene3. In thiswaytheperiod6 cyclegenerate
by the6 geneloop drivestheexpresisionof gene13 — which is coupledto receptor3 — in the
surroundingcells. This wastestedby makinga knock-outmutation. The Booleanfunction of
gene3 wasmutatedto ALL 0. In this way, onecouldsaythattheexpressionligand3 is prohib-
ited, preventingcell cell communication.In figure5.11(a)theresultingphenotypeis shown. It
closelyresemblesthemorphotypeof epoch1. Thetwo new cell typeshavedisappeared.

5.3 Fixing obtained information

In epoch3, theinformationcomingin from receptor3 is usedmoreintensively. A new connec-
tion from gene23 to gene18 hascloseda new cycle of four genes,generatinga new period8
cycle. In associationwith theperiod6 cycle a new 24 cycle is generatedin thenon-bicoid cell
line, aftertheseconddivision,if two non-bicoidcellsarepresent.Theperiod24cycleneedstwo
non-bicoid cells becausean importantconnectionof the period4 cycle is runningthroughthe
cell-cell communicationcanalgeneratedby gene-receptorpair 3.

The bicoid cells iteratethrougha period6 statecycle, which is “phaselocked” by gene16
of theperiod6 statecycle, beingturnedon 2 out of 6 states.Thebicoid cells,finally, touching
the period24 non-bicoid cells, cycle aroundin a successionof four period6 cell types. The
generationof new cyclesandtheadditionof alternative routesto existing cyclesturn out to be
importantmechanismsfor theevolutionof new cell types.

In epoch3, gene20 is coupledto receptor2. Gene2 is partof theperiod6 cycle. This new
connectionresultsin anextra diversificationbetweenthefour cell typesin epoch2.

At the phenotypiclevel, the closureof the period4 cycle hasled to a new mechanismof
differentiation.In beast258someof thegraycellsdiffuseinto theblue,bicoiddescendedpartof
theorganism.In beast508thesamethinghappens.However, herethediffusingcellsdifferentiate
into anew typewhenever they loosecontactto thenon-bicoidcells.

In orderto testwhethertheclosed4 cyclecouldaccountfor this mechanism,theconnection
from gene13 to gene23 wasblocked.Thiswasdoneby changingtheBooleanfunctionof gene
23 from !XOR to ALL 0. By this mutation,theconnection13 ô 23 is blocked,while gene18
still propagatesthesignalscomingin from gene16.

In figure 5.11(b)the resultingphenotypeis shown. It resemblesthe morphotypeof epoch
2. The cells from the “mesoderm”layer betweenthe bicoid and the non-bicoid layer do not
differentiateif they diffuseinto the bicoid part of the organism. A secondchangein epoch3
is the connectionof gene20 to receptor2. In contrastto the mutationdescribedabove, this
changedoesnot result in a “key innovation” at the phenotypiclevel. It strengthens,however,
thediversificatingeffectof themechanismof epoch2. Usingthisextra receptorgene, bothgene
13 andgene20 diversify at the borderof thebicoid andthe non-bicoid lineage. The mutation
20:Aô ALL 0 (figure5.11(c))resultsin afitnessdropfrom 4.75to 3.25.

Two fundamentallydifferenttypesof mutationsweredescribedin this paragraph.Thefirst
one,themutationthat formeda cyclic interactionbetweeengenes,resultsin a “morphological”
change.Thesecondtypeof mutationdoesnot affect any cyclic interaction.Instead,it recruitsa
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Figure5.6: “Positionalinformation.” At theeightcell stagea gradientlike patterndevelopsin
metazoan751(shown here),but alsoin themetazoansuntil epoch8. Thepatternconsistsof four
“bands”,numberfrom 1 (bicoidside)until 4 (nonbicoidside).Theexpressionlevel indicatethe
numberof stepsof theperiod6 cycle thegeneis expressed.

secondgenein thedifferentiationprocess,thusgeneratingafitnessrise.

5.4 The evolution of positional information

Interestingly, asimpleform of positionalinformationhasevolvedin epoch4. In the8 cell stagea
gradientlikepatternin theexpressionof gene3, 13,22and23develops.Theexpressionof these
genes is plotted in figure 5.6. It is not yet completelyunderstoodhow this patternis formed.
However, it waspossibleto identify thekey mutationchangingmorphotype3 into morphotype
4.

In morphotype4 asecondconnectionfrom the6 generegulatoryloopontothe4 generegula-
tory loophasevolved.Thisconnectionseemsto “phaselock” the4 generegulatorylooptogether
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with thealreadyexistingconnection,resultingin asetof four differentperiod6 cycles.
In order to testwhetherboth connectionsfrom the four geneandthe six genecycle were

neededfor theformationof thefour bandpattern,thefollowing knockout experimentwasper-
formed. The connectionfrom gene16 to gene18 wasblockedby changinggene18’s OR into
A. Thephenotyperesultingfrom this knockout experimentis shown in figure5.11(d).It clearly
shows that the interaction16ô 18 is importantfor theearlypatterningof morphotype4. More-
over, thisknockoutexperimentclearlyshowstheroleof interaction16ô 18in phaselockingthe
period8 cycle generatedby thegenes 18,3, 13 and23. In theknockout phenotypetheperiod8
cycleandtheperiod6 cyclearecompletelydecoupledresultingin a period24 cycle.

After the four “bands” of geneexpressionhave developedin the remainingpart of the de-
velopmentof beast751,the“bands”diffuseinto eachotherlike in epoch4. During this process
many additionalcell typesaregenerated.The importanceof this processis easilyshown in a
simpleexperiment.If cell movementis prohibited,simply by omitting theCA stepsduringthe
developmentalprocess,noneof theseadditionalcell typesareproduced,resultingin a fitness
dropfrom 11.51to 7.73.

It is interestingto speculatethat selectionmay have favouredthe phenotypeof beast751
becausethe fitnessfunction turnsout to selectfor stablephenotypes.In contrastto the fitness
of morphotype4, thefitnessof thebeastsin theprecedingepochis not stableall the time. The
period24 cycle in B cell line inducesa sequenceof four period6 cyclesin theNB cells. After
thecell “bands”havediffusedinto eachother, oncein every four time stepstwo “bands”having
a differentcell type in theothersteps,now have thesametyperesultingin a temporaldiversity
drop. Becausethe fitnessfunction is definedasthe lowestcellular diversity over the last one
hundredtimestepsof a beast’s life a considerablepenaltyis givento this typeof behaviour.

5.5 “Epiboly”: NB cells engulf B cells and induce a new cell
type

A very interestinginnovationcanbeobservedin epoch7. Like in epoch6, a patternof four cell
typesdevelopsin the eight cell stage. In contrastto epoch6 however, thesecell typeshave a
period8 cycle insteadof aperiod6 cycle.

As is shown in figure5.7oneof thecell types(theblackone)of theNB-lineageengulfsthe
orangecells of the B-lineage. The mechanismof this engulfmentis easilyunderstood.As it
wasdiscussedin section5.1, in beast66, theNB-lineageengulfstheB-lineage,because(i) the
B-lineageadhereslessstronglyto themediumthantheNB-lineagedoes,and(ii) theB-lineage
adheresmorestronglyto theNB-lineagethanto themedium(seetable5.4).

In epoch7, thisdifferencein “hydrophoby”betweentheNB andtheB-lineagehasincreased
considerably. Whereasthemeandifferencein thehydrophobybetweentheB-cellsandtheNB-
cells was3.7 in beast66 (seetable5.3), in beast1389this differencehasgrown to 9.625(ta-
ble5.4).Thestrongerengulfmentresultingfrom this increasedadhesiondifferenceresultsin the
following mechanismof cell diversification.

In figure 5.7 oneof the black NB cells hasalmostlost contactto the otherblack cells. As
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cyclephase J[B][med] J[NB][med] J[B][NB]
1 25 26 4
2 23 5 3
3 23 23 4
4 26 4 3
5 23 24 4
6 23 6 3
7 25 25 4
8 25 3 3

Table5.4: Strengthof theenergy bondsbetweenthedifferentlineagesof beast1389.B denotes
thecellsfrom thebicoid-inducedembryonalcell, NBdenotesthecellsdescendingfrom theother
embryonalcell, not inducedby bicoid.

soonasit hascrawledsofarovertheorangeB cellsthatis completelydisattachedfrom theblack
cells, it differentiates.As a result, the NB cell differentiates,inducinga new cell type in the
underlyingB cells(figure5.8). Thisbehaviour remindsof themechanismof neuralinductionin
amphibiandevelopmentlike it wasfirst shown in thenewt Ambystomamexicanum[38]. In this
processneuraltissueis inducedin ectodermaltissueby a mesodermaltissuelayercoveringit at
theinternalside.

Using this mechanismadditionalcell typesarecreatedby keepingthepatternin a transient
state.If aNB cell disattachesanddifferentiatesthesurroundingcellskeeponswitchingbetween
anumberof cell typesbeforethey havereachedastablepatternlike thatin figure5.7.Especially
during late developmentthe NB cells keepon attachingand disattachingthe other NB cells
keepingthecreaturein thetransient,diversestate.

5.6 Mor e “tickling”: pattern destabilisation

In epoch8 the “positional information” mechanismis disrupted.As a resultthepatternof cell
typesbecomeslessstable. Due to a mutationin the old 6 generegulatoryloop, a new 6 gene
regulatoryloopis formed,runningthroughoneof theshortcutsevolvedin epoch7 (seetable5.5).
Thisnew 6 geneloopappearsto beunableto generateastablebandingpattern.The“embryonal”
patternthat is formedresemblesthepatternof beast508(epoch3): a period8 cycle in theNB
cell andtheB cells touchingtheNB cells. Thesecells in turn inducea periodicsequenceof a
stablestateandaperiod2 cycle in theremainingB cells.

In contrastto whatwe would expect— a severedrop in cellulardiversity— extra diversity
is producedin collaborationwith theepibolymechanismdescribedin chapter5.5.

It wasdiscussedabovehow epibolyof theNB cellsis ableto keepthepatternin acontinuous
transienttowardsa stablecell typepattern.TheepibolicNB cell engulfstheB cells,disattaches
from the otherNB cells, differentiates,inducesits surroundingcells, reattachesto anotherNB
cell anddedifferentiates.

In beast1655(epoch8), this“tickling” mechanismis ableto generateamuchhigherdiversity.
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Figure5.7: The black NB cells engulf the orangeB cells, resembling“epiboly”, expansionof
ectodermalprecursorsover theembryo,takingplaceduringthegastrulationof many metazoans
(reviewed in (Gilbert, 1991)). The lower right black cell is aboutto disattachfrom the other
blackcells. It will differentiateandinduceanumberof new cell types(figure5.8).

Figure5.8: “Induction” in beast1389:thelowerredcell is adifferentiatedblackcell, disattached
from theotherblackcells. It hasinducedthefour brown cells.
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(a) (b)

Figure 5.9: A second“tickling” mechanismcan be observed in beast1655. The greencells
in 5.9(a) are derived from the bicoid cell and have mixed with the brown non-bicoid cells.
In 5.9(a) the greencells all touchanothergreencell. In 5.9(b) someof the greencells have
lostcontactto thetheothergreencells.As a resultahigly percolatingpatternof othercell types
is induced.

Becauseof thedecreasedstability, the“tickling” resultsin a patterndestabilisation,percolating
into aconsiderablepartof theorganism(seefigure5.9(b)).

Whereasin epoch3 thelackof stability led to a periodicdiversitydrop,causinga decreased
fitness,hereacomparablelackof stability resultsin anincreasedcellulardiversityaslongasthe
epibolicNB cellskeepon“tickling” theB cells.

A second“tickling”-lik e mechanismappearslater in theontogeny of beast1655. Most ap-
parentlyafter the lastdivision, a numberof B cellsmixeswith theNB cells (seefigure5.9(a)).
If, as a result of the cell mixing process,one of the B cells loosesthe contactto anotherB
cell, it differentiates,and,asa result,a new cell type is inducedin the surroundingNB cells
(figure5.9(b).

Thesediversifyingmechanismshighly dependon thecells’ ability to move. In figure5.10,
oneof thebrown surfacecellsattachesto a redcell. As a result,thesurroundingcellsdifferenti-
ate.



5.6. MORE “TICKLING”: PATTERN DESTABILISATION 45

(a) One of the brown surface cells is
aboutto loosecontactto theotherbrown
cellsat timestep1999

(b) At time step2000 the red cells, the
surfacebrown cell andoneof the green
cellshasdifferentiated.

Figure5.10: “Tickling mechanism”at anearlierstageof thedevelopment.
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(a) A knock out phenomeof beast258.
Cell cell communicationvia receptor3
was preventedby a substitutionof the
Booleanfunction= of gene3 for ALL0.
Onecouldunderstandthis asaknockout
of theexpressionof ligand3. Theresult-
ingphenomelacksthetwo newly evolved
cell typesof epoch3

(b) A knock out phenomeof beast508.
The four generegulatory loop running
throughreceptor3 was knocked out by
blocking connection:13 to 23. The re-
sultingphenomeresemblesthephenome
of epoch2. The black non-bicoid cells
donotdifferentiateif they diffuseinto the
bicoidpartof theorganism.

Figure5.11:A zooof knockoutphenomes.In mostof theknock-out’sshown herethegenomic
“key innovation” (seetable5.5)wasknockedout, resultingin a regressionto themorphotypeof
anearlierepoch.
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(c) A secondknockoutphenomeof beast
508. Themutation20:A to ALLO blocks
the connectionfrom receptor3 to gene
20, resultingin a fitnessdrop from 4.75
to 3.25.Morphotypicallythemetazoanis
identicalto the “wildtype”. Theconnec-
tion of gene20 to receptor3 is anexam-
ple of a smallscaleevolutionarychange,
just affectingthecell typesfrom which a
morphotypeis “build”.

(d) A knock out phenomeof beast751.
The new connection16 to 18 from the
four generegulatoryloop to thesix gene
loop plays a role in the formation of a
“positional” bandingpatternof four cell
types in the eight cell stage. This is
shown by theknock-outmutant18:OR to
A. Theresultingphenomecloselyresem-
blesmorphotype3.

Figure5.11:continued
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Table5.5: Evolutionaryinnovations

Evolutionaryinnovations
Epoch Phenomicinnovations Genomicinnovations
1 Zygotic cell polarity is used.Two cell

linesarise.Thecellsderivedfrom the
bicoid inducedcell (B) andthecells
from thenon-bicoidinducedthecell
(NB).

Regulatoryloopof 6 genescontaining
thebicoidbit

2 Two new cell typeshavearisen.Four
cell typesarepresentnow: B (bicoid
lineage)cellsnot touchingNB cells,
B cellstouchingB cells.NB cells
touchingNB cellsandNB thatdonot
touchanNB cell.

Gene18 is coupledto receptor3.

3 Temporalsequenceof 4 period6
cyclesin theB cellsis drivenby a
period24 cycle in theNB cells.The
differentiatedB cellsdifferentiateinto
anew cell typeif they diffuseinto the
otherB cellsand,asa result,disattach
from theNB cells.

Gene18 is coupledto gene24, in this
wayclosingthenew four gene
regulatoryloop3

U ô 2 13
U ô 23

U ô
18
U ô 3.

4 “Positionalinformation”hasevolved.
An embryonalbandingpatternat the
eightcell stageconsistingof period
six statecycleshasevolved,resulting
in amorestablediversity(seetext).

Secondconnectionfrom thesix gene
regulatoryloopontothefour gene
regulatoryloopseemsto “phaselock”
thecyclegeneratedby thefour gene
regulatoryloop. As a result,thecells
arein aperiodsix cycle in steadof a
period24 cycle.

5A (i) NB cellsareslightly better
engulfedby theB cells.
(ii) Mechanismsof epoch4 arestill
used,but produceincreaseddiversity.

(i) New connection2
�ûú

20putsthe
two genes 8 and17 undercontrolof
receptor2.
(ii) Connection16

U ô 18 is
substitutedby 11

U ô 18.
5B In theadultstagefivecell type

“bands”arepresentat theborder
betweentheB andtheNB cells.The
patternis preservedevenif thecell
shift in positionrelative to eachother.

(i) New connection20
U ô 11 puts

gene11undercontrolof receptor2.
(ii) New connection6

�ûú
5 generates

new cell-cell interactioncontrolling
genes 5 and14.

continuedonnext page

2 ü�ý indicatesa receptor-ligandinteraction
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continuedfrompreviouspage
Epoch Phenomicinnovations Genomicinnovations
6 (i) Morphotype5A “won” over

morphotype5B in epoch5. Using
anothermechanism,the“fi veband
pattern”like thatof morphotype5B is
againgenerated.The“bandremixing”
mechanismof epoch4 is
superimposedon this “fi veband
pattern.
(ii) Increasedengulfmentof NB-cells
by B cells.

(i) Themutation2
�ûú

20 to 2
�ûú

8
putsthesix generegulatoryloop
undercontrolof receptor2.
Additionally analternative routefor
thesix generegulatoryloop is
generated:2

�ûú
8
U ô 15.

(ii) Thenew connection8
U ô 15adds

asecondalternativerouteto thesix
generegulatoryloop: 24

U ô 23
U ô 8U ô 15. Moreover, this connection

putsthesix geneloopundercontrolof
thefour geneloop.

7 (i) engulfmentof B cellsby NB cells
is dramaticallyimproved.(fig) As a
resultNB cellskeepon“tickling” the
outerB cellsthatdid not theNB cells
before,resultingin continuous
destabilisationof thepattern.
(ii) Embryonic“bandingpattern”of
period6 cycleschangedin patternof
period8 cycles.

(i) Thetwo shortcutson thesix gene
loop (2

�ûú
8
U ô 15and24

U ô 23U ô 8
U ô 15) havedisappearedasa

resultof themutation:8
U ô 15 to

19
U ô 15.

(ii) Mutation19:ALL1
U ô 0ON

generatestwo shortcutsto thesix
geneloop: 16

U ô 19
U ô 24and21U ô 19

U ô 24.
8 6 generegulatoryloop haschangedas

a resultof thebrokenconnection
16
U ô 22. Connectionwasbroken

becauseof themutation16
U ô 22 :

12
U ô 22,causinggene22 to be

constantlyturnedon.

Fourband“positional” patternhas
disappearedandhasbeensubstituted
for embryonicpatternof threecell
types:period8 cycle in theNB cells
andin theB cellstouchingtheNB
cells,aperiodicsequenceof aperiod
1 cycleandaperiod2 cycle in the
remainingB cells.
Cell typesareformedasa resultof
the“tickling” mechanism.(i) TheNB
cellsengulftheB cells. If oneof the
NB cellsloosescontactto theother
NB cellsit differentiatesandinducesa
patterndestabilisation(figure5.10(a)
andfigure5.10(b)).(ii) B cellsmix
with NB cells. IsolatedB cellsinduce
anextracell typein theNB cells
(figure5.9(a)andfigure5.9(b)).



Chapter 6

Discussionand conclusions

A paradigmsystemfor theevolutionof multicellularanimalshasbeenconstructed.
Theaimof theparadigmsystemwastwofold. Thefirst aimwasto understandhow thehighly

complex genotype-phenotypemappinggeneratedby thedevelopmentzygoteto adultmayeffect
evolutionarydynamics.Thesecondaimwasto “breed”hypothesesonhow cellulardiversitycan
begeneratedandmaintainedin multicellularanimals.

6.1 Summary of the results

Mor photypic metastabiltity

The evolution of our metazoansshowed very characteristicbehaviour. Although therewasa
constantspeedin theevolution at thegeneticlevel, evolution at thefitnesslevel andat themor-
phologicallevel progressesstepwise.

Most importantly, mostof thetime a fitnesschangewascorrelatedto a largescalemorpho-
logical change,asif new “Bauplan” emerge. It is proposedto call this behaviour morphotypic
metastability.

Networks arehierarchically structur ed

The analisisof the networks describedin chapter4 hasled to the distiction of threetypesof
genes: regulatory genes— embeddedwithin a regulatory loop — controlling the expression
of downstreamgenes. Finally, housekeepinggenes thatareconstantlyexpressedcanbedistin-
guished.

Key mutations aremutations in the regulatory part of the network

Key mutations,the mutationsmarkingthe transitionfrom oneepochto another, arein general
mutationsin theregulatorypartof thenetwork.
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6.2 Discussionand speculationon the results

Evolution of regulatory genes and downstreamgenes may have resultedin
morphotypic metastability

In thissectionit is hypothesisedthattheevolveddistinctionbetweenregulatoryloopsanddown-
streamgenesmayhaveresultedin thecharacteristicmorphotypicmetastabilitythatwasobserved
in our model.

In thefossil recordof theevolutionaryrun, two typesof phenotypicchangecanbeobserved.
On the onehand,large scalephenotypicchanges,phenotypicinnovations, areapparent.Such
a phenotypicchangeis in generalcausedby a fundamentalchangein themetazoan’s develop-
mentalpathway. In this report,I have focusedon theselargescaleevolutionarychanges.While
observingthebeastswithin asingleepoch,thesecondkind of evolutionarychangesbecomesap-
parent.Althoughthemorphotyperemainsby definitionunchangedwithin anepoch,thecolours
in which the morphotypesare“painted” changea numberof times. Hence,althoughthe “de-
velopmentalprogram”of the metazoans doesnot evolve within an epoch,the setof cell types
“building” themkeepschanging.

Theanalysisof themorphotypicchangesin chapter4 hasshown thatit is possibleto find for
eachepocha “key mutation” that wasmostprobablyresponsiblefor the morphotypicchange.
The greaterpart of these“key mutations”werechangesin oneof the regulatory loopsof the
genome. In epoch3, a new regulatoryloop wasformed,in epoch4 this new regulatoryloop is
put underthecontrolof thefirst regulatoryloop, in epoch6 thefirst geneloop is connectedto
a receptor(cell cell interaction)andtwo alternative routesto this loop areformed. In epoch7
thesetwo shortcutson thefirst regulatoryloophavebeensubstitutedfor two othershortcuts.In
epoch8 thefirst geneloophasbeenremoulded.

Althoughthis wasnot (yet) tested,it is highly probablethatthesmallscale— within epoch
— phenotypicchangeswereweredriven by mutationsin the “downstream”genes and in the
“housekeeping”genes. For example,amutationchanginganALL0 functioninto anALL1 func-
tion would changethe expressionof oneof the housekeepinggenes. Obviously however, the
developmentalprogramwould remainidenticalbecausenoregulatorygenes wouldbechanged.

In this way onecould imaginethat the morphotypicmetastabilityresultsfrom the evolved
distinctionbetweenregulatorygenesanddownstreamgenes. Mutationsin thedownstreamgenes
andin thehousekeepinggenesdonot resultveryoftenin afitnesschange,whereasamutationin
theregulatorypartcanresultin a largescalemorphotypicchange.

Theanalysisof thegeneticbasisof developmentof thelastdecenniahasshown thatbiolog-
ical geneticnetworksarehierarchicallystructured.Relatively few regulatorygenescontrol the
expressionof thedownstream“structural” genes.It hasalreadybeenhypothesisedby [18] that
the “punctuated”evolution often observed in the “real” fossil recordmay be the resultof the
hierarchicalstructureof biological regulatorynetworks. “We mayfind [...] thatstructuralgene
substitutionscontrolmostsmallscale,adaptive variation[...] while disruptionof regulationlies
behindmostkey innovationsin macroevolution” [18].
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6.3 Mutational robustness

In this sectionit is discussedhow theevolvedstructuralpropertiesof thegeneticnetworksmay
influencethemutationalsensitivity of themetazoans. It is hypothesisedthattwo structuralprop-
ertiesof the networks may result in increasedmutationalstability. Firstly, the ratio between
regulatory genes and downstream/housekeepinggenes could be changedin the favour of the
downstreamgenes. Secondly, the numberof interactionswithin a regulatory loop may be in-
creased,in this way “spreadingof therisk” of a mutationin theregulatorypartof thenetwork.
Theresultsavailableat themomentthatsupporttheseideasarediscussedandadditionalexperi-
mentsaresuggested.Finally, abiologicalinterpretationof this hypothesisis suggested.

Mutational stability as a result of the ratio betweenregulatory genes and
downstream/housekeepinggenes

It would be feasiblethat the mutationalstability of a metazoanis increasedby decreasingthe
amountof regulatorygenes. Imaginea fully connectedgenomein which thereis no distinction
betweenregulatorygenes anddownstream/housekeepinggenes. In sucha genome, all thegenes
would beembeddedin a regulatoryloop. Furtherimaginethata highly sophisticateddevelop-
mentalprocesswereimplementedby this genome, resultingin a high fitness. Undoubtly, this
genomewould beveryproneto mutation,sinceall thegenes andgeneinteractionwouldbepart
of onebig complicatedregulatorynetwork.

However, if thesamedevelopmentalprogrammewouldbeimplementedin only a few genes,
theothergenes wouldbe“free” to bemutated.

Geneticredundancy: “Spr eadingthe risk”

An almostcontradictorystrategy to increasethestabilityagainstmutationswouldbeto increase
theredundancy of theregulatoryloops.Two eventsin theevolutionaryrundescribedin chapter4
suggestthat (i) this mechanismhasevolvedand(ii) that it increasesthemutationalstability. In
epoch6 two alternative routesto thesix generegulatoryloop have evolved. Thefirst oneruns
via a receptor, thesecondonerunsvia aninternalgeneinteraction.

Already in the next epoch,thesetwo connectionshave disappearedasa resultof a single
mutation. However, heretwo alternative shortcutsin thesix generegulatoryloop arepresent,
both runningvia intracellulargeneinteractions.It still needsto be investigatedwhetheroneof
the intermediatemetazoans possessedthe four shortcutsat the sametime. In epoch8 a gene
interactionthatwasconservedsinceepoch1 hasdisappeared.However, thesix geneloop is still
present,becauseit now runsthroughoneof thealternativeroutesevolvedin epoch7.

Thesepreliminarydatasuggeststhatgeneticredundancy hasevolvedin themetazoanevolu-
tion asdescribedin chapter4. However, certainlymoreanalysisanda numberof experiments
needto becarriedout in orderto supportthis hypothesis.

First, morerepresentativesof theepochsshouldbeanalysed.Theseanalysesmight answer
thefollowing questions:(i) Is thetrendsketchedabovefor thefirst eightepochscontinuedduring
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therestof theevolutionaryrun?(ii) Whathappensduringoneevolutionaryepoch?Are genomes
at theonsetof anepochlessredundantthanlaterrepresentativesof anepoch?

Second,I wouldproposeanumberof “bulk data”experiments.Thefirst onewouldbeto test
thebeastsin theevolutionaryrun on mutationalstability. At regulatoryintervalsin evolutionary
time, a genomecouldbeextractedfrom the fossil record. Eachof thegenes of this genomeis
thanmutateda fixednumberof times. A “mutationalstability map” couldbeconstructed.The
seriesof mutationalmapscouldshow whathappensto themutationalstability of themetazoans
overevolutionarytime andwithin oneepoch.Togetherwith thedataobtainedfrom thegenome
analysisthesedatacould be specifiedwith respectto regulatorygenes, downstreamgenes and
housekeepinggenes. It is expectedthatthemutationalstabilitywill increasepresumablyfor the
regulatorypartof thenetwork.

Additionaldataonthenetworks’ structurescouldbeobtainedif the“network-stripping”pro-
cedurewouldbeautomated.Until now, in orderto understandthenetwork’sstructure,thehouse-
keepinggenes werestrippedoff from thenetwork manually. As this is a very time-consuming
job only verysparsedatacouldbeobtainedaboutthestructureof thenetworks(seetable5.5).

The“stripping” procedurecanbeautomatedin thefollowing way. Firstall thenon-functional
connectionsareremoved,suchastheB-connectionof a functionA. Then,the“obvious” house-
keepinggenesALL1 andALL0 aresearched.Theconnectionsfanningout from thesefunctions
aretracked down. A function suchasxB with the A connectionconstantlyturnedon is setto
0. In this way a secondlevel of housekeepinggenes hasbeenfound. Theprocedureis repeated
until nomorehousekeepinggenesarefound.

6.4 Caveatsof the fitnesscriterion:

Optional division led to faster creatures

In adifferentversionof themodelthegeneticnetworkscouldcontrolwhetherthey woulddivide
or not. This wasachievedasfollowing: at each“division signal” only thecellsdividedthathad
their socalleddivisionbit set.

Initially to ourastonishmentrepeatedlythemetazoancellsevolvedthehabitof only dividing
only a limited numnerof times.Thedivision bit wasinvolvedin thestatecycle suchthat it was
only turnedon oncein a few timesteps.

It is quiteeasyto seewhy thisstrategy evolves.In theevolutionarysimulationsabeastis able
to reproduceassoonasit hasfinishedits development.In thedevelopmentalsimulationsbeasts
with fewercellsconsumelesscomputertime. Hence,wewereconfrontedwith some“goodold”
evolutionarydynamics:fasterreproductionleadsto moreoffspring.



Chapter 7

Futur ework

7.1 Buggy “atol” suggeststo include chemotaxis

On errors and ideas

In somecasesthemostinterestingscientificresultsareproducedby stupidmistakes.Famousis
theexampleof theslobbyAlexanderFlemingwhodiscoveredtheantibioticpenicillin ononeof
thedirty petridisheshehadleft rotting in thesink for severalweeks.

In the constructionof the paradigmsystemof metazoandevelopmentthe mostspectacular
exampleof metazoandevelopmentappearedto beproducedby a logical error in thealgorithm
determiningthevalueof theenergy bondbetweentwo cellshaving adifferentstatevector.

The bug

Thephenomeof this organismis shown in figure7.1. Interestingly, it shows considerablemor-
phogeneticmovementsresultingin anoblongshape,andthis wasall — accordingto our ideas
at thatmoment— producedby energy minimisation.

Thelogical errorthatproducedthis interestingphenotypewasthefollowing. Thealgorithm
computingtheenergy bondbetweentwo cells, takesthestatevectorof both cells,mirrors one
of them and takes the AND of thesetwo vectors. The resultingvector, the “match vector”,
representsthematching“key-lock” pairs.Themorekey-lock pairs,thehighertheenergy bond.
The logical error was that the right handfive bits wherenot mirrored. Instead,the bits were
ORedpairwise,the10thwith the9th, the8thwith the7th,etcetera.It is easyto seenow (but not
before)thattheconsequenceof this procedureis thattheoutcomedependson whetherthestate
vectorof thefirst cell or thestatevectorof thesecondcell is mirrored.

In thepresentmodel,thelogicalORof theright handfivebitsandthemirroredleft handfive
bits givestheenergy bondbetweentwo cells.

During every cellularautomata(CA) updateonly theneededenergy bondvalueswerecom-
puted. Thesewerestoredin a symmetricalmatrix, so that the energy bondbetweentwo cells
neededto be calculatedonly oncea time step. Sinceit matteredwhetherthe bondbetweenA
andB or thebondbetweenB andA wascalculated,in someCA updatesthehighervaluewas
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(a)Age: 7000timesteps(128cells) (b) Age: 19000timesteps(128cells)

Figure7.1: Theoblongshapeof thisorganismwasascribedto energy minimization.However, it
appearedto bedueto abug, thatinadvertly introducedchemotaxis-likeprocessesin themodel.
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usedandin someCA updatesthe lower valuewasused.This would meanthat the interesting
morphologyof the“atol” wasproducedby “trembling” energy bonds.Experimentshowever in
which theenergy bondswerechosenat randombetweenthehigherandthelowervalue,showed
thatin this casetheoblongmorphologycompletelydisappeared.

Thesolutionto theproblemappearedto bequitesimple. If two sitesarepickedup from the
CA plane,andit is testedwhetherthe first site’s stateshouldbe copiedin the secondsite, the
energy bondbetweenthetwo cellsto which thesitesbelong,is calculatedif it is unknown.

As a result,every first copuingstepbetweentwo cells is biased.If
	&��� �þ� ��ÿ

and
	���� � � �

a first copy from cell B into A will alwaysusethelower value,andvice versa.As a result,B is
copiedslightly moreofteninto A thanA is copiedinto B.

Interestingly, asa resultof this bug, chemotaxishasbeenintroduced.In this casecell B is
attractedby cell A.

The idea: “chemotaxis”

After thefirst disappointmentthatthe“atol” morphologywasaresultof thebugdescribedabove,
PaulienHogeweg cameup with thefollowing idea:includechemotaxisin theparadigmsystem.

Chemotaxisis nicely modelledin the Glazier andGranermodel [17] using the extension
constructedby [37]. In this extension,cellshave a slightly highercopying probability in thedi-
rectionof thegradientandaslightly lowercopying probabilityagainstthegradient.Thegradient
is modelledin a PDElayer.

It is proposedherethat thecells shouldbe ableto producea metabolite.This metabolieis
“excreted”by thecellsand“dif fuses”in thePDE layer. At thesametime, cellsare“allowed”
to evolve the possibility to usethis metaboliteasa chemoattractant.They mayalsouseit asa
signallingmolecule.In this waydiffusingsignalsareincludedin themodelaswell.

Thecellsmayproducechemoattractantsandreactto themin two ways.
As afirst try, themetaboliteswill beexcretedif oneof thebitsof theBooleannetwork is set.

Thecellswill beattractedto themetaboliteswheneveranotherbit, the“receptor”,is set.
If the resultsof theseexperimentsarepromising,it might be a good idea to proceedto a

moredramaticalchangeof themodel. In this ideathe work of professorKaneko [27] on isol-
ogousdiversificationwill becombinedwith the work presentedin this paper. In this work the
geneticnetworks of cells aremodelledasmetaboliccontinuousnetworks. As a first try, some
metabolitesmaydiffuseinto themediumandfrom themediuminto othercellsthrougha selec-
tivemembrane.This will allow thecellsto communicateusingdiffusivesignals.Later, thecells
will be attractedalongmetabolitegradientsfrom othercells, againonly if the cells possessa
“receptor”metabolite.

In this paradigmsystem,it will be not only possibleto studyhow patterningandcellular
diversificationprocessesareguidedby thegenomeandhow they evolve,but alsohow thedevel-
opmentof complicatedmorphologiesis directedby theinformationstoredin thegenome.
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