
Active Queue Management

and Global Fairness Objectives

Xudong Wu Ioanis Nikolaidis
Computing Science Department

University of Alberta
Edmonton, Alberta T6G 2E8, Canada
{xudong, yannis}@cs.ualberta.ca

December 2002

Abstract
We present an Active Queue Management policy and we study its ability to steer an entire

TCP/IP network into global max–min fairness of its long–lived flows, in a totally distributed
fashion. A previously proposed technique, initially applicable to circuit–switched networks and
feedback–based flow control networks is adapted to the realities of packet–switching and TCP
flow/congestion control, together with a per–hop policy, called FairShare. The proposed solu-
tion is evaluated using several example topologies, including linear, loop, and irregular topologies
as well as dynamic load fluctuations.
Keywords: TCP, Global Max–Min Fairness, Connection Lifetime, Router Policies, Active
Queue Management.

1 Introduction

One aspect of determining the value of Active Queue Management (AQM) schemes is determining

if they satisfy certain end–to–end performance objectives. However, the performance of AQM

schemes is often studied in settings of a single bottleneck link. While this is acceptable as a

baseline case, and indeed appropriate (after all most AQM schemes do not take any action, e.g.,

packet drops, unless a link is congested and queues build up) it is far from sufficient. For example,

it is completely unknown whether applying the particular AQM on all nodes can lead the network

to a specific operating point. The existence of such an operating point, as well any features that

it may exhibit, are unknown. Inversely, if a certain operating point for the network is desirable by

a network operator, it is not at all clear if a particular AQM scheme can achieve it. It has to be

1

1 INTRODUCTION 2

underlined that the particulars of such an operating point cannot be arbitrary. For example, an

operator may have an incentive to drive the operating point of an entire network to be such that

the flows of customers in its own network obtain the lion’s share of available bandwidth. Clearly,

the coexistence of multiple operators will be much better facilitated, if it is known that by using the

same AQM scheme on all nodes, the resulting operating point would not give an unfair advantage

to any particular flow. Thus, the idea of making sure that the collective operation of AQM leads

to a particular globally “fair” operating point is important and forms the basis of this paper. We

narrow our focus on how a particular AQM scheme that we proposed in earlier studies, FairShare

[3], and which achieves max–min fairness on a single link, can be extend, using elements of Anna

Charny’s earlier work [9], to achieve global max–min fairness.

The attention to long–lived flows in particular comes from the studied impact that long–lived

flows have on the Internet. Specifically, studies of Internet traffic [1, 2, 4] indicate that the lifetime

distribution of TCP connections is heavy-tailed. That is, a non-negligible fraction of TCP flows

exhibit long lifetimes and accounts for a substantial volume of the total carried traffic. In order

to constraint the impact of long-lived on short-lived TCP flows, several DiffServ-like classification

schemes [2, 3, 4, 5] have been proposed. Previously, we proposed AQM policies based on connection

lifetime classification [3, 4, 5]. In our set of control policies, different control mechanisms are imposed

on the two classes (short- and long-lived) and the bandwidth for aggregated short-lived TCP flows is

dynamically allocated [4]. FairShare is applied on the long–lived flows, while the rest of the flows,

being short–lived flows, are sensitive to the instantaneous bandwidth availability rather than its

long–term statistics. Therefore, we take a view according to which, fairness makes sense for long–

lived flows while response time1 makes sense for short–lived flows. Indeed, most short–lived flows,

1We define response of a TCP connection, as the total time necessary for a connection to deliver reliably all its
data (retransmissions included).

1 INTRODUCTION 3

are predominantly HTTP requests and responses, hence quick turnaround time is of the essence. We

have addressed the benefits of lifetime–based separation of flows in a previous study [5] and noted

the improvement of the short–lived flow response time if their demand is being measured on–line

(essentially the frequency of SYN requests) and appropriate dynamic allocation of bandwidth is

performed in a Weighted Fair Queueing (WFQ) scheduler. In this paper we address the second

major aspect of lifetime classification, the network-wide performance guarantees (namely fairness)

on long–lived flows. We will therefore tacitly assume that each router is, at least, minimally able

to schedule two classes of traffic according to WFQ, with quasi-static per-class weights. In this

paper we deal with the flows in one of the two classes (the long–lived class) and how to force them

to reach global max–min fairness.

We should note from the outset that the higher complexity of FairShare as applied to long–

lived flows is amortized by the small overall number of long–lived flows present in a network at

any point in time. Technically, we assume that all flows, when first starting, are short–lived. It

is only after they last for a particular amount of time that they are upgraded to long-lived flows.

Due to the features of the Pareto distribution, which accurately captures the lifetime distribution

of TCP flows, a flow that has lasted for a certain (long) period of time is very likely to survive for

a longer period of time. Few flows transit from being considered short–lived to being considered

long–lived. Hence, per-flow control for such a small subset of flows becomes reasonable. We also

believe that the AQM described here is a reasonable substitute for RED [6]. RED is a well-know

and heavily studied policy that uses difficult to tune parameters and presents questionable stability

properties [7]. However, before we claim our set of policies as a success, further research work is

necessary. First, there is a need to understand the efficiency of FairShare policy in a large network.

Specifically, we would like to determine the minimum information exchange necessary to enforce

global max-min fairness using FairShare. Second, we would like to study the stability properties

1 INTRODUCTION 4

of FairShare policy in large networks, where possibly multiple bottlenecks are present along a path

from a source to a destination. In this paper, we attack these two problems from an experimental

view on simulated network configurations.

Of particular interest is the question of throughput convergence. We note that essentially no

current AQM proposal exists that provably converges when deployed on realistic network topology

(even in the absence of dramatic traffic demand fluctuations). In [7], RED was studied in a testbed

which consisted of two CISCO routers and 16 PCs under the traffic load made of FTP traffic, HTTP

traffic and UDP traffic. The research results showed that RED deployment does not improve the

overall performance of network. Moreover, the study also showed parameter tuning in RED has no

significant impact on the end-to-end performance. More qualitative analysis on AQM policy like

RED was suggested before the universal deployment. In general, the main challenge of the analysis

is the sheer complexity that is caused by the interaction of different components of the network, the

incomplete information and the heterogeneity of the system. To the already complicated behavior

of the end-to-end dynamics, AQM introduces a non-negligible impact from the router policies that

are different than traditional First-Come-First-Served (FCFS). To cope with the complexity, we

plan to extend the techniques used in [8, 9], which were used to demonstrate convergence of a policy

to the optimal value regardless of initial conditions. The basic idea is to explicitly calculate the

optimal value of rates for each long-lived flow and to determine if FairShare does indeed achieve

this desired target.

What should be emphasized about the use of FairShare is the fact that, together with the

totally distributed control for max–min fairness, it does not require complicated parameter tuning.

Therefore, unlike schemes like RED whose ability to properly control flows lies in their accurate

parameterization, the presented scheme controls all aspects of its behavior via self–contained mea-

surement and control without user/operator intervention. To our knowledge, it is the first time that

2 THE FAIRSHARE SCHEME 5

an AQM scheme is both capable of reaching a global objective as far as the TCP flow performance

goes, and avoids the need for external parameterization of its operation.

2 The FairShare Scheme

TCP unfairness rooted in the different round–trip time (RTT) values of different TCP flows has

been identified a decade ago, but has yet to be solved in a satisfactory manor. Due to the different

RTT of TCP flows, not all TCP flows sharing the same congested link receive the implicit congestion

signals in DropTail policy. And even if they receive the signals at the same time, they react with

a different speed. Thus, TCP flows with shorter RTT gain bandwidth more than their fair share.

Random Early Detection (RED) was proposed as a policy to solve the problem. The essence of

RED is that although not all of TCP flows will receive congestion signals at the same time, the

TCP flows with more packets stored in the buffer are more likely to receive such congestion signal.

However, our simulation shows that RED is far from being sufficient to ensure fairness. In Figure

1, we observe that when we compare the relative throughput of two otherwise indistinguishable

TCP flows competing for the bandwidth of a congested link (the link bandwidth in the example

is 100 packets per second) the ratio of the RTTs between the two flows influences the received

throughput. RED improves the situation but does not correct it.

FairShare policy is proposed to solve the fairness problem of long-lived TCP flows. Essentially,

FairShare is a model–based per-flow management policy that regulates individual TCP flows via

scheduled losses. The steady congestion window behavior of a single isolated TCP-Reno flow is

depicted in (Figure 2). The relationship between the peak value of window, W, and the long term

average value W′ can be represented by the equation: W′ = 3W
4 or W = 4W′

3 . Thus, with the external

information of RTT, once we know the expected rate for a TCP flow, we can convert the average

2 THE FAIRSHARE SCHEME 6

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10

T
hr

ou
gh

pu
t R

at
io

 (
Fl

ow
 1

 /F
lo

w
 0

)

RTT Ratio (Flow 1/Fow 0)

(a) DropTail

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10

T
hr

ou
gh

pu
t R

at
io

 (
Fl

ow
 1

 /F
lo

w
 0

)

RTT Ratio (Flow 1/Fow 0)

(b) RED

Figure 1: Comparison of the ratio of throughput achieved under, (a) DropTail and, (b), RED, of
two TCP flows. The RTT of one flow is fixed at 100 msec, while the other varies from 100 msec to
1 sec.

W/2

Congestion Window

Time (RTT)

W

Figure 2: Example of the steady state congestion window behavior of TCP–Reno.

window value to the peak value and impose a packet loss whenever the observed congestion window

exceeds the peak value. Isolation of TCP flows is guaranteed by assigning a single sub-queue for

each competing TCP flow.

The algorithm of FairShare is described in three component schemes: the one that identify

long-lived flows (Figure 3), the scheme that detects the demand (Figure 4) and the one that imposes

the target rate (Figure 5). As we can see in init long flow (Figure 3), a TCP flow starting to

send data through the router is initially assumed to be short lived and competes with the rest of

2 THE FAIRSHARE SCHEME 7

init long flow(p):

1. rtti ← rttlookup(p.src, p.dst);
2. counti ← p.size;
3. demandi ← CL-TCP

l ;
4. share ← maxmin(demand,CL-TCP

l);
5. flagi ← FALSE;
6. dropeventi ← 0;
7. tick();

Figure 3: The init long flow() function.

the short–lived flows in the bandwidth pool for short-lived TCP flows, CS-TCP
l . After a period of

time, if the flow is still active, it is upgraded to long lived and entered into competition with the

rest of the long lived flows, in the bandwidth pool for long-lived TCP flows, CL-TCP
l .

In our study, TCP flows are not necessarily greedy. However, because both the existence of

a remote bottleneck, as well as transitions of the flow from greedy to less active (or completely

inactive) need to be tracked. In tick (Figure 4), the average rate of a particular TCP flow is

monitored using an exponentially damped moving average estimator (line 10). That is, we produce

two metrics: a measured rate over the last RTT (line 3), and an average rate over the recent past

(line 10). The rate over the last RTT is the basis of the window size estimator, and hence, of

the instance of dropping a packet as per the loss control algorithm. The average rate, instead,

is used to infer the current level of demands. All greedy flows get exactly fair allocation of link

capacity. Due to observed low demand caused by either the bottleneck of remote nodes or less

active of a particular flow, unused bandwidth of a flow’s allocation will be allocated to the rest of

the competing flows on the basis of max-min fairness.

Finally, function upon packet arrival (Figure 5) is the substance of operations taking place

when a packet of flow i arrives. The only decision taken is whether the packet ought to be

enqueued or dropped. Dropping the packet is a decision based on (a) whether the tick function

2 THE FAIRSHARE SCHEME 8

tick():

1. while (1)
2. m← counti / rtti;
3. counti ← 0;
4. if (sharei < demandi and

m > avg2peak(sharei)) then
5. flagi ← TRUE;
6. else
7. flagi ← FALSE;
8. endif
9. demandi ← m · β + demandi·(1− β)
10. if (

∑
i demandi > CL-TCP

l) then
11. share ← maxmin(demand,CL-TCP

l) ;
12. endif
13. sleep(rtti) ;
14. endwhile

Figure 4: The tick() function.

has determined it is time to do so, and (b) if enough time has elapsed since the last drop, because,

otherwise, repeated losses within an RTT time would likely force the TCP flow to timeout and its

throughput deteriorate substantially.

In summary, FairShare is a scheme which employs measurement of the packet arrival rate of

TCP flows in order to determine the flow demands. If the demand is higher than the fair share

alloted to the flow as per the utilized fairness criterion (hereby assumed max–min fairness) it inflicts

losses on the flow in order to force the long-term throughput of the TCP flow to the particular

alloted value. The relation of losses inflicted and long-term throughput of the corresponding flow

is established through the use of a model which analytically captures the cause–and–effect relation

between loss rate and window size, and hence loss rate and throughput of a single TCP flow.

3 RTT ESTIMATION 9

upon packet arrival(p):

1. now ← time();
2. if (flagi and dropeventi+rtti < now) then
3. dropeventi ← now;
4. drop(p);
5. else
6. counti ← counti + p.size;
7. enqueue(p);
8. endif

Figure 5: The upon packet arrival() function.

3 RTT Estimation

A necessary ingredient of FairShare is the mechanism that allows the prompt estimation of a flow’s

RTT. We do this based on short-term sampling in the beginning stages of a flow. When a TCP

connection starts, the so called three way handshake takes place. First, the client send a packet

with SYN flag set. The server responds with a packets with ACK and SYN set. And then the client

responds with an ACK packet. Data packets are to be transferred after handshake. To terminate

a flow, the client sends a FIN packet. The server sends an ACK followed by a FIN packet. The

client responds with a FIN packet. The handshake protocol of establishing a new TCP connection

is described in (Figure 6).

The traditional method of measuring RTT utilizes the standard “ping” utility to collect long-

term statistics. Apart from that, TCP protocol itself makes an estimation of RTT at source

nodes. In order to constrain the overhead of operation and keep the semantic of TCP protocol,

both methods are undesirable. However, the above methods are not applicable in our situation.

We hope that edge routers performing classification have the capability of extracting the RTT

information by observing arrival packet sequences through thyself on-the-fly.

We extract the information of RTT by studying the interval between first few packets of a TCP

4 A DISTRIBUTED ALGORITHM FOR GLOBAL FAIRNESS 10

SOURCE DESTINATION

3-Way SYN −→
Handshake ←− SYN/ACK

ACK −→

DATA ACK ←→ ACK

Termination FIN −→
←− ACK
←− FIN

ACK −→

Figure 6: TCP Handshake

flow. The first sample of RTT is the interval between SYN and ACK of three way handshake. The

second sample come from the interval of last packet of three way handshake and the data packet of

the first data packet. And the interval between the first data packet and the second data packet is

the third sample of RTT. The technique of extracting RTT information is similar to those proposed

in [11]. We use the minimum value of three RTT samples as the estimate of RTT for this TCP flow.

With the measurement methodology mentioned, we analyzed RTT spectrum and distribution from

the traces. Since RTT is essentially a dynamic parameter affected by queueing delay, we argue that

the instantaneous RTT we measured is a low cost estimation with decent accuracy. The accuracy

of similar passive RTT measuring technique is analyzed in [11].

4 A Distributed Algorithm for Global Fairness

Rigorous analysis of global fairness and distributed algorithms to achieve it were extensively studied

in [9]. For a large network configuration with multiple bottleneck links and multiple flows, a feasible

set of flow rate allocation satisfies two conditions: First, the allocated bandwidth for any flow is a

non-negative number. Second, for any link in the network and the flows passing through the link,

4 A DISTRIBUTED ALGORITHM FOR GLOBAL FAIRNESS 11

find global optimal rates:

1. Identifying the first level bottleneck link L, that is, the most congested link
because of the small bandwidth or more flows passing through or both.

2. Applying local max-min fairness criteria on the flows passing through L.
3. Marking the flows passing through L as flows with limited demands calculated in the last step.
4. Adjusting the capacity of links which are passed by such flows.

The new available capacity is the remaining after taking out the already
allocated from the original capacity.

5. Repeating from step 1 until all flows are marked with some rates.

Figure 7: The find global optimal rates procedure.

the sum of allocated bandwidth for these flows is smaller than the capacity of Li. A global max–min

fair allocation is a feasible allocation that maximizes the smallest element(s)/allocation(s) subject

to the capacity constraints. Naturally certain exogenous constraints are also present, namely the

ones on which path is used between each source–destination pair. However, the calculation of the

paths is left outside the scope of this paper, and it is normally expected to be the task of a, separate,

routing algorithm.

In [9], a procedure of finding global optimal rates for all flows was presented (Figure 7). The

algorithm is better understood in its centralized form, where global information and synchronous

operation of components in the network is needed. We will extend it to the distributed case in the

next paragraph. All flows are assumed to be greedy, that is their demands are not bounded and

in principle they can utilize as much bandwidth one may care to assign to them2 The procedure

illustrated in [9] terminates after a limited number of iterations. It is summarized in Figure 7.

Distributed algorithms achieving global rates were discussed in [9]. Basically, such algorithms

emulate the procedure (Figure 7) in a distributed, asynchronous way. In distributed algorithms,

2Technically, no flow can exceed the rate of the access link rate from which the traffic is injected into the network.
Thus, real systems include always flows with bounded demands.

4 A DISTRIBUTED ALGORITHM FOR GLOBAL FAIRNESS 12

the global information is acquired via feedback mechanism. It is observed that in order to calculate

the fair allocation, a link needs to know only about the rates of the flows traversing it. In [9] the

estimated allocation for the flows is carried back to the sources nodes somehow, such as piggybacking

in data packets explicitly. Furthermore, each link asynchronously calculates and maintains the

estimated rate for each flow an advertised rate according to the local max–min fairness criteria.

With the feedback mechanism mentioned above, advertised rates for the same flow at multiple links

along the path of the flow are summarized at the sources node. The source node injects data at

the stamped rate, which is the minimum of all the advertised rates it received on the path. The

link that corresponds to the minimum advertised rate is the bottleneck for the particular flow. In

addition, the link maintains a recorded rate for each flow, which is the measured rate within the

recent past. For all flows passing through a particular link, the recorded rate should be close to

the advertised rate. This is the concept called M-consistency, which is crucial for the stability for

the distributed algorithm. Anytime after M-consistency is violated, the advertised rate for all flows

should be re-calculated. [9] proved such distributed algorithm converges to global optimum within

an upper bound of time.

We use the same concepts as in [9] but we translate them to the abilities of the FairShare

policy. First, we note that the TCP congestion avoidance algorithm is a feedback mechanism.

Any loss along the path will be sent back to the source node and cause the reduction of sending

rate. With such mechanism, the sending rate of a TCP is determined by the link on which the

bandwidth it receives is the smallest. This is the point of the bottleneck, accumulation of the

queue, and eventual loss. When FairShare policy is deployed in the network, it imposes a link-

wide ”local” max-min fairness. The max-min rate for each flow (“advertised” rate) is calculated

and imposed by the scheduled losses on per-flow basis. When a TCP flow goes through multiple

FairShare links, its sending rate is determined by the smallest “advertised” rate along its path.

5 SIMULATION STUDY 13

We note that by identifying a flow as ”bottlenecked elsewhere” FairShare avoids victimizing a

flow multiple times across its path, it lets the FairShare instance on the bottleneck link (from

the perspective of a flow) to be the only instance that will inflict losses on the flow. Apart from

the scheduled loss mechanism, the FairShare policy also measures the delivering history of each

past flow (capturing the “recorded” rate aspect). When the difference between the measured rate

(“recorded” rate) and the expected max-min rate (“advertised” rate) exceeds a certain level (or

M-consistency is violated), the FairShare policy will re-calculates the rate allocation according to

max–min fairness.

5 Simulation Study

The performance of FairShare policy in small network environments is presented in [3]. The

experiments in this section demonstrate that FairShare allows flows to adapt quickly to the changes

of network load caused by the arrival of new (and termination of old) flows and by the variation

in the demands of flows. Different network topologies are considered. The simulation experiments

are conducted using ns–2 [10].

5.0.1 Experiment 1

In the first set of experiments, we investigate the impact of the bottleneck location on the perfor-

mance of FairShare, assuming linear topology with multiple hops. The topology is depicted in

Figure 8(a), which consists of eight source nodes, eight sink nodes and three router nodes. Eight

TCP Reno flows are initiated from eight pairs of source and sink nodes. The bandwidth of link

between router nodes are 200 packets/sec with delay of 50ms. In the first scenario, all eight flows

are congested at the link r1-r2, while they are congested at the link r2-r3 in the second scenario

(Figure 9(a)).

5 SIMULATION STUDY 14

r2r1

s2
s3

s4

k2k1
k3

k4

k5

k6
k7

s8

0ms0ms

s1

200PKT/s200 PKT/s

50ms r350ms

s6
s7

s5

k8

(a) Topology

0

10

20

30

40

50

60

50 100 150 200 250 300

T
hr

ou
gh

pu
t (

PK
T

/s
)

Simulation Time (s)

Flow1
Flow2
Flow3
Flow4
Flow5
Flow6
Flow7
Flow8

Throughput

(b) Goodput

Figure 8: Linear topology. Scenario 1.

In both scenarios, the max-min rates of eight flows is expected to be 25. The throughput in

both scenarios is plotted in Figures 8(b) and 9(b). The average goodputs are summarized in Table

1. We note that in the first scenario the bottleneck is the r1-r2 link, while in the second it is the

r2-r3 link. The performance of our proposed FairShare policy does not appear to be affected by

the location of the congestion spot along the path from source to destination.

Scenario F1 F2 F3 F4 F5 F6 F7 F8
1 25.01 24.99 24.93 24.93 24.99 25.03 25.08 24.94
2 25.04 25.03 24.96 24.99 24.92 25.06 25.03 24.97

Table 1: Goodput of the eight flows in the linear topology scenarios.

5.0.2 Experiment 2

Our second set of experiments are conducted in the loop topology depicted in Figure 10(a). Four

router nodes, r1, r2, r3 and r4, form a loop. The links between router nodes are with capacity of

100 packets/sec and the delay of 10ms. Four TCP Reno flows, F1, F2, F3, and F4, are initiated

5 SIMULATION STUDY 15

r2r1

s2
s3

k2k1
k3

k4

k5

0ms

s1

200 PKT/s
200PKT/s

50ms50ms r3
0ms

s4

s5

s6

s7 s8 k8
k7

k6

(a) Topology

0

10

20

30

40

50

60

50 100 150 200 250 300

T
hr

ou
gh

pu
t (

PK
T

/s
)

Simulation Time (s)

Stamped Rate

Flow1
Flow2
Flow3
Flow4
Flow5
Flow6
Flow7
Flow8

(b) Goodput

Figure 9: Linear topology. Scenario 2.

between the correspondent pair of source node and sink node respectively. The detailed paths for

each flow are given in Table 2.

F4

r3

r4

k4

s2

k1

s1

F2

F3

s4

k2

s3

F1

r1

r2

k3

(a) Loop Topology

Flow 1 transits
to non−greedy

to non−greedy
Flow 3 transits

Flow 1 transits
to greedy

Flow 3 transits
to greedy

0

20

40

60

80

100

40 60 80 100 120 140

Pk
ts

/s
ec

sec

Goodput of Flows with FairShare

Flow1
Flow2
Flow3
Flow4

(b) Goodput

Figure 10: Fairness between TCP Reno flows with limited demands.

In the experiments, we investigate the performance of our proposed FairShare policy in dy-

namic environment. That is, the demands of some flows change in the process of experiments. The

unit of time is presented in seconds. Specifically, flow 2 and 4 are always greedy, that is, they have

5 SIMULATION STUDY 16

Flow ID Path Description
F1 s1→r1→r2→r3→k1
F2 s2→r2→r3→r4→k2
F3 s3→r3→r4→r1→k3
F4 s4→r4→r1→r2→k4

Table 2: Detailed paths of the flows in the loop topology scenario.

infinite demands during the whole period of the simulation. Flow 1 is greedy from 0. At time

60, it switches to limited demands, that is 10 packets/sec. And finally, it resumes to be greedy at

100. In the similar transition process of flow 1, flow 3 transits to the status of limited demands (20

packets/sec) at time 70 and resumes to be greedy at time 110. All flows are associated with the

same propagation delay (40ms).

The throughput of flows is depicted in Figure 10(b). Before time 60, due to the uniform

bottlenecks, every flow gets the same bandwidth, that is, 50 packets/sec. At time 60 , the demand

of flow 1 drops to 10 packets/sec. The link r4-r1 and the link r3-r4 become first level bottleneck

links. Consequently, flow 3 equally share the capacity of r4-r1 and r3-r4 with flow 4 and flow 2

separately, 50 packets/sec each. The max-min rates of flow[1-4] are 10, 50, 50, and 50, respectively.

Then at time 70, the demand of flow 3 drops to 20 packets/s and the deadlock is broken.

Bounded by r4-r1 and r3-r4, the throughput of flow 4 and flow 1 switch 80 packets/sec. The max-

min rates of flow[1-4] are 10, 80,20, and 80, respectively. At time 100, flow 1 resumes to being

greedy. The first level bottlenecks are r1-r2 and r2-r3. The max-min rates of flow[1-4] are 50, 50,

20, and 50, respectively. Finally, flow 3 resumes greedy at time 110. The evolution of the max-min

rates is illustrated in Table 3. Figure 10(b) shows that with FairShare policy, flows determine and

stabilize at the max-min rates in a dynamic environment with loop topology.

5 SIMULATION STUDY 17

Flow ID Phase I Phase II Phase III Phase IV Phase V
F1 50 10 10 50 50
F2 50 50 80 50 50
F3 50 50 20 20 50
F4 50 50 80 50 50

Table 3: The evolution of max-min rates in loop topology.

5.0.3 Experiment 3

In the third set of experiments, we investigate the impact of a disturbing flow on the performance

of FairShare. The topology (Figure 11(a)) is similar with that of previous experiments (Figure

10(a)), except a disturbing flow 5 share link r2-r3 with flow 1 and 2. With the presence of the flow

5, link r2-r3 becomes the first level bottleneck, while link r4-r1 is the second level bottleneck.

In the experiments, the demands of flow 5 increase from 0 to 50. As it is shown in Figure 11(b),

when the demands of flow 5 is smaller than 33.33, the goodput of flow 5 achieves its demands, while

flow 1 and 2 split the remaining capacity equally. As the demand of flow 5 is larger than 33.33,

flow 1,2 and 5 share the capacity of link r2-r3 equally. In both scenario, flow 3 and 4 are bounded

by the second level bottleneck, link r4-r1. In summary, with FairShare policy flows detect the

bottlenecks of different levels and achieve the max-min rates consistently.

5.1 Experiment 4

In the last experiment we conducted simulations with the most sophisticated configurations studied

in Anna Charny’s work [9] . The topology and the capacities of links are shown in Figure 12(a).

Like the corresponding study in [9], the object of this experiment is to investigate the response of

our algorithm to dynamic changes in a sophisticated distributed environment. The applications

associated with flows are of ftp style, that is, the applications always have data to deliver as long

as the flows are active. The unit of time is presented in seconds and the throughput is presented

5 SIMULATION STUDY 18

F4
r1

r3

r2r4

k1

s1

s2

s5

F2

k5
s3

F3

k3

F1Secondary bottleneck

s4

k2

k4

F5
Disturbing Flow

Primary bottleneck

(a) Loop topology with a disturbing flow

Throughput of the disturbing flow

33.33

50

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t o

f
Fl

ow
s

(P
K

T
S/

s)

Demands of Flow 5 (PKTS/s)

Bottleneck Detection

Flow1
Flow2
Flow3
Flow4
Flow5

(b) Goodput

Figure 11: Fairness between TCP Reno flows with limited demands.

in packets per second.

In this experiment, three levels of bottleneck links are presented. In the simulation, all five

flows start at time 0 (Phase I). Transient portion of traces (0 - 30) are removed. In this Phase,

flow 2, 3 and 4 share the first-level bottleneck link of 5 (r4-r6). Flow 1 is bottlenecked by link 1

(r1-r2). And flow 5 is bottlenecked by link 4 (s5-r4). Thus, the expected rates of flow[1-5] by global

max-min fairness standard are as follows: 40, 20,20,20, and 60, respectively.

Then flow 3 terminates at time 100 (Phase II). Flow 2 and 4 share bottleneck 5 (r4-r6) equally.

Like the previous phase, flow 1 is bounded by link 1 (r1-r2), and flow 5 is bounded by link 4

(s5-r4). As the result, the expected max-min rates of flow[1-5] are as follows: 30, 30,0,30, and 60,

respectively.

At time 150, flow 1 and 2 also terminate (Phase III). In this phase, only two flows, 4 and 5, are

active. Consequently, flow 4 is bounded by link 5 (r4-r6) and flow 5 is bounded by link 4 (s5-r4).

The max-min rates for flow[1-5] are 0,0,0,60, and 60, respectively.

Finally, flow 1 resumes at time 200 (Phase IV). In this phase, the bottleneck links are link

5 SIMULATION STUDY 19

3 (r3-r4) shared by flow 1 and 4, and link 6 (r4-r5) shared by flow 1 and 5. Consequently, the

max-min rates for flow[1-5] are 50, 0, 0, 50, and 50, respectively.

In Table 4, the status of flows, the expected (analytically) max-mix rates of flows, and the

measured goodputs of lows are given. Figure 12(b) shows that with our FairShare, all flows

quickly determine and stabilize at their max-min share.

(30s - 100s) PHASE I
Flow ID Operate Expected Goodput Measured Goodput

F1 YES 40 39.40
F2 YES 20 19.80
F3 YES 20 20.20
F4 YES 20 20.11
F5 YES 60 58.98

(100s - 150s) PHASE II
F1 YES 30 29.19
F2 YES 30 30.77
F3 NO - -
F4 YES 30 29.10
F5 YES 60 59.99

(150s - 200s) PHASE III
F1 NO - -
F2 NO - -
F3 NO - -
F4 YES 60 60.00
F5 YES 60 60.00

(150s - 200s) PHASE IV
F1 YES 50 49.19
F2 NO - -
F3 NO - -
F4 YES 50 50.70
F5 YES 50 50.82

Table 4: The performance of FairShare Policy in dynamic, complex distributed environment.

6 CONCLUSION 20

6 Conclusion

We have presented evidence of what we believe is the first time that an AQM scheme demonstrates

capabilities to predictably force the entire network into a fairness objective. The solution is the

synthesis of a per-link mechanism, in the guise of the FairShare algorithm, and a totally distributed

rate allocation algorithm which is an adaptation of [9]. Through simulation experiments, we have

shown the resulting AQM scheme converges to the optimal rates in various network configurations

and in dynamic load environments. The FairShare policy appears to be self-stabilizing in the

presence of dynamic network changes. The result of our investigation is crucial towards the practical

applicability of global control algorithms for TCP flows in realistic environments. Our future

research includes the combined global rate allocation algorithms for long–/short–lived TCP flows

and a closer look into the processing and hardware needs for the implementation of these algorithms.

References

[1] N. Brownlee and K.C. Claffy, “Understanding Internet Traffic Streams: Dragonflies and Tor-

toises,” submitted for publication (http://www.caida.org/outreach/papers/2002/Dragonflies/).

[2] L. Guo and I. Matta, “The War Between Mice and Elephants,” Technical Report BU-CS-2001-

005, Computer Science Department, Boston University, May 2001.

[3] Xudong Wu and Ioanis Nikolaidis, “Sociable Elephants: Fairness Among Long Lived TCP

Flows,” Proc. of SPECTS 2002, pp 502-506, July 2002.

[4] Xudong Wu and Ioanis Nikolaidis, “A Dynamic Bandwidth Allocation Scheme Based on Life-

time Classification,” submitted for publication to ICC 2003, August 2002.

[5] Xudong Wu and Ioanis Nikolaidis, “On the Advantages of Lifetime and RTT Classification

Schemes for TCP Flows,” accepted for publication in IPCCC 2003, October 2002.

REFERENCES 21

[6] S. Floyd and V. Jacobson, “Random Early Detection Gateways for Congestion Avoidance,”

IEEE/ACM Trans. on Networking, 1(4):397–413, 1993.

[7] M. May, J. Bolot, C. Diot, and B. Lyles, “Reasons not to deploy RED,” Proc. of the IEEE/IFIP

International Workshop on Quality of Service (IWQoS’99), June 1999

[8] K.K. Ramakrishnan, R. Jain, and D.-M. Chiu, “Congestion Avoidance in Computer Networks

with a Connectionless Network Layer. Part IV: A Selective Binary Feedback Scheme for General

Topologies Methodology,” DEC-TR-510.

[9] Anna Charny, “An Algorithm for Rate Allocation in a Packet-Switching Network with Feed-

back,” Master Thesis for EECS&EE, MIT, 1994.

[10] UCB/LBNL/VINT Network simulator - ns (version 2), http://www-mash.cs.berkeley.edu/ns/

[11] H. Jiang and C. Dovrolis, “Passive Estimation of TCP Round-Trip Times”, ACM Computer

Communication Review, July, 2002

REFERENCES 22

s3 s4

r1

s5

100PKT/s

60
PK

T
/s

60
PK

T
/s

k3

r6

100 PKT/s 100PKT/s60PKT/s

s1 k1

k5

r5r4r3r2

s2

k2 k4

1 3

4

5

2 6

(a) Complex Topology

Flow 1 and 2 Stop
Flow 1 resumesFlow 3 Stops

0

20

40

60

80

100

50 100 150 200 250

T
hr

ou
gh

pu
t (

PK
T

s/
s)

Simulation Time

Throughput

Flow1
Flow2
Flow3
Flow4
Flow5

(b) Goodput

Figure 12: The most sophisticated configuration exploited by Anna Charny

