
EU-IST Integrated Project (IP) IST-2003-506826 SEKT

SEKT: Semantically Enabled Knowledge Technologies

D3.1.1.a KAON – Ontology
Management Infrastructure

Thomas Gabel, York Sure and Johanna Voelker
(Institute AIFB, University of Karlsruhe)

Acknowledgements to our colleagues at
FZI – Research Center for Information Technologies, Karlsruhe,

and at Institute AIFB, University of Karlsruhe,
for their support.

Abstract.
EU-IST Integrated Project (IP) IST-2003-506826 SEKT
Deliverable D3.1.1.a (WP3.1)
This document is an informal deliverable provided to SEKT partners. The main aim of this docu-
ment is to get partners quickly started with using the KAON Open Source ontology management
infrastructure. KAON consists of a number of different modules providing a broad bandwidth
of functionalities centered around creation, storage, retrieval, maintenance and application of on-
tologies. It was and currently is being further developed in a joint effort mainly by members
of the Institute AIFB at University of Karlsruhe and the FZI – Research Center for Information
Technologies, Karlsruhe.
Keyword list: KAON, Ontology Management

Copyright c© 2004 Institute AIFB, University of Karlsruhe

Document Id.
Project
Date
Distribution

SEKT/2004/D3.1.1.a/v1.0
SEKT EU-IST-2003-506826
March 26th, 2004
informal deliverable, project internal

SEKT Consortium

This document is part of a research project partially funded by the IST Programme of the Commission of the European
Communities as project number IST-2003-506826.

British Telecommunications plc.
Orion 5/12, Adastral Park
Ipswich IP5 3RE
UK
Tel: +44 1473 609583, Fax: +44 1473 609832
Contactperson: John Davies
E-mail: john.nj.davies@bt.com

Empolis GmbH
Europaallee 10
67657 Kaiserslautern
Germany
Tel: +49 631 303 5540, Fax: +49 631 303 5507
Contactperson: Ralph Traphöner
E-mail: ralph.traphoener@empolis.com

Jozef Stefan Institute
Jamova 39
1000 Ljubljana
Slovenia
Tel: +386 1 4773 778, Fax: +386 1 4251 038
Contactperson: Marko Grobelnik
E-mail: marko.grobelnik@ijs.si

University of Karlsruhe, Institute AIFB
Englerstr. 28
D-76128 Karlsruhe
Germany
Tel: +49 721 608 6592, Fax: +49 721 608 6580
Contactperson: York Sure
E-mail: sure@aifb.uni-karlsruhe.de

University of Sheffield
Department of Computer Science
Regent Court, 211 Portobello St.
Sheffield S1 4DP
UK
Tel: +44 114 222 1891, Fax: +44 114 222 1810
Contactperson: Hamish Cunningham
E-mail: hamish@dcs.shef.ac.uk

University of Innsbruck
Institute of Computer Science
Techikerstraße 13
6020 Innsbruck
Austria
Tel: +43 512 507 6475, Fax: +43 512 507 9872
Contactperson: Jos de Bruijn
E-mail: jos.de-bruijn@deri.ie

Intelligent Software Components S.A.
Francisca Delgado, 11 - 2
28108 Alcobendas
Madrid
Spain
Tel: +34 913 349 797, Fax: +49 34 913 349 799
Contactperson: Richard Benjamins
E-mail: rbenjamins@isoco.com

Kea-pro GmbH
Tal
6464 Springen
Switzerland
Tel: +41 41 879 00, Fax: 41 41 879 00 13
Contactperson: Tom Bösser
E-mail: tb@keapro.net

Ontoprise GmbH
Amalienbadstr. 36
76227 Karlsruhe
Germany
Tel: +49 721 50980912, Fax: +49 721 50980911
Contactperson: Hans-Peter Schnurr
E-mail: schnurr@ontoprise.de

Sirma AI EOOD (Ltd.)
135 Tsarigradsko Shose
Sofia 1784
Bulgaria
Tel: +359 2 9768, Fax: +359 2 9768 311
Contactperson: Atanas Kiryakov
E-mail: naso@sirma.bg

Vrije Universiteit Amsterdam (VUA)
Department of Computer Sciences
De Boelelaan 1081a
1081 HV Amsterdam
The Netherlands
Tel: +31 20 444 7731, Fax: +31 84 221 4294
Contactperson: Frank van Harmelen
E-mail: frank.van.harmelen@cs.vu.nl

Universitat Autonoma de Barcelona
Edifici B, Campus de la UAB
08193 Bellaterra (Cerdanyola del Vallès)
Barcelona
Spain
Tel: +34 93 581 22 35, Fax: +34 93 581 29 88
Contactperson: Pompeu Casanovas Romeu
E-mail: pompeu.casanovasquab.es

Changes

Version Date Author Changes

0.1 03.03.04 Thomas
Gabel

initial set-up

0.11 08.03.04 York Sure slight changes and some comments
0.15 10.03.04 Thomas

Gabel
added figures, engineering server and info on its in-
stallation

0.18 25.06.04 Johanna
Voelker

changes to description of KAON API and installation
of TextToOnto

Executive Summary

This document is an informal deliverable provided to SEKT partners. The main aim of this
document is to get partners quickly started with using the KAON Open Source ontology
management infrastructure. KAON consists of a number of different modules providing
a broad bandwidth of functionalities centered around creation, storage, retrieval, mainte-
nance and application of ontologies. It was and currently is being further developed in a
joint effort mainly by members of the Institute AIFB at University of Karlsruhe and the
FZI – Research Center for Information Technologies, Karlsruhe.

We will introduce the following components of and related to KAON:

• OI-Modeler (ontology editor)

• KAON API (programming interface for developers)

• KAON Engineering Server (server for distributed ontology engineering, to be
used in combination with OI-Modeler as front-end)

• TextToOnto (workbench for ontology learning from texts, feeds learned ontologies
into the OI-Modeler)

We will conclude with an outlook of future development trends. Finally, an overview
on download and installation information is presented in Appendix A. For interested
readers we provide numerous references to further existing publications.

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 KAON Overview . 3
1.3 Reader’s Guide . 6

2 Ontology Editor OI-Modeler 7
2.1 Create New OI-Model . 7
2.2 Add New Concept . 10
2.3 Add New Property . 11
2.4 Add New Instance . 13
2.5 Instantiate Properties . 13
2.6 Delete Concept . 15
2.7 Evolution Features . 15

2.7.1 Using Evolution Features . 16
2.7.2 Undo / Redo Functionality . 17

2.8 Inclusion of other OI-Models . 20
2.9 Querying and Searching . 20
2.10 Using the Clipboard . 21
2.11 Other Features . 22

3 KAON API Description 25
3.1 Overview . 25
3.2 Important Features . 26
3.3 Examples . 26

3.3.1 Select Implementation . 26
3.3.2 Create New OI-Model . 27
3.3.3 Open OI-Model . 28
3.3.4 Add New Concepts . 28
3.3.5 Add New Properties . 29
3.3.6 Instantiate Concepts . 30
3.3.7 Instantiate Properties . 31
3.3.8 Pose Queries . 31
3.3.9 Remove Concepts . 32

1

CONTENTS 2

3.3.10 Use Evolution Strategies . 33
3.3.11 Serialization . 33

4 KAON Engineering Server 35
4.1 Motivation . 35
4.2 Database Access . 36
4.3 Usage Scenario for the Engineering Server 37
4.4 Collaborative Ontology Engineering with the Engineering Server 38

5 TextToOnto 40
5.1 Overview . 40
5.2 Tools . 40

5.2.1 TaxoBuilder . 41
5.2.2 TermExtraction . 41
5.2.3 InstanceExtraction . 41
5.2.4 RelationExtraction . 42
5.2.5 RelationLearning . 43
5.2.6 OntologyComparison . 43
5.2.7 OntologyPruner . 44

6 Outlook 46

A Download & Installation 47
A.1 Download Overview . 47
A.2 Installation of KAON, its Workbench, and OI-Modeler 48
A.3 Installation of the Engineering Server 48

A.3.1 Direct Engineering Server . 48
A.3.2 Remote/Local Engineering Server 50

A.4 Installation of TextToOnto . 52

Chapter 1

Introduction

1.1 Motivation

This document is an informal deliverable provided to SEKT partners. The main aim of
this document is to get partners quickly started with using the Open Source ontology
management infrastructure KAON.

KAON consists of a number of different modules providing a broad bandwidth of
functionalities centered around creation, storage, retrieval, maintenance and applica-
tion of ontologies. It was and currently is being further developed in a joint effort mainly
by members of the Institute AIFB at University of Karlsruhe and the FZI – Research
Center for Information Technologies, Karlsruhe.

Before presenting an outline of this document we will clarify in the next section the
overall picture on what kind of KAON components exist currently. If you are not yet
confused by the plethora of tools or if you have only an interest in a special tool you can
leave out the next section and continue with section 1.3.

Note: Please be aware that we here present a snapshot of currently available versions.
Future versions of the tools might have additional and/or different functionalities etc. In
appendix A we will provide detailed information about download and installation includ-
ing a table describing the version numbers of the here described tools.

1.2 KAON Overview

The KArlsruhe ONtology and Semantic Web tool suite a.k.a. KAON ToolSuite is, as
mentioned before, an Open Source ontology management infrastructure. However, there
exists also external components which support functionalities such as e.g. ontology learn-
ing from texts. An overview of the KAON ToolSuite and its main components - KAON,
KAON Extensions and TextToOnto - is presented by figure 1.1.

3

CHAPTER 1. INTRODUCTION 4

KAON ToolSuite

KAON KAON Extensions

KAON
Portal

KAON
Workbench

OI-Modeler

Open Registry

KAON API

KAONtoEdit
KAON
Server

DLP

RDF API

TextToOnto

Engineering
Server

Frontend Core

ImplementationsAPIs

RDF Server APIonRDF

Figure 1.1: KAON Tool Overview

• KAON consisting of KAON Frontend and KAON Core includes a variety of differ-
ent modules for ontology creation and management.

The Frontend is represented by two applications developed in order to be used
particularly by human users:

– KAON Workbench provides a graphical environment for ontology-based ap-
plications. It includes the OI-Modeler (cf. chapter 2) - a graphical ontology
editor - and the Open Registry (a.k.a. Ontology Registry), which provides
mechanisms for registering and searching ontologies in a distributed context.

– KAON Portal is a simple tool for multi-lingual, ontology-based Web portals.

The Core of KAON supports programmatic access to ontologies by including both
APIs and implementations for managing local and remote ontology repositories:

– An abstract interface for accessing various types of ontologies independently
of the regarding storage mechanisms is provided by the KAON API and the
RDF API (cf. chapter 3).

– Currently three different implementations of the KAON API and the RDF
API are available: Whereas the Engineering Server (cf. chapter 4) is an
ontology server using a scalable database representation of ontologies, the
RDF Server can be used for storing and accessing RDF models. APIonRDF
(cf. chapter 3) is a main-memory implementation of the KAON API on the
RDF API.

CHAPTER 1. INTRODUCTION 5

• The KAON Extensions are a collection of optional components not included in the
standard distribution of KAON.

– DLP (Description Logic Programs) supports efficient ontology reasoning by
mapping Description Logic into Logic Programs.

– KAON Server can be considered as Application Server for the Semantic Web,
which provides a generic infrastructure to facilitate plug’n’play engineering of
ontology-based applications.

– KAONtoEdit is a plug-in for OntoEdit [oG03], which allows to work di-
rectly on implementations of the KAON API in order to load, modify and
store KAON ontology models.

• TextToOnto (cf. chapter 5) is a KAON-based tool suite supporting the ontology
engineering process by providing a collection of independent tools for ontology
learning and maintenance.

KAON Architecture While we have so far provided an overview on the components
and tools that are part of or related to KAON, we now want to focus on the rather technical
interplay of some of those components, i.e. we intend to give a coarse outline of KAON’s
functional architecture distinguishing between APIs, implementations of those APIs and
data sources to be accessed.

Implemen-
tation

API

Data
Source

API Proxy

network

OI-Modeller

KAON API• Transactions
• Modularisatiuon

• Evolution
• Metamodelling

• Lexica

RDF API

APIonRDF

Main-
Memory

RDF-
Server

Engineering Server
(direct, local, remote)

XML/RDF RDBS RDBS

Open Registry

KAON Workbench
KAON
Portal

… Client X

cl
ie

nt
-s

id
e

TextToOnto

• KAONQuery

Figure 1.2: KAON Architecture Overview

Figure 1.2 illustrates some of the interactions between KAON’s APIs and reference
implementations and highlights the central role of the KAON API. Each client, e.g.

CHAPTER 1. INTRODUCTION 6

KAON’s ontology editor OI-Modeler, accesses KAON ontologies and instances indepen-
dently of the storage mechanism via KAON API. In so doing, the OI-Modeler for example
employs KAON’s ontology evolution facilities integrated into KAON API.

As already mentioned , APIonRDF represents an in-memory implementation of the
KAON API to access RDF-based data sources via the RDF API. For the RDF API in turn
exist two reference implementations: On the one hand, a simple main memory implemen-
tation including RDF parser and serializer. On the other hand, the RDF Server which im-
plements the RDF API remotely and allows for persistently storing RDF ontology models
in relational databases and hence enables transactional ontology modification.

Sketched on the right-hand side, the API Proxy depicts an implementation of the
KAON API that acts as a client-side proxy for various types of the KAON Engineer-
ing Server (cf. Chapter 4). That Engineering Server, being accessed remotely via an
API Proxy, features mechanisms to store KAON ontologies in relational databases, to
distribute change notifications (thus allowing for multi-user ontology engineering), and
to bulk-load ontology elements.

For a more thorough and detailed depiction of KAON’s architecture the interested
reader is referred to [Vol04, MMV02].

1.3 Reader’s Guide

We will introduce in this document the following components of and related to KAON:

• OI-Modeler (ontology editor) in chapter 2

• KAON API (programming interface for developers) in secion 3

• KAON Engineering Server (server for distributed ontology engineering, to be
used in combination with OI-Modeler as front-end) in chapter 4

• TextToOnto (workbench for ontology learning from texts, feeds learned ontologies
into the OI-Modeler) in chapter 5

We will conclude with an outlook of future development trends in chapter 6. Finally,
an overview on download and installation information is presented in Appendix A.

Chapter 2

Ontology Editor OI-Modeler

OI-Modeler is KAON’s tool for ontology creation and ontology maintenance1. The OI-
Modeler’s main goal is to allow scalability for editing large ontologies and to incorporate
some basic usability issues related to ontology management and evolution.

The goal of this chapter is to introduce the reader to the OI-Modeler’s main features.
For that purpose we use a running example about the construction of a tiny ontology,
presenting OI-Modeler’s basic functionalities. For further details on how to work with
the OI-Modeler we refer to “OI-Modeler User’s Guide” [Kar02].

This chapter is mainly for end-users of the OI-Modeler. Programmers may want to
proceed to the following Chapter 3 which describes the KAON API and how to access it.

2.1 Create New OI-Model

After having launched the KAON Workbench (by invoking kaongui.bat, cf. Section
A.2) the user may work with the OI-Modeler, KAON’s ontology editor. To work with an
OI-Model, you can create a new ontology or open an existing one. When choosing “Create
new OI-Model” from the “File” menu, a dialog box appears asking for the specifics of the
ontology instance to be created (see Figure 2.1).

When speaking about working with an OI-Model, it is important to emphasize that
the ontology may be stored in different ways depending on the intended application or
usage scenario. If a really voluminous ontology with lots of concepts and instances shall
be created, the usage of the Engineering Server is advisable, since it employs a relational
database system to store all entities involved (see Chapter 4). In general, however, it is
fully sufficient to store the OI-Model in main memory, in particular when intending to get
started with the OI-Modeler. Here, tab “RDF Models” has to be chosen from the dialog

1The “OI” here refers to “Ontology Instance”. Hence, in the following we refer by the term “OI-Model”
to an instance of an ontology.

7

CHAPTER 2. ONTOLOGY EDITOR OI-MODELER 8

shown in Figure 2.1 and so the resulting ontology will be stored locally on the user’s hard
disc drive.

Figure 2.1: Creation of a new OI-Model

For our running example, however, we do not want to employ the Engineering Server,
instead our ontology shall be stored in main memory. For that reason, we only have to
provide a physical as well as a logical2 URI for our ontology.

As illustrated in Figure 2.2, the OI-Modeler provides different views on the Ontology
and allows to inspect its components (concepts, instances, properties and lexicon).

Graph The graph in the upper section of the window shows the ontology entities and the
connections between them. The graph layout algorithms in OI-Modeler are based
on an open-source TouchGraph3 library.

Each graph node features up to six little arrows (see Figure 2.3). By clicking on
those arrows related entities can be expanded, so that the user can successively
browse through the ontology. For example, for a concept the user may expand that

2Each OI-Model has two URIs that uniquely identify it. The physical URI is the URI used to access the
model. For example, if the model is located in file D:\Temp\myRunningExampleOntology.kaon,
then the physical URI of the model will be file:/D:/Temp/myRunningExampleOntology.
kaon. Each OI-Model also has a logical URI, which is independent from the physical one. E.g., a model
may have the logical URI http://kaon.semanticweb.org/myModel.kaon, although it is not
loaded from the web. A model’s logical URI should be globally unique, whereas its physical URI typically
is not globally unique, and is often relative to the system which processes the model.

3http://www.touchgraph.com

CHAPTER 2. ONTOLOGY EDITOR OI-MODELER 9

Graph

Inspector

Included OI-models

Search
and Query

Clipboard

Figure 2.2: Main Window of the OI-Modeler

concept’s sub- and super-concepts, properties to and from this concept, the con-
cept’s instances as well as its spanning instances. Regarding the notion of spanning
instances please refer to [MMV02].

Expand
Subconcepts

Expand
Superconcepts

Expand
Spanning
Instance

Expand
Properties to
this Concept

Expand
Properties from

this Concept

Expand
Instances

of this Concept

Figure 2.3: Characteristics of Nodes in OI-Modeler’s Graph Visualization

Inspector In the inspector you can find all information about the ontology entity that
is currently selected in the graph. Thus, the inspector’s appearance adapts to the
type of entity (concept, property, or instance) currently selected. If, for example, a
concept is selected information about that concepts and its super- and subconcepts
are displayed, also the properties to and from the concept and the concept instances.
Furthermore, the inspector may be used to directly create new (sub-)concepts (see

CHAPTER 2. ONTOLOGY EDITOR OI-MODELER 10

below).

Included OI-Models The OI-Modeler allows for including ontologies. This means that
the user is able to combine two (or more) ontologies to one ontology. An OI-
Model always consists of two basic or system ontologies: The kaon-root and
the kaon-lexical. To include an OI-Model one can choose “Open and include
OI-Model” in the “Edit” menu. Then, a new window opens and the source of the
OI-Model to be included can be selected. Please refer to Section 2.8.

Search and Query With the search function, one can easily find different named nodes.
It is possible to search for concepts, instances, and properties and to perform a
keyword-based search for any matching item.

Furthermore, KAON provides a query language KAON Query suited for posing
queries to the ontology.

The search and query facilities integrated into OI-Modeler are described in more
detail in Section 2.9.

Clipboard The Clipboard is for copy and paste use. It allows to copy entities to the
clipboard, store them there, and later use them by pasting into the ontology. Please
refer to Section 2.10 for further details.

2.2 Add New Concept

OI-Modeler provides three ways to create a concept. You can add new concepts by

1. using the “Edit” menu and choosing “New Concept...”,

2. opening the context-menu (right mouse-button) in the graph window and choosing
“New Concept...”,

3. using the Inspector and opening the context-menu there.

Figure 2.4 illustrates the first of the three above-mentioned ways.

Sub-concepts are thematic refinements of concepts. When intending to add a sub-
concept cs to an existing concept c, first concept c has to be selected – as a consequence,
details regarding that concept are displayed in the Inspector. Now, the sub-concept can be
added to c with one of the three possible ways mentioned before. In Figure 2.5 the third
alternative (using the context menu in the Inspector) is shown.

CHAPTER 2. ONTOLOGY EDITOR OI-MODELER 11

Figure 2.4: Adding a Single Concept Person

new subconcept
of Person

Figure 2.5: Adding Sub-Concept Researcher to Concept Person

2.3 Add New Property

The procedure to add a property to an ontology model is almost the same as creating
a concept, i.e. the user can choose between three ways just as in the case of adding
concepts as described in Section 2.2. However, the OI-Modeler differs between two kinds
of properties: properties from and to a concept.

Furthermore, when speaking about OI-Modeler’s facilities to edit properties we ought
to clarify what we mean with that term and with terms often used additionally or synony-
mously such as attribute and relation.

Relation/Relationship is used as a generic term to refer to any kind of property that
interlinks concepts.

Properties from a Concept are relations to other concepts (instances). In the graph view
they are displayed in the same way as attributes of a concept.

CHAPTER 2. ONTOLOGY EDITOR OI-MODELER 12

Properties to a Concept are relations from other concepts to the concept under consid-
eration.

Attributes do not connect two or more concepts, but they are rather used to express a
certain characteristic of a concept, e.g. a description, long name, or URL. Attributes
are often typed as XML Schema data types.

We will use mainly the terms property and attribute. Please note that both are inherited
equally from super-concepts to sub-concepts.

In Figure 2.6 a later development stage of the ontology is shown. There, you can see
what is meant by those different types of properties, how they relate to concepts, and how
they are displayed in OI-Modeler’s graph view. In the meantime additional concepts (e.g.
Paper and Researcher) have been added. Moreover, there are also two new properties:
First, there is the HASWRITTEN property which, on the one hand, represents a property
from concept Researcher and, on the other hand, a property to concept Paper.

Properties from
Concepts „Person“
and „Researcher“

Properties to
Concept „Paper“

Figure 2.6: Properties from and to a Concept

Then, there is the AGE property from concept Researcher. This property represents
an attribute of concept Researcher. Note, that when selecting a specific property in the
graph view, the Inspector displays the characteristics of that property. Among those, there
are also checkboxes that may be used to declare that property to be

• an attribute

• a symmetric property

• a transitive property

So, for the AGE property, the attribute flag has been set.

Moreover, it is possible to specify an inverse property to another one. For example,
the inverse property for HASWRITTEN may be called HASAUTHOR being a property from
concept Paper to concept Researcher.

CHAPTER 2. ONTOLOGY EDITOR OI-MODELER 13

Just as sub-concepts are thematic refinements of concepts, sub-properties represent
thematic refinements of properties. OI-Modeler also support the refining of properties by
creating sub-properties, whose creation we do not describe in more detail here.

2.4 Add New Instance

Just as in the case of concepts and properties, users can add a new instance by three
different ways. In each case, however, you first have to choose the concept you want to
add the instance to. Then, you may

1. use the “Edit” menu’s entry “New Instance...”

2. use a concept’s context menu (right mouse button) and choosing “New Instance...”

3. use the Inspector’s table “Concept Instances” in the right by making a right-click
on the respective concept name to which an instance shall be added and choosing
“New Instance...” from the context menu opened.

In any way a new window appears asking the user to provide a name for the instance:
Figure 2.4 illustrates the third way to create an instance and shows the mentioned window
asking for the name. The resulting ontology, after having added two further instance, is
sketched in the right part of that figure.

Figure 2.7: Creation of a New Instance

2.5 Instantiate Properties

The properties between the instances are the relations between these instances.

CHAPTER 2. ONTOLOGY EDITOR OI-MODELER 14

First, we want to add an attribute instance AGE to the instance Erwin Skela. To do
so, there are the three usual ways (via “Edit” menu, via context menu for that instance’s
graph node, and via context menu for that instance in the inspector). In any way, the
menu item “Add Attribute Instance...” has to be chosen. OI-Modeler then present a sub-
menu containing all attributes that are defined for the instance’s corresponding concept.
In our case (cf. Figure 2.8) there is of course only the attribute AGE listed. After having
performed that step, an attribute instance is created which initially does not contain a
concrete value yet.

Figure 2.8: Instantiating an Attribute

To assign a specific value (bottom-right part of Figure 2.8) you may edit the input field
in the Inspector corresponding to that newly created attribute instance.

Next, we want to connect to instances using the property HASWRITTEN. To be exact, we
want to link the instance David Monterowith instance paperXYZ via the HASWRITTEN

property.

There are two different ways to connect instances through a property:

1. Use the graph view and select the (source) instance you want to connect. Then
do a right-click on the instance that ought to be connected (target instance). From
the opening menu choose “Connect Instances Using”, and from its sub-menu the
respective property (here: HASWRITTEN).

2. It is also possible to press and hold the left mouse button (on the source instance)
and then to drag the cursor to the (target) instance you want to connect. A line
appears, as shown in the picture and if you disengage the mouse button, a menu
appears and you can choose the property (here: HASWRITTEN).

Both options are visualized in Figure 2.9.

CHAPTER 2. ONTOLOGY EDITOR OI-MODELER 15

1. 2.

Figure 2.9: Instantiating a Property

2.6 Delete Concept

To remove a concept you can use one of the three following options. First, select the
concept to be deleted, then

1. do a right-click on it and choose “Delete Concept” from the context menu opening,

2. select the concept’s name in the Inspector, do a right-click on it and choose “Delete
Concept” from the context menu opening.

Deleting of properties and instances works similar to the here described deletion of
concepts.

While adding new elements to an ontology in general does not induce needed follow-
on operations, the removal of an entity from the ontology may easily do so. For example,
when deleting a certain concept, one upcoming question is how to handle the concept’s
instances. As questions like that are of high importance for ontology evolution, the fol-
lowing section is devoted to KAON’s current features concerning ontology evolution.

2.7 Evolution Features

Industrial and academic environments are very dynamic, inducing changes to application
requirements. Using an ontology-based system, often the underlying ontology must be
evolved in order to adapt to those changes. As ontologies grow in size, the complex-
ity of change management increases, thus requiring a well-structured ontology evolution
process.

In KAON the user is provided with capabilities to customize and control the process
of ontology evolution. It employs so-called evolution strategies that encapsulate certain

CHAPTER 2. ONTOLOGY EDITOR OI-MODELER 16

policies for evolution with respect to the user’s demands (see [SMMS02] and [SSH02]).
As those evolution features are an integrated element of KAON, their usage fully available
from within the OI-Modeler.

Note, that evolution reversibility services are provided as special service of KAON
API, allowing different applications to reuse these powerful features.

2.7.1 Using Evolution Features

Potentially, an ontology change might corrupt the instances, dependent ontologies as well
as application programs running against the ontology and/or the data base. With option
“Set-up Evolution Parameters” from the “Procedures” menu the user is allowed to define
the strategy how the OI-Modeler handles changes in the ontology, e.g. the deletion of
concepts.

The window shown in Figure 2.10 shows the parameters by which users of the OI-
Modeler may decide for a specific ontology evolution strategy. So, for example, problems
are addressed like the handling of orphaned concepts that come into existence after a
(parent) concept has been deleted, or the handling of properties that do not have a domain
concept any more. The evolution strategies shown are rather self-explanatory.

Figure 2.10: Setting Up Parameters for Ontology Evolution Strategies

CHAPTER 2. ONTOLOGY EDITOR OI-MODELER 17

Changes to the ontology are performed by assembling elementary and composite
changes into a sequence which is based upon the respective evolution strategy. To en-
sure atomicity of updates to the ontology (and thus to allow for do/undo functionality),
either no or all changes from that sequence have to be processed.

In the “Procedures” menu you find the option “Show Evolution Details”. If that option
is not checked, changes (e.g. concept deletion) are performed immediately. By checking
that option the mentioned extended sequence of changes is presented to the user for ap-
proval.

From our current version of the ontology (compare Figures 2.7 and 2.9) we now intend
to delete concept Paper. Then, the dialog shown in Figure 2.11 appears and displays the
sequence of all (atomic) changes that have to be performed in accordance to the evolution
strategy chosen. Obviously, the removal of concept Paper induces the deletion of prop-
erty HASWRITTEN and hence of its property instantiation (David Montero HASWRITTEN

paperXYZ), the deletion of instance paperXYZ and of course the desired deletion of con-
cept Paper.

To further aid the understanding why certain changes have to be performed, related
elementary change actions are grouped together in a tree-like structure increasing the
understandability of why some changes/side effects have to be executed. After those
changes have been reviewed and approved by the user, they are passed to the ontology
and performed.

2.7.2 Undo / Redo Functionality

There are various circumstances under which it may be desirable to reverse the effects of
ontology evolution, e.g.

• The ontology engineer may fail to understand the actual effects of his/her changes
and may approve a change that actually should not have been performed.

• Sometimes it is helpful to change the ontology for experimental purposes.

• When working collaboratively on an ontology, several ontology engineers may have
different ideas on how the ontology ought to evolve.

It is obvious that for each elementary change there is exactly one inverse change that,
when applied, reverses the effect of the original change. Based on the infrastructure
described in the previous section, it is not hard to realize the requirement for reversibility
of ontology engineering actions and to provide an appropriate undo/redo functionality:
To reverse the effect of some extended sequence of changes, a new sequence of inverse
changes in reverse order needs to be created and applied.

In other words, reversibility means undoing all effects of some change, which is in
general not the same as requesting an inverse change manually. For example, if a concept

CHAPTER 2. ONTOLOGY EDITOR OI-MODELER 18

Figure 2.11: Presenting Evolution Details to the User for Approval

is deleted from a concept hierarchy, its subconcepts will need to be deleted as well, at-
tached to the root concept, or attached to a parent of the deleted concept. Reversing such a
change is of course not equal to recreating the deleted concept – one needs, also to revert
the concept hierarchy into its original state.

In OI-Modeler the undo and redo features are provided via the “Edit” menu as shown
in Figure 2.12.

Ontology Evolution Log File The problem of reversibility is typically solved by cre-
ating evolution logs. An evolution log stores information about each change in the sys-
tem, allowing to reconstruct the sequence of changes. With each change applied to the
ontology the evolution log additionally associates further information [MSSV02], like
meta-information such as change description, cost of change, time required to perform
the change, cause of the change, or identity of the change’s author.

The following excerpt from a log file illustrates some of the information put into that
tracking facility. It refers to adding of concept Manual as sub-concept of Document to
the ontology.

<a:AddEntity rdf:ID="i-1079545047999-1104860243"
a:inOIModel="http://www.dummyurl.de/testOntology"

CHAPTER 2. ONTOLOGY EDITOR OI-MODELER 19

Figure 2.12: Undoing and Redoing Changes

a:version="85" >
<a:has_previousChange rdf:resource="#i-1079545047999-24213731"/>
<a:has_previousHistoryChange rdf:resource="#i-1079545047999-24213731"/>
<a:has_referenceInstance>
http://www.dummyurl.de/testOntology#i-1079545046317-1018711561

</a:has_referenceInstance>
</a:AddEntity>
<a:AddEntity rdf:ID="i-1079545047999-1343051864"

a:firstChangeInAGroup="true"
a:has_referenceInstance="http://www.dummyurl.de/testOntology#Manual"
a:inOIModel="http://www.dummyurl.de/testOntology"
a:version="85">
<a:has_previousChange rdf:resource="#i-1079545041129-1524299176"/>
<a:has_previousHistoryChange rdf:resource="#i-1079545041129-1524299176"/>

</a:AddEntity>
[...]
<a:AddInstanceOf rdf:ID="i-1079545047999-24213731"

a:has_referenceConcept="http://www.dummyurl.de/testOntology#Document"
a:has_referenceInstance="http://www.dummyurl.de/testOntology#Manual"
a:inOIModel="http://www.dummyurl.de/testOntology"
a:version="85">
<a:has_previousChange rdf:resource="#i-1079545047999-1343051864"/>
<a:has_previousHistoryChange rdf:resource="#i-1079545047999-1343051864"/>

</a:AddInstanceOf>
<a:AddPropertyInstance rdf:ID="i-1079545047999-345568492"

a:has_referenceProperty=
"http://kaon.semanticweb.org/2001/11/kaon-lexical#references"

a:has_referenceTargetInstance="http://www.dummyurl.de/testOntology#Manual"
a:inOIModel="http://www.dummyurl.de/testOntology"
a:version="85">
<a:has_previousChange rdf:resource="#i-1079545047999-2048209500"/>
<a:has_previousHistoryChange rdf:resource="#i-1079545047999-2048209500"/>
<a:has_referenceSourceInstance>
http://www.dummyurl.de/testOntology#i-1079545046317-1018711561

</a:has_referenceSourceInstance>
</a:AddPropertyInstance>
<a:AddPropertyInstance rdf:ID="i-1079545047999-359720445"

a:has_referenceProperty="http://kaon.semanticweb.org/2001/11/kaon-lexical#value"
a:has_referenceTargetObject="Manual"
a:inOIModel="http://www.dummyurl.de/testOntology"
a:version="85">
<a:has_previousChange rdf:resource="#i-1079545047999-345568492"/>
<a:has_previousHistoryChange rdf:resource="#i-1079545047999-345568492"/>
<a:has_referenceSourceInstance>

CHAPTER 2. ONTOLOGY EDITOR OI-MODELER 20

http://www.dummyurl.de/testOntology#i-1079545046317-1018711561
</a:has_referenceSourceInstance>

</a:AddPropertyInstance>

2.8 Inclusion of other OI-Models

As mentioned before OI-Modeler is capable of including managing several ontologies in
parallel an of including entire ontologies into another one. The semantics of the inclusion
are described in detail in [MMS+03].

As depicted in Figure 2.2 OI-Modeler’s main window. Each OI-Model consists per
default of two so-called system ontologies, kaon-lexical and kaon-root. Note,
that it is possible to mask these system ontologies (in the graph view) by deselecting the
option “System Objects” from the “View” menu.

To include an OI-Model choose “Open and Include OI-Model” in the “Edit” menu. A
new window opens and you can select the source of the OI-Model you want to include
(see Figure 2.13).

Figure 2.13: Inclusion of other OI-Models

2.9 Querying and Searching

Queries in KAON (and thus in the OI-Modeler) are an experimental feature that from the
perspective of the KAON development team is far from being finished. The primary role
of the current support for querying in KAON is to gather feedback in order to improve
these features in next versions of KAON. It is quite likely that the query syntax and/or the
API will change significantly in the future.

CHAPTER 2. ONTOLOGY EDITOR OI-MODELER 21

KAON provides an experimental conceptual query language (KAON Query) that al-
lows easy and efficient locating of elements in KAON OI-Models. However, as already
mentioned queries in KAON are under development, so the interested reader is referred
to [KK04].

Keyword-Based Searching With the search function, the user can easily find different
named nodes. It is possible to search for

• anything: Every matching entity in the ontology will be displayed.

• concepts: Matching concepts will be displayed.

• instances: Matching instances will be displayed.

• properties: Matching properties will be displayed.

Figure 2.14 shows how to search for the keyword Person in our running example
– that search returns two results: The concept Person as well as a spanning instance
Person. For the notion of a spanning instance please refer to [MMV02].

Figure 2.14: OI-Modeler’s Searching Facility

The results are presented as a list matching the search string. In particular, the user
can also paste selected results into the “Graph window” via drag & drop.

2.10 Using the Clipboard

The clipboard is a convenient way to employ copy & paste functionality when working
with an ontology. By opening an entity’s context menu via right-clicking on it (e.g. in the
graph view or in the Inspector) and choosing “Add to Clipboard”, or by choosing “Add
to Clipboard” from the “Edit” menu, the respective entity is copied to the clipboard (see
Figure 2.15).

CHAPTER 2. ONTOLOGY EDITOR OI-MODELER 22

Figure 2.15: OI-Modeler’s Clipboard

After having been added to the clipboard, the respective entity may be used via drag
& drop and can that way be integrated into the graph view or into the Inspector.

For example, the copied concept Researcher may be dragged onto another concept
Scientific Staff and would thus be made a sub-concept of that concept.

2.11 Other Features

In this section we give a very brief overview of some of OI-Modeler’s other features.

Loading/Saving the Workspace The entries “Load Workspace” and “Save Workspace”
from the “File” menu allow the user to load/save a workspace containing all win-
dows of the previous/current work session.

Open/Save OI-Model In analogy to creating a new OI-Model (cf. Section 2.1) it is pos-
sible to load a previously saved OI-Model by choosing the corresponding entry
from the “File” menu.

Duplicate OI-Model This option from the “File” saves the current OI-Model under an-
other name and hence duplicated it.

Copy to new OI-Model With this option from the “File” menu you can copy an existing
OI-Model into a new one. This replica has the reference to the original OI-Model.
If you choose this function, the same window as in the function “Open OI-Model”
appears, and you can choose where to save the backup.

View Specifics The view onto the user interface can be customized (via the “View”
menu) to, e.g.

• refresh the graph representation (shortcut F5),

• show only selected nodes (shortcut F4),

• use an “Incremental Search Graph”: With that function you can search the
graph for e.g. a keyword incrementally,

CHAPTER 2. ONTOLOGY EDITOR OI-MODELER 23

• show/hide the entire graph view, Inspector, and clipboard,

• hide system objects: An OI-Model consists of three objects:
kaon-lexical#Root, kaon-lexical#language, and
kaon-lexical#LexicalEntry. By switching of the “System
Objects” you only visualize the kaon-root and so the ontology gets more
clear because less concepts and instances are shown in the graph and the
inspector.

Language Parameters Language parameters are to be found in the “View” menu. The
user can choose between English, German, French, Spanish, Arabic, and Chinese.

Context Menus As mentioned most entities in OI-Modeler feature context menus whose
appearance varies from entity to entity. For a detailed description of context menus
we refer to [Kar02].

Entity Icons To easily distinguish concepts, properties, and instances in the Inspector
OI-Modeler utilizes several specific icons as shown in Figure 2.16.

concept property inherited
property

instance

Figure 2.16: OI-Modeler’s Icons for Entities

Lexical Layer All ontological entities are considered as language neutral in KAON. On
the lexical layer, lexical descriptions referring to different entities in the KAON rep-
resentation vocabulary may be defined. The lexicon is always accessible within the
Inspector. A lexical entry is a lexicalization of a concept, attribute, relation, and in-
stance. Several types of lexical entries are defined. The standard lexical description
are multilingual labels that may be used for the user’s interface. A label is a specific
kind of a lexical entry, describing a primary descriptor of an ontological or knowl-
edge base entity. Another kind of lexical entries are morphologically reduced word
stems that may be used by a natural language processing system. shows lexical
elements available in OI-Model.

A synonym is a specific kind of a lexical entry, describing synonymous words for
an ontological or knowledge base entity. The documentation allows you to enter a
text description of the ontological entity. The lexical layer also allows you to create
multilingual ontologies. As shown in the picture it is possible to label a concept (in
this case the property AGE) in different languages.

CHAPTER 2. ONTOLOGY EDITOR OI-MODELER 24

Figure 2.17: OI-Modeler’s Lexicon

Chapter 3

KAON API Description

3.1 Overview

The KAON API is a set of interfaces developed in order to offer programmatic access to
KAON ontologies by providing classes such as Concept, Property and Instance.
Because the API does not make any assumptions about the underlying ontology persis-
tence mechanisms it totally decouples the user from all details of ontology access and
storage. It is the concrete implementation of the API, which determines, for example,
whether an ontology created with the KAON API will be stored in an RDF file or a local
or remote database (cf. subsection 3.3.1). Currently three different implementations of
the KAON API are available:

Engineering Server The engineering server (cf. section 4) is an ontology server using a
scalable database representation for storing KAON ontologies. It is optimized for
ontology engineering by offering scalable, transactional and concurrent access to
ontology information.

RDF Server The RDF server uses the RDF API for storing and accessing RDF models.
Although quite similar to the engineering server supporting transactions and multi-
user operations, it does not provide any functionalities for conflict detection or bulk-
loading.

APIonRDF Implementation The main memory implementation of the KAON API on
the RDF API provides in-memory model manipulation for KAON. When you
download the standard KAON distribution (cf. Appendix A) this is the default
setting.

Since the main memory implementation can be considered as the standard implemen-
tation of the KAON API this chapter will focus on APIonRDF.

25

CHAPTER 3. KAON API DESCRIPTION 26

3.2 Important Features

Meta Modeling Meta Modeling means that a concept or a property may be considered
as an instance of a meta-concept. Such an instance is then called the spanning-
instance of the regarding concept or property. It can be retrieved by using the
getSpanningInstance()method, which is defined in the Entity interface.

Evolution Strategies Since each change to an ontology might leave the model in an in-
consistent state, the KAON API supports the use of evolution strategies (cf. subsec-
tion 3.3.10) for computing sequences of additional changes, which are necessary
for safely performing the requested change.

Change Notifications Implementing the Observable design pattern the OI-Model inter-
face allows listeners to receive notifications about model updates.

Lexical Layer Lexical information such as labels or documentation can be added to an
OI-Model by assigning LexicalEntry objects to the instance interpretation of
concepts, properties or instances.

Modularization KAON as well as the KAON API support building ontologies modularly
by means of ontology inclusion. Each OI-Model may include other OI-Models pro-
vided that those are of the same type (e.g. RDF-based or server-based). Because
the inclusion is implemented as a link, not as a copy, all changes to the included
OI-Model will immediately affect the including OI-Model.

3.3 Examples

This section gives a brief introduction on using the KAON API on the basis of a small
sample ontology which is also used in chapter 2.

3.3.1 Select Implementation

The KAONConnection interface is provided by the KAON API in order to separate clients
from different API implementations. Each of these implementations must include at least
one implementation of KAONConnection, which can be used by clients in order to access
the regarding OI-Model implementation.

As long as a user is working with only one implementation of the KAON API in-
stances of KAONConnection may be created directly by using the appropriate construc-
tor (e.g. new KAONConnectionImpl()). If an application should work with any or
with more than one implementation the KAONManager class has to be used to obtain a
KAONConnection object. The following listing 3.1 demonstrates how to get a KAON-
Connection object for APIonRDF.

CHAPTER 3. KAON API DESCRIPTION 27

HashMap parameters = new HashMap();
parameters.put(KAONManager.KAON_CONNECTION,

"edu.unika.aifb.kaon.apionrdf.KAONConnectionImpl");
KAONConnection connection =

KAONManager.getKAONConnection(parameters);

Listing 3.1: KAONConnection (APIonRDF)

Each set of parameters passed to KAONManager.getKAONConnection must
contain a KAON CONNECTION parameter which determines the type of connection,
which is returned. A direct connection to an Engineering Server, for instance, would
require the following KAON CONNECTION parameter:

parameters.put(KAONManager.KAON CONNECTION,
"edu.unika.aifb.kaon.engineeringserver.client.
DirectKAONConnection")

In addition to KAON CONNECTION further parameters, like user name or password
might be necessary depending on the implementation and the type of connection to be
used.

3.3.2 Create New OI-Model

Once a KAONConnection object has been obtained it can be used to create a new OI-
Model (cf. listing 3.2).

String m_sPhysicalURI = "file:/f:/temp/myTestOntology.kaon";
String m_sLogicalURI = "http://www.dummyurl.de/testOntology";
OIModel oimodel = connection.createOIModel(m_sPhysicalURI,

m_sLogicalURI);

Listing 3.2: Create new OI-Model

Each OI-Model is uniquely identified by two URIs - a physical and a logical one,
which are totally independent from each other.

Physical URI The structure of the physical URI, which is used to access the OI-Model,
depends on the KAON API implementation used. If an OI-Model is locally stored
in f:\temp\myTestOntology.kaon, for instance, its physical URI would be
file:/f:/temp/myTestOntology.kaon.

Logical URI A logical URI can be chosen freely, but in contrast to the physical URI it
has to be globally unique. For example, the above mentioned OI-Model could have
the logical URI http://www.dummyurl.de/testOntology, although this
URI does not really exist on the web.

CHAPTER 3. KAON API DESCRIPTION 28

3.3.3 Open OI-Model

An existing OI-Model can be opened by connection.openOIModelPhysical(
m sPhysicalURI).

The method connection.openOIModelLogical only works for some well-
known models (e.g. the lexical model) pre-registered with KAONConnection and for
OI-Models, which are known to KAONConnection, because they have been previously
opened by their physical URIs.

3.3.4 Add New Concepts

The following code fragment (cf. listing 3.3) creates two new concepts, Person and Doc-
ument.

Concept person =
oimodel.getConcept(m_sLogicalURI +"#Person");

Concept document =
oimodel.getConcept(m_sLogicalURI +"#Document");

Listing 3.3: Create new concepts

Since the method OIModel.getConcept always returns a concept (even if there
is no concept with the specified URI in the OI-Model), it can be used for both cre-
ating new concepts and accessing existing ones. The only parameter required by
OIModel.getConcept is a unique URI for the concept to be created or retrieved.
Very often, the logical URI of the OI-Model is used as a prefix for newly created con-
cepts, because in this case the URIs of all model entities will be serialized relative to the
model’s URI, when the OI-Model is serialized in RDF.

As soon as the two new concepts have been created they can be added to the OI-
Model as shown below:

List changes = new LinkedList();
changes.add(new AddEntity(person));
changes.add(new AddEntity(document));
changes.add(new AddSubConcept(oimodel.getRootConcept(),

person));
changes.add(new AddSubConcept(oimodel.getRootConcept(),

document));
oimodel.applyChanges(changes);
changes.clear();

Listing 3.4: Add new concepts

With regards to ontology evolution (cf. subsection 3.3.9) the KAON API does not
allow for performing changes directly on the OI-Model. Therefore a list of change events

CHAPTER 3. KAON API DESCRIPTION 29

has to be created and applied to the model1. In this case for each concept two change
events are required: one for adding it to the OIModel and one for making it a subconcept
of root.

Listing 3.5 shows how to add a subconcept Researcher to the previously created con-
cept Person and a subconcept Paper to Document.

Concept researcher =
oimodel.getConcept(m_sLogicalURI +"#Researcher");

Concept paper =
oimodel.getConcept(m_sLogicalURI +"#Paper");

changes.add(new AddEntity(researcher));
changes.add(new AddEntity(paper));
changes.add(new AddSubConcept(person, researcher));
changes.add(new AddSubConcept(document, paper));
oimodel.applyChanges(changes);
changes.clear();

Listing 3.5: Add new subconcepts

It is important to know that each new subconcept has to be added to the OI-
Model (AddEntity) before it can be made a subconcept of any other concept
(AddSubConcept).

3.3.5 Add New Properties

Analogously to concepts (OIModel.getConcept) new properties can be created
by OIModel.getProperty. The following code creates a new property age
as an attribute to Person, a property hasWritten(Researcher,Paper) and a property
hasAuthor(Paper,Researcher).

Property age = oimodel.getProperty(m_sLogicalURI +"#age");
Property hasWritten =

oimodel.getProperty(m_sLogicalURI +"#hasWritten");
Property hasAuthor =

oimodel.getProperty(m_sLogicalURI +"#hasAuthor");
changes.add(new AddEntity(age));
changes.add(new AddEntity(hasWritten));
changes.add(new AddEntity(hasAuthor));
changes.add(new AddPropertyDomain(age, person));
changes.add(new AddPropertyDomain(hasWritten, researcher));
changes.add(new AddPropertyDomain(hasAuthor, paper));
changes.add(new AddPropertyRange(hasWritten, paper));

1All available change events are located in the edu.unika.aifb.kaon.api.change package.

CHAPTER 3. KAON API DESCRIPTION 30

changes.add(new AddPropertyRange(hasAuthor, researcher));
oimodel.applyChanges(changes);
changes.clear();

Listing 3.6: Add new properties

As shown by listing 3.6 up to four steps are required for adding a new property to the
OI-Model:

• Creating a property (OIModel.getProperty)

• Inserting the property into the OI-Model (AddEntity)

• Defining the domain of the property (AddPropertyDomain)

• Defining the range of the property (AddPropertyRange)

Subproperties can be created by using the change event AddSubProperty(
superProperty, subProperty) (cf. subsection ??).

3.3.6 Instantiate Concepts

Since an OI-Modelmay not only include concepts and properties, but also instances of
both, the KAON API provides methods for the instantiation of concepts (cf. listing 3.7)
and properties (cf. subsection 3.3.7).

The following example demonstrates how instances of the concepts Researcher and
Paper can be added to the OI-Model.

Instance erwin =
oimodel.getInstance(m_sLogicalURI +"#Erwin_Skela");

Instance david =
oimodel.getInstance(m_sLogicalURI +"#David_Montero");

Instance paperXYZ =
oimodel.getInstance(m_sLogicalURI +"#Paper_XYZ");

changes.add(new AddInstanceOf(researcher, erwin));
changes.add(new AddInstanceOf(researcher, david));
changes.add(new AddInstanceOf(paper, paperXYZ));
oimodel.applyChanges(changes);
changes.clear();

Listing 3.7: Add new instances

CHAPTER 3. KAON API DESCRIPTION 31

3.3.7 Instantiate Properties

The instantiation of properties is very similar to the instantiation of concepts described in
the previous subsection. The code fragment shown by listing 3.8 instantiates the proper-
ties age and hasWritten(Researcher,Paper) by assigning an age of 27 to Erwin Skela and
creating a hasWritten relation between David Montero and Paper XYZ.

PropertyInstance erwin_age_27 =
oimodel.getPropertyInstance(age, erwin, "27");

PropertyInstance david_hasWritten_paperXYZ =
oimodel.getPropertyInstance(hasWritten, david, paperXYZ);

changes.add(
new AddPropertyInstance(erwin_age_27));

changes.add(
new AddPropertyInstance(david_hasWritten_paperXYZ));

oimodel.applyChanges(changes);
changes.clear();

Listing 3.8: Instantiate properties

3.3.8 Pose Queries

KAON Query is an experimental conceptual query language, which is part of the KAON
ToolSuite (cf. figure 1.1). It can be used programmatically by means of the KAON API
for efficient locating of OI-Model elements. The following example demonstrates how to
retrieve all instances of the concept Paper, which has been created in subsection ??.

String sQuery = "["+ m_sLogicalURI +"#Paper]";
Collection answer = oimodel.executeQuery(sQuery);

Listing 3.9: Pose queries

Since Paper XYZ is the only instance of Paper, the collection returned by
OIModel.executeQuery in the above listed code fragment contains only one ele-
ment (cf. listing 3.10).

Query: [http://www.dummyurl.de/testOntology#Paper]
Answer: http://www.dummyurl.de/testOntology#Paper_XYZ

Listing 3.10: Query result

Since all instances of a certain concept can also be retrieved by using the
Concept.getInstances() method, the same result would be returned by
paper.getInstances().

CHAPTER 3. KAON API DESCRIPTION 32

3.3.9 Remove Concepts

As shown by listing 3.11 a concept can be removed from an OI-Model by using the
RemoveEntity change event.

changes.add(new RemoveEntity(paper));
List requestedChanges =

oimodel.applyChanges(requestedChanges);
changes.clear();

Listing 3.11: Remove a concept

Similar change events are provided for removing subconcepts, properties or instances,
for example.

The impact of removing concepts or other entities such as properties or instances from
an OI-Model is demonstrated by the following RDF serialization (cf. subsection 3.3.11)
of the sample ontology created in the previous subsections.

<rdf:RDF xml:base="http://www.dummyurl.de/testOntology"
xmlns:rdf="&rdf;"
xmlns:rdfs="&rdfs;"
xmlns:a="&a;">

<a:Researcher rdf:ID="David_Montero"/>
<rdfs:Class rdf:ID="Document"/>
<a:Researcher rdf:ID="Erwin_Skela" a:age="27"/>
<rdfs:Class rdf:ID="Person"/>
<rdfs:Class rdf:ID="Researcher">

<rdfs:subClassOf rdf:resource="#Person"/>
</rdfs:Class>
<rdf:Property rdf:ID="age">

<rdfs:domain rdf:resource="#Person"/>
</rdf:Property>
</rdf:RDF>

Listing 3.12: Remove concept Paper

Obviously, the deletion of the concept Paper entails the deletion of

• its instance Paper XYZ,

• the property hasWritten(Researcher,Paper),

• the property hasAuthor(Paper,Researcher),

• and the property instance hasWritten(David Montero,Paper XYZ).

CHAPTER 3. KAON API DESCRIPTION 33

In order to manage such complex changes and to avoid potential problems like inconsis-
tencies, for example, KAON provides different evolution strategies. The next subsection
describes how these evolution strategies can be employed by means of the KAON API.

3.3.10 Use Evolution Strategies

Since each change to an OI-Model might potentially cause inconsistencies in this as well
as in dependent ontologies, the KAON API supports the use of different evolution strate-
gies (cf. [SMMS02] and [SSH02])). The following code fragment below shows how to
use evolution strategies considering as example the deletion of Paper described in the
previous subsection.

EvolutionStrategy strategy =
new EvolutionStrategyImpl(oimodel);

changes.add(new RemoveEntity(paper));
List requestedChanges =

strategy.computeRequestedChanges(changes);
oimodel.applyChanges(requestedChanges);
changes.clear();

Listing 3.13: Evolution strategies

Once an EvolutionStrategy object has been created it can be used in order to
transform a list of change events (e.g. RemoveEntity(Paper)) into a new
list containing all the change events, which are necessary for safely perform-
ing the desired changes. The content as well as the sequential order of this list
depends on the evolution strategy implementation and the evolution parameters
(edu.unika.aifb.kaon.defaultevolution.EvolutionParameters)
specified by the user.

3.3.11 Serialization

The easiest way of serializing an OI-Model is to apply the OIModel.save() method,
which stores the OI-Model either to a local file (determined by its physical URI) or, for in-
stance, to a database - depending on which implementation of the KAON API is currently
used.

Nevertheless, for debugging purposes it might be useful to create a textual output of
the OI-Model . In this case the RDFSerializer class can be instantiated in order to
write an RDF serialization to an output stream such as System.out (cf. listing 3.14).

RDFSerializer serializer = RDFManager.createSerializer();
serializer.serialize(((OIModelImpl)oimodel).getModel(),

System.out, "UTF-8");

CHAPTER 3. KAON API DESCRIPTION 34

writer.close();

Listing 3.14: RDFSerializer

The following extract shows an RDF serialization of the sample ontology, which has
been created in the subsections 3.3.2 to 3.3.7.

<rdf:RDF xml:base="http://www.dummyurl.de/testOntology"
xmlns:rdf="&rdf;"
xmlns:rdfs="&rdfs;"
xmlns:a="&a;">

<a:Researcher rdf:ID="David_Montero">
<a:hasWritten rdf:resource="#Paper_XYZ"/>

</a:Researcher>
<rdfs:Class rdf:ID="Document"/>
<a:Researcher rdf:ID="Erwin_Skela" a:age="27"/>
<rdfs:Class rdf:ID="Paper">

<rdfs:subClassOf rdf:resource="#Document"/>
</rdfs:Class>
<a:Paper rdf:ID="Paper_XYZ"/>
<rdfs:Class rdf:ID="Person"/>
<rdfs:Class rdf:ID="Researcher">

<rdfs:subClassOf rdf:resource="#Person"/>
</rdfs:Class>
<rdf:Property rdf:ID="age">

<rdfs:domain rdf:resource="#Person"/>
</rdf:Property>
<rdf:Property rdf:ID="hasAuthor">

<rdfs:domain rdf:resource="#Paper"/>
<rdfs:range rdf:resource="#Researcher"/>

</rdf:Property>
<rdf:Property rdf:ID="hasWritten">

<rdfs:domain rdf:resource="#Researcher"/>
<rdfs:range rdf:resource="#Paper"/>

</rdf:Property>
</rdf:RDF>

Listing 3.15: RDF serialization

Chapter 4

KAON Engineering Server

Currently, there are three different back-end implementations of the KAON API (cf. Sec-
tion 3): the Main Memory implementation, the RDF Server as well as the Engineering
Server. In this chapter we focus on the latter, most sophisticated KAON implementation,
the Engineering Server.

4.1 Motivation

When building large ontologies (with probably thousands of concepts and relations and
maybe millions of instances), it is with current standard technology rather infeasible to
store that amount of data in main memory. In fact, when the ontology to be built exceeds
a certain size, the usage of a database management system storing the mass of data is
unavoidable. For that purpose, i.e. for managing the interaction with the database system,
KAON includes an implementation of the so-called Engineering Server fulfilling that task.

In short, the Engineering Server is a storage mechanism for KAON ontologies,
based on relational databases and suitable for use during ontology engineering. Its
features include

• transactions,

• client-side caching with conflict detection,

• distributed change notification mechanism,

• bulk-loading of ontology elements,

• modularization (limited to models within the same database).

The Engineering Server has been tested with an ontology consisting of 100.000 con-
cepts, 66.000 properties and 1.000.000 instances, where loading related information about
20 ontology entities took under 3 seconds, while deleting a concept took under 5 seconds.

35

CHAPTER 4. KAON ENGINEERING SERVER 36

4.2 Database Access

The Engineering Server is an ontology server that is optimized for ontology engineering.
This optimization is in particular reflected in the database schema used by the server.
Since ontology engineering often involves creating and deleting concepts, which should
be multi-user capable and transactional, the engineering server has a database schema
with a fixed number of tables.

An obvious alternative realization of an ontology servers might create a table per con-
cept. However, this would make concept creation and deletion non-transactional, and in
general, more heavy-weight. The schema employed by the Engineering Server is pre-
sented in Figure 1: One can see that it consists of a fixed number of tables. Indeed, this
fact distinguishes the Engineering Server from other ontology servers implementations,
which store all instances of a concept in a separate table (and thus require table creation
and deletion every time a concept is created).

CONCEPT_INSTANCE
• CONCEPT
• INSTANCE

CONCEPT_HIERARCHY
• SUPER_CONCEPT
• SUB_CONCEPT

PROPERTY_HIERARCHY
• SUPER_PROPERTY
• SUB_PROPERTY

ATTRIBUTE_INSTANCE
• PROPERTY
• SOURCE_INSTANCE
• TEXT_VALUE

ENTITY
• URI
• IS_CONCEPT
• IS_PROPERTY
• IS_INSTANCE
• IS_ATTRIBUTE
• SYMMETRIC
• TRANSITIVE
• INV_PROP_URI

PROPERTY_DOMAIN
• PROPERTY
• CONCEPT
• MIN_CARDINALITY
• MAX_CARDINALITY

PROPERTY_RANGE
• PROPERTY
• CONCEPT

RELATION_INSTANCE
• PROPERTY
• SOURCE_INSTANCE
• TARGET_INSTANCE

Figure 4.1: Engineering Server Database Schema

The Engineering Server offers scalable, transactional and concurrent access to ontol-
ogy information. To achieve that, optimized bulk-loading is implemented, that allows
fetching information about several ontology entities in one database request.

The Engineering Server has been tested with MSL SQL Server 2000. Also, it has suc-
cessfully been run, but not thoroughly tested, on PostgreSQL, IBM DB2 7.2 and Oracle
9i. Although other databases may work, the Hypersonic database will not work, since
it doesn’t support many of standard features of relational databases that are needed for
server operation. For users of IBM DB2 it is important to configure the DB2 database to
use JDBC2 – please refer to the DB2 documentation for information on how to perform
that.

CHAPTER 4. KAON ENGINEERING SERVER 37

4.3 Usage Scenario for the Engineering Server

Mainly, there are three ways of using the Engineering Server (Direct, Remote, and Local)
which we describe in more detail in the subsequent sections.

In general, clients (e.g. ontology editors) access the Engineering Server through an
appropriate KAON API implementation (e.g. the API Proxy, cf. Figure 1.1), which pro-
vides client-side ontology information caching, along with a mechanism for detecting
incoherencies between the cache and the database. This feature thus significantly sim-
plifies developing applications where ontology entities are loaded and kept at the client
across transaction boundaries.

Before using the Engineering Server, it is necessary to create the necessary schema
in the database used. For this, the Engineering Server comes with a number of scripts
(SQL scripts, database-specific) whose execution results in the creation of the necessary
database tables. If those scripts can be executed without errors, the Engineering Server
is ready for usage. For more details concerning obtaining and installing the Engineering
Server please refer to Appendix A.

Direct Engineering Server The Direct Engineering Server corresponds to a two-tiered
setting (database and Engineering Server). This means that the Engineering Server ac-
cesses the database directly, which, of course, may be played on another host. In this
setting distributed change notification is not available.

The Direct Engineering Server is useful for any type of application in which dis-
tributed event notification is not required. So, it represents the simplest variant to set up
and use the Engineering Server (because it does not require a J2EE server such as JBoss).

Remote/Local Engineering Server In this three-tiered setting an additional interven-
ing application server JBoss1)is employed. The main advantage of these forms of the
Engineering Server is that clients can register themselves to be notified whenever other
users make a change in the ontology. Thus the Engineering Server can serve as a basis for
collaborative ontology development.

In the case of using the Remote Engineering Server that JBoss Application Server is
accessed through another Java Virtual Machine (JVM) through remote interfaces. The
Remote Engineering Server is useful for applications which need distributed event noti-
fication. This in particular relates to applications where ontologies are manipulated by
several users concurrently, such as an ontology editor.

The Local Engineering Server represents a three-tiered solution as well. Here, how-
ever, the Engineering Server accesses the JBoss application Server from within the same
JVM through local interfaces. The Local Engineering Server is useful in particular for

1http://www.jboss.org

CHAPTER 4. KAON ENGINEERING SERVER 38

web applications, since the web application and the server can be deployed in the same
JVM, and thus increase performance (since the remote call overhead is eliminated).

Both, the Remote and Local Engineering Servers come in two versions: secure and
non-secure. In the non-secure version no authentication of clients, that want to access the
ontology/database, is needed. For the secure version, authentication is realized via JBoss.
Note, that the version of the Engineering Server being used (i.e. secure or non-secure) is
determined at deployment time.

4.4 Collaborative Ontology Engineering with the Engi-
neering Server

As emphasized before, the main benefit of using the Engineering Server—apart from han-
dling huge amounts of data via accessing a relational database system—is the possibility
to collaboratively work on a single ontology model instance. That individual instance is
maintained by the Engineering Server to which clients may connect.

Due to these multi-user capabilities of the Engineering Server it is feasible to develop
an ontology in a distributed setting, e.g. with a group of ontology engineers or domain
experts who are spread across several locations. Here, each participant connects to the
instance of the Engineering Server (e.g. running on a server in Karlsruhe) with his/her
local client (e.g. the OI-Modeler as part of the KAON Workbench). Then, it is possible to
browse and explore the entire ontology without restrictions. Furthermore, if the respective
user has the appropriate rights for writing, i.e. is also allowed to apply changes to the
ontology, he/she may add, change, or delete ontology entities.

Figure 4.2: Ontology Version Conflict during Distributed Ontology Engineering

At its current stage of development the Engineering Server assigns a version number
to each successive state of the ontology. In case a client’s local “copy” of the ontology has

CHAPTER 4. KAON ENGINEERING SERVER 39

a lower version number than the current ontology version maintained by the Engineering
Server, the user is prompted that a conflict exists.

Imagine ontology engineer A has noticed that Erwin Skela was misspelled and cor-
rects that typo so that that instance is called Ervin Skela. Moreover, ontology engineer
B wants to change that instance’s value for attribute AGE from 27 to 28. In case B has not
updated his/her OI-Model, he/she will be notified about the conflict as depicted in Figure
4.2: Obviously, B is not allowed to change the value for attribute AGE as his/her current
version of the ontology is obsolete. Now, ontology engineer B would have to refresh
his/her ontology—which means that the Engineering Server’s current ontology version is
transferred to the client—and must reapply the changes he/she wanted to introduce, i.e.
change the value for the AGE attribute as desired.

Chapter 5

TextToOnto

5.1 Overview

TextToOnto [MV01] is a tool suite built upon KAON in order to support the ontology en-
gineering process by text mining techniques. Providing a collection of independent tools
for both automatic and semi-automatic ontology extraction it assists the user in creating
and extending OI-Models. Moreover, efficient support for ontology maintenance is given
by modules for ontology pruning and comparison. In particular, the current distribution
of TextToOnto comprises the following tools:

• TaxoBuilder for building concept hierarchies

• TermExtraction for adding concepts to an ontology

• InstanceExtraction for adding instances to an ontology

• RelationExtraction for semi-automatic learning of conceptual relations

• RelationLearning for automatic and semi-automatic relation learning

• OntologyComparison for comparing two ontologies

• OntologyPruner for adapting an ontology to a domain-specific corpus

Section 5.2 gives a detailled overview of the different tools by describing a sample
workflow.

5.2 Tools

Before being able to start learning an OI-Model the user has to create a new document
collection by selecting ”New Corpus” from the ”File” menu. The corpus management

40

CHAPTER 5. TEXTTOONTO 41

module provided by TextToOnto supports him in adding text, HTML or XML files to the
corpus. In addition to the corpus an OI-Model can be selected, if the user wants to extend
an already existing ontology.

5.2.1 TaxoBuilder

If a new ontology is to be created, a typical workflow usually starts by populating
an OI-Model with concepts and instances. TaxoBuilder (see figure 5.1) automatically
builds a concept hierarchy from the most frequent terms included in the corpus by in-
serting them into an empty OI-Model. Having started the tool via the menu items
”File”→”TaxoBuilder” the user is presented an interface, which allows him to specify
a corpus and a newly created OI-Model as well as the number of words to be considered.
Moreover the user can choose from two approaches to taxonomy construction: (i) The
FCA-based approach described by [CST03] rests upon the assumption that a verb poses
strong selectional restrictions on their arguments, so that a hierarchy of concepts can be
derived from the inclusion relations between the extensions of the selectional restrictions
of all the verbs, while the verbs themselves provide intensional descriptions for each con-
cept. (ii) The second approach is based on a combination of Hearst-Patterns [Hea92],
WordNet [Fel98] and various heuristics, which can be selected separately by the user1.

5.2.2 TermExtraction

TermExtraction can be used to create new concepts from possibly relevant terms included
in the corpus. Available parameters are the language (English, German or Italian) as well
as the maximum number of words per term and the minimum frequency of occurrence
necessary for considering a term as relevant. Moreover a linguistic filter can be defined by
means of a regular expression over the language of Part-of-Speech tags. After the process
of term extraction is completed a list of possibly relevant terms is displayed, which can
be sorted according to measures like TFIDF, entropy or absolute frequency, in order to
support the user in selecting terms to be added as concepts to the ontology.

5.2.3 InstanceExtraction

As soon as one or more concepts have been added to the OI-Model instances of these
concepts are to be extracted from the corpus. InstanceExtraction (see figure 5.2) supports
both semi-automatic and fully automatic learning of instances by applying a combination
of various patterns from [Hea92] and [HS98], which can be selected separately by the
user. If InstanceExtraction is performed semi-automatically each candidate term will be

1Using WordNet requires an installation of WordNet 1.7.1 (see section A.4)

CHAPTER 5. TEXTTOONTO 42

Figure 5.1: TaxoBuilder

presented to the user in order to ask him for approval, whereas in the automatic mode
newly discovered instances will be immediately added to the OI-Model.

5.2.4 RelationExtraction

RelationExtraction (see figure 5.3) is one of two tools provided by TextToOnto to ex-
tend the OI-Model by adding conceptual (and taxonomic) relations between concepts and
instances already learned. Unlike the other tool, RelationLearning, which is briefly de-
scribed by the following section, RelationExtraction only supports semi-automatic learn-
ing. Two approaches can be chosen in order to extract a list of candidate relations from the
text. Whereas the first approach is based on association rules [MS00], the second one ap-
plies a set of text patterns very similar to those defined by Hearst [Hea92]. The user being
presented this list can select single or multiple candidates and add them to the OI-Model -
either as a property or a taxonomic relation. Available parameters for RelationExtraction
- in addition to OI-Model, corpus and language - are the minimum confidence and the
minimum support for relations to be displayed.

CHAPTER 5. TEXTTOONTO 43

Figure 5.2: InstanceExtraction

5.2.5 RelationLearning

RelationLearning, in contrast to RelationExtraction, supports both automatic and semi-
automatic learning of conceptual relations. Moreover, if it is done semi-automatically, a
name as well as a domain and a range for each relation are suggested to the user. Ba-
sically, the approach being applied by RelationLearning employs shallow text parsing in
order to extract subcategorization frames, which can be restricted by using the informa-
tion about selectional preferences [Res97], that is typical co-occurrences of predicates
and conceptual classes, derived from the ontology.

5.2.6 OntologyComparison

In order to evaluate an OI-Model, which has been learned automatically or semi-
automatically from a text corpus, it has to be compared with other - either learned or
manually constructed - ontologies. OntologyComparison (see figure 5.4) is a tool pro-
vided by TextToOnto for comparing two OI-Models with respect to lexical and conceptual
aspects [MS02] like taxonomic or relational overlap, for instance, which can be chosen

CHAPTER 5. TEXTTOONTO 44

Figure 5.3: RelationExtraction

separately by the user.

5.2.7 OntologyPruner

Having extracted an OI-Model from a rather general corpus, the user might want to adapt
it to the requirements of a more domain-specific corpus instead of learning a new ontol-
ogy from the scratch. Therefore OntologyPruner supports ontology pruning by suggesting
concepts to be removed on the basis of their frequency within a given corpus. Parame-
ters to be specified by the user are the language and the cumulative frequency threshold
beyond which terms are considered as relevant.

CHAPTER 5. TEXTTOONTO 45

Figure 5.4: OntoComparison

Chapter 6

Outlook

Finally we will briefly indicate two relevant Open Source development projects: a back-
end inference engine for OWL and a front-end ontology engineering environment.

• Firstly, in the Integrated Project DIP1 our accompanying group at the FZI – Re-
search Center for Information Technologies, Karlsruhe, will develop a hybrid rea-
soning framework – currently internally being called ’KAON-DL’. The aim is to
provide efficient reasoning support for OWL (including A-Box reasoning). KAON-
DL will act as a back-end server. It is planned that it will provide support for the
WonderWeb OWL API2 as well as for the KAON API.

• Secondly, in a joint effort (currently driven by Empolis, Ontoprise and UKARL)
we will develop an Open Source ontology management framework based on the
well-known Open Source universal tool platform eclipse (see http://www.
eclipse.org. The aim is to provide a full-fledged front-end modelling envi-
ronment which can be easily extended by third-parties such as SEKT partners. Es-
sential part of such an environment will be the evolution features provided already
in KAON (and OI-Modeler) today – and numerous further ’must have’ features to
be developed!

1see http://dip.semanticweb.org
2see http://sourceforge.net/projects/owlapi for source code

and http://owl.man.ac.uk/api.shtml for further information

46

Appendix A

Download & Installation

This chapter gives hints concerning download and installation of tools and components
related to KAON.

After a short overview on current versions and download sites we devote a single
subsection to the installation of each tool presented in this document.

A.1 Download Overview

The following table A.1 summarizes download sources for and version numbers of the
tools described within this document. Note, that future versions might not necessarily be
compatible with the current versions described here. Be aware, that KAON needs at least
Java 1.4.0.

Tool Version Download Site
KAON V1.2.7 http://sourceforge.net/projects/kaon

Note: You may choose between the source code and a binary version.
KAON Extensions http://sourceforge.net/projects/kaon-ext/

Includes: KAONToEdit V1.0
TextToOnto V0.95b http://sourceforge.net/projects/texttoonto/

Java V1.4.2 http://java.sun.com/j2se/1.4.2/download.html
OntoEdit V2.6 http://www.ontoprise.de/customercenter/

software downloads/
JBoss V3.2.1 http://www.jboss.org

Table A.1: Downloading KAON

47

APPENDIX A. DOWNLOAD & INSTALLATION 48

A.2 Installation of KAON, its Workbench, and OI-
Modeler

After having obtained KAON from the download site mentioned in Table A.1, you may
proceed making that software applicable.

Note, that the term “KAON Workbench” (cf. Section 1.2) in particular comprises the
OI-Modeler, KAON’s ontology editor.

Installation: Installing KAON and its Workbench is straightforward. To install KAON
just unpack the downloaded archive to some directory without spaces.

Using OI-Modeler: Set the KAON_ROOT environment variable to point
to the root of your KAON distribution, for example via c:\>set
KAON_ROOT=c:\kaon. Then, you may start the OI-Modeler by invoking
KAON_ROOT\bin\kaongui.bat

As shown in Figure 1.1 the KAON archive you have downloaded comprises KAON’s
Engineering Server as well. However, since installing and using that software involves a
number of steps to be followed, we describe that proceeding in very detail in the following
section.

A.3 Installation of the Engineering Server

The Engineering Server represents KAON’s implementation for large-scale and dis-
tributed ontology engineering. Note, that the Engineering Server is a part of KAON. So,
the files and libraries related to it are included in the KAON archive you probably have
downloaded and installed in Section A.2. The following steps describe how to install and
use the Engineering Server.

Exemplarily, we describe the installation process for Microsoft SQL Server 2000 as
the database system the Engineering Server collaborates with, for which it has been tested
thoroughly. However, it should work in principle with all SQL2-compatible databases. It
has been successfully run on IBM DB2, PostgreSQL and Oracle 8i/9i.

A.3.1 Direct Engineering Server

Applying the Direct Engineering Server corresponds to a two-tiered setting. Of course,
the functionality of both tiers (i.e. client and relational database system) may be placed
on the same machine. Anyway, the first phase of the Engineering Server’s installation
involves the creation of the server’s database and filling it with the necessary database
schema (see Section 4.1).

APPENDIX A. DOWNLOAD & INSTALLATION 49

1. Install the relational database system and make sure it is up and running.

2. Create a new database (e.g. myOntologyDatabase) with your database man-
agement tool (in case of MS SQL Server that tool is the “SQL Server Enterprise
Manager”).

3. Use your database tool to execute the schema.sql script located in
KAON_ROOT\engineeringserver\schema\. For example, for the MS
SQL Server you may use the “SQL Query Analyzer” for that purpose. That script
will create the schema in your database. The file is in the SQL2 format and uses
the semicolon character as the command separator. Depending on your database,
you may need to replace that character with the keyword used by your database (for
example, older versions of MS SQL Server used the keyword GO as the command
separator).

4. Depending on your database (i.e. if you are not using MS SQL Server), execute
the supplementary schema script. For example, in case of Oracle database, exe-
cute engineeringserver\schema\schema_oracle.sql file. The same
comments about the command separator apply.

5. Create a database user with your database management tool, e.g. MS SQL Server
Enterprise Manager. Pay also attention that the security settings of MS SQL Server
Enterprise Manager do not only allow for Windows authentication, but for “SQL
Server and Windows”.

Now, the Engineering Server is ready to be used in its direct version. From within
the OI-Modeler you may create a new or open an existing ontology model via the Direct
Engineering Server by supplying the following information:

• Start the OI-Modeler and choose open or create an OI-Model.

• Choose the tab “Direct Engineering Server”.

• User Name and Password as specified in 5.

• Host Name: localhost or the server the SQL Server is running on

• Driver: Here, you can choose between MS SQL Server, IBM DB2, Oracle, Post-
greSQL, and other.

• Port: 1433

• Database: name of your database, e.g. myOntologyDatabase

APPENDIX A. DOWNLOAD & INSTALLATION 50

A.3.2 Remote/Local Engineering Server

For the remote or local version of the Engineering Server, you need the JBoss application
server and you have to deploy the Engineering Server’s EJBs to that application server.
To do so, follow these steps:

1. Download JBoss from http://www.jboss.org/downloads.jsp. Unpack
the JBoss into a directory without spaces.

2. Set the JBOSS_HOME environment variable to point to the root of the JBoss distri-
bution (e.g. C:\java\jboss-3.2.1_tomcat-4.1.24).

3. KAON distribution contains JBoss 3.2.1 libraries (in the 3rdparty directory) that
facilitate connection to the JBoss application server. The version of the client-side
libraries must match to the JBoss version. If you are using some other version of
JBoss, then you should exchange the JBoss libraries in the 3rdparty directory with
the appropriate libraries from your JBoss distribution.

Please note, that we conducted all our tests with version 3.2.1 of JBoss, thus we
recommend using that JBoss version as incompatibilities might arise otherwise.

4. Customize JBoss to connect to your database. This involves the following steps:

• Copy the template database configuration file for your database
(for MS SQL Server that file is called mssql-ds.xml)
from JBOSS_HOME\docs\examples\jca directory to
JBOSS_HOME\server\default\deploy.

• Open that file in a text editor.

• Customize the name of the JNDI data source to KAON (by editing the value
of the <jndi-name> element).

• Enter other information about your database (such as connection string, user
name and password).

• Make the JDBC driver available to JBoss by copying it to
JBOSS_HOME\server\default\lib directory. The JDBC driver
for MS SQL, for example, consists of three files (msbase.jar,
mssqlserver.jar, and msutil.jar).

5. Start JBoss (by invoking the JBOSS_HOME\bin\run.bat script).

6. Deploy the Engineering Server. Here, you will have to decide whether you intend
to use the Engineering Server in its secure or non-secure version (see below). For
the non-secure version invoke the engineeringserver\deploy.bat
script (which will copy engineeringserver-beans.jar file
to the JBOSS_HOME\server\default\deploy directory). For

APPENDIX A. DOWNLOAD & INSTALLATION 51

the secure version invoke the deploy_secure.bat script (which
will copy engineeringserversecure-beans.jar file to
JBOSS_HOME\server\default\deploy directory).

Now, the Local/Remote Engineering Server is ready for use. From within the ontology
editor OI-Modeler you may now access it. Depending on the decision whether you intend
to use the Engineering Server in its non-secure or secure version, proceed as follows:

Non-Secure Version In the non-secure version no authentication mechanism is present.

• Start the OI-Modeler and choose open or create an OI-Model.

• Choose the tab “Engineering Server”.

• Host Name: localhost or the server on which JBoss is running

• Port: 1099

• User Name and Password: You can leave these fields blank as no authentica-
tion methods are employed in the non-secure version.

Secure Version In the secure version the same information as in the non-secure version
have to be supplied. Moreover, you have to fill in your user name and password
allowing you to access JBoss. Of course, you have to customize JBoss in prior so
that it supports authentication. This basically means, you have to define a set of
users and grant them rights to read and/or modify the ontology.

For this you must set up a security domain called kaon and specify how au-
thentication is performed. A simple way of authenticating users is by using
UsersRolesLoginModule of JBoss. This module expects two files in
JBOSS_HOME\server\default\conf directory: users.properties
contains entries of the form userName=password, whereas
roles.properties contains entries of the form userName=role1,role2.

The Engineering Server supports two roles: KAONReader role allows the
user to read the OI-Model, whereas KAONWriter role allows user to change
the OI-Model. The UsersRolesLoginModule can be started by editing
JBOSS_HOME\server\default\conf\login-config.xml file and ap-
pending the following fragment:

<application-policy name="kaon">
<authentication>
<login-module
code=
"org.jboss.security.auth.spi.UsersRolesLoginModule"
flag="required" />

</authentication>
</application-policy>

APPENDIX A. DOWNLOAD & INSTALLATION 52

For installation of other authentications modules, please refer to JBoss documenta-
tion.

A.4 Installation of TextToOnto

TextToOnto has been developed as an open-source project and therefore can be freely
obtained from the address mentioned in table A.1. Because it does not need any additional
libraries or software apart from the Java Runtime Environment1, the installing and running
TextToOnto is straightforward:

• decompress the binary distribution into a directory <INST-DIR> (for example
c:\TextToOnto)

• go to <INST-DIR>\bin
• set the classpath and start TextToOnto:

DOS / Windows: invoke <INST-DIR>\bin\texttoonto.bat
Unix / Linux:

– execute the shell script ../sentenv.sh in order to set up your environment

– start TextToOnto via java -cp "%TEXTTOONTO CLASSPATH%"
edu.unika.aifb.texttoonto.TextToOnto

Moreover, although this is not required for using TextToOnto, you might want to in-
stall WordNet 1.7.1 which significantly improves the results of the TaxoBuilder module
(see section 5.2.1). WordNet distributions for various operating systems can be down-
loaded from http://www.cogsci.princeton.edu/∼wn/.

1http://java.sun.com/j2se/desktopjava/jre/index.jsp

Bibliography

[CST03] P. Cimiano, S.Staab, and J. Tane. Automatic acquisition of taxonomies from
text: Fca meets nlp. In Proceedings of the PKDD/ECML’03 International
Workshop on Adaptive Text Extraction and Mining, 2003.

[Fel98] C. Fellbaum. WordNet, an electronic lexical database. MIT Press, 1998.

[Hea92] M.A. Hearst. Automatic acquisition of hyponyms from large text corpora.
In Proceedings of the 14th International Conference on Computational Lin-
guistics, 1992.

[HS98] U. Hahn and K. Schnattinger. Towards text knowledge engineering. In
AAAI’98/IAAI’98 Proceedings of the 15th National Conference on Artificial
Intelligence and the 10th Conference on Innovative Applications of Artificial
Intelligence, 1998.

[Kar02] FZI Karlsruhe. OI-Modeler user’s guide, 2002.

[KK04] FZI Karlsruhe and AIFB Karlsruhe. KAON the Karlsruhe ontology and se-
mantic web framework — developer’s guide for KAON 1.2.7, 2004.

[MMS+03] A. Maedche, B. Motik, L. Stojanovic, R. Studer, and R. Volz. An infras-
tructure for searching, reusing and evolving distributed ontologies. In Pro-
ceedings of the twelfth international conference on World Wide Web, pages
439–448, Budapest, Hungary, 2003. ACM Press.

[MMV02] A. Maedche, B. Motik, and R. Volz. A conceptual modeling approach for
semantics-driven enterprise applications. In Springer-Verlag, editor, On the
Move to Meaningful Internet Systems, 2002 - DOA/CoopIS/ODBASE 2002
Confederated International Conferences DOA, CoopIS and ODBA, pages
1082 – 1099, October 30 - November 01 2002.

[MS00] A. Maedche and S. Staab. Discovering conceptual relations from text. In
W. Horn, editor, Proceedings of the 14th European Conference on Artificial
Intellignece (ECAI’2000), 2000.

53

BIBLIOGRAPHY 54

[MS02] A. Maedche and S. Staab. Measuring similarity between ontologies. In Pro-
ceedings of the European Conference on Knowledge Acquisition and Man-
agement (EKAW). Springer, 2002.

[MSSV02] A. Maedche, L. Stojanovic, R. Studer, and R. Volz. Managing multiple on-
tologies and ontology evolution in ontologging. In Proceedings of the IFIP
17th World Computer Congress – TC12 Stream on Intelligent Information
Processing, pages 51 – 63, Montreal, Canada, 2002. Kluwer.

[MV01] A. Maedche and R. Volz. The ontology extraction and maintenance frame-
work text-to-onto. In Proceedings of the ICDM’01 Workshop on Integrating
Data Mining and Knowledge Management, 2001.

[oG03] ontoprise GmbH. How to work with OntoEdit — user’s guide for On-
toEdit version 2.6. http://www.ontoprise.de/documents/tutorial ontoedit.pdf,
September 2003.

[Res97] P. Resnik. Selectional preference and sense disambiguation. In Proceedings
of the ACL SIGLEX Workshop on Tagging Text with Lexical Semantics: Why,
What, and How?, 1997.

[SMMS02] L. Stojanovic, A. Maedche, B. Motik, and N. Stojanovic. User-driven on-
tology evolution management. In Proceedings of the 13th European Confer-
ence on Knowledge Engineering and Knowledge Management EKAW, vol-
ume 2473 of Lecture Notes in Computer Science, pages 285 – 300, Siguenza,
Spain, October 1-4 2002. Springer.

[SSH02] L. Stojanovic, N. Stojanovic, and S. Handschuh. Evolution of the metadata in
the ontology-based knowledge management systems. In German Workshop
on Experience Management, pages 65 – 77, 2002.

[Vol04] R. Volz. Web Ontology Reasoning with Logic Databases. PhD thesis, Uni-
versity of Karlsruhe (TH), 2004.

