
Persistence in Distributed Object Systems:

ORB/ODBMS Integration1

Francisco Reverbel2

Ph.D. Dissertation Presented to the Computer Science Department of

the University of New Mexico

April, 1996

1This research was performed at the Advanced Computing Laboratory of Los Alamos

National Laboratory, Los Alamos, NM 87545, as part of the Sunrise Project.

2During the development of this work the author was on leave of absence from the Com-

puter Science Department of the Institute of Mathematics and Statistics of the University

of São Paulo (IME-USP), São Paulo, Brazil, and was partly supported by a fellowship from

the National Research Council of Brazil (CNPq).

committee signatures page

(provided by the university)

title page

(provided by the university)

i

c©1996, Francisco Reverbel

ii

To Martha and our children

Acknowledgments

This dissertation would have been impossible without the encouragement and support

of many people at different places. I cannot possibly thank everyone individually, but

would like to express my gratitude to them all.

At the University of New Mexico

I have been very fortunate to have had Professor Barney Maccabe as my Ph.D.

advisor. Barney introduced me to the field of massively parallel computing, guided

my early work in this field, and continued counseling me even after I decided to

redirect my research to the area of distributed systems. I am grateful to Barney not

only for his technical advice, but also for the encouragement and support he gave me

when they were most needed, not to mention his patience with a student who took

too long to settle on a dissertation subject.

I would like to thank Professors John Brayer, Charles Crowley, and Gregory Heile-

man for serving in my committee and for their helpful comments and suggestions. And

would also like to extend my thanks to other faculty members of the Computer Science

Department. Professors Bernard Moret, Stephanie Forrest, Henry Shapiro, and Paul

Helman indirectly contributed to this work by teaching some of the excellent classes I

have attended. Professor Edward Angel helped me as Graduate Advisor, during my

initial semesters at the department, and by recommending me to the Sunrise Project.

Joann Buehler, Graduate Secretary of the Computer Science Department, deserves

special thanks for her thoughtfulness and efficiency. My last weeks as a Ph.D. student,

which were quite hectic, would have been yet harder without her help.

Many thanks to Martin Mueller, Ksheerabdhi Krishna, and Tom Claus, fellow

graduate students, for their friendship, encouragement, and support. Martin had a

decisive influence on my graduate career: he pointed to me a Los Alamos project just

v

initiated, in which I found the dissertation topic I was looking for.

At the Los Alamos National Laboratory

Dave Forslund, Deputy Director of the Advanced Computing Laboratory and Princi-

pal Investigator of the Sunrise Project, inspired much of this work by sharing with me

his vision of distributed object computing. I am grateful to Dave for his stimulating

insights and for the excellent research environment at the laboratory.

Dick Phillips, who led the TeleMed project (one of the Sunrise sub-projects),

suggested to me ORB/ODBMS integration as a Ph.D. topic. I thank him for the good

hint and for believing that I could provide the integrated ORB/ODBMS environment

TeleMed needed.

I have learned a lot from the members of the Sunrise/TeleMed team: Bob Tom-

linson, Ron Daniel, Mohamad Ijadi, and Juhnyoung Lee, among others. I am also

grateful to Juhnyoung for his encouragement and support. Juhnyoung and I have

collaborated closely on applying ORB/ODBMS integration techniques to relational

systems; a solid friendship developed while we worked together.

Besides answering all my questions on how to draw pictures and make plots, Pat

McCormick let me use his SGI workstation to draw the pictures that appear in this

dissertation. Until I was done with the drawings, Pat never forgot to log out from

his computer at the end of each day (rather than simply locking the screen), so that

I could use it after hours. Just to draw pictures, of course — his machine is great,

but I still prefer the keyboard of my SPARCstation.

Finally, many thanks to Dave Kilman. His guitar helped me to remain sane

throughout months of incredibly hard work.

At home

My mother-in-law, Gioconda Monteiro, came three times to the USA while my wife

and I were both laboring over our graduate duties. She spent many months in this

country, just to help us with the children — I cannot thank her enough.

And thank you Martha, for everything. Without your love I would not have

finished this dissertation.

vi

Institutional Supporters

This research was performed at the Advanced Computing Laboratory of Los Alamos

National Laboratory, Los Alamos, NM 87545. It was carried out as part of the Sunrise

Project, an effort of the Los Alamos National Laboratory with the goal of providing a

nationally scalable environment which facilitates the dynamic assembly of distributed

industrial and scientific applications.

For the duration of this work I was on leave of absence from the Computer Science

Department of the Institute of Mathematics and Statistics of the University of São

Paulo (IME-USP), São Paulo, Brazil, and was partly supported by a fellowship from

the National Research Council of Brazil (CNPq).

vii

abstract title page

(provided by the university)

viii

Abstract

This dissertation discusses the realization of object persistence, in a CORBA-based

distributed system, through the integration of the Object Request Broker (ORB)

with an Object Database Management Systems (ODBMS). Three approaches to per-

sistence of CORBA objects are described. The first one, pseudopersistence, makes ob-

ject references persistent, but not transparently storable. The others, smart pointer-

based persistence and virtual persistence, provide transparent storability to object

references, both in the case of references to local objects and in the case of references

to remote objects. We stress the ORB and ODBMS features each approach depends

upon, and point out the ones not fully standardized at the present time.

A software component, the Object Database Adapter (ODA), is responsible by the

integration of an ORB with an ODBMS. We include a report on the use of an ODA in

a real-world telemedicine application, a distributed, object-oriented, CORBA-based

patient record system developed at the Los Alamos National Laboratory.

A performance evaluation of the aforementioned approaches to persistence of

CORBA objects is presented. Our quantitative results reveal the good performance

of pseudopersistence, the effectiveness of active object caching, the promising per-

formance of smart pointer-based persistence, and the penalty paid for using virtual

persistence with the single commercially available ODBMS to which this approach is

applicable.

ix

Contents

Dedication iii

Acknowledgments v

Abstract ix

Introduction 1

1 The ORB architecture 9

1.1 The Interface Definition Language . 10

1.2 The Structure of an ORB . 13

1.3 The ORB interface . 18

1.4 The Basic Object Adapter . 20

1.4.1 Implementation Activation and Object Activation 20

1.4.2 Generation and Interpretation of Object References 24

1.4.3 Identification of the Principal Making a Request 27

1.5 IDL to C++ Mapping Issues . 28

1.5.1 The Natural Mapping of Interface Inheritance 28

1.5.2 Implementing Object Interfaces in C++ 30

1.6 Object Activation in Orbix . 35

1.7 Request and Reply Handlers . 36

1.8 Additional Information . 37

2 Object Database Management Systems 39

2.1 Persistence . 40

2.2 Collections and Queries . 41

xi

2.3 Transactions . 43

2.4 References to Persistent Objects . 43

2.5 Client/Server ODBMSs . 45

2.5.1 Comparison with CORBA . 45

2.6 ODBMS Implementation Issues . 46

2.7 ODBMS Limitations . 49

2.8 Object-Relational Mapping . 50

3 ORB/ODBMS Integration 53

3.1 Motivation . 53

3.2 Process Architecture . 55

3.3 Problems to Solve . 58

3.3.1 Why a Direct Approach Cannot Work 58

3.3.2 Persistence of Implementation Objects 60

3.4 The Object Database Adapter . 64

3.5 Pseudopersistence . 67

3.6 Full Persistence . 73

3.6.1 Smart Pointer-Based Persistence 73

3.6.2 Virtual Persistence . 77

3.7 ODA Support for Local Transactions 90

3.8 Relationship with POS . 92

3.9 Related Work . 93

3.9.1 Iona’s Orbix-ObjectStore Adapter 94

4 The Sunrise ODA 97

4.1 Persistence Approaches Supported . 98

4.2 Dependency Upon ORB and ODBMS Features 99

4.3 ODA Utilization by TeleMed . 100

5 The Performance of ODA Approaches 101

5.1 The Test Environment . 101

5.2 ORB and ODBMS Performance Figures 102

5.2.1 Remote Method Invocation (Orbix) 102

5.2.2 Persistent Memory Access (ObjectStore) 102

xii

5.3 Benchmark Description . 104

5.3.1 IDL Interfaces . 104

5.3.2 The Servers . 106

5.3.3 The Clients . 111

5.4 Results . 112

5.4.1 Database Creation . 113

5.4.2 Database Traversal . 117

5.4.3 Database Search . 125

5.4.4 Discussion . 130

6 Conclusion 135

6.1 Summary of Results . 136

6.2 Future Work . 137

Glossary of Acronyms 139

Bibliography 141

xiii

List of Figures

1.1 IDL specification of a bare-bones repository of medical records. 12

1.2 ORB structure and interfaces. 13

1.3 Request paths from a client to an object implementation. 15

1.4 A request sent through an IDL stub. 16

1.5 Partial description of the ORB interface. 19

1.6 The BOA interface. 21

1.7 BOA operation in a shared server. 22

1.8 Implementation activation policies. 23

1.9 IDL definition of interface A. 29

1.10 IDL-generated interface class for interface A. 29

1.11 IDL interfaces B, C, and D. 29

1.12 IDL-generated interface classes for interfaces B, C, and D. 30

1.13 Interface implementation approaches. 31

1.14 IDL-generated skeleton class for interface A. 31

1.15 Implementation class for interface A (inheritance approach). 32

1.16 IDL-generated tie class for interface A. 33

1.17 Implementation class for interface A (delegation approach). 33

2.1 Transient memory and persistent memory. 40

2.2 Client/server ODBMS. 45

2.3 Operation shipping vs. data shipping. 46

3.1 Process architecture. 56

3.2 Persistence of implementation objects. 61

3.3 IDL-generated tie to persistent memory. 62

3.4 The Object Database Adapter. 65

xv

3.5 Simplified representation: “persistence in a CORBA server.” 67

3.6 Incoming request handling in the pseudopersistence approach. 68

3.7 The ODA Ref<I> template class. 75

3.8 Class ODA Ref<I>’s dereference operator. 76

3.9 The d Object class. 77

3.10 Persistent object activation and deactivation. 78

3.11 IDL-generated tie for virtual persistence. 80

3.12 Memory layout of a tie A<A impl> instance. 81

3.13 Representative of an object of class tie A<Impl>. 82

3.14 Virtual persistence. 84

3.15 Incoming request handling in virtual persistence (part I). A request to

a persistent CORBA object arrives at the server. The object activation

routine performs a memory access to the representative of the target

object. 85

3.16 Incoming request handling in virtual persistence (part II). The mem-

ory access to the representative causes the instantiation of the target

object. 86

3.17 Incoming request handling in virtual persistence (part III). An up-call

from the skeleton invokes the requested operation. At the end of the

operation, an outbound hook deletes the target object. 87

3.18 IDL-generated stub class for interface A. 88

3.19 Representative of a remote CORBA object. 89

5.1 The Node interface. 105

5.2 The NodeFactory interface. 105

5.3 The Tree interface. 106

5.4 The TransactionControl interface. 106

5.5 Test1 — ODA-pp with and without caching, ` = 4096 (left), h = 4

(right). 114

5.6 Test1 — ODA-pp with and without caching, h = 5 (left), h = 6 (right). 114

5.7 Tests 1 (left) and 2 (right), ` = 4096. 115

5.8 Tests 1 (left) and 2 (right), h = 4. 116

5.9 Tests 1 (left) and 2 (right), h = 5. 117

xvi

5.10 Test 3 — cold and warm times, ` = 4096. 118

5.11 Test 3 — cold and warm times, h = 4. 119

5.12 Test 3 — cold and warm times, h = 5. 119

5.13 Test 4 — cold and warm times, ` = 4096. 120

5.14 Test 4 — cold and warm times, h = 4. 121

5.15 Test 4 — cold and warm times, h = 5. 122

5.16 Test 5 — cold and warm times, ` = 4096. 123

5.17 Test 5 — cold and warm times, h = 4. 123

5.18 Test 5 — cold and warm times, h = 5. 124

5.19 Test 6 — cold and warm times, ` = 4096. 126

5.20 Test 6 — cold and warm times, h = 4. 127

5.21 Test 6 — cold and warm times, h = 5. 128

5.22 Test 7 — cold and warm times, ` = 4096. 128

5.23 Test 7 — cold and warm times, h = 4. 129

5.24 Test 7 — cold and warm times, h = 5. 129

5.25 Tests 6 and 7, cold and warm pseudopersistence results, ` = 4096. . . 130

5.26 Test 3, ODA-sp with dummy inbound hook and ODA-vp, ` = 4096. . 134

5.27 Test 4, ODA-sp with dummy inbound hook and ODA-vp, ` = 4096. . 134

5.28 Test 5, ODA-sp with dummy inbound hook and ODA-vp, ` = 4096. . 134

xvii

List of Tables

5.1 Null operation with octet sequence of length ` as input parameter.

(Times in milliseconds.) . 102

5.2 Cold traversal of persistent list with 2048 elements. Each element of

the list has a data field of length 4096. (AH = access hooks installed;

I = inbound hook; O = outbound hook; times in seconds.) 103

5.3 Warm traversal of persistent list with 2048 elements. Each element of

the list has a data field of length 4096. (AH = access hooks installed;

I = inbound hook; O = outbound hook; times in seconds.) 103

5.4 Number of nodes of complete quad-trees. 112

5.5 Test 1 — ODA-pp with and without caching, ` = 4096. 113

5.6 Test 1 — ODA-pp with and without caching, h = 4, 5, 6. 114

5.7 Tests 1 and 2, ` = 4096. 115

5.8 Tests 1 and 2, h = 4. 116

5.9 Tests 1 and 2, h = 5. 116

5.10 Test 3 — cold and warm times, ` = 4096. 118

5.11 Test 3 — cold and warm times, h = 4. 118

5.12 Test 3 — cold and warm times, h = 5. 118

5.13 Test 4 — cold and warm times, ` = 4096. 120

5.14 Test 4 — cold and warm times, h = 4. 121

5.15 Test 4 — cold and warm times, h = 5. 121

5.16 Test 5 — cold and warm times, ` = 4096. 122

5.17 Test 5 — cold and warm times, h = 4. 123

5.18 Test 5 — cold and warm times, h = 5. 124

5.19 Test 6 — cold and warm times, ` = 4096. 126

5.20 Test 6 — cold and warm times, h = 4. 127

xix

5.21 Test 6 — cold and warm times, h = 5. 127

5.22 Test 7 — cold and warm times, ` = 4096. 127

5.23 Test 7 — cold and warm times, h = 4. 128

5.24 Test 7 — cold and warm times, h = 5. 129

5.25 Tests 3, 4, and 5 — ODA-sp with dummy inbound hook, ` = 4096. . 133

xx

Introduction

As Birrel et al. pointed out in [3], the object-oriented programming methodology

applies beautifully to distributed computing. Since object-oriented programming en-

forces encapsulation, clients can only access the state of an object via the object’s

methods. The method calls are therefore a natural place to insert the communication

needed in a distributed environment. Even some words of the object-oriented termi-

nology (“message”, “receiver”) reveal the potential affinity between object-oriented

programming and distributed computing. At the root of this affinity is the concept

of separation, fundamental to both disciplines: in one of them, it appears as the log-

ical separation among encapsulated objects; in the other, as the physical separation

among distributed entities.

Although research systems based on this observation started to appear by the mid

1980s, distributed objects have not yet attained mainstream status. More than the

many technical issues involved in the design of a distributed object environment1,

the lack of a standard for such environments prevented their widespread use. This

situation is now changing with the emergence of two competing standards: CORBA,

the Object Request Broker (ORB) architecture specified by the Object Management

Group (OMG), and COM, the Component Object Model upon which Microsoft based

its Object Linking and Embedding (OLE) infrastructure.

Nearly all major software and hardware vendors are backing the OMG architec-

ture, Microsoft being the single and notable exception. Due to Microsoft’s position in

the software industry, however, it is likely that COM will become an alternative stan-

dard — a de facto standard for personal computer platforms2. CORBA prevalence is

1See the overview section of [3] for a brief discussion of some of these issues.

2COM is Microsoft’s proprietary solution, not a formal standard. Only its non distributed (single-

expected on all other platforms, and especially on POSIX systems. It appears that

both standards are here to stay, and will be coexisting in the foreseeable future. The

present work addresses CORBA [37], because:

1. several ORB implementations are available now;

2. as the de jure standard, CORBA is an open and cross-platform solution;

3. most neutral object technology experts agree that the OMG architecture is

technically superior to OLE/COM.

Our Subject

In the OMG model for distributed object systems [40], the ORB is the software

component through which objects transparently make requests and receive responses.

It provides interoperability between applications written in different languages and

running on different machine architectures, seamlessly interconnecting multiple object

systems in heterogeneous distributed environments.

In many situations, objects should outlive the processes that implement them.

These situations include most practical scenarios in which distributed objects are de-

sirable: in real-world applications, persistence is almost always a requirement. While

CORBA does not support object persistence directly, its open architecture includes

an object adapter , an intermediary between an object implementation and the ORB

core. Object persistence can then provided by the object adapter.

The CORBA specification defines a Basic Object Adapter (BOA) that does not

provide object persistence. As an example of another object adapter that might be

useful, CORBA briefly mentions an adapter that makes objects stored in an object-

oriented database accessible through the ORB. This idea is pursued in the Appendix

B of the ODMG standard [7], which identifies a number of issues involved in using

an Object Database Management System (ODBMS) in a CORBA environment and

proposes an Object Database Adapter (ODA) to realize the integration of the ORB

with the ODBMS.

machine) version is currently available. Network COM will not be shipping before late 1996, with

Cairo’s Network OLE.

2

An Object Database Adapter allows object implementations to be written in the

database programming language of the ODBMS, a language that incorporates persis-

tence into the programming environment. The object implementation — a CORBA

server — is still responsible for managing the persistent state of the objects it im-

plements, but the object implementor’s task is much simpler in the programming

environment provided by ODBMS. Besides persistence, other database features —

data consistency in the presence of concurrent accesses, crash recovery, and so forth

— are available to the object implementation.

In existing database systems, regardless of their data model (object-oriented or

relational), database clients must have some knowledge of the database schema. In

the case of an object-oriented DBMS, clients need to know the object layout. In a

relational DBMS, views can be used for data independence. But relational clients

still need to know the external (view level) schema. By contrast, ORB/ODBMS in-

tegration makes database objects accessible to CORBA clients without exposing the

database schema to these clients. The data members and the layout of a persistent

CORBA object remains private, only its interface (a set of methods) is made public.

This is specially interesting for web browser access to databases. With the integra-

tion of the Java language ([11], [55]) into the ORB environment, Java applets can

interact with persistent CORBA objects through domain-specific interfaces, without

any knowledge of how the objects are actually stored.

ORB/ODBMS integration leads to ORB-connected multidatabases. Together

with OTS, the Object Transaction Service3 specified by the OMG in [39], it enables

the construction of distributed object databases that are truly heterogeneous, even

with respect to the DBMS software running on the various database server nodes.

Storing CORBA Objects in an Object Database: The Issues

The gap between object access times in the ORB and in the ODBMS environment is

the first issue an Object Database Adapter must address. Because CORBA clients

access objects via remote method invocation, access times for CORBA objects are

expressed in milliseconds. Because ODBMSs keep an object cache at the client side,

3OTS implements the two-phase commit protocol [12] in a CORBA environment. Its model can

be viewed as an object-oriented extension of the X/Open DTP model [60].

3

ODBMS clients can access objects much faster: access times for ODBMS objects are

typically expressed in microseconds.

Due to the this performance gap, an Object Database Adapter cannot force all

accesses to the objects in a database to be made through the ORB remote method

invocation mechanism. In the case of a large collection of very small objects, the

overhead would be unacceptable. Instead, the ODA should let the object implementor

choose a suitable subset of database objects, presumably the higher level ones, to

be accessed as CORBA objects. Since this subset may still be large, individual

registration of its objects with the ORB is not practical. The ODA should allow a

subset of database objects to be accessed through the ORB, without requiring an

explicit registration call for each object.

Moreover, in the common case of an ODBMS that adds database features to C++,

an object implementation cannot simply store in an object database the CORBA

objects it implements:

• It would be a waste of database space: a C++ CORBA object has ORB-specific

data members that should not be stored. It typically also has a pair of hidden

vbase and vtable pointers for each interface class in its inheritance chain up

to CORBA::Object.

• More importantly, the CORBA operations duplicate and release update the

object’s reference count. If the reference count were actually stored in the

database, every operation on the object would have to be performed within an

update transaction, because duplicate and release appear everywhere.

• Yet more importantly, ORB implementations keep a per-process table of active

objects: a new entry is inserted into this table whenever the constructor of

a CORBA object is invoked by the corresponding process. In a C++-based

ODBMS, however, the constructor of a persistent object is only invoked when

the object is added to the database. As far as the ORB is concerned, CORBA

objects stored by other processes (including previous runs of the same program)

would not be active.

An Object Database Adapter has to solve these problems, ideally in a way that makes

persistent CORBA objects appear exactly like ordinary database objects. As much

4

as possible, object implementors should be unaware that a persistent CORBA object

does not really live in the database.

Persistence of CORBA Object References

Besides providing persistence to CORBA objects, the Object Database Adapter must

also provide persistence to the corresponding object references. In CORBA, persis-

tence of object references means that “a client that has an object reference can use

it at any time without warning, even if the (object) implementation has been deacti-

vated or the (server) system has been restarted” [37].

With persistence of object references, it makes perfect sense for a client to store an

object reference for later use. References to persistent CORBA objects implemented

by server X can be stored by server Y (a client of server X) and vice-versa, thereby en-

abling the construction of ORB-connected multidatabases. In such a multidatabase,

references to remote objects are used to express relationships between CORBA ob-

jects implemented by different servers. If distributed transactions are needed, they

can be supported by a TP monitor that implements the Object Transaction Service.

Storability of CORBA Object References

Because an object reference is opaque and ORB-dependent, CORBA provides opera-

tions that convert an object reference to string and vice-versa. Object references are

stored as strings; upon retrieval they must be converted back to their native form.

Translation to and from string format provides maximum flexibility, allowing ob-

ject references to be kept in any media. In an ODBMS environment, however, ob-

ject storage and retrieval are transparent to the programmer. The need for explicit

translation of stored references does not prevent the construction of ORB-connected

multidatabases, but is unnatural in the context of an object database: ODBMS users

expect stored references that behave like any other database object.

Transparent storability of CORBA object references is yet another desirable fea-

ture of an Object Database Adapter. It eliminates the need for explicit object refer-

ence conversions, both before storage and after retrieval, and allows transparent use

of stored references to invoke methods on possibly remote objects.

5

Scope of and Organization of this Dissertation

According to Cattell [6], “more work in both standards and implementation is needed

to realize the integration of ODBMSs and OMG ORBs”. In this dissertation we

present:

• A discussion of the design issues involved in integrating ORBs and ODBMSs.

Our experience designing and implementing Object Database Adapters is con-

veyed here. We have implemented two approaches to persistence of CORBA

objects. The first one, which we call pseudopersistence, makes object references

persistent, but not transparently storable. The second approach, which we call

virtual persistence, provides transparent storability to object references, both

in the case of references to local objects and in the case of references to re-

mote objects. These approaches, as well as a smart pointer-based realization of

transparently stored references, are discussed in considerable detail. We stress

the ORB and ODBMS features each approach depends upon, and point out the

ones not fully standardized at the present time.

• A report on the utilization of an Object Database Adapter in a real-world

distributed application.

We discuss ODA usage in TeleMed, a distributed, object-oriented, CORBA-

based telemedicine system developed at the Los Alamos National Laboratory.

• A performance evaluation of ORB/ODBMS integration approaches.

Our quantitative results reveal the good performance of pseudopersistence, ef-

fectiveness of object caching, the promising performance of smart pointer-based

realizations of transparently stored references, and the penalty paid for using

virtual persistence with the single commercially available ODBMS to which this

approach is applicable.

The remainder of this dissertation is organized as follows: Chapters 1 and 2 review

background material on ORBs and ODBMSs. Chapter 3 discusses the reasons for

integrating an ORB with an ODBMS, the role of an Object Database Adapter, and

ODA design issues. Chapter 4 is a report on our ODA implementation and its utiliza-

tion in the TeleMed project. Chapter 5 presents a performance evaluation of different

6

approaches to the integration of an ORB with an ODBMS. Finally, Chapter 6 contains

our concluding observations and summarizes the contributions of this work.

7

Chapter 1

The ORB architecture

A full description of the ORB architecture is beyond the scope of this dissertation.

This chapter presents an overview of its characteristics and discusses in more detail

the aspects relevant to ORB/ODBMS integration. For additional information, the

reader is referred to the CORBA specification [37].

The Object Management Group (OMG) is a consortium dedicated to promoting

and standardizing object technology for the development of distributed computing

systems. It was formed in 1989 by eight companies, including Hewlett-Packard and

Sun Microsystems. OMG now has over 600 members, comprising nearly all major

software and hardware vendors, many large end-users, and several research institu-

tions.

In the OMG model for distributed object systems ([40], [51]), an object is an

identifiable, encapsulated entity that supports a set of operations. The execution

of such an operation is a service that the object provides upon a client’s request.

A client of a service is any entity capable of requesting the service. Objects are

typical clients of services: in processing a service request, an object may use services

provided by other objects. Programs that do not realize objects in the sense of the

OMG model — end-user applications that are not service providers, for example

— can also be clients of services. Clients of services interact with the objects that

provide the services through well-defined interfaces. The interface of an object is the

set of operations a client may request of the object. All objects satisfying a particular

interface have the same type, the interface type associated to that interface.

Concrete realizations of this model are based upon the Object Request Broker

(ORB) architecture, as defined by the OMG in the Common Object Request Broker

Architecture (CORBA) specification [37]. The main components of CORBA are:

• the Interface Definition Language (IDL), in which object interfaces are de-

scribed;

• the ORB core, the “communication backbone” of a distributed object system;

• an intermediary between the ORB core and object implementations, the object

adapter , which is the primary means for an object implementation to interact

with the ORB. A particular object adapter, the Basic Object Adapter (BOA),

is available in every CORBA implementation. The BOA interacts with object

implementations through an interface designed to support a wide variety of

object implementation requirements.

These are not the only elements of the ORB architecture. Among its other compo-

nents, CORBA includes an interface repository , a storage place for information on

object interfaces, and an implementation repository , a storage place for information

on object implementations.

1.1 The Interface Definition Language

The interfaces provided by objects and used by clients are defined in OMG IDL, a

purely descriptive language, whose purpose is language interoperability . All objects

that may receive requests through the ORB must have their interfaces defined in OMG

IDL. The services provided by any such object can be requested by a client written

in a language different from the one in which the object was implemented. Clients

and object implementations are not written in OMG IDL, but in languages for which

mappings from OMG IDL have been defined. Standard mappings from OMG IDL to

C, C++, and Smalltalk were specified by the OMG in [37]. The standardization of a

mapping to Ada 95 was also completed. Work is in progress on mappings to COBOL,

Java, Objective-C, Eiffel, and Common Lisp with CLOS.

An interface definition written in OMG IDL completely specifies the interface

operations. It provides information on input parameters, output parameters, and

return result of each such operation, as well as information on which exceptions

10

may be raised when the operation is invoked. Figure 1.1 presents an OMG IDL

specification of the interfaces to a bare-bones repository of medical records. This

example shows how constants, types, exceptions, and interfaces are defined.

The strong influence of C++ on the OMG IDL syntax is apparent from Figure 1.1.

An IDL interface looks like a C++ class; its operations are similar to member func-

tions, and its attributes resemble data members. Unlike the data members of C++

classes, however, IDL interface attributes have no memory locations set aside for

them, nor do they specify how object implementations actually store data. An at-

tribute is logically equivalent to a pair of accessor methods; one to retrieve and one

to set the value of the attribute. An attribute declared as readonly corresponds to

a single accessor method — the one that retrieves the value of the attribute.

Data types in OMG IDL also resemble C++ types: besides interface types, there

are basic types (char, boolean, octet, integer and floating point types), constructed

types (structs, unions, and enums), template types (sequences and strings), and

array types.

IDL operations can take in, out and inout parameters; only in parameters are

shown in Figure 1.1. Operation parameters and return results can have any IDL data

type, including interface types. Referring to Figure 1.1, the operation AddReport

of the Patient interface takes as its input parameter an object whose interface is

Report. The operation GetPatient of the Repository interface returns an object

whose interface is Patient.

Interface inheritance is supported by OMG IDL; its syntax is similar to the one

used in C++ for class inheritance. The Patient and Report interfaces in Figure 1.1

are both derived from the RepositoryData interface. A derived interface inherits

attributes and operations from its base interfaces; multiple inheritance of interfaces is

allowed. Inherited attributes and operations may be redefined in the derived interface.

Name resolution is done with the “::” operator, as in C++.

To prevent name clashes, OMG IDL has a module construct that defines a scope

for identifiers. Examples of its usage appear in the CORBA specification itself — all

names introduced by CORBA are defined within a CORBA module. IDL descriptions

of CORBA-defined interfaces will be presented in Sections 1.3 and 1.4.

Interface specifications written in OMG IDL are processed by IDL compilers. An

IDL compiler translates IDL source specifications to a target programming language

11

// constant definition

const unsigned short MAX NAMELEN = 64;

// type definitions

typedef string<MAX NAMELEN> Name;

typedef string Date;

// exception definition

exception reject {

string reason;

};

// forward interface declarations

interface Patient;

interface Report;

// interface definitions

interface Repository {

readonly attribute long number of patients;

Patient AddPatient(in Name name, in Date dob) raises(reject);

Patient GetPatient(in Name name) raises(reject);

sequence<Name> GetPatientList() raises(reject);

Report CreateReport(in string text) raises(reject);

};

interface RepositoryData {

readonly attribute Name creator;

readonly attribute Date date created;

};

interface Patient : RepositoryData {

readonly attribute Name patient name;

readonly attribute Date patient dob;

readonly attribute long patient id;

void AddReport(in Report report) raises(reject);

Report GetReport(in long report id) raises(reject);

sequence<Report> GetReportList() raises(reject);

};

interface Report : RepositoryData {

readonly attribute long id;

attribute string text;

};

Figure 1.1: IDL specification of a bare-bones repository of medical records.

12

for which a mapping from OMG IDL is defined. IDL compilers for C, C++, Smalltalk,

Java, and Objective-C are currently available in existing ORB systems. The results

of an IDL compilation are:

• target programming language code for client stubs;

• implementation skeleton code, also in the target programming language. This

is the ORB architecture’s counterpart of the server stubs of RPC systems.

The IDL compiler may optionally translate interface specifications into a format suit-

able for use at runtime. Specifications translated into this format are stored in the

interface repository, which can be dynamically queried by programs.

1.2 The Structure of an ORB

In a CORBA-based distributed object system, each networked machine runs ORB

software. Figure 1.2 shows the overall structure of the ORB software on an individual

machine1. The interfaces to the ORB are depicted as striped boxes, and the arrows

Up−call interface

Normal call interfa ce

Object Implementati on

ORB Core

�������
�������

���

���������
���������

Static IDL
Skeleton

Object
Adapter

�������
�������

�������
�������

Client

Dynamic
Invocation

IDL
Stubs

ORB
Interface

���������
���������

�
�
�
�
�������
�������

�������
�������

�������
�������

Dynamic
Skeleton

�������
�������

���������

�������
�������

�������
�������

Interface identical for all ORB implem entations

There may be multip le object adapters

There are IDL stubs and a skeleton for each object type

ORB−dependent inter face

Figure 1.2: ORB structure and interfaces.

1Some parts of the ORB may not be present in a machine that does not run object implementa-
tions, but only clients.

13

indicate whether the ORB is called or performs an up-call across the interface.

The request paths from a client to an object implementation are shown in Fig-

ure 1.3. To request a service from an object, the client must have access to an object

reference that identifies this object and must know its interface type. The client can

perform the request by using either the dynamic invocation interface (DII), which

allows the dynamic construction of requests at runtime, or a stub generated by the

IDL compiler. The former is an interface identical for all ORB implementations and

independent of the particular interface to the target object. The latter was generated

from the IDL definition of the interface to the target object, and hence is specific

to this interface. What distinguishes these two ways of issuing a request is the mo-

ment (runtime versus compilation time) the request is known at the client side. From

the target object’s perspective, dynamic invocation and client stubs have the same

semantics: the receiver of a request cannot tell how the request was made.

The object implementation receives the request as an up-call from the object

adapter, either through the IDL-generated skeleton or through the dynamic skeleton

interface. Requests are normally delivered via IDL-generated skeletons, which are

specific to both the object interface and the object adapter. The dynamic skeleton

interface addresses the special case of an object implementation that does not have

compile-time knowledge of the interface it is implementing2.

While processing the request, the object implementation may use services from

the ORB through the object adapter. It may also directly call the ORB interface to

perform certain operations that are common to all objects. Because these operations

are useful to both clients and implementations of objects, they are provided by the

ORB interface and not by the object adapter, which is unavailable to clients. There

are only a few such operations — most of the functionality the ORB offers object

implementations is delivered through the object adapter. There may be multiple

object adapters, with interfaces that are appropriate for specific kinds of objects.

The interface implementor may choose which one to use, based on the needs of a

2Strange as it may seem, the dynamic skeleton interface was motivated by a practical problem:

interoperability between ORBs through generic bridges. A generic bridge acts as a proxy of objects

that live in a foreign ORB environment. It “implements” these objects without having compile-time

knowledge of their interfaces.

14

��������������
���
������������������ ��������������

��������������

��

���������������������������������������

�������
���������������������

���������������������
Object Implementation

ORB Core

Static IDL
Skeleton

Object
Adapter

Client

Dynamic
Invocation

IDL
Stubs

ORB
Interface

Dynamic
Skeleton

ORB Core

ORB
Interface

Figure 1.3: Request paths from a client to an object implementation.

15

particular implementation.

When the object implementation concludes the processing of the request, control

and result information is returned to the client. The steps involved in sending a

request through an IDL stub are shown in Figure 1.4. The client invokes an operation

by calling a stub. The operation arguments are marshaled into a request message,

which is sent through the ORB core. These arguments are unmarshaled at the object

implementation side, where the request is delivered to the object as an upcall through

an IDL-generated skeleton. The results returned by this upcall are marshaled into a

reply message, which is sent back to the client through the ORB core. These results

are unmarshaled at the client side and returned to the client process.

ORB
Interface

ORB Core

�
�
�
�

Client

Object Implementati on

ORB Core

Dynamic
Invocation

IDL
Stubs

Static IDL
Skeleton

Object
Adapter

 1. call

 3. send request

 4. receive request

 6. up−call 7. return

 9. send reply

 12. return

 2. marshal args

 5. unmarshal args

Dynamic
Skeleton

ORB
Interface

 8. marshal results

 11. unmarshal res ults

 10. receive reply

Figure 1.4: A request sent through an IDL stub.

In order to understand how the responsibilities of an ORB are divided among its

components, it is useful to list a number of functions of the ORB architecture:

1. Description of object interfaces in a ‘language-neutral’ way.

2. Generation and interpretation of object references that uniquely identify the

objects they reference.

16

3. Activation and deactivation of object implementations (i.e., bringing up and

down servers3 that implement the object interfaces).

4. Activation and deactivation of individual objects (i.e., notifying a server that a

particular object should be made available to receive service requests).

5. Transparent transport of service requests and responses. This involves the fol-

lowing tasks:

(a) marshaling service request arguments into a request message;

(b) locating the server that should receive this message, based on a reference

to the target object;

(c) delivering the request to the appropriate server;

(d) unmarshaling request arguments in the server;

(e) making available to the server the identification of the principal on whose

behalf the request is being made;

(f) locating the target object within the server;

(g) invoking the corresponding method of this object through the skeleton;

(h) marshaling results into a reply message;

(i) delivering the reply to the client;

(j) unmarshaling results in the client and making them available to the client

code;

(k) converting request and reply messages between data representations used

by different machines;

(l) managing the network connections between clients and servers.

The partition of these responsibilities between IDL, ORB core, and object adapter

follows the purposes of these ORB components:

IDL: language independence (function 1).

3The CORBA specification uses the term server for the separately executable entity that imple-
ments an object. In a POSIX environment, this would be a process.

17

ORB core: communication infrastructure (tasks 5a–5d, 5h–5l).

Object adapter: mediator between the ORB and object implementations (functions

2, 3, and 4; tasks 5e–5g).

1.3 The ORB interface

The ORB interface provides operations that are independent of the object adapter,

are the same for all ORBs and all object implementations, and can be invoked either

by clients of the objects or by implementations themselves. Two IDL interfaces — ORB

and Object — are used to describe such operations. The Object interface, inherited

by every CORBA object, groups the ones that operate upon object references.

Figure 1.5 presents a partial description of the ORB interface in pseudo-IDL4,

showing only the operations relevant to ORB/ODBMS integration5. Note that some

of the “ORB interface operations” appear to be on the ORB, while others appear to

be on the object reference itself.

The operation object to string converts an object reference into a string. Such

a string may be passed as an input parameter to string to object, which returns

the corresponding object reference. Converting object references to strings is useful

because object references are not suitable to be stored in persistent storage or com-

municated by any means other than operation invocation — they are opaque and

their format may differ from ORB to ORB.

Also as a consequence of object reference opaqueness, clients and implementations

cannot allocate memory for object references, nor can they check whether or not an

object reference actually refers to some object. Copying object references must be

done through calls to duplicate. When an object reference is no longer needed, its

memory should be reclaimed by the use of release. Comparisons to OBJECT NIL —

4Pseudo-IDL is standard IDL augmented to describe interfaces to CORBA pseudo-objects . To
its clients, a pseudo-object looks similar to a normal CORBA object; its operations are invoked in
the same way as ordinary object operations. Pseudo-objects, however, may be implemented either
as normal CORBA objects or as serverless objects . Unlike ordinary CORBA objects, serverless
objects are not registered with any ORB, and their interfaces do not inherit from CORBA::Object.
An additional keyword, pseudo, is used in pseudo-IDL to distinguish interfaces to pseudo-objects.

5Most of the operations omitted from Figure 1.5 are related to the dynamic invocation interface.

18

module CORBA {

interface InterfaceDef; // from Interface Repository

interface ImplementationDef; // from Implementation Repository

interface Object; // an object reference

...

pseudo interface ORB {

string object to string(in Object obj);

Object string to object(in string str);

...

};

interface Object {

boolean is nil();

Object duplicate();

void release();

ImplementationDef get implementation();

InterfaceDef get interface();

...

};

...

};

Figure 1.5: Partial description of the ORB interface.

a special object reference that denotes no object — are performed through calls to

is nil. Note that duplicate, release, and is nil operate on object references, and

not on the corresponding object implementations. Implementations are neither in-

volved in the execution of these operations nor affected by it in any way. In particular,

release does not delete object implementations.

Given a reference to an object, a description of its interface can be obtained by the

use of get interface. This description, which includes type information that may

be useful to a program, is returned as an object of the interface repository. Similarly,

the get implementation operation on an object reference returns the implementation

repository object that describes the implementation of the target object.

19

1.4 The Basic Object Adapter

The Basic Object Adapter has the following responsibilities:

• activation and deactivation of implementations;

• activation and deactivation of individual objects;

• generation and interpretation of object references;

• identification of the principal making a request;

• method invocation through skeletons.

1.4.1 Implementation Activation and Object Activation

At the server side, object requests are delivered by the ORB core to the BOA, which in

turn invokes the corresponding methods through skeletons. Before calling a skeleton

method, the BOA may need to perform two kinds of activation. The first, imple-

mentation activation, is needed when no implementation of the object interface is

currently available to handle the request. The second, object activation, when the

particular object instance is not available to handle the request.

Implementation activation involves starting the appropriate server, in an operating

system-dependent way. Once activated, the implementation may make calls to the

BOA. Figure 1.6 presents a description of the BOA interface in pseudo-IDL. This

interface defines the BOA operations that may be called by implementations. Other

interactions between the BOA and object implementations take place by the adapter’s

initiative: besides activating implementations, the BOA performs up-calls to activate

objects and to invoke methods through skeletons.

The BOA supports four policies for implementation activation: shared server ,

unshared server , server-per-method , and persistent server (see Figure 1.8). The first

one is likely to be the most commonly used, because it supports automatic server

activation in a fashion that uses less machine resources.

Shared Server, or Server-per-Class

Multiple active objects of a given interface share the same server under this policy.

The BOA interacts with the implementation in the following way (see Figure 1.7):

20

module CORBA {

interface InterfaceDef; // from Interface Repository

interface ImplementationDef; // from Implementation Repository

interface Object; // an object reference

pseudo interface Principal; // for the authentication service

typedef sequence<octet,1024> ReferenceData;

...

pseudo interface BOA {

// implementation activation and deactivation:

void impl is ready(in ImplementationDef impl);

void deactivate impl(in ImplementationDef impl);

void obj is ready(in Object obj, in ImplementationDef impl);

void deactivate obj(in Object obj);

// generation and interpretation of object references:

Object create(

in ReferenceData id,

in InterfaceDef intf,

in ImplementationDef impl,

);

ReferenceData get id(in Object obj);

void dispose(in Object obj);

void change implementation(

in Object obj,

in ImplementationDef impl

);

// identification of the principal making a request:

Principal get principal(in Object obj, in Environment ev);

};

...

};

Figure 1.6: The BOA interface.

21

�

ORB Core

1. Implementation
 Activation

2. Implementation
 Registration

3. Object
 Activation

4. Method
 Invocation

5. Access to
 BOA Service

Skeleton
Basic Object Adapte r

Object Implementati on Methods

Up−call Normal call Start process

Figure 1.7: BOA operation in a shared server.

1. Implementation activation: at the arrival of the first request to an object im-

plemented by a server, the BOA activates that server.

2. Implementation registration: when the server has initialized itself, it notifies

the BOA that it is prepared to handle requests by calling impl is ready.

3. Object activation: before delivering the first request to a particular object in-

stance, the BOA performs an up-call to the object activation routine of the

server. The object remains active as long as its server is active, unless the

server calls deactivate obj for it.

4. Method invocation: the BOA delivers requests to object instances by performing

up-calls to the appropriate skeleton methods.

5. Access to BOA services: the implementation may call the BOA interface to

perform operations such as object deactivation, object reference creation, object

reference deletion, etc.

The server remains active until it calls deactivate impl.

22

Shared Server Persistent Server Unshared Server

Basic Object Adapte r

Server−per−Method

Start Process Register Implementa tion Process Object

Figure 1.8: Implementation activation policies.

Unshared Server, or Server-per-Object

Only one object can be active per server under this policy. A separate server is started

for each active object instance. The interactions between the BOA and implementa-

tions are similar to the ones that take place under the shared server policy, with the

following differences:

1. Implementation activation: the BOA activates a new server whenever it receives

the first request to an object instance.

2. Implementation registration: when a server has initialized itself, it notifies the

BOA that it is prepared to handle requests by calling obj is ready.

3. Object activation: not needed in this case.

The server remains active until it calls deactivate obj.

Server-per-Method

A separate server is started for each method invocation; the server exits when the

method completes its execution.

23

Persistent Server

This is a variant of the shared server policy, with a single difference: the server is

activated by means external to the BOA6. After initializing itself, the server calls

impl is ready to notify the adapter that it is available. The interactions between

the BOA and the implementation then proceed exactly as in the shared server case.

1.4.2 Generation and Interpretation of Object References

An object reference encapsulates all information the ORB needs to identify the same

object whenever the reference is used in a request. In addition to this information,

an implementation-chosen value, or id, is associated with the object reference. Such

an id should be regarded as a mere component of the object reference, and not as an

object identifier that reliably denotes a particular object in a distributed environment

— the full object reference has this purpose. The id is intended to hold identification

information local to an object implementation. Its value is chosen by an implemen-

tation, presumably in a way that uniquely identifies an object among the ones the

implementation created, and is only meaningful to that implementation.

When an implementation creates an object reference, it specifies an id value

for the object reference. On subsequent activations of the object, the BOA makes

the id value available to the implementation, which can interpret the identification

information it associated with the object reference and perform the corresponding

actions within the object activation routine.

Implementations create new object references by calling to the BOA operation

create. This operation takes three input parameters: id, intf, and impl. The

id is the identification information to be associated with the object reference. The

intf is the object of the interface repository that specifies the interface to the target

object. The impl is the object of the implementation repository that specifies the

implementation of the target object.

Although the object reference itself is opaque and may be different from ORB to

ORB, the id value is available portably across all ORBs. The BOA operation get id

6The usage of the term “persistent server” by the OMG is somewhat misleading, as the CORBA
notion of persistent server bears no relationship with the common meaning of persistence. The term
“externally activated server” would be preferable.

24

may be called by implementations to retrieve the id associated with an object refer-

ence. This is the only information a portable implementation may use to distinguish

object references.

If an implementation wishes to delete an object it has created, it should call the

BOA operation dispose to invalidate its object reference. The implementation is

responsible for the deallocation of any other storage areas used by the object.

An implementation may also change the implementation repository object associ-

ated with a given object reference. This is accomplished through the BOA operation

change implementation. Subsequent requests to the object will be handled by the

new implementation.

Support for Persistent Object References

Although the BOA does not provide persistent object references, it offers mechanisms

that can be used to make object references persistent. In CORBA, persistence of

object references means that “a client that has an object reference can use it at any

time without warning, even if the implementation has been deactivated or the system

has been restarted” [37].

This can only be achieved with the participation of the implementations, which

must keep all object state information in persistent storage. The CORBA specifica-

tion suggests that implementations use the id values to locate object state information

in persistent storage — an id value might contain the name of a file, or a key for a

database that keeps the persistent states of many objects. This suggestion leads to

the following scheme (a shared or persistent server is assumed):

1. At object creation time, the implementation chooses object reference ids that

can later be used to retrieve, from persistent storage, the states of the corre-

sponding objects.

2. When a request to an object that is not active is received, the object activation

routine of the implementation is called. The id of the target object is passed

to this routine, allowing it to retrieve the target object’s state from persistent

storage. The object activation routine constructs, in virtual memory, an object

instance with this state. The incoming request will then be handled by that

instance.

25

Unfortunately the BOA specification left open some important issues, with respect to

both object activation and object deactivation. As a consequence of these omissions,

non-standardized ORB features are needed to implement the scheme above.

Object Activation Issues. The current release of CORBA does not provide a

complete specification of the object activation mechanism. All that it says is that the

object activation routine is called before the first request is delivered for a particular

object, and that the id associated with the target object reference is provided to the

implementation upon the activation of the object.

How does the BOA know the object activation routine to be called? What are the

input parameters to this routine? Does it return a reference to the newly activated

object back to the BOA? CORBA left these details to be filled in by ORB implemen-

tors. Some ORBs simply do not support object activation at all. Others provide a

default activator class that can be refined by the object implementor. Yet others al-

low the activation routine to be passed as a parameter to an extended impl is ready

operation.

Unfortunately CORBA also left to ORB implementors more significant decisions:

• What about object references appearing as input parameters in a request? If

the objects they reference are not active, do they also get activated?

• If an execution of string to object by a server returns a reference to some

local object, does the object get activated?

Some ORB implementations provide object activation mechanisms that give sensible

answers to these questions; one such mechanism will be examined in Section 1.6.

Object Deactivation Issues. CORBA includes object deactivation among the

functions of the BOA, but leaves to the implementation the responsibility of calling

deactivate obj. Consider a scenario in which the persistent states of many objects

are kept in a large database. Activating these objects means bringing them to an

executable context, in which they are ready to handle requests. If they are never

deactivated, virtual memory will be exhausted after a large enough number of object

activations.

26

Before it affects the implementation, memory exhaustion may be experienced by

the ORB, which certainly maintains in-memory information about active objects.

To handle this problem properly, an implementation needs further support from the

ORB: a notification that one or more objects should be deactivated, for example.

CORBA does not define an object deactivation up-call.

Several ORBs allow the registration of request and reply handlers by object im-

plementations. These handlers, which will be discussed in Section 1.7, are non-

standardized hooks that may serve several purposes. We will see that they can be

used to implement a simple object deactivation discipline.

To summarize: ORB features not fully standardized are currently needed to make

object references persistent. The standard BOA mechanisms must be extended with

• a fully defined object activation scheme, and

• additional support to object deactivation.

A number of ORB implementations provides such extensions. These issues, as well as

other problems in the BOA specification, are being addressed: the OMG, recognizing

that server portability requires further standardization of BOA services [30], issued a

request for proposals on this subject [41].

1.4.3 Identification of the Principal Making a Request

For every method activation or object activation, the BOA makes available to the

implementation the identification of the principal on whose behalf the request is being

performed. The implementation can get this information by calling get principal7.

The typical use of get principal is to implement a security mechanism based

on access rights. Stronger security mechanisms (e.g. message encryption/decryption)

may be transparently realized using non-standardized ORB features, such as the

request and reply handlers which will be examined in Section 1.7.

7The precise meaning of principal is operating system-dependent, and hence not specified by
CORBA. In a POSIX environment, get principal would return the username of the process that
made the request.

27

1.5 IDL to C++ Mapping Issues

Rather than describing the IDL to C++ mapping specification ([37], chapters 15–18),

we discuss some issues not specified by this standard, but relevant to ORB/ODBMS

integration.

In a C++ environment, both client stubs and implementation skeletons are C++

classes. For each interface, the IDL compiler generates an interface class, with stub

member functions to be called by clients, and a skeleton class to be used by the

interface implementation. Interface classes provide the means through which clients

perform requests. Skeleton classes, as the term “skeleton” suggests, do not implement

interfaces. They merely act as a path from the BOA to the actual implementation

classes supplied by the interface implementor, allowing delivery of remote requests

to implementation objects8 through up-calls to member functions of these objects.

An ORB implementation must give answers to the following questions:

1. How does the IDL compiler map interface inheritance to C++ constructs?

2. How does the interface implementor indicate that an implementation class re-

alizes a given IDL interface?

Both questions have natural answers, which current ORB implementations already

provide. Such answers are also mentioned — but not mandated — by the IDL to

C++ mapping specification.

1.5.1 The Natural Mapping of Interface Inheritance

Because every CORBA object inherits from CORBA::Object, interface inheritance

occurs even when an IDL interface definition does not specify a base interface. Con-

sider the example of IDL interface in in Figure 1.9, extracted from chapter 18 of [37].

Figure 1.10 shows the approximate form of the interface class definition generated by

an IDL compiler for this interface.

Note that the interface class in Figure 1.10 has CORBA::Object, the base of the

interface class hierarchy, as its virtual base class. Although the IDL to C++ mapping

8Terminology gets a bit confusing here. An implementation object is an instance of an implemen-
tation class. An object implementation is a server that implements an object’s interface. The latter
is also called interface implementation, or simply implementation.

28

// IDL

interface A {

short op1();

void op2(in long l);

};

Figure 1.9: IDL definition of interface A.

// C++

class A : public virtual CORBA::Object {

public:

virtual CORBA::Short op1();

virtual void op2(CORBA::Long l);

...

};

Figure 1.10: IDL-generated interface class for interface A.

does not require such inheritance to be virtual, this is actually the case in most if

not all current ORB implementations. Since IDL supports multiple inheritance of

interfaces, inheritance relationships between IDL interfaces are naturally mapped to

C++ virtual inheritance relationships between the corresponding interface classes.

The natural mapping of interface inheritance to C++ is illustrated by Figures 1.11

and 1.12.

// IDL

interface B : A { ... };

interface C : A { ... };

interface D : B, C { ... };

Figure 1.11: IDL interfaces B, C, and D.

Due to the use of virtual inheritance, a single sub-object of class A is shared

by parts B and C of class D. Moreover, a single sub-object of class CORBA::Object

is shared among class D, its parts B, C, and their common sub-object of class A. The

29

// C++

class B : public virtual A { ... };

class C : public virtual A { ... };

class D : public virtual B, C { ... };

Figure 1.12: IDL-generated interface classes for interfaces B, C, and D.

second remark is the strongest reason to translate IDL interface inheritance into C++

virtual inheritance. While it might be desirable, under very special circumstances, to

have separate sub-objects of class A in parts B and C of class D, it is out of question

that a single sub-object of class CORBA::Object should be shared by class D and its

parts9.

Although the IDL to C++ mapping specification does not mandate any approach

to the C++ translation of interface inheritance, and even states that IDL interface

inheritance does not necessarily imply an inheritance relationship between the cor-

responding interface classes, most if not all current ORB implementations use the

natural mapping we just described.

1.5.2 Implementing Object Interfaces in C++

Our focus now is in the so called server side mapping, which deals with specific issues

whose interest is restricted to interface implementors using C++.

The interface implementor must have a way to indicate that an implementation

class realizes a given IDL interface. The natural way is through some relationship

between the implementation class and the skeleton class obtained from the interface.

To avoid constraining ORB implementations, the standard IDL to C++ mapping

does not specify how these classes are related. It describes two possible approaches

(Figure 1.13) — one based on C++ inheritance, the other using delegation — but

does not require ORB implementors to follow any of them. Most if not all current

ORB implementations support the inheritance approach; some of them support both

approaches and leaves the choice to the interface implementor. Clients are not affected

9Since class CORBA::Object provides access to the ORB communication infrastructure, it does
not make any sense for a CORBA object to have more than one sub-object of this class.

30

Implementation Obje ct

Inherited IDL
 Sub−object

 Methods State

The Inheritance App roach The Delegation Appr oach

 Methods State

 Methods State

Implementation Obje ctIDL Object

 Methods State

 Operation Delegati on

Figure 1.13: Interface implementation approaches.

// C++

class skeleton A : public A {

public:

... // ORB-dependent member functions go here

virtual CORBA::Short op1();

virtual void op2(CORBA::Long l);

...

};

Figure 1.14: IDL-generated skeleton class for interface A.

by the approach a server uses to relate implementation and skeleton classes.

The Inheritance Approach

In this approach, implementation classes are derived from the skeleton classes gener-

ated by the IDL compiler. The skeleton class corresponding to an interface declares a

virtual member function for each operation of the interface. These member functions

are redefined by the implementation class, which actually provides their executable

bodies. The BOA invokes the implementation methods via up-calls to the virtual

functions of the skeleton class.

As an example, consider the IDL interface shown in Figure 1.9, and its IDL-

generated interface class definition, shown in Figure 1.10. The skeleton class for this

interface looks like the one in Figure 1.14.

31

// C++

class A implementation : public skeleton A {

public:

CORBA::Short op1();

void op2(CORBA::Long l);

...

};

Figure 1.15: Implementation class for interface A (inheritance approach).

Figure 1.15 shows how an implementation class for interface A would be declared.

The interface implementor must derive the implementation class from the skeleton

class, redefine all member functions that correspond to interface operations, and

provide the implementations of these operations. Note the inheritance (“is a”) rela-

tionship that A implementation holds with skeleton A.

The Delegation Approach

In this approach, the IDL compiler generates a special form of skeleton class, called a

tie. This class is a wrapper that holds a reference to an implementation object, and

delegates up-calls to this object.

A tie class has a data member that refers to an instance of the implementa-

tion class, and defines a member function for each operation of the interface. These

member functions are typically one-line functions that use the reference to the imple-

mentation class to call the corresponding implementation methods.

As an example, consider again the IDL interface shown in Figure 1.9, and its

IDL-generated interface class definition, shown in Figure 1.10. The tie class for this

interface looks like the one in Figure 1.16.

The tie is a class template; this scheme provides type safety. In a C++ environ-

ment without support for templates, the IDL compiler might generate a tie macro

instead. The argument to the tie template is the name of an implementation class.

Implementation classes are not derived from any IDL-generated class; the interface

implementor only needs to define a class whose member functions implement all the

interface operations, such as the one in Figure 1.17.

32

// C++

template <class Impl>

class tie A : public A {

private:

Impl& ref;

public:

... // ORB-dependent member functions go here

tie A(Impl& impl obj) : ref(impl obj) {}

CORBA::Short op1() { return ref.op1(); }

void op2(CORBA::Long l) { ref.op2(l); }

...

};

Figure 1.16: IDL-generated tie class for interface A.

Implementation objects are “tied” to IDL interfaces at runtime. For example, the

execution of

tie A<A impl> a obj = tie A<A impl>(a impl);

(where a impl is an object of class A impl) creates a “tie object” a obj, which satisfies

interface A and is has a impl as its implementation object. Note the delegation (“has

a”) relationship between the tie class tie A<A impl> and the implementation class

A impl.

// C++

class A impl {

public:

virtual CORBA::Short op1();

virtual void op2(CORBA::Long l);

...

};

Figure 1.17: Implementation class for interface A (delegation approach).

33

Comparison of the Inheritance and Delegation Approaches

In the delegation approach, implementation classes are not constrained by the inher-

itance hierarchy of the corresponding interface classes, which typically reflects the

inheritance hierarchy of IDL interfaces. Although it is common to design imple-

mentation classes that mimic the inheritance hierarchy of their IDL counterparts,

this practice is inconvenient or impossible in many cases — when implementing IDL

interfaces with existing legacy code, for example.

The inheritance approach, on the other hand, imposes the inheritance hierarchy of

interface classes to the interface implementor. If this imposition is unacceptable, the

implementor must resort to multiple inheritance in order to circumvent it. Consider

a situation in which a programmer wants to provide IDL interfaces to legacy classes

whose inheritance hierarchy is different from the one of the desired interfaces. The

programmer is forced to define, for each IDL interface, a “front-end” implementation

class derived from both the IDL-generated interface class and the legacy class that

implements the interface.

In spite of the significance of the remarks above to an interface implementor, the

ones that follow are yet more relevant to ORB/ODBMS integration.

The distinction between IDL objects and their implementation objects is much

weaker in the inheritance approach. Under this approach, the “IDL part” of an im-

plementation object is an inherited sub-object — its skeleton part, derived from an

interface class, which in turn inherits from CORBA::Object. Whenever an implemen-

tation object is created, its IDL part will also be instantiated. It is not possible for

an implementation object to outlive its IDL part.

The delegation approach, by contrast, provides a clear separation between IDL

objects — tie objects — and their implementations. An implementation object does

not hold any interface class instance as an inherited sub-object, nor does it inherit any

sub-object of class CORBA::Object. Implementation objects are instantiated before

the creation of the corresponding tie objects, and may also outlive these tie objects.

34

1.6 Object Activation in Orbix

Iona Technologies’ Orbix [18] is a commercial ORB product that fully supports object

activation. It also supports both the inheritance and the delegation approach to

interface implementation, and allows the installation of request and reply handlers

(Section 1.7) by object implementations. Here we describe the design decisions that

Orbix implementors have made with respect to object activation [17].

Orbix introduces its own terminology for object activation concepts. It refers to

the events that trigger the object activation routine as object faults. Object activation

is called loading , and is performed by loader objects. To define a loader class, the

interface implementor defines a class that inherit from the class CORBA::LoaderClass

provided by Orbix. A server installs a loader at runtime, by creating an instance of

a class derived from CORBA::LoaderClass. The loader’s object activation routine is

the virtual member function load of CORBA::LoaderClass; interface implementors

may redefine this function in their loader classes.

In Orbix, the object activation routine is called whenever a reference to a local ob-

ject that is not currently active enters the server’s address space. An object reference

can enter an address space in one of the following ways:

1. as the target of a request received by a server;

2. as an in parameter of a request received by a server;

3. as an output (out or inout) parameter or as the return value of a request made

by a client (which may be a server requesting a service from another server);

4. as result of the conversion of a string into object reference, either by the ORB

operation string to object, or by the Orbix-specific function bind.

The input parameters to the object activation routine are:

• the name of the object’s interface;

• the id (marker , in Orbix terminology) associated with the object reference;

• a boolean value that tells whether the routine was triggered by the conversion

of a string to object reference or not.

35

Note that an object reference does not enter an address space in its actual form.

Either it arrives in marshaled form, or will be generated from a string. When the

object activation routine is called, the object identified by the incoming reference

does not exist in the address space of the server; the activation routine reconstructs

this object in the server’s address space and returns an actual reference to it. More

precisely, the object activation routine returns a reference to the CORBA::Object part

of the reconstructed object. Further conversion of this reference into one that refers to

a more specific interface10 may be necessary; skeleton code performs such conversion

in the case of references that entered the address space in marshaled form.

1.7 Request and Reply Handlers

This facility allows user-defined procedures to be triggered by incoming or outgoing

messages. Such procedures, or handlers, are executed in addition to the normal

processing of incoming and outgoing messages. Several ORB implementations provide

request and reply handlers in a variety of ways.

ORBeline [46], for example, offers request and reply handlers as a BOA extension

available only at the server side. The request handler (pre-method , in ORBeline’s

terminology) is invoked whenever a client performs a request to the server. The

reply handler (post-method) is invoked after the requested operation completes and

before the reply is sent to the client. Both handlers receive, as input parameters, the

identification of the principal making the request, the name of the interface of the

target object, and a reference to this object.

Orbix offers such a facility at both the server and the client side; its handlers

(filters, in Orbix terminology) cover all communication events of interest. Message

handlers may be associated with message arrival and with message departure, and

may be triggered either before or after the message is marshaled. Four types of

message handlers may be defined at the server side:

• incoming request pre- and post-marshal;

• outgoing reply pre- and post-marshal;

10Although C++ does not allow downcasting from a virtual base class, the IDL to C++ mapping
provides the narrow function to support downcasting of interface types.

36

The corresponding four handlers at the client side are:

• outgoing request pre- and post-marshal;

• incoming reply pre- and post-marshal.

All these handlers receive, as an input parameter, a reference to a Request instance

that describes the current request11. They can use this reference to obtain detailed

information about the request, including target object and operation name.

Because request and reply handlers are needed by services such as security, trans-

action management, and replication, a similar facility was recently standardized by

the OMG: the Security Service Specification [2] introduced request level interceptors

and message level interceptors as an extension to the ORB core. These interceptors

provide the functionality of the request and reply handlers examined here.

1.8 Additional Information

This chapter covered aspects of the ORB architecture that are relevant to our main

subject. We now mention briefly a number of topics left out.

Important additions to the OMG standards happened in 1995. The revision 2.0

of the CORBA specification solved the problem of interoperability between ORBs

provided by different vendors. It defined inter-ORB bridges and specified the Internet

Inter-ORB Protocol (IIOP), a protocol that runs directly over TCP/IP. Moreover,

significant progress was made on the definition of services provided not by the ORB,

but by external components, in a modular fashion.

The ORB is just the backbone of the OMG architecture. By itself, it does not

perform any of the higher-level services one would expect in a distributed object

system. These services are provided by “system objects”, components with IDL

interfaces that can be introduced into a CORBA environment to satisfy specific needs.

A growing set of object services is being defined by the OMG. The following ones were

specified in [39]:

• Naming Service,

11A Request is a CORBA pseudo-object, like ORB and BOA. Requests provide the primary support
for the dynamic invocation interface.

37

• Event Service,

• Persistent Object Service,

• Lifecycle Services,

• Concurrency Control Service,

• Externalization Service,

• Relationship Service,

• Transaction Service.

Implementations of some of these services are starting to appear, and more are ex-

pected, still during 1996. Additional object services were standardized in 1995:

• Query Service,

• Licensing Service,

• Properties Service,

• Security Service,

• Time Service.

Furthermore, standardization work is in progress on the following ones:

• Trader Service,

• Collections Service,

• Change Management Service.

This set of object services addresses essential and general needs. Higher level or

specific needs are addressed by object facilities with interfaces closer to the application

level. Two sets of object facilities are being specified: one grouping facilities indepen-

dent of the application domain (horizontal facilities), other with facilities targeted at

specific application domains (vertical facilities).

The OMG specifications (e.g., [39], [38], [16], [2]) are the definitive source of

information on these services and facilities. For an introductory overview, covering

most aspects of the OMG architecture, we recommend [44].

38

Chapter 2

Object Database Management

Systems

A comprehensive discussion of ODBMSs is beyond the scope of this dissertation. This

chapter presents an overview of ODBMS characteristics, with emphasis on aspects

relevant to ORB/ODBMS integration. The reader is referred to [62] for an excellent

introduction to the field of ODBMSs, to [6] for a more extensive treatment, to [32]

for a good survey of existing systems, and to [7] for an effort to put forward a set of

standards for object databases. This standardization effort is being undertaken by

the Object Database Management Group (ODMG), a group of ODBMS vendors who

have committed to make their products compliant with the proposed standard.

Most ODBMSs extend an existing object-oriented programming language to in-

corporate database functionality. Research prototypes of such systems started to

appear in the late 1980s, those include ORION [23], O2 [9], ODE [1], and E [47] [48].

Current commercially available ODBMSs include ObjectStore [29], O2 [8], GemStone

[4], Objectivity/DB [42], ONTOS [43], and Versant [57].

Database application writers using a data manipulation language (typically SQL)

embedded in a host programming language have long been burdened by the impedance

mismatch [62] between the data manipulation language of the database and the

general-purpose programming language in which the rest of the application is writ-

ten. ODBMSs solve this problem by the integration of the programming and database

environments. A database application can then be written in a single and computa-

tionally complete language.

The benefits of the object-oriented paradigm come as a consequence of the use

of an object-oriented language. Object identity [21] can be used as an alternative to

the primary keys of relational databases, allowing relationships between objects to

be represented more efficiently than in relational DBMSs (by inter-object references),

and with a syntax more convenient than relational joins. User-defined types, data

encapsulation, and type inheritance are available in the database environment. Ob-

jects with complex state (i.e., objects whose attributes are not restricted to primitive

types) can be stored in the database.

The vast majority of ODBMSs add database functionality to C++ [10], probably

because of the growing popularity of this language. Henceforth we will focus on these

systems.

2.1 Persistence

In standard C++, objects are allocated from transient memory — the virtual memory

managed by the operating system — and their lifetime is either coterminous with

procedure (function arguments and automatic variables) or coterminous with process

(static objects and heap-allocated objects). ODBMSs extend C++ to support a third

object lifetime, coterminous with database, for objects allocated out of persistent

memory (Figure 2.1).

Persistent memory can be either an ODBMS-managed heap in secondary storage,

Implementation Object

 Methods State

Implementation Object

 Methods State

Implementation Object

 Methods State

Implementation Object

 Methods State

Transient Object

 Methods State

Transient Memory Persistent Memory

Implementation Object

 Methods State

Implementation Object

 Methods State

Implementation Object

 Methods State

Implementation Object

 Methods State

Persistent Object

 Methods State

Figure 2.1: Transient memory and persistent memory.

40

or a collection of storage pages, segments, or clusters managed by the ODBMS. How

does the programmer specify that an object’s lifetime is coterminous with database?

Most ODBMSs fall in one of the following cases:

Persistence independent of type. Persistence of an object is explicitly indicated

when the object is instantiated. This approach typically uses heap-style allo-

cation. The ODBMS provides an overloaded form of the operator new that

creates objects in persistent memory. Additional arguments to new might spec-

ify a database, segment, or cluster.

Persistence by type. The system distinguishes persistent types from transient

types. Objects are created in transient memory or in persistent memory, de-

pending on their type. Some ODBMSs extend C++ by including a persistence

specifier to be used in persistent class declarations; others require that all per-

sistent classes inherit from a “persistent root” class.

The second approach incurs a conceptual flaw that makes it less convenient to the

programmer: since persistence is naturally orthogonal to typing, one should be able

to specify persistence of an object regardless of its type.

The ODMG specification adopts a mix of these approaches. All persistent objects

must inherit from an ODBMS-defined class d Object. Classes derived from d Object

are persistent capable: by itself, inheritance from d Object does not make instances of

these classes persistent. Instances of a persistent capable class can be either persistent

or transient. For such classes, an overloaded form of operator new is used to specify

object persistence at instance creation time.

2.2 Collections and Queries

Every ODBMS offers some facility to create and operate upon objects that group

other objects, all of the same type, in homogeneous collections. This typically takes

the form of a C++ library that defines a hierarchy of collection class templates.

The base class of this hierarchy is d Collection<T>, where T is any primitive or

user-defined type. d Set<T>, d Bag<T>, d List<T>, and d Varray<T> are defined as

41

subclasses of d Collection<T>1

Despite the similarity between the collection hierarchies provided by various sys-

tems, ODBMSs vary wildly on how iterations and queries over collections are per-

formed. All systems support at least some way of iterating over all objects in a

collection. In most systems (and in the ODMG specification) the iteration facility

appears as a C++ library that defines an iterator class template2. In others, it ap-

pears as language extensions, usually somewhat similar in syntax to the for statement

of C++, but with declarative (nonprocedural) semantics. These language extensions

are a two-edge sword. Their positive side is programming convenience, plus the opti-

mization opportunities allowed by declarative semantics. Their negative side is lack

of application portability among ODBMSs.

Current ODBMSs vary even more with respect to embedded queries. In some,

the only way to perform a query is through iteration over all objects in the collection

being queried. In others, iterations may be restricted to objects that satisfy a logical

constraint. Still others offer a true facility for embedded queries. Such a facility

performs associative lookup to retrieve, from a given collection, the subcollection of

objects satisfying a logical constraint. It may appear as a query class library, or in

the form of language extensions with declarative semantics. Almost all ODBMSs,

however, still lack the full join capability found in relational DBMSs3. Their queries

are restricted to semijoins, which filter out the elements of a collection that do not

satisfy a logical constraint, but cannot create new types by joining together attributes

from existing types.

Ad hoc facilities for interactive queries are currently absent from almost all

ODBMSs4. This fact, along with the lack of a standard for a declarative “object

query language” and with the weaknesses of the embedded query facilities of existing

1These are the collection class names the ODMG specified in [7]. ODMG-defined global names

have the prefix “d ”. Most ODBMS products are still not compliant with the ODMG standard, so

the actual names are vendor-dependent.

2Instead of a single iterator class template, there may be a hierarchy of iterator class templates
whose inheritance graph parallels the one of the collection class hierarchy, as in ObjectStore [29].

3The notable exception is O2 [8], which has an SQL-like query facility with full join capability.

4Again the exception is O2 [8], whose query facility can be used both for interactive queries or
as a function callable from C++.

42

ODBMSs, is regarded as one of the major drawbacks of these systems. The ODMG

addressed this problems by including the definition of an object query language in its

specification.

2.3 Transactions

Full-fledged ODBMSs provide a transaction facility that supports atomic operations,

enforces data consistency in the presence of concurrent accesses, and guarantees data

integrity in spite of hardware or software failures. Such facility is analogous to the

ones found in traditional database systems.

All accesses to persistent objects must be performed within a transaction. Trans-

actions must be explicitly started and committed (or aborted) by the programmer.

A transaction ends when a programmed commit or abort operation is executed, or in

the event of a system-generated abort. Some ODBMSs support nested transactions,

thus providing a richer transaction model than traditional DBMSs.

The transaction facility is typically accessed through a class d Transaction, which

defines the operations begin, commit, and abort. The begin operation may take

arguments to specify the transaction type (read-only or update) and the concurrency

control mechanism to be used (pessimistic versus optimistic).

The utilization of object databases is currently stronger in new application areas

such as CAD/CAM, CASE, scientific and medical applications, and geographic in-

formation systems5. In these areas the probability of concurrency conflicts tends to

be smaller than in traditional business applications, and the optimistic approach to

concurrency control is likely to perform better than the pessimistic one. Even so, the

majority of ODBMSs still support only the traditional pessimistic (i.e., lock-based)

mechanism.

2.4 References to Persistent Objects

Most ODBMSs introduce a reference class template d Ref<T>, whose instances are

references to persistent objects of type T. Objects of class d Ref<T> are called database

5These are the application areas that motivated the development of ODBMSs.

43

object references, or simply ODBMS references. Overloading of the operators “->”

and unary “*” by class d Ref<T> allows ODBMS references to be dereferenced like

T*s.

ODBMS references can be used either to point to persistent objects from transient

memory, or to express database relationships. Every ODBMS places some restriction

on the use of the C++ data types T* and T& to refer to persistent objects. A common

constraint, present in the object database standard proposed by the ODMG, states

that C++ pointers or references held by persistent objects are only meaningful dur-

ing the execution of a transaction; they are invalidated when the outermost nested

transaction commits. This restriction effectively disallows the use of C++ pointers

or references to express relationships between persistent objects. Some ODBMSs,

notably ObjectStore [29], follow a much more liberal approach: C++ pointers or ref-

erences between persistent objects are allowed in a database and remain valid even

when no transaction is being executed. C++ pointers or references from transient

memory to persistent memory, however, are invalidated at the end of the outermost

transaction in execution. Under this approach, database relationships can be re-

alized either by database references or by more efficient C++ pointers/references.

Although copies of these pointers/references may be retained in transient memory af-

ter the outermost transaction commits, the application programmer must make sure

that no such copies are ever used within subsequent transactions.

Every ODBMS reference reflects the identity of the persistent object it refer-

ences; database object references are the C++ counterparts of the object identifiers

(OIDs) through which the concept of object identity is realized in an object data-

base. An ODBMS object reference is similar to a CORBA object reference, in that

they both identify an object and can be used to invoke its methods. This similarity

goes even further in some ODBMSs, which support conversion of their object refer-

ences to strings and vice-versa, just like ORBs do. Conversion of ODBMS references

to strings allows such references to be passed between processes and/or persistently

stored outside the databases in which the referenced objects live, thus facilitating the

construction of heterogeneous object databases and the integration of the ODBMS

with other software systems.

44

2.5 Client/Server ODBMSs

Commercially available ODBMSs typically have client/server architectures: one or

more database servers manage their local storage devices and provide networked data-

base clients with access to the objects persistently stored in the databases (Figure 2.2).

ODBMS references between persistent objects kept by different servers effectively al-

low the construction of distributed object databases.

Network SW

ODBMS Client SW

Application SW

Network SW

ODBMS Client SW

Application SW

ODBMS Client ODBMS Client ODBMS Server

Network SW

ODBMS Server SW

Figure 2.2: Client/server ODBMS.

2.5.1 Comparison with CORBA

A client/server ODBMS supports object distribution, but not in the same way ORBs

do. CORBA is an “operation shipping” architecture; client/server ODBMSs have

“data shipping” architectures (Figure 2.3). While ORBs support the transmission of

service requests and responses across a network, client/server ODBMSs support the

transmission of object data across the network. In an ORB environment, CORBA

clients have access to the operations defined on the objects implemented by CORBA

servers. In a client/server object database environment, database clients have access

to the persistent states of the objects held by database servers.

Client/server coupling is much looser in CORBA: all that a CORBA client needs

to know are the IDL interfaces to the objects it accesses. Database clients, on the

other hand, are usually linked to database libraries supplied by the ODBMS vendor,

and must have precise knowledge of how persistent objects are logically stored in the

database (database schema).

45

ODBMS Client ODBMS Server

CORBA Client CORBA Server
(Object Implementation)

Operation Request

IDL operations are executed
in the CORBA server.

Operations on persistent objects
are executed in the ODBMS client.

Operation Results

Data Read

Data Written

a. Operation shipping in CORBA

b. Data shipping in a client/server ODBMS

Figure 2.3: Operation shipping vs. data shipping.

2.6 ODBMS Implementation Issues

ODBMSs typically make objects persistent through a memory image approach. To

reduce the need for conversions, the memory representation of persistent objects is

designed to follow closely the one used by the programming language in which object

database applications are written (C++, in the majority of cases). Representing

objects in persistent storage in the same way as in virtual memory is a good match

to the page server architecture6 employed by some client/server ODBMSs.

A memory image approach implies a direct relationship between the in-memory

size of a persistent object and the database space used by the same object. Any

data fields in an object’s memory representation — even the ones that may not be

actually stored in the database, such as the hidden vbase and vtbl pointers within

C++ objects — affect on the database space taken by that object.

Such an approach, however, does not imply that the external representation of

6In this architecture, a database server is actually a page server. Databases are organized as
collections of pages, all with the same size, and database servers perform data shipping on a page
basis.

46

a persistent object is exactly identical to the memory representation of the object.

While the overall formats are the same, some conversions may still be necessary. The

external representation of a database reference is the OID of the object it references.

The memory representation of such reference may take another form: for performance

reasons, many ODBMSs use the address of the target object in virtual memory, in-

stead of its OID. In-memory conversion from OIDs to virtual memory locations is

called pointer swizzling . Swizzled pointers are virtual memory addresses, unswizzled

pointers are OIDs. Several techniques have been used to translate the external rep-

resentation of an ODBMS reference into the actual memory location of the object it

references. The most common ones are:

1. No swizzling. Whenever the reference is followed, the OID contained in it is

used to lookup the memory address of the target object, and to retrieve it from

the database if it is not in memory yet. Such lookup involves a search in a table

maintained in memory by the ODBMS, a procedure relatively time-consuming.

The purpose of pointer swizzling is to avoid incurring this cost at every traversal

of an ODBMS reference.

2. Swizzling at first traversal. The reference is swizzled the first time it is followed.

Subsequent traversals will not perform a table lookup, but only a check to verify

if the reference is already swizzled or not.

3. Swizzling at page fault time. This technique uses the hardware address trans-

lation mechanism to map database pages into virtual memory pages. When a

virtual memory fault occurs, all ODBMS references contained in the faulting

page are swizzled. The traversal of an ODBMS reference causes a page fault

if the database page in which the target object resides is not yet mapped to

virtual memory. Otherwise, following an ODBMS reference is as fast as deref-

erencing a normal pointer. When the reference is followed, no software checks

are performed to verify whether it is swizzled or not.

None of these techniques is an obvious winner; the best one for a particular application

depends on the characteristics of the application. Technique 2 avoids repeated table

lookups, but must keep track of the pointers that have been swizzled in order to

unswizzle them when the objects they point to leave memory. Technique 3 avoids

47

performing any software checks, but incurs the cost of swizzling pointers that may

never be followed. The reader is referred to [33] for an analysis of the costs of swizzling,

to [59] and [50] for a detailed description — and also a defense — of pointer swizzling

at page fault time, and to [58] for a recent study of the relative performance of the

three techniques above.

With ORB/ODBMS integration in mind, it is important to make a distinction

between the first two techniques and the third one.

Techniques 1 and 2 are software-based, in the sense that they rely on the execution

of an ODBMS routine whenever a database object reference is followed. We refer to

both as smart pointer approaches, because their typical realization uses overloading

of the C++ operators “->” and unary “*” — the well-known “smart pointer” scheme

[10].

Technique 3, by contrast, is a virtual memory approach. It takes advantage of

the virtual memory hardware, both to map persistent memory to transient (virtual)

memory and to avoid software checks at pointer traversal time.

The ODBMS design decision between smart pointer approaches and virtual mem-

ory approaches is one of the most controversial subjects within the object database

community. The majority of ODBMSs use smart pointer approaches. Almost all

commercially available systems fall in this case; examples include Objectivity/DB

and O2.

Only one commercial system — ObjectStore — employs a virtual memory ap-

proach. The idea of applying virtual memory techniques to ODBMSs was introduced

by ObjectStore. Its implementation, which differs in some significant aspects from

the technique described in [59], is briefly outlined in [29]. Research prototypes that

use virtual memory approaches include Texas [50], Cricket [49], and QuickStore [58].

These research systems, however, are persistent object managers that do not provide

full ODBMS functionality.

Although currently represented by a single commercial system, virtual memory

approaches have great significance from a practical standpoint, because ObjectStore

holds a large fraction of the ODBMS market. Since a huge virtual address space

reduces — and may even eliminate — the need for pointer swizzling, it is likely

that 64-bit architectures will make virtual memory techniques yet more attractive.

An example of this trend is the virtual memory-based ODBMS research prototype,

48

targeted at 64-bit architectures, currently under development at the IBM Thomas J.

Watson Research Center [31].

2.7 ODBMS Limitations

Current object database systems lack several features commonly offered by relational

systems. The most serious limitation of existing ODBMSs — the lack of a standard-

ized and non-procedural query language, with automatic query optimization and full

support for and for interactive ad hoc queries — was already mentioned in Section 2.2.

Other limitations include:

Single-language environment. Solving the impedance mismatch problem (see

page 39) by the integration of the programming and database environments

imposes a particular programming language — the one to which the ODBMS

adds database functionality — to application writers. Although some ODBMSs

give the programmer a choice between C++ and Smalltalk, this is still far from

the variety of language options provided by relational systems, which allow SQL

to be embedded into a number of programming languages.

No support for views. Relational DBMSs support views, virtual tables obtained

from the actually stored ones through select and/or join operations. Views

are used as dynamic windows into the database, both for data independence

(a change in the database schema will not affect users, if they are still given

the same views to the database) and for authorization purposes (views can be

defined to present only data items that certain users are allowed to read or

update). No ODBMS currently supports a mechanism equivalent to relational

views.

Coarse or absent authorization mechanisms. Relational systems support au-

thorization: users can specify who is allowed to read or update the tables or

views they created. Most ODBMS do not support authorization, or provide it

in a coarse fashion — all or nothing access, either at the database level or at

the segment level. For efficiency, some ODBMSs implement the memory image

approach giving database clients access to an entire database, or to database

49

segments, through the clients’ address spaces. This requires a high level of trust

on database clients.

No support for dynamic schema changes. Relational DBMSs allow dynamic

changes to the database schema: new columns may be added to a table, ta-

bles may be dropped, and under certain circumstances columns can be dropped

from a table. In most existing ODBMSs, changes to the database schema cannot

be performed dynamically.

The reader is referred to Won Kim’s article [28] for further discussion of ODBMS

limitations, for a skeptical view of the incorporation of database functionality into

existing object-oriented programming languages, and for a defense of an approach

that unifies the object-oriented and relational database technologies. Some of these

issues were also examined by Stonebraker, in [52] and [53].

2.8 Object-Relational Mapping

The systems we have mentioned so far are “pure ODBMSs”, in the sense that they

employ the object-oriented data model even at the storage level. Systems with similar

functionality, but different performance, have also been built on top of relational

DBMSs. They are called object-relational mediators, or wrappers, and perform object-

relational mapping: classes are mapped into relational tables, and objects are mapped

into tuples. In these systems, objects are stored in tuple-ized form.

An object-relational mediator, along with a relational DBMS, implements an

ODBMS. To stress the architectural differences between such ODBMS and a fully

object-oriented one, the latter is sometimes referred to as an OODBMS. For a de-

fense of object-relational mapping and a description of Penguin, a research prototype

based on this approach, see [24] and [25]. Persistence [26] and DBconnect [35] are

examples of commercially available systems in this category.

Rather than using the memory image approach to object storage, mediators per-

form object/tuple conversion and keep tuple-ized objects in a relational DBMS. At the

programming level, however, an object-relational mediator looks like an OODBMS.

As in most OODBMSs, a smart pointer scheme is used to integrate persistence into

the C++ environment, and objects are cached at the client side, in a way transparent

50

to the programmer. A tool is provided to generate the object/tuple conversion code,

given descriptions of both the object schema and the underlying relational schema.

Ultimately, an object-relational mediator uses SQL to interact with its relational

back-end. Because this takes much longer than the client-server interactions in an

OODBMS, object caching is yet more crucial for object-relational mediators.

Object-relational mapping is attractive to integrate legacy databases into an

object-oriented environment. Some object-relational mediators allow an object struc-

ture to be superimposed onto an existing relational database. The superimposed

object structure can even include user-defined methods, through which the relational

data may be accessed in a fully object-oriented fashion.

51

Chapter 3

ORB/ODBMS Integration

This chapter presents our view of ORB/ODBMS integration. Little has been pub-

lished about this subject. ODBMSs in the ORB environment are briefly mentioned

by the CORBA specification [37], and are discussed to some extent in the appendix

B of the ODMG standard [7].

3.1 Motivation

The purpose of ORB/ODBMS integration is to allow CORBA objects to be persis-

tently stored in object databases. The resulting system has the strengths of both an

ORB and an ODBMS environment:

• The remote method invocation mechanism of the ORB provides application

interoperability across different languages, operating systems, and hardware

architectures.

• The ODBMS provides object persistence, plus database features such data con-

sistency in the presence of concurrent accesses, crash recovery, and so forth.

ORB/ODBMS integration can be regarded either as a way of supplying CORBA

objects with persistence and databases features, or as a way of eliminating or attenu-

ating some ODBMS limitations. The latter perspective leads to a number of reasons

for integrating ORBs and ODBMSs:

Database Heterogeneity. An ODBMS is a single-vendor solution. Even though

most commercially available systems support object databases distributed

across different hardware platforms, all database servers and clients must run

ODBMS software provided by the same vendor. ORB/ODBMS integration

allows the construction of distributed object databases that are truly hetero-

geneous, even with respect to the ODBMS software running on the database

server nodes.

Language Heterogeneity. ORB/ODBMS integration allows access to object data-

bases by CORBA clients written in any language for which a mapping from

IDL is defined, thus circumventing the single-language limitation of current

ODBMSs.

“IDL views”. Access to database objects through IDL interfaces does not require

knowledge of the database schema: changes in the schema are transparent to

IDL clients. Moreover, interfaces can be defined to expose only data items

that certain users are permitted to read or update. Hence IDL interfaces to

database objects can play a role analogous to relational views1, both for data

independence and for authorization purposes.

Security. The remote method invocation mechanism of the ORB requires much less

trust in the client than the ODBMS data-shipping approach, which gives data-

base access to the client through its own address space.

If database access is only allowed through IDL interfaces, fine-grained access

rights can be implemented using the operation get principal. Encryption-

based security can be transparently realized employing either non-standardized

features provided by most ORB implementations (request and reply handlers),

or the interceptors recently standardized in [2].

Implementations of the Security Service [2] specified by the OMG should appear

during 1996. ORB/ODBMS integration can make this service available also to

database objects.

1This analogy only goes to a certain extent. While relational views can be queried like any
relational table, the query facilities of the ODBMS are unavailable to IDL clients. The OMG
specified an Object Query Service [16] that supports all CORBA objects was specified by the OMG.
No implementations of this service exist at the present time. When they become available, “IDL
views” may reach the functionality of relational views.

54

Since it might still be useful to have transient CORBA objects, the integration

of an ORB with an ODBMS does not mean that all CORBA objects will be made

persistent. Some of the IDL operations requested by a CORBA client may be on

persistent objects, while others may be operations on transient objects. Although

the CORBA client may need to know whether an object is persistent or not, it

is desirable to minimize the effects of object persistence on CORBA clients. They

should not need any knowledge of the particular ODBMS used to make an IDL object

persistent.

Conversely, not all database objects need to have IDL interfaces and be registered

as CORBA objects. For a number of reasons, one might decide to give the status of

a CORBA object only to a subset of database objects. Security is a possible reason.

Another reason is data hiding . If the sole purpose of some database objects is to

serve as building blocks in the implementation of higher level ones, only the higher

level database objects should have IDL interfaces.

Yet another reason is performance. Object database systems are tuned for per-

formance even in the case of fine-grained persistence. They support databases with

millions of small primitive objects, and typically allow clustering of related data. If

small objects that are usually accessed together are stored together, page-based data

shipping is more efficient than operation shipping, because it avoids the cost of inter-

process communication at every access to a small object. Thus the CORBA remote

method invocation mechanism is unlikely to deliver ODBMS performance on large

collections of very small objects. Database performance can be preserved by choosing

a suitable subset of database objects, presumably the higher level ones, to be accessed

through the ORB.

3.2 Process Architecture

Consider a POSIX environment in which object implementations are processes. To

store CORBA objects in an ODBMS-managed database, a CORBA server — the

process that implements these objects — must have access to the database. In the

common case of a client/server ODBMS, this process has to be a database client. Five

kinds of processes (see Figure 3.1) may be present in the integrated ORB/ODBMS

system:

55

CORBA Server

ODBMS Server

CORBA Client CORBA Client

ODBMS Client

CORBA Client

Object Request Broker

CORBA Server

Pure CORBA clients

CORBA server that is not database client

CORBA server that is also database client

Database server

Pure database client

Figure 3.1: Process architecture.

56

1. Database servers.

Database server software is typically provided by an ODBMS vendor. ORB-

connected multidatabases, comprising object databases from different vendors,

can be built by the use of heterogeneous database servers.

2. CORBA servers that are also database clients.

These are the processes that make direct use of ORB/ODBMS integration to

implement persistent CORBA objects. Such a process provides an execution

context for the IDL operations on the persistent CORBA objects it realizes. As

an ODBMS client, it has access to database objects through its own address

space. As a CORBA server, it implements IDL interfaces to some of these

objects.

3. CORBA servers that are not database clients.

These processes may be present to implement transient CORBA objects.

4. Pure CORBA clients.

User interface processes that do not implement CORBA objects fall in this

category. CORBA servers are likely to be also CORBA clients, but we are not

considering these as “pure” clients.

5. Pure database clients.

Database clients that are not CORBA servers perform database access bypass-

ing any IDL interfaces to database objects. Such processes are needed at least

for database administration tasks that cannot be accomplished via IDL inter-

faces. Depending upon a site’s security policies (see below), a wider range of

trusted user tasks may be performed by pure database clients.

In a networked environment, these processes may be distributed among different

nodes. For security reasons, one will typically want to run all database servers and

clients on trusted machines. A process on a less trusted machine would only be

able to manipulate database objects as a CORBA client, using the IDL interfaces to

these objects, subject to an access control mechanism with the desired granularity.

57

This setting fits the common case of an ODBMS without support for fine-grained

authorization.

For performance reasons, one may want to run a CORBA server that is also a

database client on the same machine as the corresponding database server. Avoiding

the network overhead in the communication between these processes suits the case of

very large objects, or the case of a page server managing a database of small objects

that are not well clustered according to their usage.

3.3 Problems to Solve

Because object persistence is integrated into the C++ programming environment

provided by the ODBMS, no read or write commands need to be issued for accessing

persistent memory. In spite of this, problems must be solved to make C++ CORBA

objects persistent.

3.3.1 Why a Direct Approach Cannot Work

At first, it may seem straightforward to make CORBA objects persistent simply by

storing their memory representations in an object database. There are three good

reasons for not doing so: database space, performance, and object activation.

Database Space. Under the common approaches to IDL interface implementation

(see Section 1.5), a CORBA object is more than its implementation-defined

state. It either inherits all data members, virtual functions, and base classes of

the skeleton class that corresponds to the its interface, or is an instance of a tie

class. Skeleton and tie classes are derived from IDL-generated interface classes,

which typically

1. have virtual member functions that correspond to the interface operations,

and

2. use virtual inheritance to mimic the inheritance hierarchy of their IDL

interfaces.

Therefore, if the natural mapping of interface inheritance to C++ is used, the

following facts are true:

58

• Every CORBA object inherits data members from the interface class

CORBA::Object.

• It also holds a pair of “hidden pointers” — a vbase pointer and a vtbl

pointer — for each interface class in its inheritance chain up to

CORBA::Object.

Depending on the length of this chain and on the space taken by the data

members inherited from CORBA::Object, the CORBA object can have size no-

ticeably larger than its implementation-defined state. Such overhead in size is

especially significant in the case of objects with small state.

Performance. ORBs typically use reference counts to implement the operations

duplicate and release (see Section 1.3). Every CORBA object inherits a

reference count from CORBA::Object. Reference counts are incremented by

duplicate and decremented by release. Having the full memory representa-

tion of a CORBA object stored in a database would increase the cost of these

operations, because write access to the database would have to be acquired to

update the reference count. In the common case of a DBMS with lock-based

concurrency control and page lock granularity, this means acquiring an exclusive

lock to the database page that contains the reference count.

Moreover, duplicate and release are automatically called by ORB implemen-

tations whenever an operation on an object is invoked by a remote client. Having

reference counts stored in the database would result in a substantial decrease

in concurrency. Exclusive locks would have to be acquired in all invocations

of remote operations, even for operations that do not update an object’s state

as defined by its implementation. The performance toll would then be twofold,

with a high penalty in database concurrency added to the overhead of exclusive

lock acquisition at each operation.

Object Activation. ORB implementations keep a per-process table of active ob-

jects: a new entry is inserted in this table whenever the constructor of a CORBA

object is invoked by the corresponding process. In a C++-based ODBMS, how-

ever, the constructor of a persistent object is only invoked when the the object

is added to the database. Hence, no entries in the table of active objects refer

59

to CORBA objects constructed and stored by other processes, including previ-

ous runs of the same program. After a process exits or crashes, all persistent

CORBA objects it created would remain dormant and unreachable through the

ORB.

3.3.2 Persistence of Implementation Objects

In this section, we consider an alternative to the direct approach. This alternative is

not a real solution; we discuss it for better understanding of the problems involved in

making CORBA objects persistent, and as a step in the direction of actual solutions.

To avoid the database space and performance problems of the direct approach, this

scheme does not attempt to make CORBA objects persistent. CORBA objects are

always transient, but their implementation objects — instances of implementation

classes written by the interface implementor — may be persistent.

Only implementation objects are kept in persistent memory; the CORBA objects

associated with these implementation objects are dynamically instantiated in the

transient memory of a CORBA server. Before returning a reference to such a CORBA

object as a result of a client’s request, the server creates the CORBA object. When the

client does not need this reference anymore, the server deletes the CORBA object from

transient memory. The corresponding implementation object remains in persistent

memory.

At different points in time, a persistent implementation object may — and typi-

cally will — be associated with different instances of transient CORBA objects. These

instances act as “IDL shells” for the implementation object; their purpose is to give

CORBA clients access to the IDL methods realized by the implementation object. In

such a scheme, a persistent implementation object outlives all CORBA objects it was

associated with in the course of its lifetime. This rules out the inheritance approach

to interface implementation (see Section 1.5.2), which imposes to an implementation

object the same lifetime of its CORBA object. Instead, the relationship between an

implementation object kept in persistent memory and a CORBA object is realized

through the delegation approach to interface implementation.

60

Implementation Object

 Methods State

Implementation Object

 Methods State

Implementation Object

 Methods State

Implementation Object

 Methods State

Implementation Object

 Methods State

CORBA Object

 Methods State

a. An initial CORBA object, created by the server’s
 main program, makes some implementation
 methods accessible to CORBA clients.

Implementation Object

 Methods State

Implementation Object

 Methods State

Implementation Object

 Methods State

Implementation Object

 Methods State
 State

CORBA Object

 Methods State

Implementation Object

 Methods

CORBA Object

 Methods State

CORBA Object

 Methods State

Client Requests

Create/Destroy

Create/Destroy

b. "IDL shells" to other implementation
 objects in the database are dynamically
 created and destroyed upon requests
 from CORBA clients.

Figure 3.2: Persistence of implementation objects.

61

IDL Support to Persistent Implementation Objects

The IDL compiler must support the delegation approach in a way slightly different

from the one described in Section 1.5.2, generating tie classes suitable to the asso-

ciation of transient CORBA objects with persistent implementation objects. In the

case of a tie from transient to persistent memory, the example of IDL-generated tie

class in Figure 1.16 is modified to look like the one in Figure 3.3.

// C++

template <class Impl>

class tie A : public A {

private:

d Ref<Impl> ref; // nb: d Ref<Impl> and not Impl&

public:

...

tie A(Impl& impl obj) : ref(impl obj) {}

CORBA::Short op1() { return ref->op1(); }

void op2(CORBA::Long l) { ref->op2(l); }

...

};

Figure 3.3: IDL-generated tie to persistent memory.

Due to the ODBMS restrictions on C++ pointers/references from transient to persis-

tent memory (see Section 2.4), the data member ref is not a C++ reference (Impl&)

anymore; now it is an ODBMS reference (d Ref<Impl>).

Example: Dynamically Tying a CORBA Object to a Persistent Implemen-

tation Object

Consider the IDL operation

Patient GetPatient(in Name name) raises(reject);

of the Repository interface in Figure 1.1. Assume that the CORBA server im-

plementing the Repository interface keeps a list of patients in persistent memory.

The objects in such list cannot be instances of the interface class Patient: since

Patients are CORBA objects, they are not stored in persistent memory. Instead,

62

the objects in the patient list are instances of an implementation class for Patient,

say Patient impl.

When a CORBA client makes a GetPatient request, the corresponding method in

the server uses the name parameter as a key to retrieve p i, a Patient impl instance

with that name, from the list of patients. It then executes

Patient ptr p = new tie Patient<Patient impl>(p i);

to create a CORBA object that satisfies interface Patient and has p i as its im-

plementation object. The return value of the GetPatient method is p, a CORBA

reference to this object. The ORB core transmits the reference p back to the client.

This CORBA object must eventually be deactivated. The client is responsible

for notifying the server that this object may be deactivated, because it is not needed

anymore. For this sole purpose, a new IDL operation is added to the Repository

interface, say

ReleasePatient(in Patient patient);

A request to ReleasePatient tells the server to deactivate a Patient object, but has

no effect on its Patient impl counterpart in persistent memory.

Avoiding Multiple Ties to a Persistent Implementation Object

While a client holds a reference to a CORBA object tied to a persistent implemen-

tation object, other clients may obtain CORBA references associated with the same

implementation object. A table of active persistent objects can be used to avoid the

creation of multiple CORBA objects tied to the same implementation object. This

table would contain pairs (db ref,orb ref), where db ref is an ODBMS reference

to an implementation object that is currently associated with a transient CORBA

object, and orb ref is a CORBA reference to this transient object. A new CORBA

object associated with a persistent implementation object would only be created if

no reference to the implementation object is found in the table. For fast lookup, the

table of active database objects would be hashed by db refs.

63

Problems With This Scheme

The simple scheme we described avoids the drawbacks of the direct approach, but

sacrifices most benefits that a real integration between ORB and ODBMS should

realize. The problems with mere persistence of implementation objects are:

1. CORBA references that correspond to persistent implementation objects are not

persistent themselves; they are only valid for short periods of time. Clients are

prevented from storing CORBA references in persistent media. This disallows

the construction of ORB-connected multidatabases.

2. The inclusion of operations such as ReleasePatient changes the IDL interfaces

seen by clients. A client must be aware that a particular CORBA object has a

persistent implementation object.

3. An operation such as ReleasePatient is actually a memory management op-

eration that deallocates the memory space a CORBA object takes in its server.

These operations transfer to the clients the responsibility of managing the

server’s memory; they give “buggy” clients the ability to cause server mem-

ory leaks.

Even for someone willing to live with problems 1 and 2, problem 3 alone subtracts

all viability from our naive scheme for persistence of implementation objects: re-

mote management of server memory is frontally antagonistic to the idea of stateless

servers, a concept widely accepted due to its positive effects on the robustness of any

distributed system. Despite its problems, persistence of implementation objects is a

step in the direction of practical approaches to persistence of CORBA objects.

3.4 The Object Database Adapter

Rather than tackling at the application level the issues identified in the previous

section, we follow the ODMG proposal [7] and introduce an object adapter — the

Object Database Adapter – that deals with those issues in an application independent

way.

The object adapter is a replaceable component of the CORBA architecture. Only

the Basic Object Adapter is currently specified by CORBA, but “it was envisaged

64

that over time additional, less general-purpose, adapters would be standardized by the

OMG, such as for use with objects stored in OODBs (an Object Database Adapter),

or for in-process objects whose implementations are maintained in dynamically linked

libraries (the Library Object Adapter)” [30].

Note, however, that only the ORB implementor can actually provide a replacement

for the BOA: the object adapter interacts with the ORB core and with the skeletons

through ORB-dependent interfaces (Figure 1.2). Information on these non-standard

interfaces is unavailable to users.

Fortunately this is not a real problem. Instead of replacing the BOA, an Ob-

ject Database Adapter can built as an add-on to the BOA, as a library that uses

and extends BOA services. In this architecture, depicted in Figure 3.4, the ODA

works together with the BOA on the generation and interpretation of references to

persistent CORBA objects. Since the ODA consists of a library linked to the object

implementation, it interacts with the BOA through the ORB-independent interface

the BOA makes available to object implementations.

The ODA solves the problems identified in Section 3.3.1 by using the delegation

(tie) approach to interface implementation. Only implementation objects are stored

in the database. The corresponding tie objects are automatically instantiated by the

ODA whenever they are needed and released when not needed.

ORB Core

IDL
Skeleton

ODA

Object
Implementation

BOA

Implementation Object

 Methods State

Implementation Object

 Methods State

Implementation Object

 Methods State

Implementation Object

 Methods State
 State

Transient Object

 Methods

ODBMS Server

Implementation Object

 Methods State

Implementation Object

 Methods State

Implementation Object

 Methods State

Implementation Object

 Methods State
 State

Persistent Object

 Methods

Figure 3.4: The Object Database Adapter.

65

This approach looks similar to our naive scheme for persistence of implementation

objects. In that scheme, however, the object implementation was responsible for

instantiating and deleting tie objects. By assuming these responsibilities, the ODA

• provides persistence to CORBA references (tie objects are automatically instan-

tiated when need), and

• removes the need for remote management of server memory (tie objects are

automatically released).

To allow automatic instantiation of tie objects, the ODA embeds a stringfied

ODBMS reference to the corresponding implementation object into the id (also

known as ReferenceData) field of a CORBA reference to a persistent object. More-

over, it provides an object activation routine that builds the tie object given an

ODBMS reference to its implementation object.

Every access to a persistent object must be performed within a transaction. In

the absence of an external monitor providing the Object Transaction Service [39],

the ODA enforces this rule by automatically starting a transaction before each IDL-

defined operation on a persistent object begins execution (if there is no transaction

already active) and committing (or aborting) the auto-started transaction at the end

of the operation.

Finally, it is also desirable that the ODA makes CORBA references transparently

storable. In the following sections, we discuss two approaches to the construction

of an ODA. The first one, which we call pseudopersistence, makes object references

persistent, but not transparently storable. The second approach, which we call full

persistence, provides transparent storability to object references, both in the case of

references to local objects and in the case of references to remote objects. Full per-

sistence comes in two flavors: smart pointer-based persistence and virtual persistence;

the latter applies only to the case of a virtual memory-based ODBMS.

In what follows, the environment provided by the ODA to an object implemen-

tation will be depicted as in Figure 3.5, just to avoid heavily populated figures. The

reader should keep in mind that this is a simplified representation of the architec-

ture in Figure 3.4: besides involving an ODA, “persistence in a CORBA server” also

involves an ODBMS server.

66

Object Implementation

Implementation Object

 Methods State

Implementation Object

 Methods State

Implementation Object

 Methods State

Implementation Object

 Methods State
 State

Transient Object

 Methods

Implementation Object

 Methods State

Implementation Object

 Methods State

Implementation Object

 Methods State

Implementation Object

 Methods State
 State

Persistent Object

 Methods

Figure 3.5: Simplified representation: “persistence in a CORBA server.”

3.5 Pseudopersistence

What we call pseudopersistence is a combination of two ideas: persistence of imple-

mentation objects and persistence of CORBA object references. CORBA references

are made persistent through the basic scheme outlined on page 25. As we discussed

there, that scheme left some important issues unresolved. To address those issues,

we assume an ORB such as Orbix, with a well defined object activation mechanism

(see 1.6), plus request and reply handlers (see 1.7).

Figure 3.6 illustrates the pseudopersistence approach, which works as follows:

1. The delegation approach is used to dynamically associate transient CORBA

objects with persistent implementation objects. These ORB objects are ties

from transient memory to persistent memory; we call them pseudopersistent

objects.

2. The ODA implements reference embedding . Whenever a CORBA reference to

a pseudopersistent object is created, the ODA assigns it a special id value.

A field in the id holds the information that the object is pseudopersistent.

Other field specifies the identity of the corresponding implementation object, in

the form of an ODBMS reference converted to a string. CORBA references to

pseudopersistent objects can only be created by the ODA, in order to ensure that

any such reference has an ODBMS reference to the appropriate implementation

object embedded in its id.

67

CORBA Object

 Methods State

ORB Core

IDL
Skeleton

ODA
2. Object
 Activation

1. Request
 Arrival

Incoming Request

Object Reference

Object Reference Id

Create

3. Method
 Invocation

Object Implementation

4. Reply
 Handler

Destroy

BOA

Implementation Object

 Methods State

Implementation Object

 Methods State

Implementation Object

 Methods State

Implementation Object

 Methods State
 State

Implementation Object

 Methods

Figure 3.6: Incoming request handling in the pseudopersistence approach.

68

3. The ODA provides a special object activation routine. When a request to a

pseudopersistent object that is not active2 is received, this routine instantiates

the object. The incoming request contains a marshaled reference3 to its target;

the ORB passes to the object activation routine the id value of the marshaled

reference. The object activation routine uses this parameter to instantiate the

pseudopersistent object as a tie to the implementation object specified by the

ODBMS reference embedded in the id. It also constructs an actual CORBA

reference to the pseudopersistent object, and assigns to this reference the id

of the marshaled one. This CORBA reference, converted to a reference to

CORBA::Object, is the return value of the object activation routine.

4. The object activation routine is also called when an object reference enters the

server’s address space not as the target of a request, but in any of the remaining

ways listed in Section 1.6. In each case, it performs actions similar to the ones

just described in 3.

5. The ODA provides a special reply handler. This handler deactivates (deletes)

all pseudopersistent objects whose instantiations were triggered by the current

request. To allow this, the ODA maintains a “to release” list, a list of references

to pseudopersistent objects to be released at the end of the current operation.

In addition to what was described in 3, the object activation routine inserts

into the “to release” list references to each pseudopersistent object instantiated

during a request service.

6. Whenever an implementation class creates a pseudopersistent object to be

passed to a client, either as the return value or as an output parameter of

a request, it does so by calling a ODA function that inserts a reference to the

pseudopersistent object into the “to release” list.

The net result of 5 and 6 is that pseudopersistent objects passed back and forth

between a server and its clients, either as parameters or as return values of requests,

have short existence: they only exist while a request is being serviced. At the end

2“Not active” means “does not exist in the server address space at the present time”.

3At this time, this CORBA reference only exists in marshaled form.

69

of every request service, the reply handler removes these objects from the server’s

address space. If such a pseudopersistent object is needed again, in a future request

service, an equivalent to it will be instantiated by the object activation routine.

Note that the reply handler provided by the ODA has to be a post-marshal han-

dler: because the return value and the output parameters of a request must be avail-

able to the marshaling routine, they can only be released after the reply is marshaled.

To avoid multiple ties to an implementation object (see discussion in page 63)

and allow efficient implementation of a function that returns the CORBA reference

to a pseudopersistent object given its implementation object, the ODA maintains

an in-memory table of active pseudopersistent objects. The entries of this table are

pairs (db ref,orb ref), where orb ref is a CORBA reference to a currently active

pseudopersistent object, and db ref is an ODBMS reference to the corresponding

implementation object. For fast lookup, the table of active pseudopersistent objects

is hashed by db refs.

Pseudopersistent objects cannot be directly instantiated by a server. The server

obtains CORBA references to pseudopersistent objects via calls to the ODA. In such

a call, an input parameter specifies an implementation object. If this implementation

object appears in an entry of the table of active pseudopersistent objects, the ODA

returns the associated CORBA reference. Otherwise the ODA:

• creates a new tie for the implementation object,

• embeds a stringfied ODBMS reference to the implementation object into the id

of the newly created CORBA object,

• inserts a new pair (db ref,orb ref) into the table of active pseudopersistent

objects,

• inserts a reference to the newly created CORBA object into the “to release”

list, and

• returns this CORBA reference.

The destructor of a pseudopersistent object removes the corresponding entry from

the table of active pseudopersistent objects. Its constructor is private, to ensure that

only the ODA can instantiate persistent objects.

70

Caching Pseudopersistent Objects

There is no reason to release all active pseudopersistent objects at the end of every

operation; the ODA only needs to ensure that these objects will be eventually re-

leased. Successive reinstantiations of pseudopersistent objects can be avoided with

the following caching scheme:

• The “to release” list is implemented by a FIFO queue. At any point in time, the

number of active pseudopersistent objects (n active ppobjs) is the cardinality

of this list.

• Rather than removing every object from the “to release” list and releasing

them all, the reply handler only does this only for the first n active ppobjs -

cache size objects in that list.

Does a such simple caching scheme yield a noticeable performance gain? We will

answer this question in Chapter 5.

Comparison with Simple Persistence of Implementation Objects

Pseudopersistence removes most problems presented by mere persistence of imple-

mentation objects:

• Clients do not have to manage the server’s memory. Pseudopersistent objects

are instantiated and released automatically by the Object Database Adapter.

• The pseudopersistence of an object has no effect on its IDL interface.

• CORBA references to pseudopersistent objects are made persistent by the ob-

ject activation mechanism. Clients can freely store these references in persistent

media; this allows the construction of ORB-connected multidatabases.

Pseudopersistence should also perform better than simple persistence of implementa-

tion objects. In that scheme, clients control the lifetimes of transient ties to persistent

implementation objects, and thus are able to avoid reinstantiations of these ties. Even

so, the tie instantiations avoided by a client written for performance are outweighed

by the cost of the remote method invocations with the sole purpose of managing

71

the server’s memory. Pseudopersistence does not incur the cost of remote memory

management.

One limitation, however, remains: CORBA references to pseudopersistent objects

are not transparently storable. They must be converted to strings to be stored.

The Limitation of Pseudopersistence

Because CORBA references to pseudopersistent objects are made persistent through

the object activation mechanism, their persistence is not effective in every situation,

but only in those covered by this mechanism.

Object activation is performed when an CORBA reference enters an address space,

in any of the ways listed in Section 1.6. The retrieval of a CORBA reference from

an object database does not appear in that list: a reference just retrieved from an

ODBMS-managed database is not considered to be entering the address space of the

database client. This is in agreement with the view of an ODBMS extending the

address space of the database client to include the objects kept in persistent memory.

In this perspective, anything retrieved from an object database does not enter the

address space of the ODBMS client — it was already in the client address space even

before being retrieved.

Object relationships can be represented through object references converted to

strings. Conceptually, a reference stored in string form does not exist as a CORBA

object reference; it only enters the address space of the database client when this

process calls the ORB operation string to object.

Although possible, the explicit representation of object relationships by CORBA

references converted to strings is a clumsy way to organize an object database: having

to call string to object to access a related object contradicts the ODBMS efforts to

smoothly integrate persistence into the programming language environment. In the

absence of transparent storability of CORBA references, the relationships between

pseudopersistent objects within a server are best represented by ODBMS references

between the corresponding implementation objects. Stringfied CORBA references

must be used for cross-server relationships.

72

3.6 Full Persistence

What we call full persistence extends pseudopersistence by providing a transparent

mechanism for the storage and retrieval of CORBA references. This mechanism

makes these references look like any other database item to the programmer, hiding

any format conversions that may take place when a CORBA reference is stored, when

it is retrieved, or when it is used.

This extension makes a pseudopersistent object appear as one truly stored in the

database. Even though the object is not actually kept in persistent memory, we will

call it persistent.

A persistent CORBA object is a transient tie to a persistent implementation ob-

ject, but it can be referenced like an object actually stored in an ODBMS-managed

database. References to persistent CORBA objects are generated and interpreted by

the ODA, which provides them with two distinct attributes:

Persistence in the CORBA sense. CORBA clients can store references to per-

sistent CORBA objects, and may use them at any time without warning. The

pseudopersistence approach accomplishes this.

Transparent storability. Object relationships can be represented by transparently

stored references to persistent CORBA objects. Transparent storability, or

“persistence in the ODBMS sense”, is what full persistence adds to pseudoper-

sistence.

3.6.1 Smart Pointer-Based Persistence

In the case of an ODMG-compliant ODBMS, full persistence can be achieved through

an extension the pseudopersistence approach. To realize full persistence, the ODA

provides pseudopersistence, and augments it with a smart pointer scheme that makes

CORBA references transparently storable.

The pseudopersistence strategy described in pages 67–69 remains in effect, with

the substitution of “pseudopersistent object” by “persistent CORBA object” in items

1–6 of that description. The ODA complements that strategy with the smart pointer

scheme outlined in what follows.

73

Storing CORBA References as Smart Pointers

In a smart pointer-based ODBMS, relationships between database objects are repre-

sented by ODBMS references, which in turn are implemented through a smart pointer

scheme. A similar smart pointer scheme is used by the ODA to store CORBA ref-

erences in an object database. The basic idea is to store a reference in way such

that the extra actions taken when the reference is followed are made invisible to the

programmer: these actions happen as a side effect of dereference.

A reference to a persistent CORBA object whose interface class is I is stored as

an instance of an ODA-defined template class ODA Ref<I>. If the referenced object

is remote (lives in another process), a data member of ODA Ref<I> holds a stringfied

CORBA reference to the object.

Stringfied CORBA references could also be used to store references to persistent

CORBA objects that are local. In this case, however, better performance and less

overhead in database space are achieved with the use of another data member of

ODA Ref<I>, this one holding an ODBMS reference to the appropriate implementation

object within a database accessed by the CORBA server.

Note that these CORBA references cannot be stored in their native form, because

the persistent CORBA objects they reference are actually transient ties: their lifetime

is restricted to the current request service, as in the pseudopersistence approach.

Overloading of the C++ operators “->” and unary “*” by ODA Ref<I> ensures

that CORBA references stored in these forms will have effectively entered the process

address space by the time they are dereferenced. For a reference to a remote object,

the dereference operators convert the string present in the ODA Ref<I> instance back

to a CORBA reference, via string to object. For a reference to a local object, these

operators call the ODA to obtain a tie to the implementation object identified by the

ODBMS reference in the ODA Ref<I> instance.

The ODA inserts into the “to release” list references to each CORBA object that

entered the process address space via side effects of the C++ dereference operators.

As in the pseudopersistence approach, a reply handler provided by the ODA releases

these objects at the end of a request service. The caching scheme discussed in page 71

is applicable here as well.

74

Implementing ODA References

Figure 3.7 shows a possible implementation of the template class ODA Ref<I>. Its

dereference operator looks like the one presented in Figure 3.8. Since we want to

store ODA references in databases, we made the class ODA Ref<I> persistent capable,

by deriving it from d Object. The constructor of an ODA reference initializes either

// C++

template <class I>

class ODA Ref : public d Object {

private:

I ptr p; // CORBA reference to an object of interface class I

char* orb ref; // stringfied CORBA reference to this object

d Ref Any impl ref; // ODBMS reference to the impl. object

public:

oda Ref(I ptr corba ref);

virtual ~oda Ref();

I ptr operator->() const;

I& operator*() const;

I ptr corba ref() const;

...

};

Figure 3.7: The ODA Ref<I> template class.

the data member orb ref (if the referenced object is remote) or the data member

impl ref (if the referenced object is local) to a non null value.

If no further precautions are taken, a problem arises when instances of class

ODA Ref<I> are stored in a database: the dereference operation performs a test for

nullity CORBA::is nil(p). Even though p is intended to point to a transient CORBA

object, this test is using the stored value of p. The last value assigned to p (possibly

by another process) is the one being tested for nullity.

Fortunately the ODMG specification provides a way to solve this problems. The

relevant member functions of d Object, the persistent capable root class, are shown

in Figure 3.9.

An application calls mark modified to request an update of the object’s stored

image. If this call is not made, changes to the object are not guaranteed to be

75

propagated to the database. (This may or may not happen, and may depend on

other mark modified calls, e.g.: a mark modified call on some object in the same

database page.)

The d activate and d deactivate functions are called by the ODBMS , not by

the application. Their purpose is to support transient pointers (pointers to transient

memory) as data members of a persistent object. Transient pointers must be managed

as the persistent object enters and exits the application cache: memory may need to

be allocated and deallocated when these events occur, for instance. A d activate call

is performed whenever the object enters the application cache, and a d deactivate

call whenever the object leaves the application cache. Figure 3.10 illustrates the calls

made in the course of an object’s lifetime.

Note that the constructor of a persistent object is only called when the object

is first added to the database, and the destructor when the object is deleted from

the database. Between the object’s construction and its destruction, as it leaves

and reenters the application cache, a series of d deactivate and d activate calls is

performed by the ODBMS.

It is now clear how to solve the ODA reference problem: by redefining the vir-

tual function d activate in class ODA Ref<I>, we ensure that the data member p

of an ODA reference is set to null when the ODA reference enters the application

cache. Since changes in the value of p do not need to be propagated to the data-

base, dereference operations perform assignments to this data member, but do not

// C++

template <class I>

I ptr ODA Ref<I>::operator->() {

if (CORBA::is nil(p)) {

... // uses orb ref or impl ref (whichever is non nil)

// to obtain objref, a CORBA reference to the object

p = objref;

}

return p;

}

Figure 3.8: Class ODA Ref<I>’s dereference operator.

76

call mark modified.

3.6.2 Virtual Persistence

The strategy employed to augment pseudopersistence in the case of an ODMG-

compliant ODBMS may not work for a virtual memory-based one. In a virtual

memory-based ODBMS, the memory representation of an ODBMS reference is a

plain C++ pointer, the virtual memory address that results from the swizzling of

an OID at page fault time. The ODBMS may expect interobject relationships to

be represented in memory by plain C++ pointers. Some of its components — the

ones the support collections and queries, for example — may assume that interobject

relationships are expressed in this way.

If this is the case, CORBA references must therefore be represented as plain C++

pointers, and not as instances of a special class defined by the ODA. This rules out

a smart pointer-based strategy, because C++ supports redefinition of operators only

on classes, and not on native data types, such as pointers.

If a CORBA reference is stored as a plain C++ pointer, this pointer must point

to some persistent object. The problem is that the “persistent” CORBA object

identified by the reference is actually a transient tie. The ODA solves this problem

by introducing a persistent representative of this object. References to persistent

CORBA objects are stored as C++ pointers to the persistent representatives of these

// C++

class d Object {

public:

d Object();

virtual ~d Object();

...

void mark modified(); // mark the object as modified

virtual void d activate(); // called on entry into the application cache

virtual void d deactivate(); // called on exit from application cache

...

};

Figure 3.9: The d Object class.

77

Database
Environment

constructor

Application
Cache

destructor

activatedeactivate deactivate activate

time

Figure 3.10: Persistent object activation and deactivation.

objects. Since representatives are actually stored in the database, their size should be

as small as possible. A representative should contain only the minimum amount of

information required for the identification and for the instantiation of the persistent

CORBA object it represents.

The actual CORBA objects identified by the CORBA references present in the

database and represented by the persistent representatives these references point to

must be instantiated at some point in time. Our goal of transparency excludes the pos-

sibility of placing this burden on the programmer: the ODA is supposed to instantiate

these CORBA objects automatically. The solution is to perform such instantiation

at page fault time.

At page fault time, just before it gives the database client access to a faulting

page allocated to persistent memory, the ODBMS goes through the objects in the

page. It swizzles OIDs to virtual memory pointers, and also performs other tasks,

such as the initialization of any vtbl pointers in the page. This would be a convenient

time to process representatives of persistent CORBA objects. The ODA would then

instantiate an actual CORBA object for each representative in the faulting page,

and would also provide transparency by somehow “swizzling” these representatives

to actual CORBA objects.

We call such an approach virtual persistence. To support it, the ODBMS must

give database clients the possibility of specifying functions to be executed at page

fault time.

78

Page Fault Hooks

The interfaces described here are present in ObjectStore, the only commercially avail-

able ODBMS that is virtual memory-based. Database clients can install access hooks,

functions to be executed either when objects of specified classes in specified databases

become accessible to the client, or when these objects become inaccessible to the

client. The client installs an access hook at runtime, specifying a particular database

and a particular class.

The access hooks executed when objects become accessible are called inbound

hooks. For each transaction, a given inbound hook is called the first time an instance

of the specified class in the specified database is accessed by the client, as well as each

time such instance is transferred into the client cache. These calls take place at page

fault time: when a page of the specified database faults, the inbound hook is called

for each instance of the specified class in the faulting page.

The access hooks executed when objects become inaccessible are called outbound

hooks. A given outbound hook is called whenever an instance of the specified class in

the specified database is found in the client cache at the end of a transaction, as well

as each time such instance is transferred out of the client cache within a transaction.

An access hook is passed the address of the page that becomes accessible or

inaccessible. It can write to this page without causing a disk write operation, by

calling a special “hidden write” function that updates the page in the client cache

without write-locking it, and without marking it as modified.

Representatives of Persistent CORBA Objects

We now present a scheme to represent persistent CORBA objects in a database man-

aged by a virtual memory-based ODBMS. This scheme introduces minimum overhead

in database space.

Consider again the IDL interface A, shown in Figure 1.9, and its IDL-generated

interface class, shown in Figure 1.10. The corresponding tie template, generated

by an IDL compiler that supports virtual persistence, looks like the one shown in

Figure 3.11. Note that the inheritance from the interface class A is now virtual, and

that all functions corresponding to IDL operations are virtual member functions; these

facts are crucial and will be used shortly. Also note that the data member ref is not

79

// C++

template <class Impl>

class tie A : public virtual A {

private:

Impl& ref;

public:

... // ORB-dependent member functions go here

tie A(Impl& impl obj) : ref(impl obj) {}

virtual CORBA::Short op1() { return ref.op1(); }

virtual void op2(CORBA::Long l) { ref.op2(l); }

...

virtual ~tie A();

};

Figure 3.11: IDL-generated tie for virtual persistence.

an ODBMS reference (d Ref<Impl>) anymore, but a plain C++ reference (Impl&):

a virtual memory-based ODBMS allows C++ pointers/references from transient to

persistent memory to be used within a transaction.

Figure 3.12 shows how a typical C++ compiler lays out a tie A<A impl> in mem-

ory. Memory layout of C++ objects is compiler dependent; virtual persistence only

relies on the inherited subobjects (or the vbase pointers to the virtually inherited

ones), the vtbl pointer, and the data members of a C++ object being all laid out

contiguously, in a fixed order (which needs not be the one shown in Figure 3.12),

at the beginning of the memory area allocated to the object. Most if not all C++

compilers lay out objects in this way.

The A part of the object is what takes the most space. It contains all data mem-

bers inherited from CORBA::Object, plus vbase and vtbl pointers for each interface

class in its inheritance chain up to CORBA::Object. In this particular example, the

interface class A is directly derived from CORBA::Object. In the general case, however,

several interface classes may appear in such inheritance chain.

The only information required to construct a tie A<A impl> instance is the ad-

dress of the corresponding implementation object. A representative of a

tie A<A impl> must contain this information. The A part of the object needs not be

in the representative. To allow swizzling of the representative to an actual

80

// Memory layout of an object of class tie A<A impl>,

// represented as a C++ structure

struct {

// inherited subobjects

// (There is only one, of class A. Due to virtual

// inheritance, just a pointer to it goes here.)

void* vbase; // points to the A part of the object

// virtual table pointer

void* vtbl; // points to the virtual table of tie A<A impl>

// data members

Impl& ref; // this is the only data member

// virtually inherited subobjects

// (They may go here, or may be allocated separately;

// it does not matter.)

A A part; // the A part of the object may be elsewhere

};

Figure 3.12: Memory layout of a tie A<A impl> instance.

tie A<A impl> instance, we set aside slots for vbase and vtbl pointers within the

representative, in the same relative positions these pointers take within the memory

layout of a tie A<A impl> instance.

Figure 3.13 shows the class definition for the representative of a persistent CORBA

object that satisfies the interface A and is local to the server holding a persistent

reference to the object. The ref field is used to express the database relationship

between the representative of a persistent CORBA object and the corresponding

implementation object. Unlike ref, the fields vbase and vtbl are never really written

to the database. Even though they take database space, their purpose is not one of

81

template <class Impl>

class tie A representative {

public:

void* vbase; // points to the A part of the object

void* vtbl; // points to the virtual table of tie A<A impl>

Impl* ref; // points to the implementation object

};

Figure 3.13: Representative of an object of class tie A<Impl>.

keeping the addresses of the virtual base and of the virtual table in persistent memory,

but one of allowing the representative to be swizzled to the actual object it represents.

Swizzling Representatives at Page Fault Time

The ODA provides an inbound and an outbound hook for each representative class. At

page fault time, the inbound hooks instantiate the persistent CORBA objects whose

representatives live in the faulting page, using the the ref fields of the representatives.

The inbound hooks also swizzle the representatives to the actual objects.

Swizzling a representative means copying the vbase and vtbl pointers of the

actual object into the corresponding fields of the representative. The inbound hooks

perform such copies using the “hidden write” function, which neither causes a disk

write operation nor requires a write-lock to the database page.

Once swizzled, representatives can be used exactly like the objects they represent.

No further runtime conversions or checks are required:

• Since all member functions of a persistent CORBA object are virtual, any calls

to these functions use the vtbl pointer of the object. This pointer is present

in the swizzled representative, with the same value, and in the same relative

position.

• Since a persistent CORBA object virtually inherits a subobject of the IDL-

generated interface class corresponding to its interface, any data members di-

rectly or indirectly inherited from the interface class are accessed only through

the vbase pointer of the object. This pointer is also present in the swizzled

82

representative, with the same value, and in the same relative position.

• The single non-inherited data member of a persistent CORBA object is ref.

This data member also present in the swizzled representative, with the same

value, and in the same relative position.

When the representatives become inaccessible, the outbound hooks release the current

instances of the represented objects.

As a concluding remark on this subject, notice that we have assigned an additional

meaning to the word “swizzling”. In the ODBMS field, this word refers to pointer

swizzling , the translation of OIDs to virtual memory addresses, typically performed

in-place. Pointer swizzling is done by the virtual memory-based ODBMS anyway,

and is implicit in the scheme we have just described: recall that representatives were

introduced to allow the storage of references to (non-stored) persistent CORBA ob-

jects as C++ pointers, which point to the actually stored representatives of these

objects. The ODA needs not be concerned with the swizzling of these pointers; the

ODBMS takes care of it. What we introduced is an additional in-place translation,

also performed at page fault time, but of a different nature: the conversion of rep-

resentatives to the actual objects they represent. This one is not performed by the

ODBMS, but by the ODA. Rather than a swizzling of pointers, such conversion is in

fact a swizzling of objects.

Activation of Persistent CORBA Objects: Internal and External

A persistent CORBA object may be activated by an internal action taken by the

server — a virtual memory access to the object’s representative — or by an incoming

request containing a CORBA reference to the object. Figure 3.14 illustrates the

first case. When executing an operation requested by a client, the server performs a

memory access to an object representative (possibly by following a reference between

persistent objects in the database), which causes the instantiation of a persistent

CORBA object. At the end of the operation, an outbound hook deletes the object.

Figures 3.15, 3.16, and 3.17 show the sequence of events that takes place when

an incoming request activates a persistent CORBA object. The incoming request

contains a CORBA reference to its target, a persistent object. The reference id, which

contains a stringfied ODBMS reference to the corresponding implementation object,

83

ODA 2. Inbound
 Hook

CORBA Object

 Methods State

Object Implementation

Implementation Object

 Methods State

Implementation Object

 Methods State

Implementation Object

 Methods State

Implementation Object

 Methods State
 State

Implementation Object

 Methods

CORBA Object
Representatives

1. Memory
 Access

Page Fault
Create

3. Outbound
 Hook

Destroy End of
Transaction

Figure 3.14: Virtual persistence.

is passed to the object activation routine (Figure 3.15). This routine obtains the

address of the target representative and performs a memory access to it, causing the

instantiation of the target object (Figure 3.16). The request is then delivered to the

newly instantiated object, through an up-call from the skeleton. (Figure 3.17). While

servicing the request, the server may access other object representatives and cause

further instantiations of persistent CORBA objects. At the end of the operation, an

outbound hook deletes all these instances, including the target object.

Persistent References to Remote CORBA Objects

Our scheme for transparently storing references to persistent CORBA objects works

only if these objects are local to the CORBA server. For references to remote CORBA

objects, some changes to that scheme are necessary.

Consider again the IDL interface A, shown in Figure 1.9, and its IDL-generated

interface class, shown in Figure 1.10. A C++ client accesses this interface through

a stub object , an object of a stub class generated by the IDL compiler. Figure 3.18

84

ODA

Implementation Object

 Methods State

Implementation Object

 Methods State

Implementation Object

 Methods State

Implementation Object

 Methods State
 State

Implementation Object

 Methods

CORBA Object
Representatives

2. Object
 Activation

IDL
Skeleton

BOA

Object Implementation

Memory
Access

Incoming Request

Object Reference

Object Reference Id

1. Request
 Arrival

ORB Core

Figure 3.15: Incoming request handling in virtual persistence (part I). A request

to a persistent CORBA object arrives at the server. The object activation routine

performs a memory access to the representative of the target object.

85

ODA 3. Inbound
 Hook

CORBA Object

 Methods State

Implementation Object

 Methods State

Implementation Object

 Methods State

Implementation Object

 Methods State

Implementation Object

 Methods State
 State

Implementation Object

 Methods

CORBA Object
Representatives

Page Fault

Create

IDL
Skeleton

BOA

Object Implementation

Memory
Access

ORB Core

Figure 3.16: Incoming request handling in virtual persistence (part II). The memory

access to the representative causes the instantiation of the target object.

86

ODA

CORBA Object

 Methods State

Implementation Object

 Methods State

Implementation Object

 Methods State

Implementation Object

 Methods State

Implementation Object

 Methods State
 State

Implementation Object

 Methods

CORBA Object
Representatives

Destroy

5. Outbound
 Hook

 End of
Transaction

4. Method
 Invocation

IDL
Skeleton

BOA

Object Implementation

ORB Core

Figure 3.17: Incoming request handling in virtual persistence (part III). An up-call

from the skeleton invokes the requested operation. At the end of the operation, an

outbound hook deletes the target object.

87

// C++

class stub A : public virtual A {

public:

... // ORB-dependent member functions go here

stub A();

virtual CORBA::Short op1();

virtual void op2(CORBA::Long l);

...

virtual ~stub A();

};

Figure 3.18: IDL-generated stub class for interface A.

shows a stub class generated for the interface A by an IDL compiler that supports

persistent references to remote CORBA objects. Note that this class has a single

direct base, the interface class A, and that the inheritance is virtual. Also note that

the functions corresponding to IDL operations are virtual member functions. These

virtual member functions may be actually defined by the stub class, as in Figure 3.18,

or may be simply inherited from the interface class; it does not matter for our scheme.

Lastly, note that stub A does not have any non-inherited data members.

A CORBA reference to a remote object of interface A is implemented in C++ as

a pointer to a local object of class stub A. The ORB automatically creates a stub

object whenever a reference to a remote CORBA object enters the address space of

a process, in any of the ways listed in 1.6. In particular, calls to string to object

can create stub objects: when passed a string identifying a remote CORBA object

that is not yet active in the current address space, string to object creates a stub

for the object and returns its address. A stub object is deleted by release, when its

reference count reaches zero.

To allow storing these CORBA references in a database, we introduce persistent

representatives of stub objects. A reference to a remote CORBA object is then stored

as a pointer to a representative of the corresponding stub object. Figure 3.19 shows

the form of a stub representative. The orb ref field is the only one actually written

to the database. It points to a persistent string that identifies the remote CORBA

object; this string was obtained through a call to object to string.

88

class stub representative {

public: // if the represented stub is a stub A

void* vbase; // this field points to its A part,

void* vtbl; // this one to the virtual table of stub A,

char* orb ref; // and this one to the corresponding

}; // CORBA reference, in string form

Figure 3.19: Representative of a remote CORBA object.

The ODA swizzles stub representatives at page fault time, just like it does with the

tie representatives used for local objects. The only difference is that the represented

objects — stub objects — are now instantiated via calls to string to object.

The Overall Scheme

Unlike smart pointer-based persistence, virtual persistence is not a mere add-on to

pseudopersistence: it introduces modifications in the pseudopersistence strategy de-

scribed by items 1–6 in pages 67–69. Even so, the overall scheme for virtual persistence

can still be characterized by that description, with the substitution of “pseudopersis-

tent object” by “persistent CORBA object”, plus the following additions and changes:

• Each persistent CORBA object must be registered with the ODA when first

created4; the ODA then stores in the database a representative for the object.

• Each persistent implementation object holds a pointer to the representative

of the persistent CORBA object it implements. The reason for storing these

pointers within the implementation objects will be seen shortly.

• The ODA installs inbound and outbound hooks for each representative class.

Instantiation and deletion of persistent CORBA objects, as well as swizzling of

representatives, are performed by these hooks in the way already described.

• Item 3 in page 67 is modified: the object activation routine does not instantiate

the transient ties that realize persistent CORBA objects anymore. These ob-

4“First”, here, refers to the very first time the object was created, and not to the successive
reinstantiations of the object by its inbound hook.

89

jects are now instantiated at page fault time; the instantiation of such an object

is triggered by a mere access to the page that contains its representative. The

object activation routine simply gets the address of the representative from the

implementation object (this is why pointers to the corresponding representa-

tives were stored within the implementation objects), considers this address as

a reference to the represented object, and returns the result of the conversion

of this reference to a reference to CORBA::Object5.

• Items 5 and 6 in page 69 are removed: deactivation of persistent CORBA objects

is now performed by outbound hooks. The reply handler and the “to release”

list are not needed anymore.

Surprisingly enough, inbound/outbound hooks made the overall scheme look simpler.

3.7 ODA Support for Local Transactions

In the OMG architecture, distributed transactions are supported by the Object Trans-

action Service [39], which implements the two-phase commit protocol [12] and can

be regarded as an object-oriented extension of X/Open DTP [60]. OTS implementa-

tions are expected during 1996, and will be probably based upon existing TP monitor

products.

To be used with OTS and participate in distributed transactions, a DBMS must of-

fer a resource manager interface, such as the set of XA primitives specified by X/Open

DTP, or the Resource interface specified by OTS. The XA interface is supported by

all major relational DBMSs, but most ODBMSs do not yet support a resource man-

ager interface. For this reason, OTS will remain unavailable to ODBMS users in the

near future.

Even without OTS, local (non-distributed) transactions still take place in an in-

tegrated ORB/ODBMS environment. Transactions local to a server are sufficient for

many applications; this is the situation we consider here. In what follows, we discuss

the actions an Object Database Adapter must take to support local transactions,

5Note that such conversion to CORBA::Object involves following the vbase pointer in the repre-
sentative. The act of dereferencing this pointer triggers a page fault.

90

assuming the common case of an ODBMS that does not offer a resource manager

interface.

Whatever approach is used to make CORBA objects persistent — simple per-

sistence of implementation, pseudopersistence, or either form of full persistence —

the methods that implement operations on these objects must be executed within

a database transaction, because the ODBMS only allows access to persistent mem-

ory from within a transaction. One might think of asking the interface implemen-

tor to call d Transaction::begin at the very start of each method, as well as

d Transaction::commit (or abort) at the very end of the method. This naive idea

does not work, for the following reasons:

• Before a method starts executing, its target object must be activated. In or-

der to instantiate a tie that realizes the target object, the activation routine

needs to determine the address of the corresponding implementation object.

This is a persistent memory address, which cannot be determined outside of a

transaction. A similar argument applies to CORBA references passed as input

parameters.

• References to persistent CORBA objects may be passed back to the client,

either as output parameters or as the return value of the method. By the time

these references are marshaled into a reply message, the objects they reference

must be still active and accessible. This will not happen if the method itself

calls d Transaction::commit.

The ODA solves both problems by using request and reply handlers: a pre-marshal

handler starts a transaction as soon as a request arrives, and a post-marshal handler

ends the transaction just before the reply is sent. This solution encompasses each

IDL operation by an individual transaction. This seems natural and is sufficient for

many applications. In certain situations, however, it may be necessary to consider a

sequence of IDL operations as a single database transaction.

Multiple IDL Operations in a Single Transaction

From the point of view of the ODA, it is easy to accomplish this with request and

reply handlers. What makes multi-operation transactions problematic is that the

91

execution of a sequence of operations defined as a transaction by a client may be

interleaved, in the CORBA server, with the execution of operations requested by

other clients. Transactions are typically implemented using database locks, usually

per-client locks. Since a single database client — the CORBA server — is executing

all operations, a whole set of interleaved operations would be then regarded by the

ODBMS as a single transaction.

Orbix provides a server activation mode that solves this problem, at the cost of

additional consumption of server machine resources: in this mode, called per-client-

process, a separate CORBA server is automatically activated for each client process.

This activation mode is orthogonal to the ones discussed in Section 1.4.1. It can

be applied, for example, to a shared server: the resulting activation mode would be

shared-server-per-client-process. In this composite activation mode, multiple active

objects of a given interface are made accessible to a particular client process by a

server. Requests from other client processes cause the activation of separate servers.

Such composite activation mode allows the safe implementation of multi-operation

transactions: every client has a separate CORBA server, which in turn is granted its

own database locks. Each sequence of operations defined as a transaction by a client

is then regarded by the ODBMS as a separate transaction.

3.8 Relationship with POS

The Persistent Object Service (POS) [39] is one of the object services specified by

the OMG. Designed to provide client control over object persistence, POS is geared

towards objects that expose their persistence to CORBA clients.

A Persistent Object (PO) is defined as an object whose persistence is controlled

externally by its clients. POS adopts a two-level store model: a Persistent Object

has a dynamic state and a persistent state. The latter is typically kept in memory,

and may not exist for the whole lifetime of the object. The PO interface defines

the operations connect, disconnect, store, restore, and delete. Through these

operations, clients can control the persistence of a PO. For instance, they can request

an update of the persistent state with the contents of the dynamic state (store), or

vice-versa (restore).

The PO interface is the client’s view of this service. On the server side, POS defines

92

components used by PO implementations. A Persistent Object Manager (POM)

provides a uniform interface to the underlying Persistent Data Services. A Persistent

Data Service (PDS) provides a uniform interface for any combination of Datastore

and Protocol. The persistent state of a PO is ultimately kept in a Datastore. Data

is read and written to a Datastore through a Protocol , which depends both on the

Datastore and on how data is moved into and out of (the dynamic state of) objects.

POS defines its lower level components in rather vague terms, in an attempt

to encompass a large variety of storage services. Although no “standard” Protocol

is specified, POS mentions three possible Protocols. One of them is the ODMG

Protocol, used when the Datastore is an ODMG-compliant ODBMS. Rather than

fully defining this Protocol, the POS specification discusses it very briefly, in a half-

page section.

ORB/ODBMS integration and POS have opposite goals. Instead of exposing

object persistence to clients, ORB/ODBMS integration provides object persistence

in a way transparent to clients. Rather than adopting a two-level store model,

ORB/ODBMS integration uses the ODBMS single-level store model and extends

it to CORBA clients. Even so, it appears that POS still requires an Object Database

Adapter, to deal with the case of an ODMG-compliant ODBMS as the Datastore and

ODMG as the Protocol.

3.9 Related Work

When we started this work, ORB/ODBMS integration was a goal unanimously rec-

ognized as important, but not accomplished by any existing software. Since then, a

number ORB and ODBMS vendors announced plans to integrate their products. Due

to the commercial interests involved, however, it is unlikely that design and imple-

mentation information on these ORB/ODBMS integration efforts will be published.

Among these projects, Iona’s Orbix+ObjectStore Adapter, OOSA ([19], [20]), is

the one at the most advanced stage. OOSA was in beta test until very recently, and

is being released as a product at the present time. Despite several vendor announce-

ments, OOSA seems to be the only Object Database Adapter commercially available

today.

93

3.9.1 Iona’s Orbix-ObjectStore Adapter

OOSA takes advantage of the particular way CORBA objects are laid out by the

ORB. In Orbix, not all data encapsulated by a CORBA::Object instance appears

directly in its data members. Instead, a data member of CORBA::Object points to an

auxiliary object. Some of the “logical” data members of CORBA::Object are actually

in this auxiliary object. The object reference count is one of them.

OOSA actually stores CORBA objects in ObjectStore databases. A CORBA

object, however, is not stored in their entirety: to avoid the performance penalty

of having object reference counts in persistent memory, OOSA does not store the

auxiliary object in the database. Instead, auxiliary objects are dynamically instanti-

ated. When an auxiliary object is instantiated, the corresponding CORBA object is

inserted into the per-process table of active objects maintained by Orbix.

OOSA seems to be still evolving with respect to the instantiation of auxiliary

objects. In its alpha release, auxiliary objects were instantiated at page fault time,

through the use of an ObjectStore inbound hook. They were deleted by an outbound

hook.

The beta release of OOSA took a different approach: when an operation on a

persistent CORBA object is invoked, OOSA-beta checks if the CORBA object has an

auxiliary object or not, and instantiates the auxiliary object at this time. Auxiliary

objects are still deleted by an outbound hook. It appears that this change was

motivated by performance reasons, as it avoids the use of an inbound hook. But it

introduced a problem: since the instantiation of an auxiliary object is followed by an

assignment to persistent memory (the CORBA::Object data member that points to

the auxiliary object), read-only transactions ceased to work6.

OOSA-alpha implemented a variation of virtual persistence; OOSA-beta resembles

smart pointer-based persistence. Neither OOSA release addressed the issue of storing

CORBA references to remote objects.

6Read-only transactions worked in the alpha release of OOSA. In that release the critical assign-

ment was performed by an inbound hook, using ObjectStore’s “hidden write” function, which can

only be called from an access hook.

94

Comparison: OOSA-alpha and Virtual Persistence

OOSA-alpha uses ObjectStore access hooks in a way similar to virtual persistence.

They differ with respect to what is stored in the database:

• Except for the associated auxiliary objects, OOSA-alpha makes full CORBA

objects persistent. All data members inherited from CORBA::Object that do

not live in an auxiliary object are actually stored. Database space is also taken

by the pairs of vbase and vtbl pointers that appear for each interface class in

the object’s inheritance chain up to CORBA::Object.

• Virtual persistence uses the delegation approach to store only representatives

with minimum size possible.

Because both approaches use ObjectStore access hooks, they should have similar

performances. The advantage of OOSA-alpha is that it allows persistent CORBA ob-

jects to be implemented by inheritance or by delegation. Virtual persistence requires

the use of delegation. The advantages of virtual persistence are:

• Minimal consumption of database space.

• No ORB-specific information is stored persistently. In principle, a database can

be accessed by servers implemented with different ORBs. With OOSA-alpha

this is not possible. Even in the case of Orbix, if object layout changes in a

future release, all existing databases will have to go through a schema evolution

process.

Comparison: OOSA-beta and Smart Pointer-Based Persistence

The lazy approach to instantiation of auxiliary objects taken by OOSA-beta resembles

smart pointer-based persistence, which does lazy instantiation of the CORBA objects

identified by ODA references. We discussed smart pointer-based persistence in the

context of an ODMG-compliant ODBMS, and therefore used the an ODMG function

(d activate) to ensure that a smart pointer has its “plain pointer” data member set

to null upon entry into the application cache. OOSA-beta does something equivalent:

95

through the use of an ObjectStore hook7 (an outbound hook), it ensures that a

persistent CORBA object has its auxiliary object pointer set to null upon exit from

the application cache. The relative advantages and disadvantages of OOSA-beta

and smart pointer-based persistence parallel the ones of OOSA-alpha and virtual

persistence.

7Note that ObjectStore inbound and outbound hooks are analogous to the ODMG d activate

and d deactivate functions.

96

Chapter 4

The Sunrise ODA

The unavailability of a CORBA-based environment with full support for object persis-

tence motivated the development of the Sunrise ODA. We designed and implemented

this Object Database Adapter as part of our work on the Sunrise Project, a National

Information Infrastructure effort undertaken by the LANL Advanced Computing Lab-

oratory.

The Sunrise ODA was initially targeted at Iona’s ORB, Orbix, and Object Design’s

ODBMS, ObjectStore. The reasons for choosing Orbix were:

• its close compliance with the CORBA standard, including full support to object

activation;

• its support to the delegation approach to interface implementation;

• its comprehensive set of request and reply handlers;

• its availability on a wide range of operating systems and hardware platforms.

The main reason for choosing ObjectStore was its importance within the ODBMS

market. The ObjectStore virtual memory approach actually made ORB/ODBMS

integration a more challenging problem, as well as a more interesting one.

We later ported the Sunrise ODA to a relational engine, mSQL [13], which was ac-

cessed in an object-oriented fashion (as an ODBMS), through a simple smart pointer-

based object-relational mediator. Subsequently we ported it to a second ORB, Post-

modern Computing’s ORBeline. Currently there are releases of this ODA for:

• Orbix and ObjectStore;

• Orbix, mSQL, and our own object-relational mediator;

• ORBeline and ObjectStore.

The Sunrise ODA is implemented as a fully tested library. Its “standard version”

(see Section 4.1) is portable to whatever environments for which the supported ORBs

and ODBMSs are available, and is currently being used on Solaris 2.x and IRIX 5.x.

4.1 Persistence Approaches Supported

The “standard version” of the Sunrise ODA provides pseudopersistent C++ CORBA

objects (see Section 3.5). An extended version supports also virtual persistence, and

lets the interface implementor freely mix these approaches within a server. We wrote

the extended version with the goal of allowing a particular CORBA server to achieve

the tradeoff between persistence and performance levels that best suits the objects

it implements. So far this extended version integrates Orbix and ObjectStore, runs

on Solaris 2.x, and requires the use of a particular C++ compiler, the SPARCom-

piler 4.0.11

Even in its “standard version”, the Sunrise ODA also supports mere persistence of

implementation objects (see Section 3.3.2). This option is present mostly for historical

reasons; it was the first approach we implemented. It is still has some utility today, for

top-level objects. Among the many objects implemented by a CORBA server, there

is usually a “top-level” one, which represents the server itself. The top-level object

of a server is known to its clients, which use it to start interacting with the server. A

top-level object uses simple persistence of implementation and remains active as long

as its server is active, because under this approach it can be assigned an id (marker,

in Orbix terminology)2 arbitrarily chosen by its server. This allows a server to choose

1The extended ODA is not portable: besides being targeted at a virtual memory-based ODBMS,

virtual persistence uses compiler dependent information on the memory layout of C++ objects.

2ODA-assigned object reference ids are used in the pseudopersistence and virtual persistence
approaches.

98

an id known to its clients, which in turn use this id to locate the server’s top-level

object3.

4.2 Dependency Upon ORB and ODBMS Features

Among the Orbix and ORBeline features not generally available in all ORBs, the

following ones are used by the ODA:

• full support to object activation4, through user-defined loader (Orbix) or acti-

vator (ORBeline) classes;

• support to the delegation approach to interface implementation;

• incoming request pre-marshal and outgoing reply post-marshal handlers.

The ODBMS features used by the ODA depend on its version (“standard” or ex-

tended), that is, on the approaches to persistence of CORBA objects it supports.

Pseudopersistence uses only object identity (ODBMS object references), plus the

ability to convert ODBMS references to strings and vice-versa. Because these are

fairly common ODBMS features, other ODBMSs can be employed instead of Object-

Store. All that is needed is a simple adaptation of the ODA code. With the use

of an object-relational mediator, even a relational DBMS can be employed. In this

case, primary keys play the role of ODBMS references. The mSQL release of ODA

demonstrates the applicability of the pseudopersistence scheme to relational DBMSs.

Virtual persistence, however, requires also a virtual memory-based ODBMS that

offers page fault hooks (see page 79). In the case of a smart pointer-based ODBMS,

the scheme discussed in Section 3.6.1 would have to be implemented instead.

3Locating servers by their ids is an interim solution. Such practice, supported by Orbix in
substitution to an actual name service, is not in the spirit of the OMG architecture: according to
CORBA, object ids should only be meaningful to the object implementations themselves. This use
of ids will be dropped when Iona’s implementation of the CORBA Name Service becomes available.

4Although object activation is in the CORBA standard, we have included it in this list because
it is neither fully defined by CORBA nor supported by all ORB implementations.

99

4.3 ODA Utilization by TeleMed

The Sunrise ODA is currently providing persistence of CORBA objects to TeleMed,

a distributed, object-oriented, CORBA-based telemedicine system, a joint project of

the Los Alamos National Laboratory and the National Jewish Center for Immunol-

ogy and Respiratory Medicine in Denver, CO. This application, a component of the

LANL Sunrise project, drove the development of the ODA and supplied us with a

realistic test environment for the ORB/ODBMS integration approaches discussed in

this dissertation.

TeleMed objects are stored in ObjectStore databases and accessed via Orbix,

through IDL-defined interfaces. Except for top-level objects, for which persistence

of implementation is employed, CORBA objects use the pseudopersistence approach.

Due to both performance (see Chapter 5) and DBMS independence concerns, we

decided not to use virtual persistence at the present time.

The relationships between CORBA objects in a TeleMed database are therefore

represented by links between implementation objects; ObjectStore allows the use of

plain C++ pointers to implement these links. The relationships between CORBA ob-

jects in different TeleMed databases are represented by CORBA references converted

to strings.

This scheme provides maximum efficiency and a good level of DBMS indepen-

dency, at the cost of some increase in the complexity of the server code. As an

example of this increase in code complexity, consider a situation in which it would be

desirable to have a homogeneous list of CORBA references, whose elements may refer

either to local or to remote objects. Instead of a single and homogeneous list, two

separate lists must be introduced: one with pointers to local implementation objects,

other with stringfied CORBA references to remote objects.

100

Chapter 5

The Performance of ODA

Approaches

We implemented an “ODA benchmark”, a simple test suite to evaluate the approaches

to ORB/ODBMS integration discussed in this dissertation. The actual performance of

each approach for a particular application, of course, will depend on the characteristics

of the application. Designing a benchmark to estimate how well an Object Database

Adapter does on a typical application was not one of our aims: distributed object

applications are just starting to appear, and there is no “typical” one at the present

time.

5.1 The Test Environment

Both the database server and the CORBA server were placed on the same machine,

a Sun SPARCstation 10 with 128 megabytes of memory, running Solaris 2.5. For the

CORBA clients, we used another SPARCstation 10, this one running Solaris 2.3.

The tests were performed in a real-world environment: other users had access to

the client and server machines, which were on an Ethernet LAN shared by about 60

hosts. Although we did all measurements during hours of low machine load and light

network traffic, these factors may still have had some effect on our results. A more

rigorous study would require dedicated machines on an isolated piece of Ethernet.

Orbix 1.3.4 and ObjectStore 4.0.0.B were used for all tests. Persistent objects

were kept in ObjectStore file databases, in a 2 gigabyte SCSI-2 drive (model Seagate

Hawk) connected to the server machine. We used the default size of 8 megabytes for

the ObjectStore client cache, and set to 8192 entries the size of the table of active

objects maintained by Orbix, a hash table with overflow chains. Test programs were

compiled with the SPARCompiler C++ 4.0.1, and used either the extended version

of the Sunrise ODA (simply referred to as ODA in the rest of this chapter), or the

beta release of Iona’s OOSA.

5.2 ORB and ODBMS Performance Figures

We obtained these numbers in the environment described in Section 5.1.

5.2.1 Remote Method Invocation (Orbix)

A CORBA method invocation takes approximately 2.2 milliseconds. This is the

round-trip time of an operation that takes no parameters, performs no work, and

returns no results. Table 5.1 shows the round-trip times of a null operation that

receives an octet sequence of length ` as input parameter, for various values of `.

` time

256 2.5

1024 3.2

4096 5.8

16384 18.4

65536 67.7

Table 5.1: Null operation with octet sequence of length ` as input parameter. (Times

in milliseconds.)

5.2.2 Persistent Memory Access (ObjectStore)

Any accesses to persistent memory must be performed within a transaction. After a

transaction was started, objects already cached by the database client are accessed at

memory speed. The transaction cost, however, is significant: it takes 870 microsec-

onds to start and commit a read-only transaction that accesses no data and executes

no work.

102

Inbound and outbound access hooks introduce additional and much greater costs.

Tables 5.2 and 5.3 show the results of an experiment we performed to evaluate these

costs. A database client traverses a persistent list whose elements have two data mem-

bers, name and data, both of type char*. The name fields are set to "Element(0)",

"Element(1)", and so on. The data fields are set to strings of spaces, all with the

same length. The database client does a full traversal of the list, searching for a name

not assigned to any element. The results that follow correspond to a list with 2048

elements and to a data field length of 4096.

Table 5.2 presents “cold times”, obtained when the client cache is empty. Table

5.3 shows the “warm times” obtained in a second traversal, when most of the persis-

tent data is already in the 8 megabyte client cache. Each list traversal was performed

within a single transaction. Traversal times include the corresponding start trans-

action calls; commit transaction calls were timed separately. We measured cold and

warm times in four situations:

traversal time commit time total time

AH real cpu usr sys real cpu usr sys real cpu usr sys

— 16.79 7.74 4.69 3.05 0.07 0.07 0.02 0.05 17.12 7.97 4.84 3.13

I 49.32 40.26 37.12 3.14 0.09 0.09 0.03 0.06 49.69 40.51 37.28 3.23

O 50.63 41.36 38.08 3.28 33.40 33.19 32.10 1.09 84.30 74.72 70.34 4.38

I,O 51.52 42.29 39.11 3.18 33.44 33.23 32.25 0.98 85.25 75.65 71.46 4.19

Table 5.2: Cold traversal of persistent list with 2048 elements. Each element of the

list has a data field of length 4096. (AH = access hooks installed; I = inbound hook;

O = outbound hook; times in seconds.)

traversal time commit time total time

AH real cpu usr sys real cpu usr sys real cpu usr sys

— 2.34 2.31 1.15 1.16 0.06 0.06 0.02 0.04 2.41 2.38 1.18 1.20

I 36.10 35.83 34.39 1.44 0.08 0.08 0.03 0.05 36.22 35.95 34.46 1.49

O 38.56 37.53 35.95 1.58 33.24 33.07 31.90 1.17 71.87 70.64 67.89 2.75

I,O 39.76 38.33 36.70 1.63 33.33 33.11 32.08 1.03 73.16 71.48 68.82 2.66

Table 5.3: Warm traversal of persistent list with 2048 elements. Each element of the

list has a data field of length 4096. (AH = access hooks installed; I = inbound hook;

O = outbound hook; times in seconds.)

103

• without any access hooks installed;

• with an inbound hook that performs no work;

• with an outbound hook that performs no work;

• with both hooks installed.

Note the warm time degradation by a factor of 15, when an inbound hook is used,

and by a factor of 30, when an outbound hook is used.

ObjectStore usually does a good job on caching persistent objects in the database

client. Unfortunately its caching mechanism ceases to work in the presence of an

access hook; the vendor informed us that access hooks force the client cache to be

flushed out and reloaded again1. We regard this as an ObjectStore problem: flushing

and reloading the cache is an action too drastic and not really necessary. Some access

hook overhead was expected, but we believe it could be substantially smaller.

5.3 Benchmark Description

Our focus in on the performance of database accesses by CORBA clients, in an

integrated ORB/ODBMS environment. We are interested in the effects of ODA design

decisions on the efficiency of the integrated environment, not in database performance

by itself. Therefore our synthetic ODA benchmark is much simpler than an ODBMS

benchmark, such as [5], which addresses a whole range of database issues: indexing,

joins, cached updates, deletes, etc. Though still important in a CORBA environment,

these issues are orthogonal to the way ORB/ODBMS integration is realized.

5.3.1 IDL Interfaces

In an attempt to mimic object relationships found in many applications, the ODA

benchmark is based upon a tree of CORBA objects. Figure 5.1 shows the IDL inter-

face of a Node object.

1This information is consistent with the data in Tables 5.2 and 5.3. The inbound hook overhead

on the warm traversal time is of approximately twice the cold traversal time. The outbound hook

overhead is roughly the same, but shows up in both the traversal and in the commit time.

104

interface Node;

typedef sequence<Node> NodeList;

typedef sequence<string> StringList;

interface Node {

readonly attribute string name;

attribute string data;

readonly attribute NodeList children;

readonly attribute long descendant count;

readonly attribute StringList descendant names;

void add child(in Node new child);

};

Figure 5.1: The Node interface.

Each Node has a name, some data, and children, a list of child nodes. The data

attribute was included to give CORBA clients control over the granularity of Node

objects. Although descendant count and descendant names are Node attributes,

they are not directly stored in the database. Instead, they are computed by Node

implementations, through a recursive traversal the sub-tree rooted at the node. The

add child operation inserts its input parameter, an existing node, into the child list

of the target node. Before being passed to add child, a free Node has to be created.

This is the purpose of the NodeFactory interface in Figure 5.2.

interface NodeFactory {

Node create(in string name, in string data);

Node create with default data(in string name,

in unsigned long data length);

};

Figure 5.2: The NodeFactory interface.

The “top-level” object in a server is a Tree; Figure 5.3 shows its interface. Not

surprisingly, a Tree has a root node. Because it represents a CORBA server, the

Tree also has two “server attributes”, a NodeFactory and a TransactionControl

object; the latter supports the interface shown in Figure 5.4.

The TransactionControl interface supports multi-operation transactions. By

105

interface Tree {

readonly attribute Node root node;

readonly attribute NodeFactory node factory;

readonly attribute TransactionControl transaction control;

};

Figure 5.3: The Tree interface.

interface TransactionControl {

void begin readonly transaction();

void begin update transaction();

void commit transaction();

};

Figure 5.4: The TransactionControl interface.

default, each operation on a Node, NodeFactory, or Tree corresponds to a database

transaction. To start and commit multi-operation transactions, CORBA clients issue

requests to the TransactionControl object of a Tree.

There is no operation to create a Tree. An initial Tree object is automatically

created by the first server run, and its state is stored in a database. Subsequent runs

of the server use the last Tree state stored. The initial Tree has no other nodes

besides its root node, whose name and data attributes are initialized to the strings

"Node(0)" and "root node data", respectively.

5.3.2 The Servers

We used a set of servers to evaluate the different ORB/ODBMS integration ap-

proaches. These servers implement the same IDL interfaces, but differ on how they

make Node objects persistent.

Pseudopersistence was represented by server ODA-pp, which uses ODA and im-

plements pseudopersistent Node objects.

Smart pointer-based persistence was represented by two servers:

106

• A server that uses the beta release of OOSA and makes Node objects

persistent through this adapter’s approach, which resembles smart pointer-

based persistence. We call this server OOSA-β.

• A server that uses ODA and simulates smart pointer-based persistence of

Node objects. We call this server ODA-sp.

None of these servers actually employs the smart pointer approach described in

Section 3.6.1. Server OOSA-β uses an approach similar to smart pointer-based

persistence, but implemented without adequate ODBMS support. Server ODA-

sp simulates the behavior that smart pointer-based persistence would exhibit,

given adequate ODBMS support. The meaning of adequate ODBMS support to

smart pointer-based persistence is defined below.

Virtual persistence was represented by server ODA-vp, which uses ODA and im-

plements virtually persistent Node objects.

Each of these servers employs the shared server activation mode (see Section 1.4.1)

and implements a whole tree, which comprises the top-level Tree object, the root Node

and its descendants, and the Tree’s NodeFactory and TransactionControl objects.

Tree and Node objects are made persistent by the CORBA server. NodeFactory and

TransactionControl objects have no persistent state. They are instantiated when

the server initializes itself, and remain active until the server exits.

ODBMS Support for Smart Pointer-Based Persistence

Since smart pointer-based persistence cannot be efficiently implemented without ad-

equate ODBMS support, we used a server that simulates this approach. In order to

support smart pointer-based persistence in a satisfactory way, an ODBMS must offer:

1. an efficient way of ensuring that a persistent smart pointer has its “plain

pointer” data member set to null before the smart pointer is first dereferenced

in a transaction2;

2As discussed in Section 3.6.1, this can be accomplished by using the function d activate to

ensure that the pointer is set to null upon entry into the application cache. Another possibility is

using d deactivate to ensure that the pointer is set to null upon exit from the application cache.

107

2. an efficient way of updating this data member in the application cache only ,

without write locking the smart pointer object or marking it as modified.

In each of these requirements, the adjective “efficient” means that the corresponding

action is performed with negligible overhead. Both requirements are satisfied by an

ODMG-compliant and smart pointer-based ODBMS:

• A persistent smart pointer class can accomplish 1 by redefining the virtual

member function d activate. Since the redefined d activate simply sets a

pointer to null, its overhead is negligible. Note that no extra function calls are

performed due to the redefinition of this virtual function3.

• It can accomplish 2 through an assignment to its “plain pointer” data member,

with no corresponding mark modified call. This assignment can be performed

even by a read-only transaction4, without a write-lock to the smart pointer

object.

Most existing ODBMSs are smart pointer-based, and are expected to become

ODMG-compliant in the near future. When this happens, the majority of ODBMSs

will offer adequate support to smart pointer-based persistence.

ObjectStore meets neither of the requirements for smart pointer-based persistence.

Its access hooks provide the functionality of requirement 1, but at a very high cost (see

Section 5.2.2). Its “hidden write” function provides the functionality of requirement

2, but can be called only from an access hook.

The results we obtained with server ODA-sp reflect the hypothetical performance

of smart pointer-based persistence on ObjectStore, i.e., the performance that would

be achieved if this ODBMS satisfied requirements 1 and 2 . Similar results would

be obtained with an actual implementation of smart pointer-based persistence on

Alternatively, the ODBMS could allow the programmer to specify that a data member of a given

class is a transient pointer, which the ODBMS would automatically set to null upon entry into the

cache.

3The inherited function d Object::d activate would be called otherwise.

4A smart pointer-based ODBMS rejects mark modified calls within read-only transactions, but

has no way of disallowing an assignment to a data member of a persistent object in the application

cache.

108

an ODBMS comparable to ObjectStore in performance, but with adequate support

to this approach. The results we obtained with server OOSA-β reflect the actual

performance of smart pointer-based persistence on ObjectStore.

Server ODA-pp

Server ODA-pp implements pseudopersistent Node objects. Relationships that logi-

cally lead to Nodes are physically realized by persistent pointers5 to the corresponding

implementation objects, of class Node impl:

• The Tree attribute root node is implemented by a persistent pointer to a

Node impl object.

• Lists of child nodes are stored as lists of pointers to Node impl objects.

By following such a relationship, the server actually reaches a Node impl object,

which it uses to directly invoke any needed operations on the node.

To make the last point clear, consider the recursive computation of the Node

attribute descendant count; the IDL-generated class Node has an accessor func-

tion that returns this attribute. The IDL-generated accessor simply invokes an

implementation-provided accessor, a member function of class Node impl. The recur-

sive computation is performed by Node impl::descendant count(), which traverses

the list of child nodes and directly calls itself on each child node.

For the top-level Tree object, server ODA-pp uses simple persistence of imple-

mentation (see Section 3.3.2). When the server initializes itself, it instantiates a Tree

object that acts as an IDL shell to the persistent Tree impl object. This IDL shell

remains active as long as the server is active.

Server ODA-sp

Since ODA does not support smart pointer-based persistence, server ODA-sp simu-

lates this approach. Objects are stored exactly as in server ODA-pp: persistence of

implementation is used for the top-level Tree object, and Node objects are pseudo-

5Since we are using a virtual memory-based ODBMS, plain C++ pointers can be made persistent.

109

persistent. Smart pointer-based persistence is simulated by additional actions of the

server; these actions take place when database relationships are traversed.

Whenever it follows a database relationship leading to a Node impl object, server

ODA-sp acts in the following way:

• Immediately after reaching the Node impl object, the server obtains (by calling

the ODA) a CORBA reference to the corresponding Node object.

• The server refrains from directly using the Node impl object to invoke oper-

ations on the node. Instead, it invokes any needed operations through the

CORBA reference to the corresponding Node.

Consider again the computation of descendant count. Now the implementation-

provided accessor Node impl::descendant count() calls itself indirectly: it obtains

CORBA references to the child nodes, and uses these references to invoke the IDL-

generated accessor Node::descendant count() on each child node.

Server ODA-sp does not simulate smart pointer-based persistence completely, but

its performance is an upper-bound for the performance of smart pointer-based persis-

tence. In the case of a transaction that reaches a Node impl object more than once,

server ODA-sp calls the ODA to obtain the corresponding CORBA reference as many

times as the implementation object is reached. Only the first call instantiates a Tree

object (if the object is not active yet), but each remaining call still performs a lookup

on the table of active pseudopersistent objects maintained by the ODA.

An actual implementation of smart pointer-based persistence would avoid these

table lookups. A data member of the smart pointer class ODA Ref<Node> would keep

the CORBA reference obtained when a smart pointer is first dereferenced within

a transaction. Subsequent traversals of this smart pointer in the same transaction

would reuse that CORBA reference. On an ODBMS with adequate support for smart

pointer-based persistence, this approach would perform no worse than server ODA-sp.

Server ODA-vp

Server ODA-vp implements virtually persistent Node objects. Relationships that

logically lead to Nodes are physically realized by persistent pointers to Node represen-

tatives:

110

• The Tree attribute root node is implemented by a persistent pointer to a Node

representative.

• Lists of child nodes are stored as lists of pointers to Node representatives.

By following such a relationship, the server reaches a Node representative. Because

the representative is swizzled into a Node at page fault time, it appears as such to

the server. For the top-level Tree object, server ODA-vp uses simple persistence of

implementation (see Section 3.3.2), like the previous servers.

The recursive computation of descendant count now happens as follows. The im-

plementation-provided accessor Node impl::descendant count() perceives the list

of child nodes as a list of CORBA references to Nodes. It traverses this list, calling

the IDL-generated accessor Node::descendant count() on each element.

The overhead of ObjectStore access hooks (see Section 5.2.2) severely impairs the

results obtained with server ODA-vp. It makes these results less interesting, as they

show virtual persistence performing much worse than it could perform with adequate

ODBMS support. To reduce this effect, we introduced the following modification on

ODA’s implementation of virtual persistence.

Instead of employing outbound hooks to deactivate persistent CORBA objects,

as described in Section 3.6.2, the ODA uses an Orbix reply handler. Deactivation

of persistent CORBA objects is performed as in the pseudopersistence approach (see

Section 3.5). With this modification, the ODA avoids the outbound hook overhead,

incurring the cost of inbound hooks only.

Server OOSA-β

Server OOSA-β makes the Tree and its Nodes persistent, as described in Section 3.9.1.

Relationships that lead to Nodes are realized by persistent pointers to Node objects.

The recursive computation of descendant count happens as in server ODA-vp. Since

OOSA does not support persistence of implementation objects, the top-level Tree

object is accessed by clients through its OOSA-assigned id (see Section 4.1).

5.3.3 The Clients

The ODA benchmark implements a set of CORBA clients:

111

• clients that populate a brand new tree in breadth or depth order, creating new

nodes and adding them as children of existing nodes;

• a client that obtains the number of nodes of a tree by calling descendant count

on the root node;

• a client that obtains the number of nodes of a tree by recursively visiting all its

nodes;

• a client that searches for a node with a given name.

The same set of clients is used with all servers. This is possible because these clients

interact with any server exclusively through the IDL interfaces presented in Sec-

tion 5.3.1, which are common to all servers.

5.4 Results

In the tests we employed complete quad-trees. Each non-leaf node of such a tree has

degree 4, and the leaf nodes are all at the same level. Table 5.4 shows the number of

nodes of complete quad-trees of different heights.

tree height 0 1 2 3 4 5 6

number of nodes 1 5 21 85 341 1365 5461

Table 5.4: Number of nodes of complete quad-trees.

The number of objects in the database (the height of the tree) varied across test

runs, and so did the granularity of these objects (the node data length). We ran all

tests with tree heights from 1 to 5 and with data lengths from 64 to 16384.

In what follows:

• response times are expressed in seconds;

• h denotes the height of a tree;

• all Nodes added to a Tree object have data attributes with the same length,

which we denote by `;

112

• when populating a quad-tree object, name attributes are assigned to its Nodes

in the following way:

– the root received the name "Node(0)" when the Tree was created;

– its child nodes are named "Node(0,0)", "Node(0,1)", "Node(0,2)", and

"Node(0,3)";

– the children of a node named "Node(s)", where s is any string, are named

"Node(s,0)", "Node(s,1)", "Node(s,2)", and "Node(s,3)".

5.4.1 Database Creation

Test 1: Populate a tree in level order, in a single transaction, through a series of

calls to NodeFactory::create with default data and Node::add child.

Since this test involves a relatively long sequence of operations on multiple objects,

we have used it to check the effectiveness of object caching on the pseudopersistence

approach. Performing the whole sequence of operations within a single transaction

avoids repeated transaction overheads, which could mask the benefits of caching.

We ran Test 1 on server ODA-pp, with the size of the cache of active pseudoper-

sistent objects set to 8191 entries (full caching), and with this size set to zero (no

caching). Table 5.5 and Figure 5.5 (left) present the response times for ` = 4096 and

various values of h. Table 5.6, Figure 5.5 (right), and Figure 5.6 show the numbers

we obtained by varying `.

ODA-pp ODA-pp

h with without

caching caching

1 0.31 0.35

2 0.67 0.81

3 2.18 2.73

4 7.30 10.21

5 28.85 41.62

6 148.70 216.03

Table 5.5: Test 1 — ODA-pp with and without caching, ` = 4096.

113

h = 4 h = 5 h = 6

ODA-pp ODA-pp ODA-pp ODA-pp ODA-pp ODA-pp

` with without with without with without

caching caching caching caching caching caching

64 4.24 7.18 17.15 29.32 68.10 140.99

256 4.55 7.24 18.77 30.09 68.54 142.15

1024 5.10 7.96 20.58 32.50 81.54 147.47

4096 7.30 10.21 28.85 41.62 148.70 216.03

16384 19.38 22.23 105.04 113.34 — —

Table 5.6: Test 1 — ODA-pp with and without caching, h = 4, 5, 6.

0.1

1

10

100

1000

1 2 3 4 5 6

tim
e

(s
ec

on
ds

)

tree height

Test 1, node data length = 4096

ODA-pp with caching
ODA-pp without caching

0

5

10

15

20

10 100 1000 10000 100000

tim
e

(s
ec

on
ds

)

node data length (bytes)

Test 1, tree height = 4 (341 nodes)

ODA-pp with caching
ODA-pp without caching

Figure 5.5: Test1 — ODA-pp with and without caching, ` = 4096 (left), h = 4 (right).

0

20

40

60

80

100

120

10 100 1000 10000 100000

tim
e

(s
ec

on
ds

)

node data length (bytes)

Test 1, tree height = 5 (1365 nodes)

ODA-pp with caching
ODA-pp without caching

0

50

100

150

200

10 100 1000 10000

tim
e

(s
ec

on
ds

)

node data length (bytes)

Test 1, tree height = 6 (5461 nodes)

ODA-pp with caching
ODA-pp without caching

Figure 5.6: Test1 — ODA-pp with and without caching, h = 5 (left), h = 6 (right).

114

Figure 5.5 and 5.6 clearly show the positive effect of caching on pseudopersis-

tence. In the remaining tests, servers ODA-pp and ODA-sp employ a cache of active

pseudopersistent objects, with space for 8191 entries.

The results of Test 1 on all servers will be presented along with those of Test 2.

Test 2: Populate a quad-tree in level order, in a single transaction, through a series

of calls to NodeFactory::create and Node::add child.

This test only differs from Test 1 in that the data contents of the nodes are now

transmitted from the client. Tables 5.7–5.9 and Figures 5.7–5.9 show the results of

Tests 1 and 2 for all servers. As expected, response times for Test 2 are greater.

These numbers also show the four servers divided in two groups, according to their

performance: not surprisingly, the ones that do not use ObjectStore access hooks

(ODA-pp and ODA-sp) are the best performers.

h Test 1 (` = 4096) Test 2 (` = 4096)

ODA-pp ODA-sp ODA-vp OOSA-β ODA-pp ODA-sp ODA-vp OOSA-β

1 0.30 0.32 0.38 0.38 0.33 0.38 0.39 0.39

2 0.65 0.71 1.05 1.02 0.73 0.75 1.17 1.10

3 2.11 2.07 3.62 3.84 3.74 2.46 3.89 3.98

4 7.55 7.10 13.32 14.35 12.30 8.38 14.39 15.03

5 29.44 30.56 51.81 55.03 34.45 34.26 56.61 60.91

Table 5.7: Tests 1 and 2, ` = 4096.

0

10

20

30

40

50

60

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

tim
e

(s
ec

on
ds

)

tree height

Test 1, node data length = 4096

ODA-pp
ODA-sp
ODA-vp

OOSA-beta

0

10

20

30

40

50

60

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

tim
e

(s
ec

on
ds

)

tree height

Test 2, node data length = 4096

ODA-pp
ODA-sp
ODA-vp

OOSA-beta

Figure 5.7: Tests 1 (left) and 2 (right), ` = 4096.

115

Test 1 (h = 4) Test 2 (h = 4)

` ODA-pp ODA-sp ODA-vp OOSA-β ODA-pp ODA-sp ODA-vp OOSA-β

64 4.44 4.42 4.38 5.08 4.43 4.51 4.40 5.04

256 4.68 4.59 4.73 5.49 4.70 4.75 4.86 5.56

1024 5.53 5.36 6.19 7.11 5.67 5.62 6.58 7.28

4096 7.55 7.10 13.32 14.35 12.30 8.38 14.39 15.03

16384 18.00 18.46 76.52 77.34 31.79 24.36 82.39 83.56

Table 5.8: Tests 1 and 2, h = 4.

0

10

20

30

40

50

60

70

80

10 100 1000 10000 100000

tim
e

(s
ec

on
ds

)

node data length (bytes)

Test 1, tree height = 4

ODA-pp
ODA-sp
ODA-vp

OOSA-beta

0

10

20

30

40

50

60

70

80

10 100 1000 10000 100000

tim
e

(s
ec

on
ds

)

node data length (bytes)

Test 2, tree height = 4

ODA-pp
ODA-sp
ODA-vp

OOSA

Figure 5.8: Tests 1 (left) and 2 (right), h = 4.

Test 1 (h = 5) Test 2 (h = 5)

` ODA-pp ODA-sp ODA-vp OOSA-β ODA-pp ODA-sp ODA-vp OOSA-β

64 17.01 17.09 16.42 19.64 17.33 17.61 16.79 19.64

256 18.07 17.85 18.57 20.99 17.99 18.59 18.30 21.41

1024 20.13 19.90 23.39 26.64 21.52 21.16 25.02 28.09

4096 29.44 30.56 51.81 55.03 34.45 34.26 56.61 60.91

16384 103.76 101.24 363.99 366.93 128.44 119.69 383.18 387.45

Table 5.9: Tests 1 and 2, h = 5.

116

0

50

100

150

200

250

300

350

400

10 100 1000 10000 100000

tim
e

(s
ec

on
ds

)

node data length (bytes)

Test 1, tree height = 5

ODA-pp
ODA-sp
ODA-vp

OOSA-beta

0

50

100

150

200

250

300

350

400

10 100 1000 10000 100000

tim
e

(s
ec

on
ds

)

node data length (bytes)

Test 2, tree height = 5

ODA-pp
ODA-sp
ODA-vp

OOSA-beta

Figure 5.9: Tests 1 (left) and 2 (right), h = 5.

5.4.2 Database Traversal

We tested both a tree traversal that happens entirely at the server side, triggered by

a single request from the client, and the case of a client-controlled traversal, in which

the client actually visits every node of the tree.

Test 3: Invoke the attribute accessor Node::descendant count on the root node of

a tree.

Tables 5.10–5.12 and Figures 5.10–5.12 show the cold and warm times for this

test; the warm times correspond to a second tree traversal. A traversal of the whole

tree is our “cache warming” procedure: we measure warm times immediately after a

tree traversal in all tests that follow.

Note that the response times for ODA-pp are actually ObjectStore numbers (plus

about 2.2 milliseconds due to one remote method invocation). The cost of smart

pointer-based persistence, though still small, appears clearly in the numbers for ODA-

sp. The gap between these servers and the ones that use ObjectStore access hooks

(ODA-vp and OOSA-β) is much larger now.

Because its page faulting scheme activates all objects in a page whenever one

of them is touched, virtual persistence is expected to perform worse when database

pages are shared by several objects and just a few objects per page are actually used.

This is not the case here: since Test 3 does an exhaustive database traversal, all

objects activated are eventually used. The bad performance of virtual persistence in

117

cold time (` = 4096) warm time (` = 4096)

h ODA-pp ODA-sp ODA-vp OOSA-β ODA-pp ODA-sp ODA-vp OOSA-β

1 0.06 0.08 0.14 0.26 0.02 0.02 0.13 0.22

2 0.18 0.22 0.54 0.93 0.04 0.06 0.42 0.81

3 0.68 0.81 2.04 2.94 0.10 0.14 1.52 2.44

4 2.88 3.57 8.25 10.93 0.39 0.53 6.07 8.90

5 11.01 13.62 31.70 39.51 1.46 2.14 23.56 32.13

Table 5.10: Test 3 — cold and warm times, ` = 4096.

0.01

0.1

1

10

100

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

tim
e

(s
ec

on
ds

)

tree height

Test 3 (cold), node data length = 4096

ODA-pp
ODA-sp
ODA-vp

OOSA-beta

0.01

0.1

1

10

100

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

tim
e

(s
ec

on
ds

)

tree height

Test 3 (warm), node data length = 4096

ODA-pp
ODA-sp
ODA-vp

OOSA-beta

Figure 5.10: Test 3 — cold and warm times, ` = 4096.

cold time (h = 4) warm time (h = 4)

` ODA-pp ODA-sp ODA-vp OOSA-β ODA-pp ODA-sp ODA-vp OOSA-β

64 0.13 0.67 0.50 0.37 0.04 0.17 0.35 0.29

256 0.34 0.82 0.79 0.94 0.06 0.21 0.56 0.71

1024 0.80 1.35 2.07 2.98 0.12 0.26 1.42 2.24

4096 2.88 3.57 8.25 10.93 0.39 0.53 6.07 8.90

16384 3.06 3.72 24.29 40.71 0.43 0.65 20.29 37.85

Table 5.11: Test 3 — cold and warm times, h = 4.

cold time (h = 5) warm time (h = 5)

` ODA-pp ODA-sp ODA-vp OOSA-β ODA-pp ODA-sp ODA-vp OOSA-β

64 0.48 2.61 1.84 1.15 0.12 0.64 1.52 0.66

256 1.06 3.29 3.23 3.34 0.20 0.75 2.37 2.45

1024 3.27 5.61 8.38 11.64 0.47 1.07 5.82 8.79

4096 11.01 13.62 31.70 39.51 1.46 2.14 23.56 32.13

16384 13.45 16.62 93.43 168.35 1.82 2.47 81.77 162.09

Table 5.12: Test 3 — cold and warm times, h = 5.

118

0

5

10

15

20

25

30

35

40

45

10 100 1000 10000 100000

tim
e

(s
ec

on
ds

)

node data length (bytes)

Test 3 (cold), tree height = 4

ODA-pp
ODA-sp
ODA-vp

OOSA-beta

0

5

10

15

20

25

30

35

40

45

10 100 1000 10000 100000

tim
e

(s
ec

on
ds

)

node data length (bytes)

Test 3 (warm), tree height = 4

ODA-pp
ODA-sp
ODA-vp

OOSA-beta

Figure 5.11: Test 3 — cold and warm times, h = 4.

0

20

40

60

80

100

120

140

160

180

10 100 1000 10000 100000

tim
e

(s
ec

on
ds

)

node data length (bytes)

Test 3 (cold), tree height = 5

ODA-pp
ODA-sp
ODA-vp

OOSA-beta

0

20

40

60

80

100

120

140

160

180

10 100 1000 10000 100000

tim
e

(s
ec

on
ds

)

node data length (bytes)

Test 3 (warm), tree height = 5

ODA-pp
ODA-sp
ODA-vp

OOSA-beta

Figure 5.12: Test 3 — cold and warm times, h = 5.

119

Test 3 is due exclusively to the overhead of ObjectStore access hooks.

Test 4: Obtain the number of nodes of a tree by recursively visiting all the nodes,

through a sequence of calls to the attribute accessor Node::children. Perform the

whole tree traversal within a single transaction.

Since the tree traversal is now controlled by the client through remote method

invocations, the overall response time now has two components: the database traver-

sal time (given by Test 3) and the communication time (ORB overheads included).

Tables 5.13–5.15 and Figures 5.13–5.15 show the cold and warm times for this test.

cold time (` = 4096) warm time (` = 4096)

h ODA-pp ODA-sp ODA-vp OOSA-β ODA-pp ODA-sp ODA-vp OOSA-β

1 0.09 0.09 0.16 0.32 0.07 0.05 0.13 0.27

2 0.36 0.32 0.67 1.24 0.15 0.16 0.53 1.05

3 1.27 1.29 2.62 4.09 0.60 0.58 2.03 3.35

4 5.15 5.26 10.66 15.84 2.30 2.30 8.05 12.64

5 20.99 21.03 40.93 58.73 9.61 9.30 32.07 48.81

Table 5.13: Test 4 — cold and warm times, ` = 4096.

0.01

0.1

1

10

100

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

tim
e

(s
ec

on
ds

)

tree height

Test 4 (cold), node data length = 4096

ODA-pp
ODA-sp
ODA-vp

OOSA-beta

0.01

0.1

1

10

100

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

tim
e

(s
ec

on
ds

)

tree height

Test 4 (warm), node data length = 4096

ODA-pp
ODA-sp
ODA-vp

OOSA-beta

Figure 5.13: Test 4 — cold and warm times, ` = 4096.

120

cold time (h = 4) warm time (h = 4)

` ODA-pp ODA-sp ODA-vp OOSA-β ODA-pp ODA-sp ODA-vp OOSA-β

64 2.38 2.41 2.56 3.26 1.87 1.88 2.35 2.99

256 2.51 2.61 2.90 3.97 1.89 1.86 2.55 3.57

1024 3.12 3.14 4.30 6.60 1.93 1.98 3.42 5.57

4096 5.15 5.26 10.66 15.84 2.30 2.30 8.05 12.64

16384 5.57 5.65 24.96 46.07 2.42 2.48 22.51 42.47

Table 5.14: Test 4 — cold and warm times, h = 4.

0

5

10

15

20

25

30

35

40

45

50

10 100 1000 10000 100000

tim
e

(s
ec

on
ds

)

node data length (bytes)

Test 4 (cold), tree height = 4

ODA-pp
ODA-sp
ODA-vp

OOSA-beta

0

5

10

15

20

25

30

35

40

45

50

10 100 1000 10000 100000

tim
e

(s
ec

on
ds

)

node data length (bytes)

Test 4 (warm), tree height = 4

ODA-pp
ODA-sp
ODA-vp

OOSA-beta

Figure 5.14: Test 4 — cold and warm times, h = 4.

cold time (h = 5) warm time (h = 5)

` ODA-pp ODA-sp ODA-vp OOSA-β ODA-pp ODA-sp ODA-vp OOSA-β

64 10.62 9.58 10.08 13.76 7.66 7.52 9.26 12.83

256 10.29 10.26 11.39 16.72 7.72 7.62 10.36 15.05

1024 12.57 12.86 17.18 27.06 7.94 7.96 13.97 22.67

4096 20.99 21.03 40.93 58.73 9.61 9.30 32.07 48.81

16384 23.15 23.73 101.43 198.32 22.79 24.70 108.04 203.86

Table 5.15: Test 4 — cold and warm times, h = 5.

121

0

50

100

150

200

10 100 1000 10000 100000

tim
e

(s
ec

on
ds

)

node data length (bytes)

Test 4 (cold), tree height = 5

ODA-pp
ODA-sp
ODA-vp

OOSA-beta

0

50

100

150

200

10 100 1000 10000 100000

tim
e

(s
ec

on
ds

)

node data length (bytes)

Test 4 (warm), tree height = 5

ODA-pp
ODA-sp
ODA-vp

OOSA-beta

Figure 5.15: Test 4 — cold and warm times, h = 5.

Test 5: Obtain the number of nodes of a tree by recursively visiting all the nodes,

through a sequence of calls to the attribute accessor Node::children. Perform each

call as an individual transaction.

Now there is the additional overhead of one transaction per remote method in-

vocation. Tables 5.16–5.18 and Figures 5.16–5.18 show the cold and warm times for

this test. By comparing the results of Tests 3, 4, and 5, we see that the cost of

transactions is either comparable to that of remote method invocations, or — in the

case of servers ODA-vp and OOSA-β — significantly larger.

cold time (` = 4096) warm time (` = 4096)

h ODA-pp ODA-sp ODA-vp OOSA-β ODA-pp ODA-sp ODA-vp OOSA-β

1 0.14 0.16 0.40 0.93 0.10 0.10 0.37 0.98

2 0.69 0.67 1.90 4.93 0.45 0.48 1.71 4.77

3 2.75 2.73 7.69 21.33 1.93 1.80 7.25 20.29

4 11.32 11.37 33.94 90.90 7.73 7.70 31.71 88.10

5 46.73 47.16 141.61 388.34 31.41 30.07 133.10 373.24

Table 5.16: Test 5 — cold and warm times, ` = 4096.

122

0.1

1

10

100

1000

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

tim
e

(s
ec

on
ds

)

tree height

Test 5 (cold), node data length = 4096

ODA-pp
ODA-sp
ODA-vp

OOSA-beta

0.1

1

10

100

1000

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

tim
e

(s
ec

on
ds

)

tree height

Test 5 (warm), node data length = 4096

ODA-pp
ODA-sp
ODA-vp

OOSA-beta

Figure 5.16: Test 5 — cold and warm times, ` = 4096.

cold time (h = 4) warm time (h = 4)

` ODA-pp ODA-sp ODA-vp OOSA-β ODA-pp ODA-sp ODA-vp OOSA-β

64 7.27 7.28 21.92 50.73 7.60 6.70 22.00 51.26

256 7.61 7.75 19.23 60.34 7.39 6.81 19.36 59.77

1024 8.34 8.46 19.82 66.69 7.43 7.13 19.27 66.37

4096 11.32 11.37 33.94 90.90 7.73 7.70 31.71 88.10

16384 11.65 11.77 72.71 188.18 8.03 7.35 70.05 182.83

Table 5.17: Test 5 — cold and warm times, h = 4.

0

20

40

60

80

100

120

140

160

180

200

10 100 1000 10000 100000

tim
e

(s
ec

on
ds

)

node data length (bytes)

Test 5 (cold), tree height = 4

ODA-pp
ODA-sp
ODA-vp

OOSA-beta

0

20

40

60

80

100

120

140

160

180

200

10 100 1000 10000 100000

tim
e

(s
ec

on
ds

)

node data length (bytes)

Test 5 (warm), tree height = 4

ODA-pp
ODA-sp
ODA-vp

OOSA-beta

Figure 5.17: Test 5 — cold and warm times, h = 4.

123

cold time (h = 5) warm time (h = 5)

` ODA-pp ODA-sp ODA-vp OOSA-β ODA-pp ODA-sp ODA-vp OOSA-β

64 30.16 30.24 88.18 251.03 29.24 27.81 88.97 251.83

256 31.01 30.89 80.22 268.35 29.14 28.43 79.87 266.25

1024 35.52 35.03 84.41 309.46 30.50 28.43 80.90 294.05

4096 46.73 47.13 141.61 388.34 31.41 30.07 133.10 373.24

16384 50.49 50.8 300.36 866.85 32.31 31.04 291.55 843.89

Table 5.18: Test 5 — cold and warm times, h = 5.

0

100

200

300

400

500

600

700

800

900

10 100 1000 10000 100000

tim
e

(s
ec

on
ds

)

node data length (bytes)

Test 5 (cold), tree height = 5

ODA-pp
ODA-sp
ODA-vp

OOSA-beta

0

100

200

300

400

500

600

700

800

900

10 100 1000 10000 100000

tim
e

(s
ec

on
ds

)

node data length (bytes)

Test 5 (warm), tree height = 5

ODA-pp
ODA-sp
ODA-vp

OOSA-beta

Figure 5.18: Test 5 — cold and warm times, h = 5.

124

5.4.3 Database Search

The tests reported so far stressed the performance differences among the servers.

However, they are not representative of usual database access patterns. Rather than

creating or traversing an entire database at once, most applications search a database

for specific items to be retrieved or updated. The next two tests perform a client-

controlled search, using the observation below.

Observation 1: If the node named "Node(s)" is a descendant of the node named

"Node(t)", then the string t is a prefix of the string s.

Test 6: Search a tree for a node with a given name, through a sequence of calls to

the attribute accessors Node::children and Node::name. Rather than visiting every

node, use Observation 1 to descend through the single tree branch that may contain a

node with that name. Perform the whole search within a single transaction.

Test 7: Same as Test 6, but performing each call to the server as an individual

transaction.

We run these tests for a name that was not in the database, chosen to make the

search process descend through the rightmost branch of the tree until it reaches a

leaf6.

Tables 5.19–5.21 and Figures 5.19–5.21 show the cold and warm times for Test

6. Tables 5.22–5.24 and Figures 5.22–5.24 show these times for Test 7. The results

of Tests 6 and 7 are consistent with the previous tests, in that they confirm the

relative position of each server in a performance line. The distances among servers,

however, have decreased with respect to the preceding results. The major cause

of the performance gap between the two pairs of servers is the cost of ObjectStore

hooks, which hits only ODA-vp and OOSA-β. Since the amount of persistent memory

accessed by Tests 6 and 7 is smaller in comparison with the preceding tests, the

overhead of access hooks has a correspondingly smaller — but still quite significant

6With the convention we adopted for Node names, this is a name of the form "Node(0,3,3,...,3)",

where the sequence of 3s has length greater than the height of the tree.

125

— effect. Note that ODA-vp performs better than OOSA-β, simply because it uses

an inbound hook, whose cost is about half of the cost of the outbound hook used by

OOSA-β.

cold time (` = 4096) warm time (` = 4096)

h ODA-pp ODA-sp ODA-vp OOSA-β ODA-pp ODA-sp ODA-vp OOSA-β

1 0.09 0.10 0.19 0.34 0.06 0.06 0.14 0.28

2 0.16 0.16 0.33 0.67 0.09 0.08 0.29 0.61

3 0.25 0.23 0.46 0.89 0.12 0.13 0.37 0.78

4 0.33 0.30 0.68 1.22 0.19 0.17 0.54 1.06

5 0.43 0.44 0.87 1.50 0.21 0.18 0.68 1.21

Table 5.19: Test 6 — cold and warm times, ` = 4096.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

tim
e

(s
ec

on
ds

)

tree height

Test 6 (cold), node data length = 4096

ODA-pp
ODA-sp
ODA-vp

OOSA-beta

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

tim
e

(s
ec

on
ds

)

tree height

Test 6 (warm), node data length = 4096

ODA-pp
ODA-sp
ODA-vp

OOSA-beta

Figure 5.19: Test 6 — cold and warm times, ` = 4096.

126

cold time (h = 4) warm time (h = 4)

` ODA-pp ODA-sp ODA-vp OOSA-β ODA-pp ODA-sp ODA-vp OOSA-β

64 0.18 0.20 0.28 0.40 0.13 0.13 0.23 0.39

256 0.23 0.21 0.29 0.46 0.13 0.14 0.22 0.40

1024 0.23 0.24 0.38 0.68 0.18 0.14 0.31 0.52

4096 0.33 0.30 0.68 1.22 0.19 0.17 0.54 1.06

16384 0.34 0.34 1.61 2.89 0.17 0.15 1.31 2.60

Table 5.20: Test 6 — cold and warm times, h = 4.

0

0.5

1

1.5

2

2.5

3

10 100 1000 10000 100000

tim
e

(s
ec

on
ds

)

node data length (bytes)

Test 6 (cold), tree height = 4

ODA-pp
ODA-sp
ODA-vp

OOSA-beta

0

0.5

1

1.5

2

2.5

3

10 100 1000 10000 100000

tim
e

(s
ec

on
ds

)

node data length (bytes)

Test 6 (warm), tree height = 4

ODA-pp
ODA-sp
ODA-vp

OOSA-beta

Figure 5.20: Test 6 — cold and warm times, h = 4.

cold time (h = 5) warm time (h = 5)

` ODA-pp ODA-sp ODA-vp OOSA-β ODA-pp ODA-sp ODA-vp OOSA-β

64 0.24 0.26 0.37 0.59 0.17 0.15 0.28 0.43

256 0.27 0.25 0.36 0.80 0.17 0.16 0.36 0.51

1024 0.31 0.32 0.50 0.86 0.16 0.18 0.36 0.69

4096 0.43 0.44 0.87 1.50 0.21 0.18 0.68 1.21

16384 0.46 0.45 1.98 3.70 0.32 0.19 1.79 3.43

Table 5.21: Test 6 — cold and warm times, h = 5.

cold time (` = 4096) warm time (` = 4096)

h ODA-pp ODA-sp ODA-vp OOSA-β ODA-pp ODA-sp ODA-vp OOSA-β

1 0.20 0.20 0.45 1.24 0.13 0.14 0.40 1.14

2 0.36 0.33 0.78 2.66 0.26 0.25 0.72 2.51

3 0.48 0.49 1.17 3.96 0.32 0.34 1.04 3.84

4 0.68 0.65 1.68 5.59 0.46 0.44 1.49 5.44

5 0.84 0.86 2.20 7.48 0.52 0.53 1.98 6.78

Table 5.22: Test 7 — cold and warm times, ` = 4096.

127

0

0.5

1

1.5

2

2.5

3

3.5

10 100 1000 10000 100000

tim
e

(s
ec

on
ds

)

node data length (bytes)

Test 6 (cold), tree height = 5

ODA-pp
ODA-sp
ODA-vp

OOSA-beta

0

0.5

1

1.5

2

2.5

3

3.5

10 100 1000 10000 100000

tim
e

(s
ec

on
ds

)

node data length (bytes)

Test 6 (warm), tree height = 5

ODA-pp
ODA-sp
ODA-vp

OOSA-beta

Figure 5.21: Test 6 — cold and warm times, h = 5.

0

1

2

3

4

5

6

7

8

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

tim
e

(s
ec

on
ds

)

tree height

Test 7 (cold), node data length = 4096

ODA-pp
ODA-sp
ODA-vp

OOSA-beta

0

1

2

3

4

5

6

7

8

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

tim
e

(s
ec

on
ds

)

tree height

Test 7 (warm), node data length = 4096

ODA-pp
ODA-sp
ODA-vp

OOSA-beta

Figure 5.22: Test 7 — cold and warm times, ` = 4096.

cold time (h = 4) warm time (h = 4)

` ODA-pp ODA-sp ODA-vp OOSA-β ODA-pp ODA-sp ODA-vp OOSA-β

64 0.51 0.48 1.26 3.14 0.42 0.42 1.32 3.05

256 0.49 0.50 1.10 3.56 0.42 0.44 1.07 3.54

1024 0.55 0.54 1.21 4.07 0.41 0.41 1.05 3.96

4096 0.68 0.65 1.68 5.59 0.46 0.44 1.49 5.44

16384 0.67 0.69 3.20 10.92 0.44 0.45 3.03 10.65

Table 5.23: Test 7 — cold and warm times, h = 4.

128

0

2

4

6

8

10

10 100 1000 10000 100000

tim
e

(s
ec

on
ds

)

node data length (bytes)

Test 7 (cold), tree height = 4

ODA-pp
ODA-sp
ODA-vp

OOSA-beta

0

2

4

6

8

10

10 100 1000 10000 100000

tim
e

(s
ec

on
ds

)

node data length (bytes)

Test 7 (warm), tree height = 4

ODA-pp
ODA-sp
ODA-vp

OOSA-beta

Figure 5.23: Test 7 — cold and warm times, h = 4.

cold time (h = 5) warm time (h = 5)

` ODA-pp ODA-sp ODA-vp OOSA-β ODA-pp ODA-sp ODA-vp OOSA-β

64 0.63 0.62 1.66 5.05 0.57 0.53 1.60 4.51

256 0.61 0.62 1.43 4.76 0.55 0.60 1.45 4.67

1024 0.70 0.71 1.42 5.69 0.55 0.54 1.38 5.48

4096 0.84 0.86 2.20 7.48 0.52 0.53 1.98 6.78

16384 0.92 0.95 4.30 15.68 0.58 0.56 4.18 16.99

Table 5.24: Test 7 — cold and warm times, h = 5.

0

2

4

6

8

10

12

14

16

18

10 100 1000 10000 100000

tim
e

(s
ec

on
ds

)

node data length (bytes)

Test 7 (cold), tree height = 5

ODA-pp
ODA-sp
ODA-vp

OOSA-beta

0

2

4

6

8

10

12

14

16

18

10 100 1000 10000 100000

tim
e

(s
ec

on
ds

)

node data length (bytes)

Test 7 (warm), tree height = 5

ODA-pp
ODA-sp
ODA-vp

OOSA-beta

Figure 5.24: Test 7 — cold and warm times, h = 5.

129

5.4.4 Discussion

We now summarize and discuss our results.

ORB/ODBMS integration is a viable and balanced approach.

The gap between object access times in the ORB and in the ODBMS environment

is sometimes used as an argument against ORB/ODBMS integration. In this view,

the ORB remote method invocation mechanism would be an access procedure unac-

ceptably slow, as compared to the ODBMS data shipping approach. The ORB would

introduce a tight bottleneck in a system that would have much higher performance

otherwise. Our results show that this is not the case.

Database transactions cost more than remote method invocations. Tests

6 and 7 use the same sequence of remote method invocations to perform a client-

controlled search. Test 6 performs the whole sequence of operations within a single

transaction; Test 7 executes each operation as an individual transaction. The pseu-

dopersistence results of both tests are plotted together in Figure 5.25, for ` = 4096.

Note that the transaction costs (the differences between the y coordinates of the upper

and lower points plotted) exceed the times for Test 6, which account for the remote

method invocations and for the actual execution of the operations invoked.

Whenever possible, IDL operations should be designed to correspond to database

transactions. If each operation performs the maximum amount of work that can be

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

tim
e

(s
ec

on
ds

)

tree height

Tests 6 and 7 (cold), ODA-pp, node data length = 4096

Test 6
Test 7

0

0.1

0.2

0.3

0.4

0.5

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

tim
e

(s
ec

on
ds

)

tree height

Tests 6 and 7 (warm), ODA-pp, node data length = 4096

Test 6
Test 7

Figure 5.25: Tests 6 and 7, cold and warm pseudopersistence results, ` = 4096.

130

done in a single transaction, then remote method invocation costs are dominated by

transaction costs. In some situations this goal may be unrealistic, and the operations

may end up doing much less than could be done in a transaction. If this is the

case, CORBA clients will achieve better performance by grouping multiple operations

within a single transaction.

Pseudopersistence has good performance.

Pseudopersistence consistently outperformed the other approaches tested. It delivers

ODBMS performance in the case of a database-intensive task executed as a single

operation (Test 3). For operations that are not database intensive, but need to be

executed as individual transactions, pseudopersistence achieves at least half of the

ODBMS performance (Tests 5 and 7).

Object caching is effective. For small objects, caching decreased the times of

Test 1 by a factor of 0.5–0.6. For larger objects (Nodes with data length 16384),

the corresponding factor was approximately 0.9. Since the time saved by caching

tie objects is independent of the size of the corresponding implementation objects,

caching yields greater benefits for finer-grained objects.

Smart pointer-based persistence is a promising approach.

Even though the actual performance of smart pointer-based persistence on Object-

Store is unsatisfactory, its hypothetical performance, which would be achieved with

adequate ODBMS support, is good. ODBMS products are expected to provide such

support in the near future. When this happens, smart pointer-based persistence

should perform almost as well as pseudopersistence.

Virtual persistence needs better ODBMS support.

Due to the prohibitive overhead of ObjectStore access hooks, virtual persistence

showed poor performance. With better ODBMS support, access hook overhead could

— and, we expect, eventually will — be considerably smaller. Until then, one cannot

seriously consider using virtual persistence for practical purposes.

131

Besides rendering virtual persistence useless, access hook overhead made some

of our results less interesting. Our virtual persistence numbers reflect an ODBMS

problem, not the essential performance characteristics of this approach. Two factors

affect the intrinsic performance of this virtual persistence:

1. The cost of activating objects that will not be actually used. Because virtual

persistence is a page faulting scheme, it may give you more than you need, and

will charge you for it. This cost is expected when database pages are shared by

several objects, and the database client uses only a few objects per page.

2. The essential, and unavoidable, cost of access hooks. The ODBMS must keep

track of which hook should be called for each object. It maintains data struc-

tures that associate a hook with objects of a given class.

To these factors, the ObjectStore implementation of access hooks added a superfluous,

and dominant, one:

3. The cost of flushing out and reloading the client cache at every transaction.

Unfortunately, the intrinsic performance of virtual persistence cannot be inferred

from our results. We considered estimating it by appraising the values of cost 3 and

subtracting them from the virtual persistence numbers; disk accesses could be used

to appraise these costs. The problem, however, is that cost 3 is the dominant one.

Even small errors in its appraised values would have a great impact on the estimated

performance numbers. For this reason, the estimated intrinsic performance would not

be reliable.

A final experiment. If we could evaluate costs 1 and 2, we would be able to

estimate the intrinsic performance of virtual persistence by adding these costs to the

smart pointer-based persistence numbers. In the case of Tests 3 and 4, which perform

an exhaustive tree traversal within a single transaction, cost 1 is zero, because all

objects in the database are accessed by the transaction. Cost 2, however, is unknown.

One could think about adding a dummy access hook, which performs no work, to

server ODA-sp. By doing this, we would add cost 2, as we want, but would also add

cost 3, which we do not want! So a dummy hook would bring ODA-sp numbers to

the level of ODA-vp numbers. As a final test, we did such an experiment.

132

Table 5.25 presents the results of adding a dummy hook to server ODA-sp. To

mimic virtual persistence, a dummy “Node representative” was stored with each

Node impl object; these dummy representatives have the same size as the object

representatives used in virtual persistence. An inbound hook is associated with the

dummy representatives, exactly as with object representatives in virtual persistence.

In this experiment, however, the inbound hook performs no work, and the dummy

representatives are not used by the CORBA server.

h Test 3 Test 4 Test 5

cold warm cold warm cold warm

1 0.14 0.10 0.18 0.13 0.31 0.27

2 0.61 0.40 0.67 0.54 1.54 1.28

3 2.12 1.40 2.53 1.91 6.19 5.38

4 8.20 5.48 10.04 7.38 25.08 21.94

5 35.04 23.98 43.46 31.79 105.63 88.70

Table 5.25: Tests 3, 4, and 5 — ODA-sp with dummy inbound hook, ` = 4096.

Figures 5.26–5.28 show the results of this experiment along with the corresponding

ODA-vp numbers. As expected, ODA-sp with a dummy hook performs the same as

ODA-vp in Tests 3 and 4 (Figures 5.26 and 5.27). Note that does not happen in

Test 5 (Figure 5.28), because cost 1 is not zero in this case. Test 5 performs a

client-controlled database traversal, like Test 4. In Test 5, however, each operation is

performed as an individual transaction, which accesses just a fraction of the objects

in the database. Since the inbound hook of server ODA-vp activates objects that will

not be used by the current transaction, this server performs worse than ODA-sp with

a dummy inbound hook — the dummy hook activates no objects at all.

This experiment, which should remove any doubts one might have about why

server ODA-vp performs so badly, exposed once more the penalty for using an Ob-

jectStore access hook, even one that does no work, and served as a final sanity check

on our numbers. To the end of assessing the intrinsic performance of virtual per-

sistence, however, it did not help us much. It is clear that virtual persistence can

perform better. How much better? Could it compete with the other approaches?

The answers will remain unknown until adequate ODBMS support is available.

133

0.1

1

10

100

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

tim
e

(s
ec

on
ds

)

tree height

Test 3 (cold), node data length = 4096

ODA-sp with dummy hook
ODA-vp

0.1

1

10

100

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

tim
e

(s
ec

on
ds

)

tree height

Test 3 (warm), node data length = 4096

ODA-sp with dummy hook
ODA-vp

Figure 5.26: Test 3, ODA-sp with dummy inbound hook and ODA-vp, ` = 4096.

0.1

1

10

100

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

tim
e

(s
ec

on
ds

)

tree height

Test 4 (cold), node data length = 4096

ODA-sp with dummy hook
ODA-vp

0.1

1

10

100

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

tim
e

(s
ec

on
ds

)

tree height

Test 4 (warm), node data length = 4096

ODA-sp with dummy hook
ODA-vp

Figure 5.27: Test 4, ODA-sp with dummy inbound hook and ODA-vp, ` = 4096.

0.1

1

10

100

1000

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

tim
e

(s
ec

on
ds

)

tree height

Test 5 (cold), node data length = 4096

ODA-sp with dummy hook
ODA-vp

0.1

1

10

100

1000

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

tim
e

(s
ec

on
ds

)

tree height

Test 5 (warm), node data length = 4096

ODA-sp with dummy hook
ODA-vp

Figure 5.28: Test 5, ODA-sp with dummy inbound hook and ODA-vp, ` = 4096.

134

Chapter 6

Conclusion

This dissertation presented a detailed discussion of the design and implementation

issues involved in integrating Object Request Brokers and Object Database Manage-

ment Systems. Three approaches to ODBMS-based persistence of CORBA objects

were introduced: pseudopersistence, smart pointer-based persistence and virtual per-

sistence.

These approaches share a common feature: their use of a delegation relationship

between IDL-generated skeleton (or “tie”) classes and user-provided implementation

classes, with the purpose of allowing implementation objects to be stored in a database

without the corresponding tie objects. Tie objects are not stored; they are automat-

ically instantiated by an Object Database Adapter whenever they are needed and

deleted when not needed. To make possible the instantiation of tie objects, the Ob-

ject Database Adapter embeds a stringfied ODBMS reference to the corresponding

implementation object into the id field of a CORBA reference to a persistent object.

The three approaches differ in what may cause the instantiation of a tie object.

Pseudopersistence uses the CORBA object activation mechanism, which works only

for object references received from other processes or stored in stringfied form. Smart

pointer-based persistence extends pseudopersistence with a smart pointer scheme;

virtual persistence extends it by employing virtual memory techniques.

Besides benefits with respect to database space consumption and performance,

the use of delegation (“tie” objects) to keep only implementation objects — and

not their corresponding CORBA objects — in the database has an important and

desirable consequence: no ORB-specific information is stored persistently. Other

solutions to the problem of ODBMS-based persistence of CORBA objects are possible,

but they store ORB-specific information in the database. A change of ORB, or

even modifications to the ORB, would then affect the database schema. Surprisingly

enough, it appears that this very simple idea is a contribution of this dissertation.

Other contributions are:

• The notion of an Object Database Adapter as a library that uses and extends

the services provided by the Basic Object Adapter, rather than as replacement

to the BOA. This is not an original contribution. Related (and unpublished)

work was simultaneously carried out at Iona Technologies [19], and probably at

other software companies.

• An in-depth discussion of the aforementioned approaches to ODBMS-based per-

sistence of CORBA objects. To the best of our knowledge, these issues were

not addressed elsewhere. As described here, pseudopersistence relies exclusively

on very basic ODBMS features; an Object Database Adapter based upon this

approach can be easily ported across ODBMSs. Moreover, our realization of

virtual persistence, through minimum-sized persistent representatives that are

swizzled into CORBA objects at page fault time, appears to be an original idea.

• A performance evaluation of ORB/ODBMS integration approaches. Our re-

sults show pseudopersistence as the best performer, followed closely by smart

pointer-based persistence (under the assumption that the ODBMS provides ad-

equate support to this approach). Virtual persistence, which applies only to

the case of a virtual memory-based ODBMS, currently lags well behind the

other approaches; it will remain in this position until better ODBMS support

is available.

6.1 Summary of Results

1. CORBA access to databases is viable and compatible with the performance

of transactional database applications. ORB/ODBMS integration is the best

way of providing database access to CORBA clients. Besides being directly

applicable to pure object-oriented DBMSs, object-relational mediators make

136

it also applicable to relational systems. Moreover, ORB/ODBMS integration

allows the construction of ORB-connected multidatabases, and is especially

suitable for web browser access, through Java applets.

2. Among the approaches to persistence of CORBA objects, pseudopersistence is

unquestionably the best option today. It works with any ODBMS, stores no

ORB-specific information in a database, and has good performance.

3. ODMG-compliant ODBMSs are expected to make smart pointer-based persis-

tence practical in the near future, and this approach will then be challenging

pseudopersistence. It has all the advantages of pseudopersistence, plus trans-

parent storability of CORBA object references. Although not essential, this

feature is desirable in the context of ORB-connected multidatabases.

As for which of these two approaches will be the most used, this will depend on the

degree of interconnectivity between the heterogeneous components of the persistent

object systems that we expect to become common. For CORBA objects implemented

by a single server, pseudopersistence is sufficient. Smart pointer-based persistence

provides additional convenience to express relationships between CORBA objects

implemented by different servers.

6.2 Future Work

We intend to apply the techniques discussed in this dissertation to ODMG-compliant

ODBMSs and to the construction of ORB-connected multidatabases. Such a mul-

tidatabase could encompass legacy data stored in relational systems, and would be

accessible through a web browser running Java applets.

A number of issues barely touched here will arise in the context of an ORB-

connected multidatabase, including distributed transactions and queries. Implemen-

tations of the Object Transaction Service are starting to appear, but Object Query

Service implementations are yet to be built. Efficiently implementing distributed

queries in a CORBA environment will be a challenging and important research sub-

ject for some time.

137

Glossary of Acronyms

BOA Basic Object Adapter

CAD Computer-Aided Design

CAM Computer-Aided Manufaturing

CASE Computer-Aided Software Engineering

CLOS Common Lisp Object System

CORBA Common Object Request Broker Architecture

DBMS Database Management System

DII Dynamic Invocation Interface

DTP Distributed Transaction Processing

FIFO First In, First Out

IDL Interface Definition Language

IIOP Internet Inter-ORB Protocol

IP Internet Protocol

LAN Local Area Network

LANL Los Alamos National Laboratory

ODA Object Database Adapter

ODBMS Object Database Management System

ODMG Object Database Management Group

OID Object Identifier

OLE Object Linking and Embedding

OMG Object Management Group

OODBMS Object-Oriented Database Management System

OOSA Orbix+ObjectStore Adapter

ORB Object Request Broker

OTS Object Transaction Service

PDS Persistent Data Service

PO Persistent Object

POM Persistent Object Manager

POS Persistent Object Service

POSIX Portable Operating System Interface

RPC Remote Procedure Call

SQL The ANSI Standard Query Language

TCP Transmission Control Protocol

TP Transaction Processing

XA The X/Open DTP resource manager interface

140

Bibliography

[1] Agrawal, R., and N. H. Gehani, “ODE (Object Database and Environment):

The Language and the Data Model”, Proceedings of the 1989 ACM SIGMOD

Conference on Management of Data, Portland, OR, June 1989. Also in [54].

[2] AT&T GIS, DEC, Expersoft, Groupe Bull, HP, IBM, ICL, Novell, Siemens,

SunSoft, Tandem, and Tivoli Systems, CORBASecurity , OMG Document 95-

12-1, Object Management Group, Inc., Framingham, MA, 1995.

[3] Birrel, A., G. Nelson, S. Owicki, and E. Wobber, “Network Objects”, Pro-

ceedings of the 14th Symposium on Operating Systems Principles, pp. 217–230,

December 1993. An extended version of this paper appeared as Research Report

115, System Research Center, Digital Equipment Corp., Palo Alto, CA, 1994.

[4] Butterworth, P., A. Otis, and J. Stein, “The GemStone Object Database Man-

agement System”, Communications of the ACM , Vol. 34, No. 10, pp. 64–77,

October 1991.

[5] Carey, M. J., D. J. DeWitt, and J. F. Naughton, “The OO7 Object-Oriented

Database Benchmark”, Proceedings of the 1993 ACM SIGMOD Conference on

Management of Data, Washihgton, DC, May 1993.

[6] Cattell, R. G. G., Object Data Management , Addison-Wesley, Reading, MA,

1994.

[7] Cattell, R. G. G. (ed.), The Object Database Standard: ODMG-93 , Release 1.2 ,

Morgan Kaufmann, San Francisco, CA, 1996.

[8] Deux, O. et al , “The O2 System”, Communications of the ACM , Vol. 34, No.

10, pp. 34–48, October 1991.

[9] Deux, O. et al , “The Story of O2”, IEEE Transactions on Knowledge and Data

Engineering , Vol. 2, No. 1, pp. 91-108, March 1990. Also in [54].

[10] Ellis, M., and B. Stroustroup, The Annotated C++ Reference Manual , Addison-

Wesley, Reading, MA, 1990.

[11] Gosling, J., and H. McGilton, The Java Language Environment — A White

Paper , Sun Microsystems, Inc., Mountain View, CA, 1995.

[12] Gray, J., and A. Reuter, Transaction Processing: Concepts and Techniques,

Morgan Kaufmann, San Francisco, CA, 1993.

[13] Hughes Technologies, Mini SQL — A Lightweight Database Engine, Release

1.0.11 , Hughes Technologies Pty Ltd., Gold Coast, Australia, 1996.

[14] IBM Corp., SOMobjects Developer Toolkit Programmers Reference Manual,

Version 2.0 , IBM Corporation, White Plains, NY, 1993.

[15] IBM Corp., SOMobjects Developer Toolkit Users Guide, Version 2.0 , IBM Cor-

poration, White Plains, NY, 1993.

[16] IBM, Itasca, Objectivity, Ontos, O2, Servio, SunSoft, and Taligent, Object

Query Service Specification (Joint Submission to the OMG), OMG TC Doc-

ument 95-11-1, Object Management Group, Inc., Framingham, MA, 1995.

[17] Iona Technologies, Orbix Advanced Programmer’s Guide, Iona Technologies

Ltd., Dublin, Ireland, 1995.

[18] Iona Technologies, Orbix Programmer’s Guide, Iona Technologies Ltd., Dublin,

Ireland, 1995.

[19] Iona Technologies, White Paper — Orbix+ObjectStore Adapter , Iona Technolo-

gies Ltd., Dublin, Ireland, 1995.

[20] Iona Technologies, Orbix+ObjectStore Adapter — Beta Release Documentation,

Iona Technologies Ltd., Dublin, Ireland, 1995.

[21] Khoshafian, S., and G. P. Copeland, “Object Identity”, ACM Proceedings of

the Conference on Object-Oriented Programming Systems, Languages, and Ap-

plications (OOPSLA), Portland, OR, September 1986. Also in [61].

142

[22] Kim, W., and F. H. Lochovsky (eds.), Object-Oriented Concepts, Databases,

and Applications, ACM Press, New York, NY, 1989.

[23] Kim, W., N. Ballou, H. Chou, and J. F. Garza, “Features of the ORION Object-

Oriented Database System”, in [22].

[24] Keller, A. M., “Penguin: Objects for Programs, Relations for Persistence”,

submitted for publication, April 1994.

[25] Keller, A. M., and C. Hamon, “A C++ Binding for Penguin: a System for

Data Sharing Among Heterogeneous Object Models”, Foundations on Data

Organization (FODO) 93, Chicago, October 1993.

[26] Keller, A. M., R. Jensen, and S. Agarwal, “Persistence Software: Bridging

Object-Oriented Programming and Relational Databases”, Proceedings of the

1993 ACM SIGMOD Conference on Management of Data, Washihgton, DC,

May 1993.

[27] Kim, W. (ed.), Modern Database Systems — The Object Model, Interoperability

and Beyond , ACM Press, New York, NY, 1995.

[28] Kim, W., “Object-Oriented Database Systems: Promises, Reality, and Future”,

in [27].

[29] Lamb, C., G. Landis, J. Orenstein, and D. Weinreb, “The ObjectStore Database

System”, Communications of the ACM , Vol. 34, No. 10, pp. 50–63, October

1991. Also in [54].

[30] Lewis, G., CORBA Application Portability , OMG TC Document 95-5-17, Ob-

ject Management Group, Inc., Framingham MA, 1995.

[31] Malhotra, A., ODBMS presentation at the Los Alamos National Laboratory,

July 1995.

[32] Manola, F., An Evaluation of Object-Oriented DBMS Developments, 1994 Edi-

tion, Technical Report TR-0263-08-94-165, GTE Laboratories Inc., Waltham,

MA, 1994.

143

[33] Moss, J. E. B., “Working with Persistent Objects: To Swizzle or Not to Swiz-

zle”, IEEE Transactions on Software Engineering , Vol. 18, No. 8, pp.657–673,

August 1992.

[34] O2 Technology, The O2 ODMG Database System — A Technical Overview , O2

Technology, Palo Alto, CA, 1995.

[35] Object Design, ObjectStore/DBconnect , Product Brief, Object Design, Inc.,

Burlington, MA, 1995.

[36] Object Management Group, The Common Object Request Broker: Architec-

ture and Specification, OMG Document Number 91-12-1, Revision 1.1, Object

Management Group, Inc., Framingham, MA, 1991.

[37] Object Management Group, The Common Object Request Broker: Architecture

and Specification, Revision 2.0, Object Management Group, Inc., Framingham,

MA, 1995.

[38] Object Management Group, CORBAfacilities: Common Object Facilities Spec-

ification, Object Management Group, Inc., Framingham, MA, 1995.

[39] Object Management Group, CORBAservices: Common Object Services Speci-

fication, Object Management Group, Inc., Framingham, MA, 1995.

[40] Object Management Group, Object Management Architecture Guide, OMG TC

Document 90-9-1, Revision 1.0, Object Management Group, Inc., Framingham

MA, 1990.

[41] Object Management Group, ORB Portability Enhancement RFP , OMG TC

Document 95-6-26, Object Management Group, Inc., Framingham MA, 1995.

[42] Objectivity, Objectivity Database System Overview , Objectivity, Inc., Menlo

Park, CA, 1990.

[43] Ontos, Ontos Reference Manual , Ontos, Inc., Burlington, MA, 1993.

[44] Orfali, R., D. Harkey, and J. Edwards, The Essential Distributed Objects Sur-

vival Guide, John Wiley & Sons, Inc., New York, NY, 1996.

144

[45] PostModern Computing Technologies, ORBeline 2.0 Reference Manual , Post-

Modern Computing Technologies, Inc., Mountain View, CA, 1995.

[46] PostModern Computing Technologies, ORBeline 2.0 User’s Guide, PostModern

Computing Technologies, Inc., Mountain View, CA, 1995.

[47] Richardson, J. E., M. J. Carey, and D. H. Schuh, “The Design of the E Program-

ming Language”, ACM Transactions on Programming Languages and Systems,

Vol. 15, No. 3, July 1993. Also in [54].

[48] Richardson, J. E., and M. J. Carey, “Persistence in the E Language: Issues and

Implementation”, Software — Practice and Experience, Vol. 19, No. 12, pp.

1115–1150, December 1989.

[49] Shekita, E., and M. Zwilling, “Cricket: A Mapped, Persistent Object Store”,

Proceedings of the Fourth International Workshop on Persistent Object Systems,

Martha’s Vineyard, MA, September 1990.

[50] Singhal, V., S. V. Kakkad, and P. R. Wilson, “Texas: An Efficient, Portable

Persistent Store”, Proceedings of the Fifth International Workshop on Persistent

Object Systems, San Miniato, Italy, September 1992.

[51] Soley, R. M., and W. Kent, “The OMG Object Model”, in [27].

[52] Stonebraker, M., “User Interfaces and Embedded Programming”, introductory

section to chapter 9 of [54].

[53] Stonebraker, M., “New Data Models”, introductory section to chapter 10 of

[54].

[54] Stonebraker, M. (ed.), Readings in Database Systems, Morgan Kaufmann, San

Francisco, CA, 1994.

[55] Sun Microsystems, The Java Language Specification, Sun Microsystems, Inc.,

Mountain View, CA, 1995.

[56] Thomas, G., and R. van der Linden, Remote Database Queries in Open Dis-

tributed Systems, Technical Report APM.1138.01, ANSA, Cambridge, UK,

1994.

145

[57] Versant Object Technologies, Versant Technical Overview , Versant Object

Technologies, Inc., Menlo Park, CA, 1990.

[58] White, S. J., Pointer Swizzling Techniques for Object-Oriented Database Sys-

tems, Ph.D. Thesis, University of Wisconsin–Madison, 1994.

[59] Wilson, P. R., and S. V. Kakkad, “Pointer Swizzling at Page Fault Time: Ef-

ficiently and Compatibly Supporting Huge Address Spaces on Standard Hard-

ware”, Proceedings of the 1992 International Workshop on Object Orientation

in Operating Systems), Paris, France, September 1992, pp. 364–377.

[60] X/Open Company, Distributed Transaction Processing: The XA Specification,

X/Open Document C193, X/Open Company Ltd., Reading, UK.

[61] Zdonik, S. B., and Maier, D. (eds.), Reading in Object-Oriented Database Sys-

tems, Morgan Kaufmann, San Francisco, CA, 1990.

[62] Zdonik, S. B., and Maier, D., “Fundamentals of Object-Oriented Databases”,

opening chapter of [61].

146

