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Abstract. We define a formal execution semantics for UML activity
diagrams that is appropriate for workflow modelling. Our semantics is
aimed at the requirements level by assuming that software state changes
do not take time. It is based upon the Statemate semantics of stat-
echarts, extended with some transactional properties to deal with data
manipulation. Our semantics also deals with real-time and multiple state
instances. We first give an informal description of our semantics and then
formalise this in terms of transition systems.

1 Introduction

A workflow is a set of business activities that are ordered according to a set of
procedural rules to deliver a service. A workflow model (or workflow specifica-
tion) is the definition of a workflow. An instance of a workflow is called a case.
Examples of cases are an insurance claim handling instance and a production
order handling instance. The definition, creation, and management of workflow
instances is done by a workflow management system (WFMS), on the basis of
workflow models. We represent workflow models by UML activity diagrams [16].

In this paper, we define a formal execution semantics for UML activity di-
agrams that is suitable for workflow modelling. The goal of the semantics is
to support execution of workflow models and analysis of the functional require-
ments that these models satisfy. Our long term goal is to implement the execution
semantics in the TCM case tool [6] and to use model checking tools for the anal-
ysis of functional requirements. A secondary goal of the semantics is to facilitate
a comparison with other formal modelling techniques for workflows, like Petri
nets [1] and statecharts [18]. For example, some people claim that an activity
diagram is a Petri net. But in order to sustain this claim, first a formal semantics
for activity diagrams must be defined, so that the Petri net semantics and the
activity diagram semantics can be compared.

Figure 1 shows an example activity diagram. Ovals represent activity states,
rounded rectangles represent wait states, and arrows represent state transitions.
Section 3 explains the details of the notation. We use activity diagrams to model
a single instance (case) of a workflow. We defer the modelling of multiple cases
(case management) to future work.
? Supported by NWO/SION, grant nr. 612-62-02 (DAEMON).
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Fig. 1. Example activity diagram

We introduce two semantics. The first semantics supports execution of work-
flow models. Although this semantics is sufficient for executing workflow models,
it is not precise enough for the analysis of functional requirements (model check-
ing), since the behaviour of the environment is not formalised. We therefore
define a second semantics, which we will use for model checking, that extends
the first one by formalising the combined behaviour of both the system that the
activity diagram models and the system’s environment.

Our semantics is different from the OMG activity diagram semantics [16],
because we map activities into states, whereas the OMG maps them into tran-
sitions. The OMG semantics implies that activities are done by the WFS itself,
and not by the environment. In our semantics, activities are done by the envi-
ronment (i.e. actors), not by the WFS itself (see Sect. 2 for our motivation).

The paper is structured as follows. In Sect. 2 we discuss workflow concepts
and we give an informal semantics of activity diagrams in terms of the domain of
workflow. In Sect. 3 we define the syntax of an activity diagram, and define and
discuss constraints on the syntax. In Sect. 4 we define our two formal semantics.
In Sect. 5 we briefly discuss other formalisations of activity diagrams. We end
with a summary and a discussion of further work. Formulas are written in the
Z notation [17].

2 Workflow Domain

Workflow concepts. The following exposition is based on literature (amongst
others [1, 14]) and several case studies that we did.

Activities are done by actors. Actors are people or machines. An activity is
an uninterruptible amount of work that is performed in a non-zero span of time
by an actor. In an activity, case attributes are updated. Case attributes are data
relevant for the case. They may be present in the form of structured data, or
case documents. The effect of an activity is constrained declaratively with a pre
and post-condition. The pre-condition also functions as guard: as long as it is
false, the activity cannot be performed.
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The case may be distributed over several actors. Each distributed part of the
case has a local state. There are three kinds of possible local states.

– In an activity state an actor is executing an activity in a part of the case.
For every activity there should be at least one activity state, but different
activity states can represent execution of the same activity.

– In a wait state, the case is waiting for some external event or temporal event.
– In a queue state, the case is waiting for an actor to become available to

perform the next activity of the case.

Multiple instances of a local state may be active at the same time in the same
case. The global state of the case is therefore a multiset (rather than a set) of
the local states of the distributed parts of the case.

The WFMC [19] specifies four possible ordering relationships between activi-
ties: sequence, choice, parallelism and iteration. And to facilitate readability and
re-use of process definitions, an ordered set of activities can be grouped into one
compound activity. A compound activity can be used in other process definitions.
A non-compound activity is called an atomic activity.

WFS

DATABASE

ACTOR

ORGANISATION

Fig. 2. System structure

System structure (Fig. 2). A workflow system
(WFS), which is a WFMS instantiated with one
or more workflow models, connects a database and
several actors. Since we use an activity diagram
to model a single case, we here assume the WFS
controls a single case. The WFS routes the case
as prescribed by the workflow model of the case.
Note that the case attributes are updated during
an activity by the actors, not by the WFS. For
example, an actor may update a claim form by editing it with a word processor.
The state of the case, on the other hand, is updated by the WFS, not by an
actor. All attributes of a case are stored in the database. The state of the case
is maintained by the WFS itself.

Informal semantics. An activity diagram is a requirements specification that
says what a WFS should do. We therefore define our semantics of an activity
diagram in terms of a WFS.

We view a WFS as a reactive system. A reactive system [12] is a system
that runs in parallel with its environment, and reacts to the occurrences of
certain events in its environment by creating certain desirable effects in that
environment. There are three kinds of events:

– An external event is an instantaneous, discrete change of some condition in
the environment. This change can be referred to by giving a name to the
change itself or to the condition that changes:
• A named external event is an event that is given an unique name.
• A value change event is an event that represents change of one or more

variables.
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– A temporal event is a moment in time, to which the system is expected to
respond, i.e. some deadline has been reached.

The behaviour of a reactive system is modelled as a set of runs. A run is a
sequence of system states and system reactions. System reactions are caused by
the occurrence of events.

We make the following two assumptions. First, the goal of our semantics
is to support the specification of functional requirements. Functional require-
ments should be specified independently of the implementation platform, and
we therefore make the perfect technology assumption: the implementation con-
sists of infinitely many resources that are infinitely fast [15]. Perfect technology
implies that the WFS responds infinitely fast to events. This means that the
transitions between the local states of a case take no time. But since actors are
not assumed to be perfect, they do take time to perform their activities. Second,
the WFS responds as soon as it receives events from the environment. This is
called the clock-asynchronous semantics [11]. These two assumptions together
imply that the WFS responds at the same time events occur. This is called the
perfect synchrony hypothesis [3].

For an implementation of the WFS, these two assumptions translate into the
following requirement:

the WFS must be fast enough in its reaction to the current events to be
ready before the next events occur

For runs, these two assumptions imply that time elapses in states only, not
in reactions, since reactions are instantaneous, and that there elapses no time
between the occurrence of events and the subsequent reaction of the system.

The state of a run of the WFS consists of the following components:

– the global state of the case, including an indication of which activities are
currently being performed,

– the current set of input events,
– the current value of the case attributes of the case,
– the current value of the running timers. These are necessary to generate

time-outs.

The global state of the case is the multiset of the local states of the individual
parallel branches that are active. We call such a global state a configuration. Each
parallel branch has three kinds of possible states, namely activity, wait and queue
states. For the remainder of this paper, we do not consider queue states anymore;
we simply assume that there enough actors available for every activity. This is
not a serious restriction, because a queue state can be modelled as a wait state,
where the event that has to be waited for is that the actor becomes available.

During a reaction, the state of the case is updated (i.e. the case is routed),
some timers may be reset, and the set of input events is reset, but the case
attributes are not changed. Case attributes are updated by actors during an
activity state. During a reaction the current time and the timers do not increase,
because a reaction is instantaneous.
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Fig. 3. Run of our example. In each state, the set of activities currently executing is shown.

We adopt the Statemate [11] semantics of a reaction and extend it below
with some transactional properties. Before the events occur, the system is in a
stable state. When the events occur, the system state has become unstable. To
reach a stable state again, the system reacts by taking a step and entering a new
state. If the new state is unstable, again a step is taken, otherwise the system
stops taking steps. This sequence of taking a step and entering a new state and
testing whether the new state is stable, is repeated until a stable state is reached.
Thus, the system reaction is a sequence of steps, called a superstep [11]. In Sect. 4
we define steps and supersteps. For the initial state, we do not have to wait for
a change in the environment since the initial state is unstable.

Next, we adopt the following assumptions from Statemate [11]:

– More than one event can be input to the system at the same time.
– The input is a set of events, rather than a queue (the latter assumption is

adopted by the OMG semantics [16], but is more appropriate for a software
implementation-level semantics).

– If the system reacts, it reacts to all events in the input set.
– Events live for the duration of one step only (not a superstep!).

Figure 3 shows part of a run of our example. In each state of the run the
set of currently executing activities is shown. Both customer ok and insufficient
stock are case attributes. See Sect. 4 for details on how a run is constructed.

Specifying activities. An activity has a pre and post-condition. The pre-condition
specifies when the activity is allowed to start. The post-condition specifies con-
straints on the result of the activity. Both pre and post-conditions only refer
to case attributes. A case attribute can either be observed in an activity by an
actor, i.e., used but not changed, or updated in an activity by an actor. This
may result in an ill-defined case attribute, if the attributes is accessed in two
or more concurrently executing activities, and in addition one of the activities
updates it. Then the activities interfere with each other. Non-interference checks
can prevent this. We define an non-interference check on activities, since we view
an activity as atomic. An activity may consist of many database transactions
(cf. Fig. 2), so non-interference of data manipulation in an activity cannot be
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handled by a single transaction of the database. Instead, we assume that non-
interference checks are done by the WFS (for example by means of a transaction
processing monitor that is part of the WFS).

3 Syntax of Activity Diagrams

A UML activity diagram is a graph, consisting of state nodes and directed edges
between these state nodes. There are two kinds of state nodes: ordinary state
nodes and pseudo state nodes. We follow the UML in considering pseudo state
nodes as syntactic sugar to denote hyperedges. Thus, the underlying syntactic
structure is a hypergraph, rather than a graph. In order to be unambiguous, we
call the underlying hypergraph an activity machine.

A

action
state node

WAIT

wait
state node

decision/merge fork/join

A

initial final

subactivity
state node

Fig. 4. UML activity diagram con-
structs used

UML constructs used (Fig. 4). We use an ac-
tion state node to denote an activity state, a
wait state node to denote a wait state, and a
subactivity state node to denote a compound
activity state. We assume that for every com-
pound activity state node, there is an activity
diagram that specifies the behaviour of the
compound activity. The transitive closure of
this hierarchy relation between activity dia-
grams must be acyclic. Besides these state
constructs, we use pseudo state nodes to indi-
cate xor split and merge (decision state node,
merge state node), parallelism (fork state node, join state node), begin (initial
state node) and end (final state node). Combining fork and merge, we can spec-
ify workflow models and patterns in which multiple instances of the same state
node are active at the same time [2]. State nodes (including pseudo state nodes)
are linked by directed, labelled edges (expressing sequence). Each label has the
form e[g ] where e is an event expression and g a guard expression. Empty event
NULL and guard [true] are not shown on an edge. Special event label after(texp)
denotes a relative temporal event, where texp is an integer expression. See our
report [8] for other temporal constructs (e.g. when).

UML constructs removed.

– We do not label edges with action expressions. Actions are performed by
actors in activities, not by the WFS in the transitions of a workflow.

– We do not consider synch (synchronisation) states. We have never seen an
example of a synch state in our own or other people’s case studies.

– We do not consider deferred events (deferring an event means postponing
the response to an event). Deferral of event e can be simulated by using the
guard [e occurred].

– Swimlanes allocate activities to packages, actors, or organisational units. We
disregard swimlanes, since these do not impact the execution semantics. We
plan to consider allocation of activities to actors at a later stage.
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– The UML includes object flow states, that denote data states. They are con-
nected to other state nodes by object flows (dashed edges). There are several
ambiguities concerning object flow states, the most important one being that
the meaning of parallel object flow states is not defined. Besides, only one
vendor of workflow management systems supports object flow states [14]. For
the moment, we decide to omit object flow states (and thus object flows) from
our syntax. Instead, we represent the case attributes by the local variables of
the activity diagram and assume these attributes are stored in a database.

– Dynamic concurrency (i.e. dynamic instantiation of multiple instances of the
same action or subactivity state node) we treat in our full report [8].

Syntax of activity machines. An activity machine is a rooted directed hyper-
graph. Figure 5 shows the activity machine corresponding to Fig. 1. We as-
sume given a set Activities of activities. An activity machine is a quintuple
(Nodes ,Edges ,Events ,Guards ,LVar) where:

– Nodes = AS ∪ WS ∪ {initial ,final} is the set of state nodes,
– Edges ⊆ PNodes × Events × Guards × P Nodes is the transition relation

between the state nodes of the activity diagram,
– Events is the set of external event expressions,
– Guards is the set of guard expressions,
– LVar is the set of local variables. The local variables represent the case

attributes. We assume that every variable in a guard expression is a local
variable.

State nodes initial and final denote the initial and final state node, respectively.
Besides these special state nodes, an activity machine has action state nodes AS
and wait state nodes WS . Every action state node has an associated activity
it controls, denoted by the surjective function control : AS →→ Activities . The
execution of the activities falls outside the scope of the activity machine, since it
is done by actors. We use the convention that in the activity diagram, an action
state node a is labelled with the activity control(a) it controls. Note that different
action state nodes may bear the same label, since they may control the same
activity. Wait state nodes are labelled WAIT. Edges are labelled with events
and guard expressions out of sets Events and Guards respectively. A special
element of Events is the empty event NULL, which is always part of the input.

Given e = (N , ev , g ,N ′) ∈ Edges , we define source(e)
df

= N , event(e)
df

= ev ,

guard(e)
df

= g , and target(e)
df

= N ′.
We require that the initial state node only occurs in the source of an edge.

Moreover, if it is source of an edge, it is the only source of that edge. Similarly,
the final state node may only occur in the target of an edge. Moreover, if it is
target of an edge, it is the only target of that edge. Next, the initial state must
be unstable. Therefore, the edges leaving the initial state node must be labelled
with the empty event NULL and the disjunction of the edges’ guard expressions
must be a tautology.

Let set BE (LVar) denote the set of boolean expressions on set LVar . Next we

define the infinite set of all possible Timers
df

= {t(e)(n) | e ∈ Edges ∧ n ∈ N}.
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Fig. 5. Activity machine of our running example

Roughly, a timer t(e)(n) is reset to zero every time the source states of e are
entered. We assume a set BE (Timers) of basic clock constraints on timers. Every
basic clock constraint φ ∈ BE (Timers) has the form c = texp where c ∈ Timers
and texp ∈ N.

Set Guards is constructed as the union of BE (LVar) and BE (Timers) and
the set of expressions that is obtained by conjoining (∧) elements of the sets
BE (LVar) and BE (Timers). We require that if t(e)(n) = texp is part of the
guard expression of edge e ′, then e = e ′.

Mapping an activity diagram to an activity machine. In the mapping, first
the subactivity state nodes are eliminated by substituting for every subactiv-
ity state node its corresponding activity diagram. Then the pseudo state nodes
are removed and replaced by hyperedges. Finally, every hyperedge e with la-
bel after(texp) is replaced by infinitely many hyperedges e(n) where n ∈ N,
each edge labelled with clock constraint t(e)(n) = texp. (This construction is
needed, because a finite but unbounded number of instances of e may be taken
simultaneously at the same time.) Our full report [8] gives more details.

Specifying data manipulation in activities. The local variables of the activity
diagram are possibly updated in activities (since local variables represent case
attributes). In every activity a ∈ Activities that is controlled by an activity dia-
gram, some local variables may be observed or updated. We denote the observed
variables by Obs(a) ⊆ LVar , and the updated variables by Upd(a) ⊆ LVar . We
require these two sets to be disjoint for each activity.

Two activities interfere with each other, if one of them observes or updates
a local variable that the other one is updating. (This definition is similar to the
definition of conflict equivalence in database theory [7].) Note that in particular
every activity only non-interferes with itself iff it only observes variables.

A � B ⇔ (Obs(A) ∪ Upd(A)) ∩ Upd(B) 6= ∅

∨ (Obs(B) ∪ Upd(B)) ∩ Upd(A) 6= ∅
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Furthermore, we define for every activity a a pre and post-condition, pre(a)
and post(a). The precondition only refers to variables in Obs(a) ∪ Upd(a). The
post-condition only refers to variables in Upd(a), since the observed variables
are not changed.

We assume a typed data domain D. Let σ : LVar → D be a total, type-
preserving function assigning to every local variable a value. We call such a
function a valuation. Let Σ(LVar) denote the set of all valuations on LVar . A
partial valuation is a valuation that is a partial function. The set of all partial
valuations we denote by Σp(LVar). A pre or post-condition c always is evalu-
ated w.r.t. some (partial) valuation σ. We write σ |= c if c is true in σ (with
for every variable v its value σ(v) substituted). We do not define the syntax of
c: this depends on the data types used. Since we have defined no formal syntax
for pre and post-conditions, we do not provide a formal semantics for the satis-
faction relation |=. In our semantics we simply assume that a formal syntax and
semantics for pre and post-conditions has been chosen.

Function effect : Σp(LVar) × AS 7→ P Σ(LVar) − {∅} is a partial function
constraining the possible effects of each activity on the case attributes. For a
given activity a and partial valuation σ ∈ Σ(Obs(a)∪Upd(a)), the set of possible
valuations is effect(σ, a) = {σ′ | σ′ |= post(a) ∧ ∀ v ∈ Obs(a) • σ(v) = σ′(v)}.

Since we allow multiple instances of an activity to be executing, we work with
multisets of activities. Given a multiset of activities A that do not interfere, if
effect(σ, a) is a possible effect of activity a, the combined effect of activities in
A is ]a−@Aeffect(σ, a), where −@ is the membership predicate for multisets and ]
is union on multisets. Due to the non-interference constraint, the only overlap
can be in observed variables and these remain unchanged. We denote the set of
possible combined effects with effect(σ,A).

Finally, we lift all functions with domain Activities to the domain of action
state nodes AS by means of function control : AS →→ Activities , defined above.

For example, for a ∈ AS , effect(σ, a)
df

= effect(σ, control(a)).

WAITA

[g]

[h]

B

Fig. 6. Modelling pre and
post-conditions

Data-related syntactic constraints (Fig. 6). First, ev-
ery action state node must be followed by a subsequent
wait state node. Our semantics will ensure that this
wait state node is left iff all variables that have to
be tested are not being updated anymore. This pre-
vents a case from being illegally routed. Second, we
do not consider pre-conditions in our semantics, since
for every activity A that is followed by an activity B
if guard g is true, we have that [g] ⇒ post(A) and
post(A) ⇒ pre(B). We conclude [g] ⇒ pre(B). So we drop the precondition of an
activity from our semantics, since it is already implied by the preceding guard.

4 Execution Semantics of Activity Machines

We give two formal semantics for activity machines that are based upon the
informal semantics of Sect. 2. The first semantics defines how a step is computed.
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This semantics can be used to execute an activity machine, but is not a complete
definition of a run. The second semantics, useful for model checking, extends the
first one by defining a transition system, whose execution paths are runs. The
transition system we use is a clocked Kripke structure. Both semantics are an
adaptation of the semantics we defined earlier for UML statecharts [9].

4.1 Computing a Step

States. At each point in time, a system state consists of the current configuration
C , the current input I , the current value of every local variable v ∈ LVar , and
the valuations of the set On ⊆ Timers of running timers. So the system state is
a valuation σ : {C , I } ∪ LVar ∪ On → D.

The configuration is a multiset of state nodes Nodes → N of the activity
machine. A configuration is non-interfering, written non-interfering(C ), iff it
does not contain interfering action state nodes:

non-interfering(C )
df

⇔ ∀ a, a ′ −@ C • ¬ (a � a ′)

where as before −@ denotes the membership predicate for multisets. In the sequel,
the only configurations we allow are non-interfering ones.

Input. We define input I to be a tuple (Ev , σLV
p

,T , σt

p
) ∈ Events ×Σp(LVar)×

(AS → N)×Σp(Timers), where as before Σ(S ) denotes the set of all valuations
on set S . Set Ev is the set of external events. We require that empty event
NULL is always input: {NULL} ⊆ Ev . Partial valuation σLV

p
represents the set

of value change events. The partial valuation assigns to every local variable that
is changed its new value. A special value change event occurs when an action
state node has terminated because its corresponding activity has completed.
This event is modelled by T , which denotes the multiset of terminated action
state nodes. We require that only action state nodes in the configuration can
terminate: T v (AS CC ), where v denotes the sub-multiset relation and X CY
denotes restriction of relation Y to the domain set X . Finally, partial valuation
σt

p
represents the set of temporal events. A temporal event occurs because some

running timer has reached a certain desired value. We therefore require that
every timer in the domain of σt

p
is running: (On C σt

p
) ⊆ σt

p
.

Steps. A step is a maximal, consistent sub-multiset of the multiset of enabled
edges. In addition, the new configuration must be non-interfering. Our definitions
extend and generalise both the Statemate semantics [11] and our semantics for
UML statecharts [9] from sets of states (edges) to multisets of states (edges).

Before we define the multiset of enabled edges En(C ,Ev ,T ), we observe
that an edge leaving an action state node a is only enabled if a has terminated,
since otherwise the corresponding activity would not be atomic. Therefore, in
the definition we do not consider the current configuration C , but instead the
multiset C ′ of non-action state nodes in the current configuration joined with
the multiset T of terminated action state nodes. An edge e is n times enabled
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in the current state σ of the system iff source(e) is contained in C ′, one of the
input events is event(e), the guard can be safely evaluated (denoted by predicate
eval) and moreover evaluates to true (denoted |=) given the current values of all
variables, and n is the minimum number of instances of the source state nodes
that can be left. Predicate eval states that a guard g can be safely evaluated iff
it does not refer to variables that are being updated in the current valuation σ
in some activities. We do not refer to σLV

p
and σt

p
because these are contained

in σ. In formulas:

En(C ,Ev ,T )
df

= {e 7→ n | ms(source(e)) v C ′ ∧ event(e) ∈ Ev

∧ eval(σ, guard(e)) ∧ σ |= guard(e)

∧ n = min({C ′ ] s | s ∈ source(e)}) }

where C ′ = (((Nodes − AS ) C C ) ] T )

eval(σ, g)
df

⇔ ∀ a −@ AS C (C −∪ T ) • var(g) ∩ Upd(a) = ∅

where ] denotes multiset union, M ] x is the number of times x appears in

multiset M , ms(S )
df

= {s 7→ 1 | s ∈ S} (this coerces a set into a multiset), −∪ is
difference on multisets, and var(g) denote the set of variables that g tests.

Given configuration C , a multiset of edges E is defined to be consistent,
written consistent(C ,E ), iff all edges can be taken at the same time, i.e. taking
one does not disable another one:

consistent(C ,E )
df

⇔ (]e−@Ems(source(e))) v C

The function nextconfig returns the next configuration, given a configuration
C and a consistent multiset of edges E :

nextconfig(C ,E )
df

= C −∪
⊎

e−@E ms(source(e)) ]
⊎

e−@E ms(target(e))

Below, we require that taking a step leads to a non-interfering new configuration.

A multiset of edges E is defined to be maximal iff for every enabled edge e
that is added to E , multiset E ] [[e]] is inconsistent or the resulting configuration
is interfering. Notation [[e]] denotes a bag that contains e only.

maximal(C ,Ev ,T )
df

⇔ ∀ e −@ En(C ,Ev ,T ) | e 6−@ E • ¬ consistent(C ,E ] [[e]])

∨ ¬ non-interfering(nextconfig(C ,E ))

Finally, predicate isStep defines a multiset of edges E to be a step iff every
edge in E is enabled, E is maximal and consistent, and the next configuration
is noninterfering. In our full report [8], this definition is written out as a step
algorithm. In the next subsection, we will use the predicate isStep again.

isStep(E )
df

⇔ E v En(C ,Ev ,T ) ∧ consistent(C ,E )

∧ maximal(C ,Ev ,T ) ∧ non-interfering(nextconfig(C ,E ))
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4.2 Transition System Semantics of Activity Machines

A Clocked Kripke Structure (CKS) is a quadruple (Var , −→ , ci , σ0) where:

– Var = {C ,Ev ,T} ∪ LVar ∪ On is the set of variables,
– −→ ⊆ Σ(Var) × Σ(Var) is the transition relation,
– ci is the clock invariant, a constraint that must hold in every valuation,
– σ0 ∈ Σ(Var) is the initial valuation.

We have omitted from Var the I components σLV
p

and σt

p
since these are already

modelled by LVar and On respectively.
Given an activity machine, its CKS is constructed as follows. First, we specify

the clock invariant. For every basic clock constraint t(e)(n) = texp, we specify
a constraint φ of the form t(e)(n) ∈ On ⇒ t(e)(n) ≤ texp. Clock invariant
ci is the conjunction of all constraints φ. We evaluate a clock invariant ci in a
valuation σ, and write σ |= ci if the clock invariant is true.

The transition relation −→ is specified as the union of three other transition
relations. Not every sequence of transitions out of this union satisfies the clock-
asynchronous semantics. Every valid sequence must start with a superstep (the
initial step) followed by a sequence of cycles. The initial superstep is taken
because the initial state is by definition unstable. A cycle is one or more time
steps, followed by an event step, followed by a superstep. Note that −→ cycle is
not part of −→ .

−→ cycle
df

= −→+

timestep
o
9 −→ event

o
9 −→ superstep

Relation −→ timestep represents the elapsing of time by updating timers with
a delay ∆ such that the clock invariant is not violated. In the following, &s∈S

denotes a concurrent update done for all elements of set S .

σ−→ timestepσ′ df

⇔ ∃∆ ∈ IR | ∆ > 0 • σ′ = σ[&c∈Onc/σ(c) + ∆]

such that ∀ δ ∈ [0, ∆] • σ[&c∈Onc/σ(c) + δ] |= ci

Relation −→ event defines that events occur between σ and σ′ iff timers did
not change, the configuration did not change, and the local variables that are
being updated in activities are not changed, and:

– either there are named external events in the input in state σ′;
– or there is a nonempty set L of local variables that have no interference with

the currently executing activities and whose value changed;
– or some action state nodes have terminated, and there is a partial valuation

σ′

p
⊂ σ′ that conforms to the effect constraints of the currently terminating

activities;
– or it is not possible to do any more time steps (i.e. a deadline is reached).

σ−→ eventσ
′ df

⇔ (∀ c ∈ On • σ(c) = σ′(c)) ∧ σ(C ) = σ′(C )

∧ ∀ v ∈ LVar ; ∀ a ∈ AS | a −@ σ(C ) −∪ σ′(T ) •
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v ∈ Obs(a) ∪ Upd(a) ⇒ σ(v) = σ(v ′)

∧ ( σ′(Ev) ⊆ Events ∧ {NULL} ⊂ σ′(Ev)

∨ ∃L ⊆ LVar | L 6= ∅ •

(∀ a ∈ AS | a −@ σ(C ) • L ∩ (Obs(a) ∪ Upd(a)) = ∅)

∨ [[]] 6= σ′(T ) v (AS C σ(C )) ∧ ∃σ′

p
∈ effect(σ, σ′(T )) • σ′

p
⊂ σ′

∨ @σ′′ • σ−→ timestepσ′′ )

Finally, a superstep is a sequence of steps, such that intermediate states
are unstable and the final state of the sequence is stable. The notation f ⊕ g
means that function g overrides function f on the domain of f . Note that the
intermediary states (the semicolon in the composition of the relations) are not
part of the CKS.

−→ superstep
df

= (−→ unstable
o
9 −→ step

o
9 −→ superstep) ∪ −→ stable (1)

σ−→ stepσ′ df

⇔ ∃E | isStep(E ) •

∃S1 ⊆ Timers | OffTimers(σ(C ),E , σ(On),S1);

∃S2 ⊆ Timers | NewTimers(σ(C ),E , σ(On),S2) •

σ′ = σ[C/nextconfig(σ(C ),E ),Ev/∅,T/[[]],

&s∈S2
s/0,On/σ(On)− S1 ∪ S2]

σ−→ unstableσ′ df

⇔ σ = σ′ ∧ En(σ(C ), σ(Ev), σ(T )) 6= ∅

σ−→ stableσ
′ df

⇔ σ = σ′ ∧ En(σ(C ), σ(Ev), σ(T )) = ∅

Line by line, the −→ step definition says that a step is done between σ and σ′ iff:

– there is a step E (using the predicate isStep defined in Sect. 4.1);
– there is a set S1 of timers that can be turned off (denoted by predicate

OffTimers ;
– there is a set S2 of timers that can be turned on (denoted by predicate

NewTimers ;
– σ is then updated into σ′ by computing the next configuration when step E is

performed (using the function nextconfig defined in Sect. 4.1), and resetting
the input, the multiset of terminated action state nodes, and all the new
timers in S2, and finally updating On.

Predicates −→ unstable and −→ stable test whether there are enabled edges. We
compute a superstep by taking a least fixpoint of (1). This may not exist; in
which case the superstep does not terminate. Or it may not be unique, in which
case there is more than one possible superstep.

We now proceed to define predicates OffTimers and NewTimers . First we
define the notion of relevant hyperedges. Given configuration C , the multiset of
relevant hyperedges rel(C ) contains each edge whose source is contained in C .

rel(C ) = {e 7→ n | source(e) ⊆ C ∧ n = min({C ] s | s ∈ source(e)})}

For every relevant edge with a clock constraint a timer is running. This timer
was started when the edge became relevant. It will be stopped when the edge will
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become irrelevant. Assume given a configuration C , a step E , a set of running
timers On, and a set S of timers. Predicate OffTimers is true iff all timers in S
are running, but can now be turned off, because their corresponding edges are
relevant for C , but are no longer relevant if E is taken. Predicate NewTimers
is true iff all timers in S are off, but can now be turned on, because their
corresponding edges are irrelevant for C , but do become relevant if E is taken.

OffTimers(C ,E ,On,S ) ⇔ S ⊆ On ∩ {t(e)(n) | e −@ R ∧ n ∈ N}

∧ ∀ e −@ R • R ] e = #(S ∩ {t(e)(n) | n ∈ N})

where R = rel(C ) − rel(nextconfig(C ,E ))

NewTimers(C ,E ,On,S ) ⇔ S ⊆ (Timers − On) ∩ {t(e)(n) | e −@ R ∧ n ∈ N}

∧ ∀ e −@ R • R ] e = #(S ∩ {t(e)(n) | n ∈ N})

where R = rel(nextconfig(C ,E )) − rel(C )

In the initial valuation σ0, the configuration only contains one copy of initial ,
the only input event is NULL, and On is empty.

5 Related Work

The OMG [16] gives a semantics to an activity diagram by translating it into a
UML statechart. Both the translation and the semantics of UML statecharts are
not formally defined. Moreover, the translation is inappropriate, since activity
diagrams are more expressive than statecharts. The OMG semantics (and other
semantics too [4, 5]) maps action state nodes to transitions. This means that
updates to case attributes are made by the WFS itself, and not by the actors.
Our semantics maps action state nodes to states (valuations), which means that
activities are performed by actors, not by the WFS.

Gehrke et al. [10] give a semantics by translating an activity diagram into a
Petri net. Their semantics does not deal with data or time as we do. In addition,
Petri net semantics do not model the environment, whereas our semantics does
model the environment. We provide a more detailed comparison with all these
other formalisations in our full report [8].

6 Conclusions and Future Work

We have defined a formal real-time requirements-level execution semantics for
UML activity diagrams that manipulate data, for the application domain of
workflow modelling. The semantics is based on the Statemate statechart se-
mantics, extended with transactional properties. We defined both an execution
and a transition system semantics. Our semantics is different from other proposed
semantics, both for activity diagrams and for workflow models. It is motivated
by analysis of the workflow literature and by case studies.

We have done initial experiments with model checking simple statecharts
using the model checker Kronos [13]. Future work includes extending this to
model checking activity machines. Next, we plan a detailed comparison with
Petri net semantics.
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