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Abstract

Background subtraction is a common computer vision
task. We analyze the usual pixel-level approach. We de-
velop an efficient adaptive algorithm using Gaussian mix-
ture probability density. Recursive equations are used to
constantly update the parameters and but also to simulta-
neously select the appropriate number of components for
each pixel.

1. Introduction

A static camera observing a scene is a common case of
a surveillance system. Detecting intruding objects is an es-
sential step in analyzing the scene. An usually applicable
assumption is that the images of the scene without the in-
truding objects exhibit some regular behavior that can be
well described by a statistical model. If we have a statisti-
cal model of the scene, an intruding object can be detected
by spotting the parts of the image that don’t fit the model.
This process is usually known as ”background subtraction”.

A common bottom-up approach is applied and the scene
model has a probability density function for each pixel sepa-
rately. A pixel from a new image is considered to be a back-
ground pixel if its new value is well described by its density
function. For a static scene the simplest model could be just
an image of the scene without the intruding objects. Next
step would be for example to estimate appropriate values
for the variances of the pixel intensity levels from the image
since the variances can vary from pixel to pixel. This single
Gaussian model was used in [1]. However, pixel values of-
ten have complex distributions and more elaborate models
are needed. Gaussian mixture model (GMM) was proposed
for background subtraction in [2]. One of the most com-
monly used approaches for updating GMM is presented in
[3] and further elaborated in [10]. These GMM-s use a fixed
number of components. We present here an improved algo-

rithm based od the recent results from [12]. Not only the pa-
rameters but also the number of components of the mixture
is constantly adapted for each pixel. By choosing the num-
ber of components for each pixel in an on-line procedure,
the algorithm can automatically fully adapt to the scene.

The paper is organized as follows. In next section we list
some related work. In section 3 the GMM approach from
[3] is reviewed. In sections 4 we present how the number
of components can be selected on-line and to improve the
algorithm. In section 5 we present some experiments.

2.. Related work
The value of a pixel at time t in RGB or some other color-

space is denoted by ~x(t). Pixel-based background subtrac-
tion involves decision if the pixel belongs to background
(BG) or some foreground object (FG). Bayesian decision R
is made by:

R =
p(BG|~x(t))

p(FG|~x(t))
=

p(~x(t)|BG)p(BG)

p(~x(t)|FG)p(FG)
(1)

The results from the background subtraction are usually
propagated to some higher level modules, for example the
detected objects are often tracked. While tracking an object
we could obtain some knowledge about the appearance of
the tracked object and this knowledge could be used to im-
prove background subtraction. This is discussed for exam-
ple in [7] and [8]. In a general case we don’t know any-
thing about the foreground objects that can be seen nor
when and how often they will be present. Therefore we set
p(FG) = p(BG) and assume uniform distribution for the
foreground object appearance p(~x(t)|FG) = cFG. We de-
cide then that the pixel belongs to the background if:

p(~x(t)|BG) > cthr(= RcFG), (2)

where cthr is a threshold value. We will refer to p(~x|BG) as
the background model. The background model is estimated
from a training set denoted as X . The estimated model is
denoted by p̂(~x|X , BG) and depends on the training set as



denoted explicitly. We assume that the samples are indepen-
dent and the main problem is how to efficiently estimate the
density function and to adapt it to possible changes. Ker-
nel based density estimates were used in [4] and we present
here an improvement of the GMM from [3]. There are mod-
els in the literature that consider the time aspect of an im-
age sequence and the decision depends also on the previous
pixel values from the sequence. For example in [5, 11] the
pixel value distribution over time is modelled as an autore-
gressive process. In [6] Hidden Markov Models are used.
However, these methods are usually much slower and adap-
tation to changes of the scene is difficult.

Another related subject is the shadow detection. The in-
truding object can cast shadows on the background. Usu-
ally, we are interested only in the object and the pixels corre-
sponding to the shadow should be detected [9]. In this paper
we analyze the only basic pixel-based background subtrac-
tion. For various applications some of the mentioned addi-
tional aspects and maybe some postprocessing steps might
be important and could lead to improvements but this is out
of the scope of this paper.

3.. Gaussian mixture model

In practice, the illumination in the scene could change
gradually (daytime or weather conditions in an outdoor
scene) or suddenly (switching light in an indoor scene). A
new object could be brought into the scene or a present ob-
ject removed from it. In order to adapt to changes we can
update the training set by adding new samples and discard-
ing the old ones. We choose a reasonable time period T and
at time t we have XT = {x(t), ..., x(t−T )}. For each new
sample we update the training data set XT and reestimate
p̂(~x|XT , BG). However, among the samples from the re-
cent history there could be some values that belong to the
foreground objects and we should denote this estimate as
p(~x(t)|XT , BG+FG). We use GMM with M components:

p̂(~x|XT , BG+FG) =

M∑

m=1

π̂mN (~x; ~̂µm, σ̂2
mI) (3)

where ~̂µ1, ..., ~̂µM are the estimates of the means and
σ̂1, ..., σ̂M are the estimates of the variances that de-
scribe the Gaussian components. The covariance ma-
trices are assumed to be diagonal and the identity ma-
trix I has proper dimensions. The mixing weights de-
noted by π̂m are non-negative and add up to one. Given a
new data sample ~x(t) at time t the recursive update equa-
tions are [12]:

π̂m ← π̂m + α(o(t)
m − π̂m) (4)

~̂µm ← ~̂µm + o(t)
m (α/π̂m)~δm (5)

σ̂2
m ← σ̂2

m + o(t)
m (α/π̂m)(~δT

m
~δm − σ̂2

m), (6)

where ~δm = ~x(t) − ~̂µm. Instead of the time interval T that
was mentioned above, here constant α describes an expo-
nentially decaying envelope that is used to limit the influ-
ence of the old data. We keep the same notation having in
mind that approximately α = 1/T . For a new sample the
ownership o

(t)
m is set to 1 for the ’close’ component with

largest π̂m and the others are set to zero. We define that a
sample is ’close’ to a component if the Mahalanobis dis-
tance from the component is for example less than three
standard deviations. The squared distance from the m-th
component is calculated as: D2

m(~x(t)) = ~δT
m

~δm/σ̂2
m. If

there are no ’close’ components a new component is gen-
erated with π̂M+1 = α, ~̂µM+1 = ~x(t) and σ̂M+1 = σ0

where σ0 is some appropriate initial variance. If the maxi-
mum number of components is reached we discard the com-
ponent with smallest π̂m.

The presented algorithm presents an on-line clustering
algorithm. Usually, the intruding foreground objects will be
represented by some additional clusters with small weights
π̂m. Therefore, we can approximate the background model
by the first B largest clusters:

p(~x|XT , BG) ∼
B∑

m=1

π̂mN (~x; ~̂µm, σ2
mI) (7)

If the components are sorted to have descending weights
π̂m we have:

B = arg min
b

(
b∑

m=1

π̂m > (1− cf )

)
(8)

where cf is a measure of the maximum portion of the data
that can belong to foreground objects without influencing
the background model. For example, if a new object comes
into a scene and remains static for some time it will prob-
ably generate an additional stabile cluster. Since the old
background is occluded the weight πB+1 of the new clus-
ter will be constantly increasing. If the object remains static
long enough, its weight becomes larger than cf and it can
be considered to be part of the background. If we look at
(4) we can conclude that the object should be static for ap-
proximately log(1 − cf )/ log(1 − α) frames. For example
for cf = 0.1 and α = 0.001 we get 105 frames.

4.. Selecting the number of components

The weight πm describes how much of the data belongs
to the m-th component of the GMM. It can be regarded as
the probability that a sample comes from the m-th compo-
nent and in this way the πm-s define an underlying multino-
mial distribution. Let us assume that we have t data samples
and each of them belongs to one of the components of the
GMM. Let us also assume that the number of samples that
belong to the m-th component is nm =

∑t
i=1 o

(i)
m where



o
(i)
m -s are defined in the previous section. The assumed

multinomial distribution for nm-s gives likelihood function
L =

∏M
m=1 πnm

m . The mixing weights are constrained to
sum up to one. We take this into account by introducing the
Lagrange multiplier λ. The Maximum Likelihood (ML) es-

timate follows from: ∂
∂π̂m

(
logL+ λ(

M∑
m=1

π̂m − 1)

)
= 0.

After getting rid of λ we get:

π̂(t)
m =

nm

t
=

1

t

t∑

i=1

o(i)
m . (9)

The estimate from t samples we denoted as π̂
(t)
m and it can

be rewritten in recursive form as a function of the estimate
π̂

(t−1)
m for t − 1 samples and the ownership o

(t)
m of the last

sample:

π̂(t)
m = π̂(t−1)

m + 1/t(o(t)
m − π̂(t−1)

m ). (10)

If we now fix the influence of the new samples by fixing
1/t to α = 1/T we get the update equation (4). This fixed
influence of the new samples means that we rely more on
the new samples and the contribution from the old samples
is downweighted in an exponentially decaying manner as
mentioned before.

Prior knowledge for multinomial distribution can be in-
troduced by using its conjugate prior, the Dirichlet prior
P =

∏M
m=1 πcm

m . The coefficients cm have a meaning-
ful interpretation. For the multinomial distribution, the cm

presents the prior evidence (in the maximum a posteriori
(MAP) sense) for the class m - the number of samples that
belong to that class a priori. As in [12] we use negative co-
efficients cm = −c. Negative prior evidence means that we
will accept that the class m exists only if there is enough ev-
idence from the data for the existence of this class. This type
of prior is also related to Minimum Message Length crite-
rion that is used for selecting proper models for given data
[12]. The MAP solution that includes the mentioned prior

follows from ∂
∂π̂m

(
logL+ logP + λ(

M∑
m=1

π̂m − 1)

)
=

0, where P =
∑M

m=1 π−c
m . We get:

π̂(t)
m =

1

K
(

t∑

i=1

o(i)
m − c), (11)

where K =
M∑

m=1
(

t∑
i=1

o
(t)
m − c) = t −Mc. We rewrite (11)

as:

π̂(t)
m =

Π̂m − c/t

1−Mc/t
, (12)

where Π̂m = 1
t

t∑
i=1

o
(t)
m is the ML estimate from (9) and the

bias from the prior is introduced through c/t. The bias de-
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Figure 1. ROC curve for the laboratory se-
quence

creases for larger data sets (larger t). However, if a small
bias is acceptable we can keep it constant by fixing c/t to
cT = c/T with some large T . This means that the bias will
always be the same as if it would have been for a data set
with T samples. It is easy to show that the recursive ver-
sion of (11) with fixed c/t = cT is given by:

π̂(t)
m = π̂(t−1)

m + 1/t(
o
(t)
m

1−McT

− π̂(t−1)
m )− 1/t

cT

1−McT

.

(13)
Since we expect usually only a few components M and cT

is small we assume 1−McT ≈ 1. As mentioned we set 1/t
to α and get the final modified adaptive update equation

π̂m ← π̂m + α(o(t)
m − π̂m)− αcT . (14)

This equation is used instead of (4). After each update we
need to normalize πm-s so that they add up to one. We start
with GMM with one component centered on the first sam-
ple and new components are added as mentioned in the pre-
vious section. The Dirichlet prior with negative weights will
suppress the components that are not supported by the data
and we discard the component m when its weight πm be-
comes negative. This also ensures that the mixing weights
stay non-negative. For a chosen α = 1/T we could require
that at least c = 0.01 ∗ T samples support a component and
we get cT = 0.01.

Note that direct recursive version of (11) given by:
π̂

(t)
m = π̂

(t−1)
m + (t − Mc)−1(o

(t)
m (~x(t)) − π̂

(t−1)
m ) is not

very useful. We could start with a larger value for t to avoid
negative update for small t but then we cancel out the influ-
ence of the prior. This motivates the important choice we
made to fix the influence of the prior.

5.. Experiments
To analyze the performance of the algorithm we used

three dynamic scenes. The sequences were manually seg-
mented to generate the ground truth. We compare the im-
proved algorithm with the original algorithm [3] with fixed
number of components M = 4. For both algorithms and for



’traffic’ sequence selected number of modes M
average processing time per frame Old: 19.1ms New: 13.0ms

’lab’ sequence selected number of modes M
average processing time per frame Old: 19.3ms New: 15.9ms

’trees’ sequence selected number of modes M
average processing time per frame Old: 19.7ms New: 19.3ms

Figure 2. Full adaptation and processing
times

different threshold values (cthr from (2)), we measured the
true positives - percentage of the pixels that belong to the in-
truding objects that are correctly assigned to the foreground
and the false positives - percentage of the background pix-
els that are incorrectly classified as the foreground. In fig-
ure 1 we present the receiver operating characteristic (ROC)
curve for the ’lab’ sequence. We observe slight improve-
ment in segmentation results. The same can be noticed for
the other two sequences (ROC curves not presented here).
Big improvement can be observed in reduced processing
time, figure 2. The reported processing time is for 320×240
images and measured on a 2GHz PC. In figure 2 we also il-
lustrate how the new algorithm adapts to the scenes. The
gray values in the images on the right side indicate the num-
ber of components per pixel. Black stands for one Gaus-
sian per pixel and a pixel is white if maximum of 4 com-
ponents is used. For example, sequence ’lab’ has a monitor
with rolling interference bars in the scene. The plant from
the scene was swaying because of the wind. We see that the
dynamic areas are modelled using more components. Con-
sequently, the processing time also depends on the complex-
ity of the scene. For the highly dynamic ’tree’ sequence [4]
the processing time is almost the same as for the original al-
gorithm [3]. Intruding objects introduce generation of new
components that are removed after some time (see ’traffic’
sequence). This also influences the processing speed.

6. Conclusions

We presented an improved GMM background subtrac-
tion scheme. The new algorithm can automatically select
the needed number of components per pixel and in this way
fully adapt to the observed scene. The processing time is re-
duced but also the segmentation is slightly improved.
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