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Abstract

Reliability and trust are open issues in the MIX-net literature. We
present a variation on the MIX-net approach that can be used to is-
sue anonymous credentials and protect the privacy of participants to
various types of transactions. In our protocol, users first identify them-
selves to and then request credentials from a MIX they do not trust.
Transactions satisfy ACID properties, thus enhancing reliability. While
several applications are possible, the protocol is best suited for envi-
ronments where robustness is critical.
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1 Introduction

In 1981 [6] proposed an electronic mail system to hide the identity of a party
who wants to communicate anonymously with other parties. The concept of
a “MIX” was introduced: a third party that hides a sender’s message with
those of many other senders, so that no observer can link a particular sender
to a particular recipient.

MIXes have been used in several applications: synchronous and asyn-
chronous communication systems (see [15], [19], [14], and [20]); electronic
voting (see e.g. [16]); and - already in [6] - “untraceable” digital credentials.
Their drawbacks lie in their reliability (the probability that the MIX will
actually forward the messages it receives) and the trust users must place on
the MIX’s honesty (see [13] and [12]). [6], for example, already described an
application to electronic voting through digital pseudonyms. In that appli-
cation, users have to send to a pseudonym authority acting as the MIX both
their proposed pseudonyms and the identifying information required by the
authority for the acceptance decision in the same message. More generally,
in the vanilla version of the protocol the MIX must be trusted to forward
messages reliably and not to reveal to others the linkages between senders
and recipients.

A vast literature has attempted to address those issues. A family of
solutions to the problem of trust relies on distributing trust among several
third parties in a cascade of MIXes (forming a “MIX-net”) that clouds the
relation between messages (or pseudonyms) and their senders. In such a
cascade, each message must go through a certain number of MIXes before
reaching its final destination. However, collusion among MIXes in a cascade
can expose the identity of the sender of a certain message. In addition, any
MIX in a cascade can stop forwarding the messages transiting its server.
Thus, addressing trust decreases the reliability of the system.

In this paper we discuss a variation of the MIX approach that allows
anonymous credentials to be issued for various types of transactions while
addressing simultaneously trust and reliability issues of traditional MIX-net
systems. The method presented here is based on a new primitive - that we
will call acid mixing - through which parties send at different moments to the
same MIX their proposed credentials and the information needed for those
credentials’ acceptance; several users’ credentials are processed in batches,
and all transactions in a batch either verifiably complete or abort.

This variation on the MIX-net approach does not rely on a trusted third
party because the MIX no longer can link an user to the credential he re-
quests. The protocol also allows users to choose the credentials they want
the MIX to validate, and the MIX to actually observe the credential with-
out compromising anonymity. These properties make the protocol suited
for applications where robustness is critical (for example, anonymOus pay-
ments or electronic voting) in addition to more traditional applications such
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as anonymous communications.
The rest of this paper introduces the acid mixing primitive at the heart of

the protocol (Section 2) and then examines some of its features (Section 3).
Comparisons with related technologies and possible attacks on the protocol
are described in Sections 4 and 5 respectively.

2 Description

2.1 Approach

We refer to a “credential” as a cryptographic key signed by a third party
authority. An anonymous credential cannot be linked to the party that ob-
tained it. We focus on a scenario where, in order to complete a transaction
(such as purchasing a good, sending a message, voting in an election, and
so on) “anonymously” with Alice, Bob needs to receive an anonymous cre-
dential valid for that transaction and show it to Alice; in order to receive
the credential, Bob needs to show to the third party that he satisfies certain
criteria set for the completion of that type of transaction.

Acid mixing, in a nutshell, works the following way: after Bob has iden-
tified himself to the third party and provided evidence that he meets the
criteria to complete a certain type of transaction, the third party signs and
gives him a key (that is linkable to Bob). Then, Bob and the set of other
users who received similar keys create each a new key and broadcast them
to be signed by the third party. To complete the transaction, each user must
then “redeem” the key he had originally received by sending it back to the
third party. Because the new keys are processed in a batch and each user
sends the old key and requests the new one at two different moments and
through broadcasting, the third party cannot link the user owning a certain
initial key to the user who has requested a certain new key. Hence, unlike
[6] and other MIX-net systems, users never send pseudonyms and personal
information in the same message.

In the rest of this section we provide a formal description of the protocol.

2.2 Assumptions

We make the following assumptions (their strength will be discussed in Sec-
tions 3 and 5):

1. There exist several “sending” parties SIs, with I = 1, ..., N , each trying
to complete a transaction tY of type T that requires such party to send
messages to other parties.

2. There are several “receiving” parties RIs, with I = 1, ..., T , that send-
ing parties want to complete transactions of type T with.
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3. There is a third party M , able to send and receive messages, and able
to perform a function F on a message (I, T ) sent by a sending party SI .
Such function F maps a message (I, T ) sent by SI to a binary outcome
(0, 1). It is: F (I, T ) : (I, T ) → (0, 1), where F (I, T ) = 1 means that
the data I included in the message meets certain criteria set by the
third party to allow the sending party to receive the credentials to
complete a transaction of type T .

4. All parties can send and receive messages to and from other parties,
and can perform basic cryptographic operations (like creating crypto-
graphic keys, signing or encrypting and decrypting messages and keys
using public key cryptosystems, such as [22]). In particular, the par-
ties are able to create keys Ks which are random and long enough to
be unique with high probability, and the third party is able to create
“credentials” for transactions of type T by signing the keys sent by the
sending parties with a private key used for that type of transaction.
The third party can also keep track of the keys it has signed.

5. All parties participate to a network D. There exists some communi-
cation channel inside the network through which the parties exchange
information. Parties can broadcast messages to all parties in D.

6. Parties can also broadcast anonymously (see [24]), in the sense that re-
ceivers of a message broadcast anonymously cannot identify the sender
of the message.1

7. There exists a Log party L that logs all communications going to and
coming from the third party M .

The goal of the protocol is to let sending parties SIs complete trans-
actions tY “anonymously” with receiving parties RIs after exhibiting their
credentials. “Anonymously” means that no party is able to find a correspon-
dence between a sending party SI and the transaction tY (or the receiving
party RI) completed by that sending party. Hence, no party is able to
determine SI from tY and RI or viceversa.

2.3 Notation

The following notation is adopted in the description of the protocol:

• EX{.} means that message (.) has been encrypted with key X.

• EC tPB{.} means that message (.) has been encrypted with the public
key t of C.

1See 5.

4



• EC dPR{.} means that message (.) has been signed with the private
key d of C.

• A → B : t represents the communication of t from A to B.

• A → ∗ : t represents a broadcast communication of t from A to all
other parties.

• A? → ∗ : t represents an anonymous broadcast communication of t
from A to all other parties.

• T (in caps) represents a category or “type” of transaction (for example,
a voting transaction, or a payment transaction). tY (in small caps,
with y = 1, ...,W ) represents a specific instance of transaction of type
T (for example, a particular casted vote). Hence tY εT .

2.4 Steps

The protocol is composed of six steps:

1. SI → M : EM PB {ESI PR
{(I, T )}}

A sending party SI that wants to complete a transaction of type T
sends a message (I, T ) to the third party M . The third party operates
a function F that maps (I, T ) to a binary outcome (0, 1) (Assumption
3). If F (I, T ) = 1, it means that the data I included in the message
includes data that meet the criteria set by the third party for allowing
the sending party SI to perform a transaction of type T .

If F (I, T ) = 1 (Assumption 3), M creates a long random key KTI1 and
signs it (Assumption 4). This signed key represents a non-anonymous
credential for a transaction of type T . In other words, KTI1 would
allow SI to complete a transaction of type T , altough not anonymously.
M sends the signed key to SI :

2. M → SI : ESI PB
{EM PR {KTI1}}

3. SI? → ∗D : EM PB {KTI2 ,KTI3}
Every SI broadcasts anonymously (Assumption 6) to the network D
two newly created long random keys. Each sending party wants the
second key signed by M and then encrypted with the third key, so
that only the sending party that created it can decrypt the signed
key. Under Assumption 6, the keys are such that given SI , M cannot
determine KI2 or KTI3 ; and given KTI2 or KTI3 , M cannot determine
SI .

M gathers the pairs of second and third keys broadcast by all sending
parties and defines:
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K̄T =
[
EKT13

{
EKT12

}
, ..., EKTI3

{
EKTI2

}
, ..., EKTN3

{
EKTN2

}]
Then, M creates an ID for K̄T called idlist and broadcasts:

4. M → ∗D : EM PR

{
idlist,K̄T

}
Each sending party SI , upon recognizing his key pairs in the broadcast
message, sends a signed message to M quoting the idlist and returning
the original key KTI1 .

5. SI → M : EM PB {ESI PR
{idlist,KTI1}}

If and only if M receives as many KTI1s as key pairs associated to
idlist, then it can proceed to sign each KTI2 with the associated KTI3

and then broadcasts the message:

6. M → ∗D : EM PR

{
EKTI3

{
EM PR

{
EKTI2

}}}
Each sending party has now received a new credential KTI2 , based on

a key he chose, signed by M . This credential can be used to complete a
transaction of type T (for example, the credential could represent a pay-
ment token to pay for an anonymous purchase). Because from SI M cannot
determine KTI2 or KTI3 (see step 3 above and Assumption 6), therefore M
cannot determine KTI2 given KTI1 either. Therefore, SI now owns a key
that will allow him to complete a transaction ty of type T with a receiv-
ing party RI , without the receiving party (or anybody else) being able to
determine SI from ty, QED.

3 Anonymity, Reliability, Acidity, and Other Prop-
erties

In this section we discuss some key properties of the protocol. In Section 4
we discuss related technologies, and in Section 5 we analyze possible attacks.

The protocol is based on the synchronous activities of parties that do
not know or trust each other. Users of the protocol choose keys and have
them signed by a third party, in a way that no other party can determine
the identity of an user from the key it has received. Anonymity is protected
because M cannot determine KTI2 given KTI1 , and therefore no other party
can determine SI from ty.

This form of anonymity relies on Assumption 6 - the existence of an
anonymous broadcasting channel. [24] argue that anonymous broadcasting
is a more accurate model of what can actually happen during anonymous
communications, and that it can provide efficient implementation techniques
for several anonymity-related protocols. We note here that even in the ab-
sence of an anonymous broadcasting channel, each user can take advantage
of two different “pseudo-identities” to send messages 1 and 3 respectively
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and achieve the same outcome. Each pseudo-identity is an identity that an
user can adopt to contact the third party, and that the third party can use
to contact the user: for example, an email address, or an account on a com-
puter shared by several users.2 Users may also send messages through email
mixers such as [14]. Even in this latter case, unlike [6]’s application to elec-
tronic voting through digital pseudonyms and unlike traditional MIX-nets,
in this protocol users never need to send to the third party their proposed
pseudonyms (KTI2) and the information required by the authority for the
acceptance decision (I) in the same message.

The existence of a Log L does not undermine anonymity even in case
of collusion with M . The Log is only used to prevent or resolve disputes
and ensure atomicity.3 A global observer able to intercept all messages in
the network D cannot compromise anonymity as long as Assumption 6 is
maintained. On the other side, intersection attacks on the anonymity set
(see [23]) are possible. We discuss these attacks in Section 5.

Since a single MIX is sufficient to ensure anonymity, there is no need for
a cascade of MIXes. This enhances the reliability of the system. In addi-
tion, transactions completed through the single MIX satisfy ACID properties
(atomicity, consistency, isolation, and durability - see [17] and [5]). Since
M needs to receive as many KTI1s as key pairs associated to idlist in order
to sign all the credentials in a batch, each batch is either collectively com-
pleted or aborted. If too many new credentials are requested (or too few
valid KTI1s are redeemed), M aborts the transaction after the chosen delay
period has elapsed since step 2. M must then request users to start again
from step 3 by issuing new key-pairs to be signed. (Potential delay of service
and other attacks on this feature are discussed in Section 5.) Transactions
are consistent because, when a batch is aborted, the keys KTI1 that certain
users attempted to redeem in step 5 are still valid and can be reused: the
Log can prove that a certain KTI1 was sent for a batch that was aborted.
L can also verify that M does not issue signed keys without corresponding
legitimate users, or that M is not aborting a batch even if it has received
the correct number of valid keys KTI1s.

4 If L stores the information it gath-
ers by observing communications involving M , durability is also achieved.
Finally, because each batch (and the associated keys) are identified by an
unique idlist, transactions are also isolated.

2We note that, in this case, the requirements are not different from those involving
the actual spending of anonymous cash - such as ECash ([7]): the analysis of the traffic
between a customer and the party blindly signing the customer’s tokens, and between
the same customer and the merchant where the tokens are spent may also undermine
anonymity if the customer is not using different pseudo-identities. See also [5].

3See below.
4Collusion between L and M disrupts atomicity but cannot undermine anonymity. In

addition, this form of collusion would be easily detected by other users. Hence we rule
out this case by also noting that L would be an independent authority or a tamper-proof
device (see also [5]).
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The above description does not specify what type of transaction T the
sending party wants to complete. Given that the information I needed for
the third party’s acceptance decision is customized for the transaction T ,
and given that users choose their keys KTI2s and M observes the keys before
signing them, the acid mixing primitive can be used for several applications
- such as anonymous payments, electronic voting, anonymous communica-
tions, and so on. We discuss some of these applications in Section 6.

4 Related Technologies

Acid mixing combines elements from various strands of the cryptographic
literature: MIX-nets ([6], and related applications such as [14] and [21]);
ANDOS protocols (e.g., [3]); group signatures ([10]); and the “cocaine auc-
tion” protocol (see [24]).

In terms of functionalities, the protocol presented here can be related to
other anonymous credentials protocols (such as [7], [8], [9], [11], [2], [18], and
[4]) as well as to protocols based on blind signatures ([7]) that also produce
unlinkable signed certificates.

MIX-nets [6] have been discussed above. The commonalities between
MIX-nets and the approach described here lie in the presence of a third party
that mixes keys from several users. The method presented here, however,
addresses some trust and reliability issues in MIX-net systems.

The “All-Or-Nothing-Disclosure-Of-Secrets” (or “ANDOS;” see [3]) pro-
tocols allow “secrets” to be sent to unidentifiable recipients. Group sig-
natures (see [10]) protocols allow an unidentifiable member of a group to
sign on behalf of the group. The assumptions and features of these two ap-
proaches are quite different from those of the protocol presented here. Group
signatures do not offer the same level of anonymity provided by the method
described here. ANDOS protocols require in general more steps, messages,
and complexities than our protocol. However, some elements are also in
common. In particular, all these protocols rely on different parties acting as
members of a group in order to make each particular member unidentifiable.

[7], [8], [9] describe anonymous credential systems which all rely on
trusted or semi-trusted third parties that transfer credentials between dif-
ferent organizations - unlike the untrusted third party described in this pro-
tocol. [18] and [2] propose credentials system that do not rely on trusted
parties, but are based on functions and proofs (for example, zero-knowledge
proofs) that make their use unpractical.

[4] propose a credential systems that can be used in applications such as
anonymous payments. Their system has a novel feature: an “all-or-nothing”
share of credentials, under which a party that allows another party to use
one of his credentials, loses control on all of his other credentials. Some of
the goals of the protocol we present are comparable to those described in [4]:
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producing keys which are “credentials” that strangers can exhibit to act in
environments where parties do not know and trust each other. The protocol
presented here, however, is based on fewer messages and simpler crypto-
graphic operations (only 4 messages are exchanged for each user, and two
additional messages are broadcasted by M to the network D for the entire
batch). More generally, acid mixing offers a different strategy for anonymity
and different functionalities compared to the anonymous credential systems
discussed above or to blind signatures-based systems (through [7]’s blind
signatures, a sending party can manipulate data signed by a third party in
a way that the third party’s signature can still be recognized but not linked
to the data originally signed). First, under our protocol, the collusion of
the third party with all other N − 1 sending parties is in general required
in order to expose the connection between a certain N -th sending party
SI and the KI2 he requested. This means that the collusion of the very
same users of the system is needed in order to attack it. In other words,
in the protocol described here there is no cryptographic relation between
the exchanged keys, but only among the participants to the method itself.
Second, unlike the protocols described by [3], [10], or [4], this method allows
sending parties to choose the keys they want the third party to sign, and
it allows the third party to see the actual keys before signing them, while
preserving anonymity. These features becomes useful when the method is
used in applications such as electronic voting (see Section 6).

5 Adversary Model and Attacks

A global adversary who can observe all communications in D does not com-
promise the anonymity of the system. An adversary controlling N−1 users,
however, does. More generally, in this protocol the anonymity of each send-
ing party depends on his synchronously blending and hiding his messages
(and keys) with those of other sending parties. Hence, anonymity depends
on the entropy of the “anonymity set” (see [23]) that the N sending parties
form as a group, and is exposed to intersection attacks on these sets. Hence
the best use of the protocol is for synchronous systems such as elections or
for systems with large numbers of transactions such as payment systems or
communication systems with many users.

If the third party impersonates or colludes with all other N−1 parties, it
compromises the anonymity of the N -th party (as in any anonymity system
where all participants except one are colluding). When more than one batch
is used in a certain application of the protocol, the third party (who knows
that a certain user is in the batch) may, in fact, try to select the batches in
order to decrease the entropy of the anonymity set where the user is trying
to hide his transactions. One possible defense is to force the third party to
cluster all parties in the same batch (if the transactions are synchronous, as
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they may be in an election), or select parties for batches randomly, with a
procedure similar to the one proposed in [13]. Another defense is to allow
the user himself to select his peers and form groups. Such groups may
still contain users colluded with the third party, although now with reduced
probability.5

Denial of service attacks may be implemented by malicious users who
flood the system with requests of new credentials they are not able to satisfy,
because they do not have (or are not willing to send) the original KTI1 keys.
In fact, if and only if M receives as many KTI1s as key pairs associated to
idlist, then it can proceed to sign each KTI2 with the associated KTI3 . How-
ever, given that transactions are ACID, a certain batch can be aborted with
no consequence if the right number of keys have not been received. Still,
while this form of attack would bring no gain to the attacker, it may never-
theless slow or halt the third party. Hence, to further disincentive attackers,
their strategy can be made inordinately costly by asking a monetary, non
anonymous deposit at step 1 and by providing - in return - in step 2 a group
key for the batch, that the user must add to this message in step 3. The
deposit is reimbursed after the batch transaction is completed or aborted,
but only users who left a deposit are able to see the group key needed to
request the credentials KTI2s to be validated.

6 Applications

Acid mixing allows users to reliably obtain anonymous credentials from a
MIX they do not trust. Since the nature of the information I that must
be provided by users to obtain a credential can change with the transaction
T , and given that the credentials KTI2s can be chosen by the users and
observed by M , the primitive can be used for several applications. A few
examples are discussed below.

Anonymous payments. I contains financial information that M needs
in order to charge the sending party’s personal account. The anonymous
credentials KTI2s, once signed by M , represent payment tokens that the
sending party can use with a merchant.

Electronic voting. I contain information that proves the sending
party’s eligibility to vote in a certain election. The write-in ballot vote is
expressed through the keys KTI2s. After the batch is complete, M can pub-
lish the keys. Hence the method allows for write-in ballots and universally
verifiable votes (see [1]).

5For additional protection, users may also engage in the protocol iteratively. Once
obtained the signed keys KTI2 , users can resume the protocol from step 3, in order to
obtain yet again new keys by sending back the ones just received, rather than using the
latter to complete a transaction. Through these repetitions of the protocol, “old” keys
are “redeemed” into new ones, in order to cloud further the relation between each original
sending party and the signed keys it obtains.
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Anonymous communications. I contains a message, encrypted with
the receiving party’s public key, that the sending party wants to send anony-
mously. The keys KTI2s contain the addresses of the receiving parties. M
prepares a batch of the messages and forward the batch to the addresses
listed in the keys KTI2s - a receiving party will only be able to decrypt the
part of the batch meant for her.
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